
Character User Interface Programming

0890424-000

February 1997

The operating system name has been changed to PowerMAX OSTM

Copyright 1997 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be repro-
duced in any form without the written permission of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope“Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd..
PowerMAX OS is a trademark of Concurrent Computer Corporation.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the manufactures or marketers of the products
with which the marks or names are associated..

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- July 1994 000 Secure/Power UNIX r1.1

iii

Preface

Introduction

TheCharacter User Interface Programming is for application developers who want to
develop a menu- and form-based interface that operates on ASCII character terminals run-
ning on UNIX® System V Release 4.2 and later. Existing applications can be adapted to a
character user interface front-end, and new applications can be designed from the start to
take advantage of the screen management capabilities of FMLI and ETI.

FMLI is a high-level programmer interface for creating menus, forms, and text frames that
enforce a well-defined look and feel policy. An application developer, having defined
frames (menus, forms, and text) in files, is free from having to program their display and
user interactions. The shell-like language is processed by an interpreter and allows the
developer to specify menu and form placement. FMLI allows application developers to
customize specific applications easily and quickly without writing in C language code.

ETI is a set of screen management library subroutines (built oncurses) that promote fast
development of application programs that manipulate windows, panels, menus, and forms.
ETI also includes functions to define help, error and other types of messages, and to dis-
play, and change messages quickly and easily. It is a C language toolkit used to build user
interfaces for applications. ETI allows the developer to design a unique/customized user
interface.

This guide tells you how to use the Form and Menu Language Interpreter (FMLI) and the
Extended Terminal Interface (ETI) software development tools to write such user inter-
faces for your applications. It assumes the reader has a working knowledge of UNIX Sys-
tem V, shell programming, and/or C Language programming.

NOTE

This guide is not intended to be an introduction to UNIX System
V, UNIX System shell programming, or C Language program-
ming. For an introduction to shell programming and C Language
programming, see “Referenced Publications” on page -vi.

Who This Guide Is For

This guide is written for programmers developing UNIX System V applications with
interfaces that operate on display devices using only standard characters. A working
knowledge of the UNIX system and shell programming is assumed. (See the UNIX Sys-
tem VUser's Guide for detailed information on these topics.)

Character User Interface Programming

iv

Scope of Manual

Chapter 1 through Chapter 4 describe the Form and Menu Language, and tell how to use it
to write descriptions of the forms, menus, and text frames that make up your user inter-
face. These chapters explain how you can make best use of the screen management capa-
bilities that FMLI provides for you, and how you can customize the default appearance
and functionality of a user interface written with FMLI.

Chapter 5 through Chapter 13 describe the Extended Terminal Interface, and tell how to
use it to write screen management programs on a UNIX system. These chapters explain
how to use the high-level library routines to build panels, menus and forms. They also
describe how these routines relate to low-levelcurses routines and theterminfo data-
base.

Syntax Notation

The following typographical conventions are used in this guide:

• The logical values “true” and “false” are represented in the text by the
words TRUE and FALSE, shown in all capital letters. Boolean descriptors
must evaluate to either TRUE or FALSE, where

- FALSE means the literal word “false,” irrespective of case, or a non-
zero return code.

- TRUE means any value other than those defined for FALSE.

• Literal elements of computer input and output, including user input, pro-
gram code, UNIX system command names, FMLI command and built-in
utility names, and other elements of the Form and Menu Language are
shown inconstant-width typeface .

• Substitutable elements of command lines and of elements of the Form and
Menu Language are shown initalic typeface.

• Comments in a screen display—that is, text that is not computer output but
is an aside from the author to the reader—are shown initalic typeface, as in
the following example:

• Named keys are shown in a representation of a hard key. This includes keys
such asESCAPE or DEL, and the function keysF1 throughF8.

• Alternative keystroke sequences are also shown in a hard key representa-
tion. For example, the alternative keystroke sequence for the named key

.

.

.
command interaction
.
.
.

Press ENTER to continue

Preface

v

DEL is CTRL-x. That means the user must hold down theCTRL key
while pressingx.

Longer alternative keystroke sequences are shown as a sequence of hard key repre-
sentations. For example, the alternative keystroke sequence for the named keyF3 is
CTRL-f 3. That means the user must hold downCTRL while pressingf, then press
3.

• Screen labels for function keys are also shown as hard key representations.
For example, when a menu is the active frame on the screen, function key
F1 has the screen labelHELP.

• Depending on the keyboard being used, the carriage-return key may be
calledENTER, RETURN, or something else. Throughout this guide the
ENTER key is used to represent the carriage-return key. However, if a
keyboard only has aRETURN key, use it orCTRL-m instead.

• When command syntax is described, the following notation conventions
are used (especially in the FMLI manual pages in section 1F):

- Literal elements of a command (including command names them-
selves) are shown inconstant-width typeface .

- Substitutable arguments to commands are shown initalic typeface.

- Square brackets ([]) around an argument indicate that the argument
is optional.

- Ellipses (. . .) are used to show that the previous argument may
be repeated.

• In program text, the major ETI data types appear in uppercase. They are

WINDOW A rectangular area of the screen treated as a unit

PANEL A window with relations of depth to other windows so that regions hid-
den behind other windows are invisible

ITEM A character string consisting of a name and an optional description

MENU A screen display that presents a set of items from which the user
chooses one or more, depending on the type of menu

FIELD An m x n block of form character positions that ETI functions can
manipulate as a unit

FORM A collection of one or more pages of fields

FIELDTYPE
A field attribute that determines what kind of data may occupy the field

• Every ETI function is introduced with a SYNOPSIS. The first line of the
SYNOPSIS proper describes the routine, while the following lines describe
its arguments. On each line, the type of the return value or arguments pre-
cedes their names. As an example, consider

Character User Interface Programming

vi

SYNOPSIS

int set_menu_win (menu, window)
MENU * menu;
WINDOW * window;

This says that the functionset_menu_win returns a value of typeint and that it
takes two arguments,menu andwindow. The argumentmenu is of typeMENU *
(pointer to a menu), while the argumentwindow is of typeWINDOW * (pointer to a
window).

• The termswindow, panel, menu, andform are often shorthand for the
phrases window pointer, panel pointer, menu pointer, and form pointer,
respectively. All ETI routines pass or return pointers to these objects, not
the objects themselves.

Referenced Publications

The following publications are referenced in this document:

0890428 User's Guide

0891019 Concurrent C Reference Manual

vii

Contents

Chapter 1 Introduction to FMLI

Introduction . 1-1
What Is FMLI? . 1-1

Screen Layout. 1-2
Frames . 1-5

Programming with FMLI. 1-5
Frame Definition Files . 1-6

Menu Frames. 1-6
Single-column and Multi-column Menus . 1-6
Single-select and Multi-select Menus . 1-6

Form Frames . 1-7
Multi-line and Scrollable Fields. 1-7
Multi-page Forms. 1-7
Validating Field Values . 1-7
Choices Menu . 1-7

Text Frames . 1-8
Application Level Definition Files . 1-8

Initialization File . 1-8
Commands File . 1-8
Alias File . 1-8

Terminal Independence. 1-9
Recovering after Abnormal Termination. 1-9

Internationalization Support . 1-10
An Example Application . 1-10
Writing an Internationalized Application . 1-12
Using an FMLI Application. 1-13

Named Keys and Alternative Keystroke Sequences. 1-15
Navigating in a Menu . 1-15
Selecting Menu Items. 1-16
Navigating in a Form . 1-17
Editing and Saving a Form . 1-18
Using a Choices Menu . 1-19
Navigating in and Editing a Text Frame. 1-19
Navigating between Frames . 1-19
Executing Commands. 1-20

The Command Menu. 1-21
The Command Line. 1-21
Screen-labeled Function Keys. 1-22
On-line Help . 1-22
Accessing the UNIX System. 1-23

Chapter 2 The Form and Menu Language

Introduction . 2-1
Syntax, Rules, and Conventions . 2-1

Naming Conventions for Frame Definition Files . 2-1
Comments. 2-2

Character User Interface Programming

viii

Case Sensitivity. 2-2
Type Casts. 2-2

File Type Casts. 2-2
Type Casts That Change the Time of Descriptor Evaluation. 2-3

Special Characters. 2-3
Quoting Mechanisms . 2-4
Backquoted Expressions . 2-4

Expression Operators. 2-5
File Redirection. 2-6
Syntax Errors . 2-6

Variables. 2-6
User-defined Variables . 2-6
Built-in Variables . 2-7

Variable Evaluation . 2-8
Descriptors . 2-10

Descriptor Evaluation . 2-10
Descriptor Types . 2-12
Frame Definition File Descriptors . 2-12

Menu Descriptors. 2-14
Form Descriptors . 2-17
Text Frame Descriptors . 2-21

Application Level File Descriptors . 2-23
Initialization File Descriptors . 2-23

Application Descriptors for the Initialization File 2-23
Application SLK Descriptors . 2-26
Commands File Descriptors . 2-27

FMLI Commands. 2-28
FMLI Commands: Syntax and Use. 2-29
User Access to FMLI Commands. 2-33

Built-in Utilities . 2-34
Overview of the Built-in Utilities . 2-34

Conditional Statements . 2-37
Signal Handling . 2-38

Interrupt Signal Handling . 2-39
Terminal Display Attributes. 2-41

Using the Alternate Character Set. 2-42

Chapter 3 Frame Definition Files

Introduction . 3-1
Menu Frame Descriptors . 3-1

Frame Descriptors for Menus . 3-3
Item Descriptors for Menus . 3-6

Examples of Menu Definition Files . 3-8
Defining a Simple Menu . 3-9
Creating Multi-column and Scrollable Menus . 3-12
Using the reread Descriptor . 3-14
Using the interrupt and oninterrupt Descriptors . 3-16
Providing Supplementary Information for Menu Items 3-18
Displaying an Item Message. 3-20
Using the show Descriptor . 3-21
Creating a Dynamic Menu . 3-23

Form Frame Descriptors . 3-26

Contents

ix

Frame Descriptors for Forms . 3-27
Field Descriptors . 3-31

Automatic Layout of Form Fields . 3-40
Example Form Definition Files . 3-42

Saving User Input to a Form. 3-42
Validating a Form Field . 3-47
Example of Validating a Field Value with the valid Descriptor 3-50

Text Frames . 3-51
Text Frame Descriptors . 3-52
The textframe Command . 3-56

Options for the textframe Command. 3-56
Example Text Frame Definition Files . 3-57

Defining Attributes of Text Frames . 3-58
Defining a Text Frame with readfile and longline . 3-59
Using Text Frame Headers and Terminal Attributes . 3-59

Other Useful Examples . 3-61
Defining a Help Frame for Menu Items or Form Fields. 3-61

Using the textframe Command as an Alternative . 3-64
Using Co-processing Utilities. 3-65

Chapter 4 Application Level Definition Files

Introduction . 4-1
The Initialization File . 4-1

Introductory Frame Descriptors . 4-2
Example Definition of an Introductory Frame . 4-3

Banner Line Descriptors. 4-3
Example Definitions of a Banner Line . 4-4

Color Attribute Descriptors . 4-4
Examples of Defining Color Attributes. 4-6
Defining Color for the Banner Line . 4-6

General Application Descriptors . 4-6
Screen-labeled Function Key Descriptors . 4-9

Example Definitions of Screen-labeled Function Keys. 4-12
The Commands File. 4-12

Command Descriptors . 4-13
Example of Adding an Application-specific Command 4-13
Example of Disabling an Existing FMLI Command 4-14

The Alias File . 4-14
Examples of Adding Path Aliases . 4-14

fmli Command Syntax. 4-15

Chapter 5 Introduction to ETI

Overview . 5-1
What Is ETI? . 5-1

The ETI Libraries . 5-1
The ETI/terminfo Connection . 5-3
Other Components of the Screen Management System. 5-4

Chapter 6 Basic ETI Programming

Introduction . 6-1

Character User Interface Programming

x

What Every ETI Program Needs . 6-1
The Header Files . 6-1
The Routines initscr, refresh, endwin . 6-2

Compiling an ETI Program . 6-4
Using the TAM Transition Library . 6-4

Running an ETI Program . 6-4
More about initscr and Lines and Columns . 6-5
More about refresh and Windows . 6-5

Pads . 6-7

Chapter 7 Simple Input and Output

Introduction . 7-1
Output. .7-1

addch. 7-1
addstr. 7-3
printw . 7-3
move . 7-4
clear and erase. 7-6
clrtoeol and clrtobot . 7-6

Input . 7-7
getch . 7-8
getstr . 7-9
scanw. 7-10

Output Attributes . 7-11
attron, attrset, and attroff. 7-13
standout and standend. 7-13
Color Manipulation. 7-14

How the Color Feature Works . 7-14
Using the COLOR_PAIR(n) Attribute. 7-16
Changing the Definitions of Colors . 7-17
Portability Guidelines . 7-17
Other Macros and Routines . 7-18
start_color . 7-18
init_pair . 7-19
init_color . 7-20

Bells, Whistles, and Flashing Lights: beep and flash. 7-21
Input Options . 7-21

echo and noecho . 7-23
cbreak and nocbreak . 7-23

Chapter 8 Windows

Introduction . 8-1
Output and Input . 8-1
The Routines wnoutrefresh and doupdate . 8-2
New Windows . 8-6

newwin . 8-6
subwin. 8-6

ETI Low-level Interface (curses) to High-level Functions. 8-7

Contents

xi

Chapter 9 Panels

Introduction . 9-1
Compiling and Linking Panel Programs . 9-1
Creating Panels . 9-1
Elementary Panel Window Operations . 9-2

Fetching Pointers to Panel Windows . 9-2
Changing Panel Windows. 9-3
Moving Panel Windows on the Screen. 9-3

Moving Panels to the Top or Bottom of the Deck . 9-4
Updating Panels on the Screen . 9-5
Making Panels Invisible. 9-6

Hiding Panels . 9-6
Checking If Panels Are Hidden. 9-7

Reinstating Panels . 9-7
Fetching Panels above or below Given Panels . 9-8
Setting and Fetching the Panel User Pointer . 9-8
Deleting Panels . 9-10

Chapter 10 Menus

Introduction . 10-1
Compiling and Linking Menu Programs . 10-1
Overview: Writing Menu Programs in ETI . 10-2

Some Important Menu Terminology . 10-2
What a Menu Application Program Does . 10-2
A Sample Menu Program . 10-3

Creating and Freeing Menu Items . 10-5
Two Kinds of Menus: Single- or Multi-valued . 10-7

Manipulating an Item's Select Value in a Multi-valued Menu 10-7
Manipulating Item Attributes . 10-8

Fetching Item Names and Descriptions . 10-8
Setting Item Options. 10-9
Checking an Item's Visibility . 10-10
Changing the Current Default Values for Item Attributes 10-11

Setting the Item User Pointer. 10-11
Creating and Freeing Menus . 10-13
Manipulating Menu Attributes . 10-14

Fetching and Changing Menu Items. 10-14
Counting the Number of Menu Items. 10-16
Changing the Current Default Values for Menu Attributes 10-16

Displaying Menus . 10-17
Determining the Dimensions of Menus . 10-17

Specifying the Menu Format. 10-18
Changing Your Menu's Mark String . 10-20
Querying the Menu Dimensions . 10-22

Associating Windows and Subwindows with Menus. 10-23
Fetching and Changing a Menu's Display Attributes . 10-25
Posting and Unposting Menus . 10-27

Menu Driver Processing . 10-29
Defining the Key Virtualization Correspondence. 10-30
ETI Menu Requests . 10-32

Item Navigation Requests . 10-32
Directional Item Navigation Requests . 10-32

Character User Interface Programming

xii

Menu Scrolling Requests. 10-33
Multi-valued Menu Selection Request . 10-33
Pattern Buffer Requests . 10-33

Application-defined Commands . 10-34
Calling the Menu Driver . 10-35
Establishing Item and Menu Initialization and Termination Routines 10-38

Function set_menu_init . 10-39
Function set_item_init . 10-39
Function set_item_term . 10-39
Function set_menu_term . 10-40

Fetching and Changing the Current Item . 10-41
Fetching and Changing the Top Row . 10-42
Positioning the Menu Cursor . 10-43
Changing and Fetching the Pattern Buffer . 10-44

Manipulating the Menu User Pointer. 10-45
Setting and Fetching Menu Options. 10-47

Chapter 11 Forms

Introduction . 11-1
Compiling and Linking Form Programs . 11-1
Overview: Writing Form Programs in ETI . 11-1

Some Important Form Terminology . 11-2
What a Typical Form Application Program Does. 11-2
A Sample Form Application Program . 11-3

Creating and Freeing Fields . 11-6
Manipulating Field Attributes . 11-8

Obtaining Field Size and Location Information . 11-8
Dynamically Growable Fields . 11-9
Moving a Field . 11-11
Changing the Current Default Values for Field Attributes 11-12
Setting the Field Type to Ensure Validation . 11-13

TYPE_ALPHA . 11-14
TYPE_ALNUM. 11-15
TYPE_ENUM . 11-15
TYPE_INTEGER . 11-16
TYPE_NUMERIC. 11-17
TYPE_REGEXP . 11-18

Justifying Data in a Field . 11-18
Setting the Field Foreground, Background, and Pad Character. 11-19
Some Helpful Features of Fields . 11-21

Setting and Reading Field Buffers . 11-21
Setting and Reading the Field Status . 11-22
Setting and Fetching the Field User Pointer . 11-24

Manipulating Field Options . 11-26
Creating and Freeing Forms. 11-29
Manipulating Form Attributes . 11-31

Changing and Fetching the Fields on an Existing Form. 11-31
Counting the Number of Fields. 11-32
Querying the Presence of Offscreen Data. 11-33
Changing ETI Form Default Attributes . 11-33

Displaying Forms. 11-33
Determining the Dimensions of Forms. 11-34

Contents

xiii

Scaling the Form . 11-34
Associating Windows and Subwindows with a Form . 11-35
Posting and Unposting Forms . 11-38

Form Driver Processing . 11-40
Defining the Virtual Key Mapping . 11-40
ETI Form Requests. 11-43

Page Navigation Requests . 11-43
Inter-field Navigation Requests on the Current Page 11-43
Intra-field Navigation Requests. 11-44
Field Editing Requests . 11-45
Scrolling Requests. 11-46
Field Validation Requests . 11-47
Choice Requests . 11-48

Application-defined Commands. 11-48
Calling the Form Driver . 11-48
Establishing Field and Form Initialization and Termination Routines. 11-53

Function set_form_init . 11-54
Function set_field_init. 11-54
Function set_field_term. 11-55
Function set_form_term . 11-55

Manipulating the Current Field . 11-57
Changing the Form Page . 11-59
Positioning the Form Cursor . 11-60

Setting and Fetching the Form User Pointer . 11-61
Setting and Fetching Form Options. 11-62
Creating and Manipulating Programmer-defined Field Types 11-65

Building a Field Type from Two Other Field Types. 11-65
Creating a Field Type with Validation Functions . 11-66
Freeing Programmer-defined Field Types . 11-68
Supporting Programmer-defined Field Types. 11-68

Argument Support for Field Types . 11-69
Supporting Next and Previous Choice Functions . 11-72

Chapter 12 Other ETI Routines

Introduction . 12-1
Routines for Drawing Lines and Other Graphics . 12-1
Routines for Using Soft Labels . 12-2
Working with More Than One Terminal . 12-3

Chapter 13 terminfo

Introduction . 13-1
Organization of This Chapter . 13-1
What Is terminfo? . 13-1

Working with terminfo Routines . 13-2
What Every terminfo Program Needs . 13-3
Compiling and Running a terminfo Program . 13-4
An Example terminfo Program . 13-4

Working with the terminfo Database. 13-6
Writing Terminal Descriptions . 13-6

Name the Terminal . 13-7
Learn About the Capabilities. 13-7

Character User Interface Programming

xiv

Specify Capabilities . 13-8
Basic Capabilities . 13-10
Screen-oriented Capabilities. 13-10
Keyboard-entered Capabilities . 13-11
Parameter String Capabilities . 13-11

Compile the Description . 13-12
Test the Description . 13-13

Comparing or Printing terminfo Descriptions . 13-14
Converting a termcap Description to a terminfo Description 13-14

Appendix A Programming Tips and Known Problems

Programming Tips . A-1
Internationalization Support . A-1
Building Trusted FMLI Applications . A-1

Access to External Executables . A-1
Interruptible Commands . A-2
Variables . A-2
Frequency of Evaluation Type Casts . A-3
Co-processing . A-3
FACE-specific Code. A-3

Validation of Form Fields . A-4
Scenario 1 . A-4
Scenario 2 . A-4

Commands . A-4
Co-processing Functions. A-5
Forms . A-5
Menus . A-6
Text . A-8
Backquoted Expressions . A-8
Color . A-8
Message Line . A-9
Syntax . A-9
Miscellaneous . A-9

Known Problems . A-10
Messages. A-10
Screen Labels for Function Keys . A-10
Forms . A-11

Multi-page forms . A-11
Other Form Problems . A-11

Text Frames. A-11
Commands . A-12
Built-in Utilities . A-12

regex. A-12
readfile . A-12
Co-processing Utilities . A-12
if-then-else . A-13
fmlcut. A-13

Descriptors . A-13
Interrupt Facility . A-13
Miscellaneous . A-14

Contents

xv

Appendix B Keyboard Support

Named Keys and Alternative Keystroke Sequences . B-1
Automatic Function Key Downloading . B-5

Appendix C TAM Transition Library

Introduction . C-1
Compiling and Running TAM Applications under ETI . C-1
Tips for Polishing TAM Application Programs Running under ETI. C-2
How the TAM Transition Library Works. C-2

Translations from TAM Calls to ETI Calls . C-3
The TAM Transition Keyboard Subsystem . C-6

Appendix D ETI Program Examples

Program Examples. D-1
The editor Program. D-1
The highlight Program . D-5
The scatter Program . D-6
The show Program . D-8
The two Program . D-9
The window Program . D-11
The colors Program . D-13

Illustrations

Figure 1-1 The FMLI Screen . 1-3
Figure 1-2 Menu.sample: A Simple Menu Frame Definition File 1-10
Figure 1-3 Text.welcome: A Text Frame Definition File . 1-11
Figure 1-4 Menu.sample: A Simple International Menu Definition File 1-12
Figure 1-5 Menu.sample: Screen Output . 1-13
Figure 1-6 Menu.sample: Screen Output after Selecting welcome 1-17
Figure 2-1 Default Assignments of FMLI Commands to Function Keys 2-34
Figure 3-1 Menu.items: An Example of Menu Item Descriptors 3-9
Figure 3-2 Menu.items: Screen Output . 3-10
Figure 3-3 Menu.frame: An Example of Menu Frame Descriptors 3-11
Figure 3-4 Menu.frame: Screen Output . 3-12
Figure 3-5 Menu.rows: An Example of a Scrollable Menu 3-12
Figure 3-6 Menu.rows: Screen Output . 3-13
Figure 3-7 Menu.columns: An Example of a Two-Column Menu 3-13
Figure 3-8 Menu.columns: Screen Output . 3-14
Figure 3-9 Menu.reread: An Example of a Dynamically Updated Menu 3-15
Figure 3-10 Menu.reread: Screen Output . 3-15
Figure 3-11 Menu.reread: Screen Output after a SIGALRM Occurs. 3-16
Figure 3-12 Menu.interrupt: An Example of Interrupt Signal Handling 3-17
Figure 3-13 Menu.oninterr: A Further Example of Interrupt Handling 3-18
Figure 3-14 Menu.descrip: An Example of the description Descriptor 3-19
Figure 3-15 Menu.descrip: Screen Output . 3-19
Figure 3-16 Menu.itemmsg: An Example of the itemmsg Descriptor 3-20
Figure 3-17 Menu.itemmsg: Screen Output . 3-21
Figure 3-18 Menu.show: An Example of the show Descriptor 3-22
Figure 3-19 Menu.show: Screen Output. 3-23

Character User Interface Programming

xvi

Figure 3-20 Menu.edit: An Example of a Dynamically Created Menu 3-24
Figure 3-21 Menu.edit: Screen Output . 3-24
Figure 3-22 Menu.dynamic: An Example of a Dynamically Created Menu 3-25
Figure 3-23 Menu.edit: Screen Output when Menu Files Is Selected 3-26
Figure 3-24 Form.addr: Defaults Not Used . 3-43
Figure 3-25 Form.addr: Screen Output . 3-44
Figure 3-26 Form.addr: Defaults Used . 3-45
Figure 3-27 Form.addr: Screen Output after Being Filled Out by a User. 3-46
Figure 3-28 Addr.file: Contents after User Saves the Form 3-46
Figure 3-29 Form.3choices: An Example of Field Validation Using the menuonly Descrip-
tor . 3-47
Figure 3-30 Form.6choices: An Example of a Choices Menu 3-48
Figure 3-31 Form.6choices: Screen Output . 3-49
Figure 3-32 Form.6choices: Screen Output after User Selects an Item from the Choices
Menu . 3-50
Figure 3-33 Form.valid: An Example of Field Validation Using the valid Descriptor 3-50
Figure 3-34 Text.USA: An Example of a Text Frame . 3-58
Figure 3-35 Text.USA: Screen Output . 3-58
Figure 3-36 Text.readfile: An Example of Using readfile and longline in a Text Frame
3-59
Figure 3-37 Text.header: An Example of Text Frame Headers 3-60
Figure 3-38 Text.header: Screen Output . 3-60
Figure 3-39 Menu.lininfo: An Example of Defining Help with LININFO 3-61
Figure 3-40 Text.gen_help: An Example of a Help Text Frame 3-61
Figure 3-41 Text.item2: An Example of a Help Text Frame 3-62
Figure 3-42 Text.item3: An Example of a Help Text Frame 3-62
Figure 3-43 Menu.lininfo: Screen Output. 3-62
Figure 3-44 Menu.lininfo: Screen Output after Requesting Help on Item 1 3-63
Figure 3-45 Menu.lininfo: Screen Output after Requesting Help on Item 2 3-64
Figure 3-46 Menu.talk: An Example of Co-processing . 3-65
Figure 3-47 Form.talk: An Example of Co-processing . 3-66
Figure 3-48 talk: An Example of a Co-process . 3-66
Figure 4-1 Default Screen-labeled Keys . 4-10
Figure 5-1 Components of the Screen Management System 5-4
Figure 6-1 The Relationship between stdscr and a Terminal Screen (Sheet 1 of 2) . 6-6
Figure 6-2 The Relationship between stdscr and a Terminal Screen (Sheet 2 of 2) . 6-7
Figure 6-3 Multiple Windows and Pads Mapped to a Physical Screen 6-8
Figure 8-1 Relationship between a Window and Terminal Screen (Sheet 1 of 3) . . 8-3
Figure 8-2 Relationship between a Window and Terminal Screen (sheet 2 of 3). . . 8-4
Figure 8-3 Relationship between a Window and Terminal Screen (sheet 3 of 3). . . 8-5
Figure 10-1 Examples of Menu Format (2, 2) . 10-19
Figure 10-2 Examples of Menu Format (3, 2) . 10-19
Figure 10-3 Examples of Menu Format (4, 3) . 10-20
Figure 10-4 Menu Functions Write to Subwindow, Application to Window 10-24
Figure 10-5 Integer Ranges for ETI Key Values and MENU Requests 10-35
Figure 11-1 Form Functions Write to Subwindow, Application to Window 11-36
Figure 11-2 Sweepstakes Form Output . 11-49

Screens

Screen 5-1 A Simple ETI Program . 5-3
Screen 6-1 The Purposes of initscr, refresh, and endwin in a Program 6-3
Screen 8-1 Using wnoutrefresh and doupdate . 8-2

Contents

xvii

Screen 8-2 Sample Routines for Low-level ETI (curses) Interface 8-8
Screen 9-1 Example Using Panel User Pointer . 9-10
Screen 10-1 A Sample Menu . 10-1
Screen 10-2 Sample Menu Program to Create a Menu in ETI 10-4
Screen 10-3 Creating an Array of Items. 10-6
Screen 10-4 Using item_value in Menu Processing . 10-8
Screen 10-5 Using an Item User Pointer . 10-12
Screen 10-6 Changing the Items Associated with a Menu. 10-16
Screen 10-7 Creating a Menu with a Border . 10-25
Screen 10-8 Sample Routines Displaying and Erasing Menus 10-29
Screen 10-9 Sample Routine that Translates Keys into Menu Requests 10-31
Screen 10-10 Sample Menu Output (2) . 10-35
Screen 10-11 Sample Program Calling the Menu Driver . 10-36
Screen 10-12 Using an Initialization Routine to Generate Item Prompts 10-40
Screen 10-13 Returning Cursor to Its Correct Position for Menu Driver Processing 10-44
Screen 10-14 Example Setting and Using a Menu User Pointer 10-46
Screen 11-1 Sample Form Display . 11-1
Screen 11-2 Code to Produce a Simple Form. 11-3
Screen 11-3 Example Shifting All Form Fields a Given Number of Rows 11-12
Screen 11-4 Setting a Field to TYPE_ENUM of Colors . 11-16
Screen 11-5 Using the Field Status to Update a Database . 11-23
Screen 11-6 Using the Field User Pointer to Match Items . 11-25
Screen 11-7 Creating a Form . 11-30
Screen 11-8 Creating a Border around a Form. 11-37
Screen 11-9 Posting and Unposting a Form . 11-39
Screen 11-10 A Sample Key Virtualization Routine . 11-41
Screen 11-11 An Example of Form Driver Usage . 11-50
Screen 11-12 Sample Termination Routine that Updates a Column Total 11-56
Screen 11-13 Field Initialization and Termination to Highlight Current Field 11-57
Screen 11-14 Example Manipulating the Current Field . 11-58
Screen 11-15 Example Changing and Checking the Form Page Number 11-60
Screen 11-16 Repositioning the Cursor after Printing Page Number. 11-61
Screen 11-17 Pattern Match Example Using Form User Pointer 11-62
Screen 11-18 Creating a Programmer-defined Field Type . 11-67
Screen 11-19 Creating TYPE_HEX with Padding and Range Arguments 11-70
Screen 11-20 Creating a Next Choice Function for a Field Type. 11-73
Screen 12-1 Sending a Message to Several Terminals . 12-4
Screen 13-1 A Shell Script Using terminfo Routines. 13-2
Screen 13-2 Typical Framework of a terminfo Program . 13-3
Screen 13-3 Example of terminfo Program . 13-4

Tables

Table 1-1 Default Screen-labeled Keys . 1-14
Table 2-1 Frame Descriptors for Menu Definition Files. 2-14
Table 2-2 Item Descriptors for Menu Definition Files . 2-15
Table 2-3 SLK Descriptors for Menu Definition Files . 2-16
Table 2-4 Frame Descriptors for Form Definition Files . 2-17
Table 2-5 Field Descriptors for Form Definition Files . 2-18
Table 2-6 SLK Descriptors for Form Definition Files . 2-20
Table 2-7 Frame Descriptors for Text Frame Definition Files 2-21
Table 2-8 SLK Descriptors for Text Frame Definition Files 2-22
Table 2-9 Introductory Frame Descriptors for the Initialization File 2-24

Character User Interface Programming

xviii

Table 2-10 Banner Line Descriptors for the Initialization File 2-24
Table 2-11 General Descriptors for the Initialization File . 2-25
Table 2-12 Color Descriptors for the Initialization File . 2-26
Table 2-13 Application SLK Descriptors for the Initialization File 2-27
Table 2-14 Commands File Descriptors . 2-28
Table 2-15 Default Assignments of FMLI Commands to the Command Menu. . . . 2-33
Table 2-16 Inheritance Hierarchies Used to Determine the Values of interrupt and oninter-
rupt When Interrupt Key Is Pressed . 2-41
Table 2-17 Table of FMLI Character Sequences for Display Attributes 2-42
Table 2-18 Alternate Character Set . 2-42
Table 7-1 The Default Colors Table . 7-14
Table 7-2 Example of a Pairs Table. 7-16
Table 7-3 Input Option Settings for ETI Programs. 7-22
Table C-1 Translations from TAM to ETI Function Calls . C-3
Table C-2 TAM High-level Functions. C-5
Table C-3 Translation Between TAM Escape Sequences and Virtual Key Values . . C-6

Index

1
Introduction to FMLI

Introduction . 1-1
What Is FMLI? . 1-1

Screen Layout. 1-2
Frames . 1-5

Programming with FMLI. 1-5
Frame Definition Files . 1-6

Menu Frames. 1-6
Single-column and Multi-column Menus . 1-6
Single-select and Multi-select Menus . 1-6

Form Frames . 1-7
Multi-line and Scrollable Fields. 1-7
Multi-page Forms. 1-7
Validating Field Values . 1-7
Choices Menu . 1-7

Text Frames . 1-8
Application Level Definition Files . 1-8

Initialization File . 1-8
Commands File . 1-8
Alias File . 1-8

Terminal Independence. 1-9
Recovering after Abnormal Termination. 1-9

Internationalization Support . 1-10
An Example Application . 1-10
Writing an Internationalized Application . 1-12
Using an FMLI Application. 1-13

Named Keys and Alternative Keystroke Sequences. 1-15
Navigating in a Menu . 1-15
Selecting Menu Items. 1-16
Navigating in a Form . 1-17
Editing and Saving a Form . 1-18
Using a Choices Menu . 1-19
Navigating in and Editing a Text Frame. 1-19
Navigating between Frames . 1-19
Executing Commands. 1-20

The Command Menu. 1-21
The Command Line. 1-21
Screen-labeled Function Keys. 1-22
On-line Help . 1-22
Accessing the UNIX System. 1-23

Character User Interface Programming

Introduction to FMLI

1-1

1
Chapter 1Introduction to FMLI

1
1
1

Introduction 1

This chapter describes the Form and Menu Language Interpreter at a general level. There
are five major sections:

• “What Is FMLI?” on page 1-1 looks at how FMLI works, describes the
configuration of the screen when an FMLI application is running, and
explains the function of each screen area. The concept of a frame is
defined.

• “Programming with FMLI” on page 1-5 describes the three types of
frames—menus, forms, and text frames—in which your application is pre-
sented, and some of the ways you can customize their appearance in the
frame definition files you write. Application level files, in which you can
define characteristics of your application as a whole, are also described.

• “An Example Application” on page 1-10 presents a simple example of an
FMLI application and tells how to execute and exit from it.

• “Writing an Internationalized Application” on page 1-12 describes the
guidelines for writing applications whose language-dependent output is not
hard-coded in the frame definition files.

• “Using an FMLI Application” on page 1-13 describes how to work in
menu, form, and text frames, navigate between frames, and execute com-
mands.

What Is FMLI? 1

The Form and Menu Language Interpreter provides a framework for developers to write
applications and application interfaces that use menus and forms. It controls many aspects
of screen management for you. That means you do not have to be concerned with the low-
level details of creating or placing frames, providing users with a means of navigating
between or within frames, or processing the use of forms and menus. Nor do you need to
worry about what kind of terminal your application will run on. FMLI takes care of all
that for you.

FMLI is a high-level programming tool having two main parts:

• The Form and Menu Language is a programming language for writing
scripts that define how an application will be presented to users. The syn-

Character User Interface Programming

1-2

tax of the Form and Menu Language is similar to that of the UNIX system
shell programming language, and includes the following: variable setting
and evaluation, built-in commands and functions, use of and escape from
special characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes sets ofdescriptors that are
used to define or customize attributes of frames and other features of your
application.

• The Form and Menu Language Interpreter,fmli(1) , is a command inter-
preter that sets up and controls the video display screen on a terminal,
using instructions from your scripts to supplement FMLI's predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
executables, either in the background or in full screen mode. The Form and
Menu Language Interpreter operates similarly to the UNIX command
interpretersh(1). At run time it parses the scripts you have written, giv-
ing you the advantages of quick prototyping and easy maintenance.

Screen Layout 1

The following figure shows the configuration of the screen when an FMLI application is
running.

Introduction to FMLI

1-3

Figure 1-1. The FMLI Screen

FMLI divides the screen into the following five regions:

Banner Line The banner line displays a one-line banner on the top line of the
screen. By default, it displays aWorking icon when FMLI is
busy. You can redefine the banner line in the initialization file.

Work Area The work area is the section of the screen where frames are dis-
played. This area starts on the second line of the screen and stops
on the third line from the bottom of the screen.

1 My Root Menu

BANNER LINE

WORK AREA

MESSAGE LINE

COMMAND LINE

F1 F2 F3 F4 F5 F6 F7 F8

FMLI
Scroll Box

Scroll Symbol
for Multi-line
Scrollable Form
Fields

Menu Item 1

Menu Item 2

Sample Form 1>

2 A Multi-page Form

This is field two:
This is field three:

Title Bar

Page 2 of 5

Character User Interface Programming

1-4

NOTE

If a terminal supports hardware function keys, FMLI will use the
last line of the screen to display function key labels. The devel-
oper should be aware of this since the size of the work area will be
decreased by one line (that is, it will stop on the fourth line from
the bottom) to make room for these labels.

Message Line The message line is the second line from the bottom of the screen.
Messages generated by FMLI, or which you generate in your
scripts, are displayed here. By default, a message remains on the
message line until the next key is pressed; you can define mes-
sages that will remain on display permanently or until other user
actions occur, such as navigation to another frame.

Command Line The command line is the next to last line on the screen. Users
access it by pressingCTRL-j or CTRL-f c, at which time a -->
prompt appears on the line. Any FMLI command, application-
specific command, or UNIX system executable can be executed
from the command line.

Screen Labels for Function Keys (SLKs)
The last line of the screen displays screen labels that correspond
to the eight function keys found on many keyboards. Screen-
labeled keys, or SLKs, allow users to invoke FMLI or application-
specific commands easily by pressing one key. FMLI provides
two sets of screen labels for the function keys. Your scripts control
which set is displayed at any given time. FMLI predefines the
SLKs in the first set, assigning each a default screen label and
function depending on the type of frame current. (Figure 1-5 in
“Using an FMLI Application” on page 1-13 shows the functions
assigned by default to screen-labeled keys when a menu, form, or
text frame is current.) The second set is not predefined—you can
define this set specifically for your application. In the first set, you
can rename or disable function keysF1 throughF7 (but they can-
not be redefined), and redefine function keyF8. In the second set,
you can define application-specific commands for function keys
F9 throughF16. Keep in mind, though, that if you redefine key
F8 or F16 to be something other thanCHG-KEYS, your users
will lose the ability to access the alternative set of function keys.
A complete discussion of screen-labeled keys and how to define,
disable, or redefine them is contained in Chapter 4.

Since some keyboards do not have function keys, FMLI predefines alter-
native keystroke sequences whose use is equivalent to that of function
keysF1 throughF8. These sequences have the formCTRL-f n, where
n is the number of the corresponding function key. The alternative key-
stroke sequence forF3, for example, isCTRL-f 3. That means the user
must hold downCTRL while pressingf, then press3.

Introduction to FMLI

1-5

NOTE

FMLI downloads alternative keystroke sequences into the func-
tion keys of some terminals at the user's request. For a discussion,
see Appendix B.

Frames 1

A frame is an independently scrollable portion of the work area surrounded by a border.
By default, the dimensions of a frame are determined by FMLI. Several frames may be
open simultaneously in the work area but only one frame can be current at a time. Frames
are positioned in the work area so that overlap of other frames is minimized.

The current frame is the frame a user is working in. It is distinguished from other frames
in the work area by its border and all features in its border being displayed in full-bright
video attribute; non-current frames are displayed in half-bright video. (On terminals that
do not have the half-bright video attribute, non-current frames are displayed some other
way, inverse video, for example.) The current frame may cover parts of other frames in the
work area.

All menu, form, and text frames can display the following features:

Title Bar Each frame displays a title bar in its top border. The title bar contains a frame
ID number assigned by FMLI, and the title of the frame—an FMLI default
title or one you define.

Scroll Box Each frame that contains three or more lines of information displays a scroll
box in its right border. A scroll box can house both an up symbol (^) and a
down symbol (v). These symbols indicate to the user that there is more infor-
mation before (̂) or after (v) the information currently displayed in the frame;
only the up symbol (̂) will appear in the scroll box when a user is viewing
page two of a two-page form, for example. A scroll box will be blank when all
the information in the frame is currently visible.

The current item in a menu frame is indicated by a more-than sign (>) to its left. Depend-
ing on the terminal, the item may also be shown in inverse video.

Scroll symbols will appear in the lower right border of a form frame if a scrollable multi-
line field is current. Although not shown in the figure, scroll symbols will appear to the
right of a field if a scrollable single-line field is current. For a discussion of scrollable form
fields, see “Form Frames” on page 1-7.

Programming with FMLI 1

Typically, the scripts for an FMLI application include a set of frame definition files, each
defining a single menu, form, or text frame. These files define the frames users will see
when they execute your FMLI application, and the operations that can be done in frames.
In addition, most FMLI applications include three (optional) application level definition
files: an initialization file, a commands file, and an alias file. These files define global fea-

Character User Interface Programming

1-6

tures of your application, such as the colors of various screen elements, application-spe-
cific commands, and aliases for path names that can make your code easier to read and
maintain.

Frame Definition Files 1

A frame definition file is a file made up of statements recognized by thefmli command
interpreter. Three types of frames can be defined in FMLI: menu frames, form frames, and
text frames. FMLI recognizes the type of frame you are defining based on the contents of
the frame definition file and certain file naming conventions. The following sections
briefly describe these three types of frames. Detailed explanations of how to write frame
definition files can be found in Chapter 3.

Menu Frames 1

A menu in FMLI is a method for displaying a list of selections in a frame, determining the
user's selection, and taking action based on the selection. The title bar of a menu frame
displays a default name for the menu (Menu) or one you define, and an identification
number assigned to the frame by FMLI.

Single-column and Multi-column Menus 1

By default, FMLI presents menus with 10 or fewer items in a single left-justified column;
if the number of items is greater than 10, FMLI attempts to create a multi-column menu
with a 3:1 aspect ratio of width to height. You can explicitly define the number of rows
and/or columns you want in a menu (see Appendix A for a table describing the way FMLI
calculates rows and columns in menus). Menu items are presented in a single scrollable
column if an entire menu cannot fit on the screen at once. Appropriate scroll symbols
appear in the scroll box in the right-hand border of the frame.

Single-select and Multi-select Menus 1

You can define a menu to be either single-select or multi-select. In a single-select menu,
the user can select only one item. When the user pressesENTER (the key or SLK) while
the cursor is positioned on a menu item, the backquoted expression associated with the
item is evaluated, and any FMLI command associated with the item is executed.

NOTE

Depending on the keyboard being used, the carriage-return key
may be calledENTER, RETURN, or something else. Through-
out this guideENTER is used to represent the carriage-return
key.

In a multi-select menu, the user can select more than one item. When the user presses
MARK (the key or SLK) while the cursor is positioned on a menu item, the item is
marked with an asterisk (*) to its left, and the backquoted expression associated with the
item is evaluated. Any FMLI command associated with the item is ignored. When, after

Introduction to FMLI

1-7

having marked all desired items, the user pressesENTER, thedone descriptor is evalu-
ated, and any FMLI commands defined by the descriptor are executed. Backquoted
expressions, descriptors, and FMLI commands are discussed in Chapter 2.

Form Frames 1

A form in FMLI is a method for displaying and prompting for information. To the user, a
form looks like a fill-in-the-blanks questionnaire. The title bar of a form frame displays a
default name for the form (Form) or one you define, and a frame ID number assigned to
the frame by FMLI. A form comprises fields, which have two parts: a field label (the
name of the field) and an area in which to enter a value for the field. You can define
default field values that are displayed in the input area whenever the form is opened or
updated.

Multi-line and Scrollable Fields 1

You can define the field input area to be multi-line and/or scrollable. A scrollable form
field allows users to enter more input in the field than its display area is sized for. If a
scrollable multi-line field is current, appropriate vertical scroll symbols appear in the bot-
tom right border of the frame:^ , v , or both. For a scrollable single-line field, appropriate
horizontal scroll symbols appear to the right of the display area:< , > , or= if there is more
information before and after the information currently displayed.

Multi-page Forms 1

A form can be more than one page long, in which case it can scroll a page at a time. The
up and down symbols in the scroll box inform users that they are positioned on the first
page, the last page, or one of the middle pages of a form. If you want to indicate the page
more precisely, you can include a label such asPage 2 of 5 in a form, as described under
thename entry in the “Form Frame Descriptors” on page 3-26.

Validating Field Values 1

In forms, you can use the field descriptorvalid to validate the value a user enters in a
field, or the descriptorvalidOnDone to validate the relationship between values of dif-
ferent fields (as when the validity of the value entered in fieldx depends on the value
entered in fieldy), or both. In all cases, the user will not be able to save the form until the
values pass the validation test.

Choices Menu 1

A choices menu is a way to show users the valid choices for a field in a form. When you
define a choices menu for a field, you can choose whether the user will toggle through the
choices in the field itself, or whether the choices will be displayed in a pop-up menu.
When a user selects a value from a pop-up choices menu, it is automatically entered in the
field to which the menu applies.

Character User Interface Programming

1-8

Text Frames 1

Text frames are primarily used to display read-only information, such as on-line help for
the user. The title bar of a text frame displays a default name for the frame (Text) or one
you define, and a frame ID number assigned to the frame by FMLI. The frame will be
scrollable if all of its text will not fit in the display at one time; appropriate scroll symbols
will appear in the scroll box in the right-hand border of the frame. If the text frame
descriptoredit evaluates to TRUE, users will be able to change the text in the frame.

Text frames may be defined with text frame definition files, just as menus and forms are.
Simple text frames may also be specified using a shorter notation, without a frame defini-
tion file, using thetextframe command.

Application Level Definition Files 1

Application level definition files define attributes of the application as a whole. There are
three optional application level files. The initialization file and the commands file allow
you to customize the appearance and functionality of your entire application; the alias file
allows you to streamline references to source files in your code. The following sections
briefly describe these three types of application level definition files. Detailed explana-
tions of how to write them can be found in Chapter 4.

Initialization File 1

An initialization file defines attributes of the application as a whole. You can define an
introductory frame (such as a copyright notice), changes to the default banner line, the col-
ors of various elements of the FMLI screen, whether users will be able to access the UNIX
system directly from your application, and the names of and commands assigned to
screen-labeled keys, among other things.

Commands File 1

A commands file allows you to define new commands for users of your application, and
redefine or disable existing FMLI commands. The new commands can be executed from
the FMLI command line or the FMLICommand Menu, as described in the next sec-
tion.

Alias File 1

An alias file contains lines of the formalias=pathname. An alias can be assigned a single
path to a file or device, or it can be assigned a series of paths to be searched (similar to the
way$PATH is searched in the UNIX shell). Using aliases will make the code in your other
definition files more readable.

Introduction to FMLI

1-9

Terminal Independence 1

FMLI uses the UNIX System Vterminfo database to determine the values of terminal-
dependen t capab i l i t i es . The de fau l t pa th to th i s da tabase i s
/usr/share/lib/terminfo if the environment variableTERMINFO is not set. New
terminals not described in this database can be added to the terminfo database under a sub-
directory named by the first character in the terminal's name. For example, the 5425 termi-
nal description would be in$TERMINFO/5/5425 .

To ensure that the terminal is initialized properly for your FMLI application, include the
command

tput init

in the executable or script that invokes your application. If you choose not to do that, the
documentation for your application should remind users to place this command in their
.profile file after theTERM variable is set and exported.

NOTE

Terminal attribute settings can be lost when a user returns to an
FMLI application after having used a full-screen application exe-
cuted via the FMLIrun built-in utility. To prevent this from hap-
pening, the full-screen application can executetput init
before returning to FMLI.

FMLI will work on any asynchronous terminal that

• displays 80 characters across

• has at least 22 simultaneously visible lines

• has a properterminfo entry in the host computer.

It may be possible to run FMLI on smaller screens if you define the size and position of
frames to fit within the screen's limits. However, some elements of screen layout, such as
the screen labels for the function keys, may be truncated.

FMLI downloads alternative keystroke sequences into the function keys of some terminals
at the user's request. For a discussion, see Appendix B.

Recovering after Abnormal Termination 1

In the case of an abnormal termination of an FMLI application, users can execute

CTRL-j stty sane CTRL-j

to restore the screen. Until this is done, user input might not be displayed on the screen,
giving the appearance that the computer is hung or down. If the user executes this com-
mand to recover, it will also be necessary to execute

stty tab3

Character User Interface Programming

1-10

to ensure a sane screen. Borders of frames may be distorted otherwise.

Internationalization Support 1

FMLI accepts as input any character from a standard 7- or 8-bit character set. This means
that descriptor and variable values and application-specific command names may be coded
in a language other than English, provided the language implementation employs a stan-
dard 8-bit code set. It also means that users may enter input in a form, or edit the text in a
text frame, in any such language. Note, however, that the built- in uti l i t ies
fmlexpr(1F) , fmlgrep(1F) , andregex(1F) do not support regular expression
matching for non-ASCII character sets, and that FMLI error messages are always dis-
played in English.

FMLI uses thesetlocale(3C) function to examine the user's environment for a cur-
rent locale—a collection of information that describes conventions appropriate to some
nationality, culture, and language. This information is stored in databases that describe
how to sort or classify characters, for instance, according to these conventions. If such
databases exist on a user's system, they are accessed through theLANG variable in the
user's environment. An application coded for a German locale, then, should instruct users
to set theLANG environment variable tode[utsche]; character classification, sorting, and
so on will be done in the appropriate way. For details on this mechanism, see the
setlocale(3C) manual page.

An Example Application 1

Here is an example FMLI application consisting of a menu frame definition file named
Menu.sample and a text frame definition file namedText.welcome :

menu=TOP MENU

name=date
action=`date | message`nop

name=welcome
action=open Text.welcome

name=exit
action=exit

Figure 1-2. Menu.sample: A Simple Menu Frame Definition File

The file Menu.sample is named according to the conventions defined for FMLI frame
definition files (Chapter 2 contains a complete discussion of file naming conventions), and
defines the initial frame to be opened when this example application is run.

The first line of code uses the FMLI descriptormenu to define the title that will appear in
the title bar of the menu frame. Many FMLI descriptors have a default value that will be

Introduction to FMLI

1-11

used if you do not explicitly define the descriptor in the frame definition file. If themenu
descriptor were not defined in this file, the title of the menu would default toMenu.

The next two lines of code define the first menu item. Thename descriptor defines the
name of the item to be date. Theaction descriptor defines what will happen when the
user selects the date menu item: the UNIX systemdate(1) command will be run and
the output will be piped to the FMLI built-in utilitymessage(1F), which displays the
output ofdate on the FMLI message line. The FMLI commandnop does nothing (no
operation), but must be present because FMLI expects theaction descriptor ultimately
to evaluate to an FMLI command. If it doesn't, the terminal will beep.

The fourth and fifth lines of code define the menu itemwelcome and the action to exe-
cute whenwelcome is selected: open another frame in the work area, in this case the text
frameText.welcome, which displays a welcome message. Figure 1-2 shows the con-
tents of the text frame definition fileText.welcome .

The last two lines of code define the menu itemexit and its action: run the FMLI com-
mandexit , which terminates the FMLI session and returns the user to the UNIX shell.

title="WELCOME"
rows=3
text="Welcome to my application.
I hope you enjoy yourself
while you are using it."

Figure 1-3. Text.welcome: A Text Frame Definition File

The fileText.welcome defines a text frame and is named according to the conventions
for text frame definition files. Thetitle descriptor defines the title that will appear in
the title bar of the text frame, in this caseWELCOME. Therows descriptor defines the ver-
tical size of the text frame in lines of text. The width of the frame in this example is deter-
mined by FMLI. Thetext descriptor defines the words that will be printed in the body
of the text frame.

To execute this application, invokefmli as follows:

fmli Menu.sample

In this example,Menu.sample is specified as the initial frame to open. An initial frame
is a frame that is opened as an argument tofmli when it is invoked. There can be more
than one initial frame. All initial frames remain displayed in the work area as long as the
application is running; that is, a user cannot close or cancel an initial frame.

Users can exit from any FMLI application by pressingCTRL-j or CTRL-f c to access the
FMLI command line and enteringexit. Users of the example application could also
selectexit from TOP MENU.

In the next section, this example application will serve to illustrate how an FMLI applica-
tion appears to users. If you want to supplement the discussion with a hands-on example,
you can create copies ofMenu.sample andText.welcome in your file system and
invokefmli as shown above.

Character User Interface Programming

1-12

Writing an Internationalized Application 1

Internationalized FMLI applications are applications whose language dependent output is
not hard-coded in the frame definition files. The output (messages, menu items, frame
titles, and so on) are encoded in a language-independent way in the definition file. At run-
time, that is, when interpreting the respective file, FMLI retrieves the language-dependent
output from a message catalogue which contains the output of the application in the lan-
guage to which the system locale is set. If no message catalogue exists, FMLI tries to out-
put a default message encoded in the frame definition file. If a default message does not
exist either, you get the following message:

Message not found!

Writing an internationalized application requires that all strings that are to be presented on
the screen must be described using the special syntax:

"$$< catalogue_name>:< message_no.>:< default_message>"

catalogue_name denotes the name of the catalogue in which the messages for a
cer ta in loca le a re s to red . I t can be s to red in
/usr/lib/locale/<locale>/LC_MESSAGES using the
UNIX utility mkmsgs.

message_no is the index to the respective message in the message catalogue.

default_message is the message that is displayed if the locale is set to “C” or if no
message catalogue exists in the current locale.

The menu frame definition file shown in Figure would then look like this:

menu="$$uxmyapp:1:TOP MENU"

name="$$uxmyapp:2:date"
action=`date | message`nop

name="$$uxmyapp:3:welcome"
action=open Text.welcome

name="$$uxmyapp:4:exit"
action=exit

Figure 1-4. Menu.sample: A Simple International Menu Definition File

If you want your menu to be sorted automatically in any locale, you must indicate this by
using the descriptorautosort . If it is set toautosort=true , the menu items will be
presented in alphabetical order in any language. This would be independent from the order
in the actual frame definition file.

The second menu item in Figure 1-3 would invoke an opening action on the file
Text.welcome . It is stored in the current directory. If the application is to open a textfile
that is translated to another language than the default, this textfile must be stored in the
directory./$LANG/<file> . If the file Text.welcome was translated to German and
if the application was to open that file, it would have to be stored in the directory

Introduction to FMLI

1-13

./De_DE.88591 carrying the same name. FMLI automatically checks the locale before
opening a textfile.

Using an FMLI Application 1

This section discusses thelook and feel of an FMLI application. It covers the way menus,
forms, and text frames and other visual elements of the FMLI screen environment are pre-
sented to users (thelook), the basics of navigation, the ways commands can be executed,
the functions assigned by default to named keyboard keys, and how to use alternative key-
stroke sequences in the event named keys do not work, or exist, on a keyboard (thefeel).

This information is important for two reasons. First, it describes the features that “come
for free” with an FMLI application and around which you can design your own applica-
tion. Second, you will need to include at least some of this information in your user docu-
ments. We can't help you describe what's in your menus, forms, and text frames, but we
can help you describe the tasks that should be common to any FMLI application: working
in menus, forms, and text frames, navigating between frames, executing commands, and
getting help.

When you execute the commandfmli Menu.sample , given the FMLI scripts just dis-
cussed, the terminal screen will look like this:

Figure 1-5. Menu.sample: Screen Output

This application illustrates most of the aspects of screen and frame style enforced by
FMLI. (Screen and frame style refers to the way these elements are presented to users
when an FMLI application is running.)

Since the frame opened initially in this example is a menu frame, the frame itself and the
screen labels on the last line of the screen show the default appearance when a menu frame
is current. The banner line (top line of the screen) is currently blank, but while this appli-

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

1 TOP MENU

> date
 welcome
 exit

Character User Interface Programming

1-14

cation was being loaded you may have noticed that the wordWorking appeared at the
right on the banner line. The banner line is blank by default, except for theWorking
indicator. But you can define the banner line to display more information, and you can
change theWorking indicator. (See Chapter 4 and theindicator(1F) manual page
for more information.)

The menu frame defined inMenu.sample and named on thefmli invocation line as the
initial frame to open is displayed in the work area. The title bar of the frame displays the
menu title and a frame ID number assigned automatically by FMLI. Each item defined in
Menu.sample is listed in the order in which it was defined; the> symbol shows where
the cursor is currently positioned. A scroll bar appears in the right-hand frame border
because there are three items in this menu, although no scrolling symbols are shown
because the entire menu can fit in the frame at one time.

The two lines immediately above the function-key screen labels are the message line and
the command line, although nothing is displayed on them at this point. You can press
CTRL-j or CTRL-f c to navigate to the command line. PressENTER or CTRL-j again
to leave the command line without executing a command.

The last line of the screen displays the default set of screen labels for function keys when
the current frame is a menu. The defaults are different when a form frame or text frame is
current. Figure 1-5 shows the functions assigned by default to screen-labeled keys when a
menu, form, or text frame is current. A complete discussion of screen-labeled keys and
how to define, disable, or redefine them is contained in Chapter 4.

The features discussed in the following sections can be used in any FMLI application.
Where appropriate, they will be explained in the context of the example application just
discussed.

* Function keyF2 is assigned themark command only in multi-select menus.
In single select menusF2 has no default assigned.

** Function keysF8 andF16 will default tochg-keys only if any of keysF9
throughF15 are defined by the developer.

Table 1-1. Default Screen-labeled Keys

Function
Key

Menu
Frame

Form
Frame

Text
Frame

Choices
Menu

Command
Menu

F1 help help help help

F2 mark* choices prevpage

F3 enter save nextpage enter

F4 prev-frm prev-frm prev-frm

F5 next-frm next-frm next-frm

F6 cancel cancel cancel cancel cancel

F7 cmd-menu cmd-menu cmd-menu

F8 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

F16 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

Introduction to FMLI

1-15

Named Keys and Alternative Keystroke Sequences 1

Named keys are the keys on terminal keyboards that do something other than print an
alphanumeric or special character. Named keys includeENTER, TAB, DEL, the func-
tion keysF1 throughF8, and although not strictly named, the arrow keys<Down-
Arrow>, <Up-Arrow>, <Right-Arrow>, and<Left-Arrow>. Since many terminal
keyboards will not have a complete set of named keys, FMLI predefines alternative key-
stroke sequences whose use is equivalent to named keys. The alternative keystroke
sequence for<Down-Arrow> for example, isCTRL-d. That means the user must hold
downCTRL while pressingd.

Some of the named keys are reserved for navigation and/or editing during an FMLI ses-
sion. Navigation keys are named keys that, when pressed, cause the cursor to move. The
default action assigned to a navigation key changes depending on whether you are in a
menu, form, or text frame. For example, the named keyBEG or the alternative keystroke
sequenceCTRL-b work as follows in the three types of frames:

menu moves the cursor to the first item in the menu, whether it is currently visible or
not

form moves the cursor to the first field of the current page of the form

text causes the first frame full of text to be displayed

The default action assigned toBEG in these three cases has a common element—moving
to the beginning—but the meaning varies according to what kinds of things users need to
do in each type of frame. A complete table of named keys recognized by FMLI (using
terminfo) is provided in Appendix B and summarizes the action that will occur when
these keys or their alternative keystroke sequences are pressed in menus, forms, and text
frames.

Navigating in a Menu 1

There are two methods of navigating in a menu frame. One is to use a navigation key. As
an example of how navigation keys work, you can try the menu navigation keys in the
example menuTOP MENU. The following list shows some of the keys you can use to
navigate in a menu:

• <Right-Arrow> or the alternative keystroke sequenceCTRL-r moves
the cursor right one item in a multi-column menu, or down one item in a
single-column menu. In a multi-column menu, it does not wrap. In a sin-
gle-column menu, it wraps to the top of the column.

• <Left-Arrow> or the alternative keystroke sequenceCTRL-l moves the
cursor left one item in a multi-column menu, or up one item in a single-col-
umn menu. In a multi-column menu, it does not wrap. In a single-column
menu, it wraps to the bottom of the column.

• <Down-Arrow> or the alternative keystroke sequenceCTRL-d moves
the cursor down one item, wrapping to the top of the column in a single-
column menu, and the top of the next column in a multi-column menu. On

Character User Interface Programming

1-16

the last item in the last column of a multi-column menu, it wraps to the top
of the first column.

• <Up-Arrow> or the alternative keystroke sequenceCTRL-u moves the
cursor up one item, wrapping to the bottom of the column in a single-col-
umn menu, and the bottom of the previous column in a multi-column
menu. On the first item in the first column of a multi-column menu, it
wraps to the bottom of the last column.

As you navigate in the menu, the> symbol shows which menu item is current. In a scrol-
lable (by definition, single-column) menu, pressing<Right-Arrow> or <Down-
Arrow> when the cursor is on the last item of the display will roll the contents of the
menu up one line; pressing<Left-Arrow> and <Up-Arrow> when the cursor is on the
first line of the display will roll the contents of the menu down one line. Note that pressing
the named keysSCROLL-UP or SCROLL-DOWN will roll the contents of a scrolla-
ble menu up or down one line, respectively, without moving the cursor.

The other method of navigating in a menu frame is to type the name of the item to which
you want to move. You don't have to type the full name, or worry about upper and lower
case. When you type a character, the cursor moves to the first item in the menu that
matches the string typed so far. If you type the letterw, for example, the cursor moves to
the first menu item that starts withw or W. If you then typer , the cursor moves to the first
item that starts with the letterswr . When a string cannot be matched, the terminal bell
sounds, or the screen flashes, depending on the terminal, and an error message is displayed
on the message line. The cursor wraps around when it reaches either end of the menu. In a
scrollable menu the display scrolls as necessary.

NOTE

If you start to type the name of a menu item and the cursor moves,
and you then decide to select something else, you must use
BACKSPACE to erase the characters already typed, or press one
of the navigation keys before character matching can be used
again.

Selecting Menu Items 1

As noted, you can define a menu to be either single-select or multi-select. In a single-
select menu you can select only one item; in a multi-select menu you can select more than
one item. To select an item in a single-select menu, pressENTER (the key or SLK) while
the cursor is positioned on the item. To select items in a multi-select menu, first mark each
of the desired items by pressingMARK (the key or SLK) while the cursor is positioned on
the item; an asterisk (*) will appear to the left of the item. Now pressENTER to select
the marked items.

If you are running the example application, you can see how a single-select menu works
by navigating to the itemwelcome and pressingENTER. The screen will look like this:

Introduction to FMLI

1-17

Figure 1-6. Menu.sample: Screen Output after Selecting welcome

Notice that the text frame defined inText.welcome is displayed in the work area, its
frame ID number is2, and the screen labels shown on the last line of the screen now dis-
play the default labels for text frames.

Navigating in a Form 1

When a form is opened, the cursor is placed in the first character position in the first field
of the form. The following list shows some of the keys you can use to navigate in a form:

• In a single-line field,ENTER or the alternative keystroke sequence
CTRL-m moves the cursor to the next field, whether it is below the current
field or to the right, wrapping from the last field of the form to the first. In
a multi-line field, it moves the cursor to the next line, scrolling on the last
line if the field is scrollable, stopping and beeping if it is not. That is, you
cannot use this key to navigate from a multi-line field.

• In a single- or multi-line field,TAB or the alternative keystroke sequence
CTRL-i moves the cursor to the next field, whether it is below the current
field or to the right, wrapping from the last field of the form to the first.

• In a single- or multi-line field,BACKTAB or the alternative keystroke
sequenceCTRL-t moves the cursor to the previous field, whether it is
above the current field or to the left, wrapping from the first field of the
form to the last.

• In a single-line field,<Down-Arrow> or the alternative keystroke
sequenceCTRL-d moves the cursor to the next field below the current
field, wrapping from the last field of the column to the first. In a multi-line
field, it moves the cursor to the next line; on the last line of the field, it
moves the cursor to the next field below the current one.

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

1 TOP MENU

 date
 > welcome
 exit

Welcome to my application.
I hope you enjoy yourself
while you are using it.

2 WELCOME1 TOP MENU

Character User Interface Programming

1-18

• In a single-line field,<Up-Arrow> or the alternative keystroke sequence
CTRL-u moves the cursor to the previous field above the current field,
wrapping from the first field of the column to the last. In a multi-line field,
it moves the cursor to the previous line; on the first line of the field, it
moves the cursor to the previous field above the current one.

• <Right-Arrow> or the alternative keystroke sequenceCTRL-r moves
the cursor non-destructively one character to the right in a field. It does not
wrap to the next field, or the next line in a multi-line field.

• <Left-Arrow> or the alternative keystroke sequenceCTRL-l moves the
cursor non-destructively one character to the left in a field. It does not wrap
to the previous field, or the previous line in a multi-line field.

Multi-page forms and scrollable single- and multi-line fields scroll as necessary.

NOTE

Generally speaking, if a user enters invalid data in a field that has
an associated validation test, navigation away from the field is not
permitted. With this release, however, if no data have been
entered or modified in the field since it became current, validation
only occurs if the user attempts to use theENTER key to leave
the field. A user can leave the field with some other navigation
key (such as one of the arrow keys). In such cases, validation of
the field is delayed until theSAVE key is pressed. Thus, a user
can use a key other thanENTER to navigate in a form when, say,
leaving the current field blank would cause it to fail a validation
test. You may want to point out this change in behavior to users
who are familiar with the old behavior.

Editing and Saving a Form 1

When a field is current, you are automatically in overtype mode: the character you type
replaces the character under the cursor. If, immediately after navigating to a field, or
attempting to navigate from a field with an invalid value, you type over the first character
in the field, the rest of the line is automatically cleared. You then enter characters as you
would if the field were blank. You save the values you have entered in fields and close the
form by pressing theSAVE SLK.

Here are some of the named keys you can use to edit a form field:

• DEL, DELETE-CHAR, or the alternative keystroke sequenceCTRL-x
deletes the character under the cursor and closes the gap.

• INSERT-CHAR or the alternative keystroke sequenceCTRL-a inserts to
the left of the character under the cursor the next single character entered.

• CLEAR, CLEAR-LINE, or the alternative keystroke sequenceCTRL-y
clears the current line.

• RESET or the alternative keystroke sequenceCTRL-f r restores the
default value of a field.

Introduction to FMLI

1-19

Using a Choices Menu 1

You access a choices menu and toggle through choices in the field itself by pressing the
CHOICES SLK. You can use named keys to navigate and select items in a pop-up
choices menu as you would in any other menu. As noted, when you select a value from a
pop-up choices menu, it is automatically entered in the field to which the menu applies.
Note that if you navigate away from a pop-up choices menu it disappears immediately.

Navigating in and Editing a Text Frame 1

Here are some of the navigation keys you can use in a text frame:

• <Right-Arrow> or the alternative keystroke sequenceCTRL-r moves
the cursor non-destructively one character to the right.

• <Left-Arrow> or the alternative keystroke sequenceCTRL-l moves the
cursor non-destructively one character to the left.

• <Down-Arrow> or the alternative keystroke sequenceCTRL-d moves
the cursor down one line.

• <Up-Arrow> or the alternative keystroke sequenceCTRL-u moves the
cursor up one line.

The cursor does not wrap when you use these keys in text frames. Scrollable text frames
scroll as necessary. Pressing the named keysSCROLL-UP or SCROLL-DOWN will
roll the contents of a scrollable text frame up or down one line, respectively, without mov-
ing the cursor. Pressing the screen-labeled keysPREVPAGE or NEXTPAGE will
move the cursor to the first character of the previous page or the first character of the next
page, respectively, in scrollable text frames.

Except forRESET, the keys described in “Editing and Saving a Form” on page 1-18
work the same way in editable text frames.

Navigating between Frames 1

Navigation between frames comprises simple moves and command actions that change
which frame is current. The following list describes all the ways to move between frames:

• The PREV-FRM andNEXT-FRM SLKs are assigned theprev-frm
andnext-frm FMLI commands, respectively. Pressing either of these
SLKs will cause you to navigate from frame to frame. The frame navigated
to becomes the current frame on the screen, and the frame navigated from
becomes non-current. FMLI keeps a list of each frame that has been the
current frame. For example, if frame N is current, pressingPREV-FRM
will cause you to navigate to the frame that was current when frameN was
opened. PressingNEXT-FRM while in frameN will cause you to navigate
to the last frame opened while frameN was current. Since thePREV-
FRM andNEXT-FRM commands are always relative to the current
frame, the order in which they cause navigation through the frames dis-

Character User Interface Programming

1-20

played in the work area does not always follow frame ID order, and wrap-
ping occurs in the order described above.

• Selectingfrm-mgmt from theCommand Menu will bring up a choices
menu that includes the itemLIST. SelectingLIST brings up another
choices menu listing all opened frames. When you select a listed frame, the
choices menu disappears and the selected frame becomes current. If you do
not want to select a listed frame, you can press theCANCEL SLK. The
choices menu will disappear and you will be put back in the frame you
started out in.

• You can enter a frame ID number on the command line and pressENTER.
The frame with that ID number will become current. This is equivalent to
executing thegoto command on the command line with a frame ID num-
ber as an argument, or selectinggoto from theCOMMAND MENU,
entering a frame ID number after the prompt on the command line, and
pressingENTER. For a discussion, see the next section.

• Opening (selecting) a frame will always cause navigation to that frame.

• Closing (canceling) a frame will cause navigation to thebackup frame. The
concept of a backup frame allows FMLI to maintain a linked list of frames
so that users always have a frame to which they will automatically be
returned when a frame is canceled. The logic behind what frame is backup
frame for another is not always immediately apparent to users, but its pur-
pose is to maintain a linked list in which every frame is the backup frame
for only one other frame. Usually, the backup frame is the frame that was
current when the frame being closed was opened. However, if a user has
been doing rather convoluted navigation, a frame's backup frame can
change dynamically. For example if frame A is current and frame B is
opened, A becomes B's backup. If A was already C's backup, B becomes
C's backup.

• Thecleanup command will close all frames whoselifetime descrip-
tor evaluates toshortterm or longterm. If the lifetime descriptor
evaluates toimmortal, it means the frame cannot be closed except by
exiting from the FMLI application. Note that thelifetime descriptor for
initial frames, that is, frames opened as arguments tofmli when it is
invoked, evaluates toimmortal by default and cannot be redefined.

Executing Commands 1

This section describes how users execute FMLI commands. A complete discussion of
FMLI commands can be found in Chapter 2.

The Command Menu 1

The Command Menu is an FMLI-supplied menu that lists a subset of FMLI com-
mands. By default, function keyF7 is labeledcmd-menu when a menu (except the

Introduction to FMLI

1-21

Command Menu itself), form, or text frame is current. Pressing thecmd-menu SLK
causes theCommand Menu to appear in the work area:

TheCommand Menu will reflect the contents of the commands file. That is, if you
rename, redefine, or disable an existing FMLI command in the commands file, or if you
define a new command for your application, it will be added to or removed from the
Command Menu as appropriate. You execute a command from theCommand Menu
by selecting it just as you would select an item in any other menu.

The Command Line 1

You access the FMLI command line by pressingCTRL-j or CTRL-f c. At the -->
prompt, you enter the name and arguments, if any, of the FMLI command you want to exe-
cute and pressENTER. All FMLI commands can be executed from the command line
except those you have disabled in the commands file.

If a message catalogue for a certain language exists in your system, the commands in the
command menu will be presented in the respective language. Commands in the command
line must always be entered in English even though they might be output in another lan-
guage in the command menu.

If what you enter on the command line is not a known FMLI command, it is interpreted
according to the following default behavior. If what you enter is an integer, the command
that will be executed defaults togoto integer; if you enter2, navigation to frame 2 will
occur. If what you enter is anything other than an integer or a known FMLI command, the
command that will be executed defaults to open what-is-entered.

You can try using the command line now if you are running the example application. Press
CTRL-j, enter the commandrelease, and pressENTER. This FMLI command
returns the release number of the version of FMLI you are currently running. The words
FMLI Release 4.2 P n, wheren is the version number, should be displayed on the
message line.

If the Command Menu is the current frame when you pressCTRL-j or CTRL-f c, the
Command Menu will disappear and the command the cursor is currently positioned on
will appear on the command line after the prompt.

Command Menu

> cancel next-frm

 cleanup prev-frm

 exit refresh

 frm-mgmt unix-system

 goto update

 help

Character User Interface Programming

1-22

NOTE

In releases previous to FMLI 4.0,CTRL-z was used to access the
command line. In UNIX System V Release 4.0,CTRL-z is used
for job control injsh or ksh . For that reason, usingCTRL-z
will suspend an FMLI application. To resume the FMLI applica-
tion, use thefg command. (See thesh(1) manual page for
detailed information on job control.)

Screen-labeled Function Keys 1

Pressing a screen-labeled function key (SLK) results in the execution of the command
defined for that function key. Many of the default FMLI commands shown on the SLKs
can also be selected from theCommand Menu or executed from the command line.
(Not all FMLI commands shown by default on the SLKs appear in theCommand
Menu, and vice versa, but all FMLI commands can be executed from the command line.)
If you have defined a SLK (either in an initialization file or in a frame definition file) to
execute an application-specific command or a different FMLI command from the default,
then pressing that SLK will execute the command you have defined for that key.

FMLI provides for international SLKs. User-defined SLKs in initialization or frame defi-
nition files can be internationalized with the following syntax:

 $$< catalogue_name>:< message_no>:< default_message>

See “Writing an Internationalized Application” on page 1-12 for more details.

On-line Help 1

When a menu, form, or text frame is current, function keyF1 is labeledHELP and
assigned the FMLIhelp command by default. Pressing theHELP SLK or selecting the
help command in theCommand Menu results in the FMLIhelp descriptor being
evaluated. Typically, you use thehelp descriptor to open a text frame that presents infor-
mation on the use of the frame or command. This can be done using a text frame defini-
tion file, or more simply with thetextframe command. But you can definehelp to be
anything, such as a message to be printed on the message line or a UNIX system execut-
able.

On-line help is available for each FMLI command. You can request help on a command
by pressingCMD-MENU to access theCommand Menu, navigating to the command
for which you want help, and pressingHELP. You can do the same thing by entering a
command of the form

help command_name

on the command line, wherecommand_name is the name of the command for which you
want help.

The on-line help information can be output in languages other than English. To do this,
the FMLI message catalogue must be translated.

There are other ways you can provide users with help on the use of your application. You
can define a short descriptive tag to be displayed alongside an item in a menu as a “mem-

Introduction to FMLI

1-23

ory jogger” on the use of that item. The choices menu that you can define for a field in a
form frame can be considered a kind of help. Chapter 3 presents examples of these and
other ways to provide users with on-line help. Help can also be provided via any of the
FMLI descriptors that display a message on the message line, such aschoicemsg,
itemmsg, or fieldmsg. The built-in utility message(1F) can also be used to dis-
play information on the message line.

The on-line help can be encoded with the$$-syntax so that output in different languages
is possible. If a text file needs to be read (when using the help descriptor and theread-
f i le command), i ts d i fferent language vers ions should be stored under
<dirname>/LANG/< file>. The default version should be stored in<dirname>/< file>.

Accessing the UNIX System 1

You can access the UNIX system by selecting the FMLIunix-system command from
theCommand Menu or by entering thecommand_name on the command line. When
you invokeunix-system, the FMLI screen clears and you are put in a full-screen
UNIX shell. When you exit from the UNIX system, a prompt message appears requesting
that you pressENTER to continue. The FMLI screen returns in the same condition it was
in before theunix-system command was issued. You can control user access to the
UNIX shell by disabling theunix-system command in the commands file (see “The
Commands File” on page 4-12 for a discussion of how to disable FMLI commands).

By default, you can run UNIX system commands from the FMLI command line by prefix-
ing an exclamation mark (!) to the command. (Whitespace is ignored before! when it is
used as a UNIX system escape on the command line.) Therun(1F) built-in function can
also be used to execute UNIX system commands from the FMLI command line (see the
run(1F) manual page for details). You can use thenobang descriptor to disable these
features, as described in “The Initialization File” on page 4-1.

Character User Interface Programming

1-24

2
The Form and Menu Language

Introduction . 2-1
Syntax, Rules, and Conventions . 2-1

Naming Conventions for Frame Definition Files . 2-1
Comments. 2-2
Case Sensitivity . 2-2
Type Casts. 2-2

File Type Casts . 2-2
Type Casts That Change the Time of Descriptor Evaluation 2-3

Special Characters . 2-3
Quoting Mechanisms . 2-4
Backquoted Expressions. 2-4

Expression Operators . 2-5
File Redirection . 2-6
Syntax Errors . 2-6

Variables . 2-6
User-defined Variables . 2-6
Built-in Variables . 2-7

Variable Evaluation . 2-8
Descriptors. 2-10

Descriptor Evaluation . 2-10
Descriptor Types. 2-12
Frame Definition File Descriptors . 2-12

Menu Descriptors . 2-14
Form Descriptors. 2-17
Text Frame Descriptors . 2-21

Application Level File Descriptors. 2-23
Initialization File Descriptors . 2-23

Application Descriptors for the Initialization File 2-23
Application SLK Descriptors . 2-26
Commands File Descriptors . 2-27

FMLI Commands. 2-28
FMLI Commands: Syntax and Use . 2-29
User Access to FMLI Commands . 2-33

Built-in Utilities . 2-34
Overview of the Built-in Utilities. 2-34

Conditional Statements . 2-37
Signal Handling . 2-38

Interrupt Signal Handling . 2-39
Terminal Display Attributes. 2-41

Using the Alternate Character Set . 2-42

Character User Interface Programming

2-1

2
Chapter 2The Form and Menu Language

2
2
2

Introduction 2

The Form and Menu Language is a high-level “shell-like” language for defining menus,
forms, and text frames for your application. A menu, form, or text frame definition is
stored in aframe definition file made up of statements recognized by the Form and Menu
Language Interpreter—thefmli command. Frame definition files can contain fixed
descriptions of the contents of the frame and/or code that will dynamically generate the
contents. Whenfmli is invoked for the scripts you have written, the frame definition files
are parsed, and the frames that will be displayed on the screen are generated.

This chapter summarizes the syntax of the various elements of the Form and Menu Lan-
guage.

Syntax, Rules, and Conventions 2

The following sections discuss the general rules and the conventions which apply to the
Form and Menu Language. Specifics of syntax for particular elements of the language are
covered in the appropriate sections.

Naming Conventions for Frame Definition Files 2

On thefmli command line, frame definition files are recognized as arguments only when
they are named in accordance with the following conventions:

• Menu. name is the format for names of menu definition files

• Form. name is the format for names of form definition files

• Text. name is the format for names of text definition files

wherename can be any string that conforms to the UNIX system file naming conventions.

In a frame definition file, however, file name arguments to theopen command can follow
the above conventions, or they can have any valid UNIX system file name as long as one
of the type castsMENU, FORM, orTEXT is used to identify the kind of frame definition file
being opened (see “Type Casts” on page 2-2 below for more information).

Character User Interface Programming

2-2

Comments 2

Comments can be included by beginning a line with the pound sign character. A pound
sign,#, when it is the first non-whitespace character on a line, causes all following text up
to a newline to be ignored by FMLI. (Inside single quotes (' '), double quotes (“ ”), and
backquotes (` `), the pound sign has no special meaning. Thus, comments cannot be
included in backquoted expressions.)

Case Sensitivity 2

Some elements of the Form and Menu Language are case-insensitive, and some are case-
sensitive.

The case-insensitive elements are

• descriptor names

• FMLI command names

• type casts

• descriptor values of type Boolean

The case-sensitive elements are

• arguments to commands

• names of frame definition files

• descriptor values of type string

• variable names

• FMLI built-in utility names and UNIX executable names, within back-
quoted expressions

Type Casts 2

File Type Casts 2

A file type cast is an identifier that indicates to FMLI the type of frame definition file being
opened when the file's name does not follow the naming conventions for frame definition
files. There are three type casts for frame definition files:MENU, FORM, andTEXT. Each
can be used as the first argument to theopen command. For example,

action=open form user.address

identifiesuser.address as a form definition file. A frame definition file can be identi-
fied by using both the file naming convention and a type cast, although only one or the
other is required.

The Form and Menu Language

2-3

Note that file type casts cannot be used to identify the initial frame(s) to open whenfmli
is invoked.

Type Casts That Change the Time of Descriptor Evaluation 2

By default, FMLI determines how often descriptors are evaluated. You can use theconst
type cast to make sure that a descriptor is evaluated only once, no matter how many times
it is referenced, or thevary type cast to make sure that a descriptor is evaluated whenever
it is referenced. In either case, the cast must appear immediately after the equal sign (=) on
the descriptor line, as in the following:

show=const `set -l DAY=date +%a; test “$DAY” = “Friday”`

We'll explain what this example does, and more generally, why you might want to use
const andvary in “Descriptor Evaluation” on page 2-10.

Special Characters 2

Special characters in FMLI scripts are:

Some FMLI built-in utilities, such asregex andfmlgrep , have other special characters.
These are discussed with the appropriate utilities in the section 1F manual pages.

double quote “ right-angle bracket >

single quote ' left-angle bracket <

backslash \ <newline>

backquote ` <space>

dollar sign $ <tab>

vertical bar | left brace {

ampersand & right brace
(in thermenu
descriptor only)

}

semicolon ; integer 2
(when followed by >)

2

pound sign
(in the fi r s t non-
whitespace column of a
line)

#

dollar dollar $$

Character User Interface Programming

2-4

Quoting Mechanisms 2

FMLI supports quoting mechanisms, similar to those used in the UNIX system shell, for
disabling the meaning of special characters in a string. Each quoting mechanism has a dif-
ferent function, as defined below.

• Backslash (\): A backslash causes the next single character to be taken lit-
erally. That is, any special meaning of the character following a backslash
is turned off. (In some cases, multiple backslashes may be required to
escape the special meaning of a character.)

• Single quotes (' '): Any string inside of single quotes is taken literally
and as a unit. Inside single quotes, only the backslash (\) has special mean-
ing.

• Double quotes (“ ”): Double quotes group the text between them as a unit,
but still allow variable expansion and the use of backquotes. Inside double
quotes, only backslash (\), backquote (̀), and dollar sign ($) retain their
special meanings. Carriage returns inside double quotes are enforced.

• Backquotes (̀ `): (Backquoted expressions are discussed in detail in the
next section.) Any statement or series of statements may be enclosed in
backquotes with the result that such a backquoted expression evaluates to
the output of the last statement. Statements may be UNIX system executa-
bles or FMLI built-in utilities. Backquotes cannot be nested, except as pro-
vided for inregex . (See the regex(1F) manual page.)

NOTE

If a statement run in a backquoted expression changes the
stty(1) setting, the FMLI session may be corrupted. Frames
may not display correctly and the FMLI command line may not
function (the latter occurs ifRETURN is mapped toLINE-
FEED or toLINEFEED RETURN).

Backquoted Expressions 2

Backquoted expressions may be coded as the value of a descriptor. They are evaluated at
the time the descriptor is evaluated. When a backquoted expression produces output, it is
considered part of the descriptor. This output must not produce an illegal value on the
descriptor line. For instance, if the variableMYVAR is set tohello , then

action=`echo $MYVAR`open menu Mymenu

will be equivalent to

action=helloopen menu Mymenu

This produces an illegal descriptor value sincehelloopen is not a known FMLI com-
mand, and descriptors of type command must evaluate to a known FMLI command. As a
result, the terminal will beep.

The Form and Menu Language

2-5

In addition to using backquoted expressions on descriptor lines, you can code them as
“stand-alone” lines anywhere in menu, form, or text frame definition files. A stand-alone
backquoted expression is one that starts a line, and it is evaluated when the frame defini-
tion file is opened, reread, or updated; beforeany descriptors are evaluated. Thus, if a
stand-alone backquoted expression produces output to the message line, the output will
appear before the frame being parsed is posted.

It is important to note that information can be passed to or from UNIX system executables
and FMLI built-in commands using backquoted expressions. For example a menu item
with the following definition of theaction descriptor

action=`date | message` nop

passes the output of the UNIX systemdate command to the FMLI built-in utilitymes-
sage , which displays it on the message line.

Using this feature of the Form and Menu Language, you can generate the entire contents
of a frame dynamically at run time. For an example of a menu generated this way, see the
regex(1F) manual page and “Creating a Dynamic Menu” on page 3-23.

NOTE

In backquoted expressions, executables that expect standard input
must be run via therun built-in utility. For example, if a user
selects a menu item which has itsaction descriptor coded as
action=`vi myfile`nop , the FMLI session will appear to
hang. The same act ion, coded asaction=`run vi
myfile`nop , executes properly.

Expression Operators 2

Several statements, utilizing FMLI built-in utilities or UNIX system executables, may
appear inside a single backquoted expression, separated by one of the following operators:

• Semicolon (;): Statements separated by a semicolon are executed sequen-
tially.

• Pipe (|): When statements are separated by a pipe symbol, the output of
the first statement becomes the input to the second.

• AND (&&): The meaning ofstatement1&&statement2 is runstatement1 and
if it succeeds, then runstatement2.

• OR (||): The meaning ofstatement1 || statement2 is runstatement1
and if it fails, runstatement2.

NOTE

FMLI does not allow statement grouping by using parentheses,
such as can be done in the UNIX shell, namely,statement1 &&
(statement2; statement3).

Character User Interface Programming

2-6

File Redirection 2

The input of a statement may be redirected from a file by using< file. Similarly, the out-
put of a statement may be sent to a file by using> file, or by using>> file to append out-
put to the end of a file.

The output from standard error may be redirected by using2> file to send it to a file, or by
using2>> file to append it to the end of a file.

As in the UNIX shell, whitespace between> or < andfile is optional.

Syntax Errors 2

In general, FMLI does not generate messages on syntax errors. Anything it doesn't under-
stand is ignored. However, some of the built-in utilities such asfmlgrep , and the FMLI
conditional statement, generate their own syntax error messages. For example, a mis-
spelled descriptor will be ignored, but a syntax error in a use offmlgrep may cause an
error message. In addition, correctly coded descriptors will be ignored if they are used in
the wrong context. For example, theselected descriptor will be ignored in a single-
select menu (becauseselected has no meaning in that context).

When creating a new form, menu, or text frame, all quotes and backquotes must match.
Quoting mismatches may cause the frame not to appear or appear incorrectly, or cause an
fmli session to terminate (exit). Quoting mismatches are not reported.

Variables 2

The Form and Menu Language Interpreter recognizes user-defined variables, and a set of
read-only special FMLI variables (known as built-in variables), as well as UNIX shell
variables such asHOME or MAIL.

Variables in FMLI are global. That is, variables defined in one frame or application level
definition file are exported to all other frame definition files or application level files after
theset command has been executed. If a frame is not opened during the execution of an
FMLI session, variables defined in it are not available.

User-defined Variables 2

User-defined variables are names to which you may assign string values using the FMLI
built-in utility set (see theset(1F) manual page for complete details on its use). You
can assign values to variables in the local environment, available to the current FMLI ses-
sion only:

set -l name=value

The Form and Menu Language

2-7

NOTE

Local variables are available to all frames of your application, not
just the frame in which they are set.

Or a variable can be made available to any application/process by placing the variable in a
file, thus allowing another application (for example, another FMLI application) to retrieve
the information:

set -f filename name=value

wherename is a sequence of letters, digits, and underscores that begins with a letter or an
underscore,value is a string, andfilename is the path name to a file that contains lines of
the formname=value. If it does not already exist,filename will be created. Note that no
spaces surround the equal sign (=).

The built-in utility set can also be used to set variables in the UNIX shell environment
and export them to the current session and to its child processes:

set -e name=value

The built-in utility unset can be used to remove a variable assignment (see the
set(1F) manual page for complete details on its use).

Built-in Variables 2

The built-in variables are a set of special, read-only variables that are predefined in the
Form and Menu Language. These built-in variables can only be referenced, but never set,
in frame definition files. The built-in variables are as follows:

ARGn This variable evaluates to thenth argument passed to the corre-
sponding form, menu, or text frame.

DISPLAYH This variable evaluates to the height of the available frame display
area, minus the three lines reserved for the message line, the com-
mand line, and the screen labels for function keys.DISPLAYH is
placed in the UNIX shell environment.

DISPLAYW This variable evaluates to the width of the available frame display
area of the screen.DISPLAYW is placed in the UNIX shell envi-
ronment.

Form_Choice This variable evaluates to the last choice made from a choices
menu.

Fn This variable evaluates to the current value of thenth field.

NOTE

Field n cannot reference fieldm, wherem is greater thann, and
field m does not have avalue descriptor defined.

Character User Interface Programming

2-8

HAS_COLORS This variable evaluates to TRUE iffmli is invoked from a color
terminal, otherwise it evaluates to FALSE.HAS_COLORS is
placed in the UNIX shell environment.

LININFO This variable evaluates to null if the current menu item or form
field doesn't have alininfo descriptor defined. Otherwise it evalu-
ates to the value of thelininfo descriptor. (See Chapter 3, for an
example of how to use this variable to output a help message for
form fields or menu items.)

LOADPFK When this variable is set toyes , true , or the null string, it
directs FMLI to download alternative keystroke sequences into
the function keys of a terminal that does not have fixed, preset val-
ues for them.LOADPFK is read from the UNIX shell environment.
(See Appendix B for more information on automatic function key
downloading.)

MAILCHECK This variable determines the amount of time before aSIGALRM
alarm automatically occurs. The minimum value forMAILCHECK
is 120 seconds. IfMAILCHECK is not defined, or defined as0
(zero), it defaults to300 seconds.MAILCHECK is read from the
UNIX shell environment.

NR This variable evaluates to the number of items in the menu frame.

RET This variable evaluates to the exit value of the last executable run,
whether in a backquoted expression or as the executable argument
to the built-in utilityrun . If such anexec or fork system call
fails, RET will be set to the sum of the return code of theexec or
fork plus the integer 1000.

SELECTED This variable evaluates to TRUE if the current item in a multi-
select menu has been marked. It evaluates to FALSE if the item is
not marked.

TEXT This variable evaluates to the value of thetext descriptor in a
text frame.

Variable Evaluation 2

In frame definition files and application level files, variables are referenced by prefixing
either$ or $! to the variable name.

When you use the$name notation, the variable is evaluated only once. This implies that
special characters lose their special meaning when they are coded in the values of strings.
For example, if you assigned a value to the variableVAR as follows

`set -l VAR=“`date` $HOME”`

and then requested FMLI to display the value of$VAR, the value displayed would be

`date` $HOME

When you use the$! name notation, the variable will be evaluated multiple times—as long
as special characters remain in the expression. For example, if the variableVAR had the

The Form and Menu Language

2-9

same value assigned as shown above, but you requested FMLI to display the value of
$!VAR , the value displayed would be, for instance,

Thu Sep 29 14:43:41 EDT 1989 /home/loginID

The$! notation should never be used when referencing the built-in variables (especially
F1, F2, and so on), because it is impossible to guard against users entering special charac-
ters in form fields.

NOTE

Prior to FMLI Release 4.0, only the$ notation existed for variable
evaluation, and that notation exhibited the behavior now defined
for $! .

For previously written FMLI applications now being run under
FMLI Re lease 4 .0 o r la te r, a Boo lean descr ip to r,
use_incorrect_pre4.0_behavior , can be set in the ini-
tialization file if needed. This will cause FMLI to ignore the$!
notation and interpret$ in the old way. The default value (if not
de fined in the in i t i a l i za t ion fi l e) fo r
use_incorrect_pre4.0_behavior is FALSE.

This descriptor, and consequently the ability to make the$ nota-
tion behave like the$! notation, will be removed in the next
release of FMLI.

When a variable is evaluated that does not specifically reference a file, two environments
are searched:

local environment This environment is specific to the current FMLI process
(variables set withset -l). This is similar to an unex-
ported shell variable.

UNIX system environment The UNIX system environment is the standard UNIX
environment.

Wheneverenvironment is referred to in this text, these environments are searched in the
order listed.

Variable names must be referenced using one of the following formats:

$variable or ${ variable} Look for variable in the environment and evaluate to the
value of that variable.

NOTE

The built-in variableFn must be used with the format{F n} for
fields greater than the ninth, that is,{F10} , {F11} , and so on.

Character User Interface Programming

2-10

${variable:-default} Look for variable in the environment and if it is found
evaluate to its value. If it is not found, evaluate todefault.

${(filename)variable} Look for a line of the formatvariable=value in the filefile-
name. If such a line is found, evaluate tovalue.

${(filename)variable:-default} Same as above, except ifvariable is not found anywhere,
evaluate todefault.

Note thatfilename anddefault may themselves be variables, such as

${($HOME/.variables)NAME:-$LOGNAME}

Descriptors 2

Descriptors are the basic building blocks of the Form and Menu Language. Each descrip-
tor defines a particular attribute that you can customize for the type of frame you are defin-
ing. The three types of frames that you can define—menus, forms, and text frames—each
have their own set of descriptors, as do the initialization file, the commands file, and the
alias file.

The general syntax of descriptor statements in the Form and Menu Language is

descriptor=value

wheredescriptor is any valid descriptor for the frame definition file or application level
definition file you are writing, andvalue is a value of the type expected by the descriptor.
The value may include backquoted expressions that evaluate to part, or all, of the descrip-
tor value, as well as FMLI commands and their arguments. Some descriptors have default
values.

To take a simple example, if the variableLOGNAME evaluates tochris , then

name=hello there $LOGNAME --today is `date`

results in the value of thename descriptor being

hello there chris --today is Sun Aug 27 16:07:23 EDT 1989.

Note that there are no spaces around the equal sign (=) in a descriptor statement.

Descriptor Evaluation 2

To obtain a descriptor value for the first time, FMLI must either use the default value of
the descriptor, if any, or evaluate the expression coded for the descriptor. Expression eval-
uation resolves references to variables, removes quotes, and causes any backquoted
expressions to be executed. Backquoted expressions may be used for their side effects
only or may generate standard output that is used as part of the descriptor value.

The Form and Menu Language

2-11

By default, FMLI determines how often descriptors are evaluated. Most are evaluated only
once, the first time the descriptor value is needed; the value of the descriptor remains the
same throughout the life of the frame. This does not mean that the value cannot be used, or
“referenced,” again, only that it will not be recomputed each time it is referenced.

Other descriptors are evaluated multiple times in the life of a frame. In these cases, all
backquoted expressions coded as part of the descriptor are executed, for output and side
effects, each time the descriptor is evaluated. Some of these descriptors are evaluated
whenever they are referenced, others are evaluated only when referenced in certain condi-
tions. Theshow descriptor, for instance, is typically used to make fields in a form appear
or disappear based on values the user has entered in other fields.show is referenced when
the form is opened and thereafter each time the user navigates between fields in the form.
show is evaluated, however, only the first time it is referenced and thereafter only when
the user has changed the value of a field before navigating away.

For performance reasons, then, FMLI evaluates descriptors only as necessary in the typi-
cal case. That may still be too often, or not often enough, for your application. In these sit-
uations, you can use theconst type cast to make sure that a descriptor is evaluated only
once, no matter how many times it is referenced, or thevary type cast to make sure that a
descriptor is evaluated whenever it is referenced.

As an example of how you might useconst , consider a form that contains a field that
should only be completed on Friday. You can define theshow descriptor for the field so
that it will appear only when thedate +%a command evaluates to Friday:

show=`set -l DAY=date +%a; test “$DAY” = “Friday”`

In the example, the FMLI built-in utilityset -l sets the local variableDAY to the output
of thedate +%a command.

The problem with this is that, by default, FMLI will evaluateshow more times than is
necessary for your application: not only when the form is opened, but whenever the user
changes a value in a field and navigates to another field. To prevent that, you can use
const as follows:

show=const `set -l DAY=date +%a; test “$DAY” = “Friday”`

show will be evaluated only when the form is opened.

vary is used to force a descriptor that is evaluated once by default, or only when it is ref-
erenced in certain conditions, to be re-evaluated each time it is referenced. Suppose you
have defined a form that allows users to administer machines in a network. One field in the
form displays a choices menu from which users can select the machine they want to act
on. The field references a directory that contains files corresponding to each machine in
the network. You can use thermenu descriptor to define the choices for the field:

rmenu={ `ls $NetMachines` }

Suppose further, though, that machines will be added or removed from the directory list as
necessary throughout the life of the form. That means your choices menu will have to
change dynamically to reflect the changing contents of the directory. Becausermenu is
evaluated only once by default, the code shown above will produce a choices menu that
reflects the state of affairs when the form was opened, and not as it has changed since then.
To produce a choices menu that changes dynamically, you usevary as follows:

rmenu=vary { `ls $NetMachines` }

Character User Interface Programming

2-12

rmenu will be evaluated whenever it is referenced.

Descriptor Types 2

The types of descriptors are the following:

Boolean A descriptor of type Boolean must evaluate to either TRUE or FALSE.

• FALSE is defined as the word “false,” irrespective of case, or a
non-zero return code.

• TRUE is defined as all values other than FALSE, as defined
above. For example,true , TRUE, yes , 0.

color A descriptor of type color must evaluate to one of the following strings:
black , blue , green , cyan , red , magenta , yellow , or white , or one
you define using setcolor(1F).

command A descriptor of type command must evaluate to an FMLI command, such as
open , nop , exit .

integer A descriptor of type integer must evaluate to an integer value.

layout A descriptor of type layout (there is only one,slk_layout) must evaluate to
one of only two values: either3-2-3 or 4-4 .

null A descriptor of type null exists only to get the side effect of a backquoted
expression. Its value is ignored.

position A descriptor of type position must evaluate to an integer value or one of the
stringsany , center , current , or distinct .

string A descriptor of type string must evaluate to a sequence of characters.

NOTE

If the integer value assigned to a descriptor that determines the
offset of a frameor any of its components is greater than the
boundaries of the screen work area, the frame will not be posted.
Thebegrow andbegcol descriptors are the exceptions to this.
They default toany .

Frame Definition File Descriptors 2

Menu, form, and text frame definition files have similar rules governing the order in which
descriptors are defined.

frame descriptors Descriptors that apply to the frame as a whole must be
defined first. There can be only one set of frame descrip-
tors in a frame definition file. Each frame descriptor

The Form and Menu Language

2-13

should be defined only once. If defined more than once,
then the last instance of the descriptor in the set is used.
Frame descriptors that are out of order, that is, any that fol-
low item, field, or SLK descriptors in the frame definition
file, are ignored.

item or field descriptors Descriptors that apply to an item in a menu or a field in a
form must be defined next. There can be multiple sets of
item descriptors in a menu definition file, and multiple sets
of field descriptors in a form definition file—as many sets
as there are items or fields. In each set, however, each item
or field descriptor should be defined only once. If defined
more than once, then the last instance of the descriptor in
the set is used.

Text frame definition files do not have an equivalent to
item or field descriptors.

screen-labeled function key (SLK) descriptors
Descriptors that apply to screen-labeled function keys (the
name that appears on the screen label as well as the func-
tion assigned to the function key) must be defined last.
There can be multiple sets of SLK descriptors—as many
sets as there are SLKs you are defining. In each set, how-
ever, a descriptor should be defined only once. If defined
more than once, then the last instance of the descriptor in
the set is used.

The following tables summarize the available descriptors for each type of frame. They
also show the default value of each descriptor, the type of string expected as a value, when
the descriptor is referenced, and when it is evaluated by default. (See Chapter 3 and
Chapter 4 for discussions of what these descriptors do and how to use them.)

NOTE

The “When Referenced” listing for each descriptor in the follow-
ing tables should be considered a statement of the minimum num-
ber of times the descriptor is referenced. Many of the descriptors
are referenced more times than is stated in the tables.

Character User Interface Programming

2-14

Menu Descriptors 2

Table 2-1 lists the frame descriptors that can be used in a menu definition file. None of
these descriptors is required in a menu definition file. If any are used they can be in any
order, but they must precede the item descriptors.

Table 2-1. Frame Descriptors for Menu Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

altslks FALSE Boolean When menu is
opened/updated

When menu is opened/
updated

autosort FALSE Boolean When menu is
opened/updated

When menu is opened/
updated

begcol any position When menu is
opened/updated

When menu is opened/
updated

begrow any position When menu is
opened/updated

When menu is opened/
updated

close no default null When menu is
closed for any rea-
son

When menu is closed
for any reason

columns calculated value** integer When menu is
opened/updated

When menu is opened/
updated

done no default command When items are
selected (not
marked) in a multi-
select menu;
ignored in a single-
select menu

Whenever referenced

framemsg no default string When menu is
opened/updated

When menu is opened/
updated

help no default command When user asks for
help

Whenever referenced

init TRUE Boolean When menu is
opened/updated

When menu is opened/
updated

interrupt inherited value* Boolean When an interrupt-
ible descriptor is
evaluated

Whenever referenced

lifetime longterm string When menu is
opened, closed,
made current, or
made non-current

Whenever referenced

oninterrupt inherited value* command After descriptor
evaluation is inter-
rupted

Whenever referenced

The Form and Menu Language

2-15

Table 2-2 lists the item descriptors that can be used in a menu definition file. In each set of
item descriptors,name is required and must be the first descriptor.

menu Menu string When menu is
opened

When menu is opened

multiselect FALSE Boolean When menu is
opened/updated

When menu is opened/
updated

reread FALSE Boolean When a
checkworld
occurs

Whenever referenced

rows calculated value** integer When menu is
opened/updated

When menu is opened/
updated

Table 2-2. Item Descriptors for Menu Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

action no default command When item is
selected

Whenever referenced

description no default string When menu is
opened/updated

When menu is opened/
updated

inactive FALSE Boolean When menu is
opened/updated

When menu is opened/
updated

interrupt inherited value* Boolean Whenaction
descriptor is evalu-
ated

Whenever referenced

itemmsg no default string When item is navi-
gated to

Whenever referenced

lininfo no default string When item is navi-
gated to

Whenever referenced

name no default string When menu is
opened/updated

When menu is opened/
updated

Table 2-1. Frame Descriptors for Menu Definition Files (Cont.)

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

Character User Interface Programming

2-16

Table 2-3 lists the descriptors that can be used to define screen-labeled function keys in a
menu definition file. Thename andbutton descriptors must be defined, andname must
be first in each set of SLK descriptors.

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your application,interrupt
defaults to FALSE andoninterrupt defaults tò message Operation
interrupted!`nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

** The default value forcolumns and rows is determined by FMLI and
depends in part on the number of items defined in the menu. (See Appendix A
for a table describing the method of calculation.)

oninterrupt inherited value* command After action
descriptor evalua-
tion is interrupted

Whenever referenced

selected FALSE Boolean When menu is
opened/updated

When menu is opened/
updated

show TRUE Boolean When menu is
opened/updated

When menu is opened/
updated

Table 2-3. SLK Descriptors for Menu Definition Files

Descriptor Default if
not Defined

Type When
Referenced

Default
Frequency of
Evaluation

action no default command When SLK is
pressed

Whenever referenced

button no default integer When menu is
opened/updated

Whenever referenced

interrupt inherited value* Boolean When SLK
action descriptor
is evaluated

Whenever referenced

name no default string When menu is
opened/updated

Whenever referenced

oninterrupt inherited value* command After SLKaction
descriptor evalua-
tion is interrupted

Whenever referenced

Table 2-2. Item Descriptors for Menu Definition Files (Cont.)

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

The Form and Menu Language

2-17

Form Descriptors 2

Table 2-4 lists the frame descriptors that can be used in a form definition file. None of
these descriptors is required in a form definition file. If any are used they can be in any
order, but they must precede the field descriptors.

Table 2-4. Frame Descriptors for Form Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

altslks FALSE Boolean When form is
opened/updated

When form is opened/
updated

autolayout FALSE Boolean When form is
opened/updated

When form is opened/
updated

begcol any position When form is
opened/updated

When form is opened/
updated

begrow any position When form is
opened/updated

When form is opened/
updated

close no default null When form is
closed

When form is closed

done close command When form is saved Whenever referenced

form Form string When form is
opened

When form is opened

framemsg no default string When form is
opened/updated

When form is opened/
updated

help no default command When user asks for
help

Whenever referenced

init TRUE Boolean When form is
opened/updated

Whenever referenced

interrupt inherited value* Boolean When an interrupt-
ible descriptor is
evaluated

Whenever referenced

lifetime longterm string When form is
opened, closed,
made current,
made non-current

Whenever referenced

oninterrupt inherited value* command After descriptor
evaluation is inter-
rupted

Whenever referenced

reread FALSE Boolean When
checkworld
occurs

Whenever referenced

Character User Interface Programming

2-18

Table 2-5 lists the field descriptors that can be used in a form definition file. In each set of
field descriptors thename descriptor is required and must be first.

Table 2-5. Field Descriptors for Form Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

autoadvance FALSE Boolean When form is
opened/updated

When form is opened/
updated

choicemsg no default string When choices
menu is selected

When choices menu is
selected

columns If autolayout is
FALSE, -1. If
autolayout is
TRUE: 4 for first
field, else previous
field's value ***

integer When form is
opened/updated

When form is opened/
updated

fieldmsg no default string When field is navi-
gated to

Whenever referenced

fcol If autolayout is
FALSE, -1. If
autolayout is
TRUE:
1+current_ncol+
lengthOfLabel if
first field, or max of
that and its value in
previous field **

integer When form is
opened/updated

When form is opened/
updated

frow If autolayout is
FALSE, -1. If
autolayout is
TRUE:
current_nrow **

integer When form is
opened/updated

When form is opened/
updated

inactive FALSE Boolean When form is
opened, made cur-
rent, updated, saved

First time referenced
and when referenced
after an earlier field
value has been changed

invalidmsg Input is not valid string Whenvalid eval-
uates to false

First time referenced

invalidOn-
DoneMsg

Relationship of val-
ues in 2 or more
fields is not valid

string WhenvalidOn-
Done evaluates to
false

First time referenced

lininfo no default string When this field is
navigated to

Whenever referenced

menuonly FALSE Boolean When form is
opened/updated

When form is opened/
updated

The Form and Menu Language

2-19

name no default string When form is
opened/updated

When form is opened/
updated

ncol If autolayout is
FALSE, -1. If
autolayout is
TRUE: 0 for first
field, else previous
field's value **

integer When form is
opened/updated

When form is opened/
updated

noecho FALSE Boolean When form is
opened/updated

When form is opened/
updated

nrow If autolayout is
FALSE, -1. If
autolayout is
TRUE: 0 if first
field of page or
previous_nrow+
previous_rows **

integer When form is
opened/updated

When form is opened/
updated

page 1 *** integer When form is
opened/updated

When form is opened/
updated

rmenu no default command When form is
opened/updated

When form is opened/
updated

rows 1 *** integer When form is
opened/updated

When form is opened/
updated

scroll FALSE Boolean When form is
opened/updated

When form is opened/
updated

show TRUE Boolean When form is
opened/updated
and when any inter-
field navigation
occurs

First time referenced
and when referenced
after an earlier field
value has been changed

valid TRUE Boolean When interfield
navigation is
attempted from a
changed field, or
from any field with
ENTER, and when
form is saved

Whenever referenced

Table 2-5. Field Descriptors for Form Definition Files (Cont.)

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

Character User Interface Programming

2-20

Table 2-6 lists the SLK descriptors that can be used in a form definition file. When they
appear in a form definition file, they must be the last descriptors in the file. Thename and
button descriptors must be defined, andname must be the first descriptor in each set of
SLK descriptors.

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your application,interrupt
defaults to FALSE andoninterrupt defaults tò message Operation
interrupted!`nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

** A negative value for this descriptor will cause the label or input area being
described to not appear in the form.

*** A zero or negative value for this descriptor will cause the field being described
to not appear in the form.

validOnDone TRUE Boolean When form is saved Whenever referenced

value no default string When form is
opened/updated

When form is opened/
updated

wrap FALSE Boolean When form is
opened/updated

When form is opened/
updated

Table 2-6. SLK Descriptors for Form Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

action no default command When SLK is
pressed

Whenever referenced

button no default integer When form is
opened/updated

Whenever referenced

interrupt inherited value* Boolean When SLK
action descriptor
is evaluated

Whenever referenced

name no default string When form is
opened/updated

Whenever referenced

oninterrupt inherited value* command After SLKaction
descriptor evalua-
tion is interrupted

Whenever referenced

Table 2-5. Field Descriptors for Form Definition Files (Cont.)

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

The Form and Menu Language

2-21

Text Frame Descriptors 2

Table 2-7 lists the frame descriptors that can be used in a text frame definition file. None of
these descriptors is required in a text frame definition file. If any are used they can be in
any order, but they must precede the SLK descriptors. Note that the only kinds of descrip-
tors in text frame definition files are frame descriptors and SLK descriptors. (Text frames
do not have an equivalent to item or field descriptors.)

Note that text frames may also be defined, at least for simple needs, using thetext-
frame command. This command can be used to reduce the number of text frame defini-
tion files needed in an application. See “The textframe Command” on page 3-56 for more
information on using this short-cut.

Table 2-7. Frame Descriptors for Text Frame Definition Files

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

altslks FALSE Boolean When frame is
opened/updated

When frame is opened/
updated

begrow any position When frame is
opened/updated

When frame is opened/
updated

begcol any position When frame is
opened/updated

When frame is opened/
updated

close no default null When frame is
closed

When frame is closed

columns 30 integer When frame is
opened/updated

When frame is opened/
updated

done close command When frame is
closed

Whenever referenced

edit FALSE Boolean When frame is
opened/updated

When frame is opened/
updated

framemsg no default string When frame is
opened/updated

When frame is opened/
updated

header no default string When frame is
opened/updated

When frame is opened/
updated

help no default command When user asks for
help

Whenever referenced

init TRUE Boolean When frame is
opened/updated

Whenever referenced

interrupt inherited value* Boolean When an interrupt-
ible descriptor is
evaluated

Whenever referenced

Character User Interface Programming

2-22

Table 2-8 lists the SLK descriptors that can be used in a text frame definition file. When
they are used in a text frame definition file, they must be the last descriptors in the file. The
name andbutton descriptors must be defined, andname must be the first descriptor in
each set of SLK descriptors.

lifetime longterm string When frame is
opened, closed,
made current, or
made non-current

Whenever referenced

oninterrupt inherited value* command After descriptor
evaluation is inter-
rupted

Whenever referenced

reread FALSE Boolean When frame is
opened/updated

Whenever referenced

rows min(10, linesOfText) integer When frame is
opened/updated

When frame is opened

text no default string When frame is
opened/updated

When frame is opened/
updated

title Text string When frame is
opened

When frame is opened

wrap TRUE Boolean When frame is
opened/updated

When frame is opened/
updated

Table 2-8. SLK Descriptors for Text Frame Definition Files

Descriptor Default if
not Defined

Type When
Referenced

Default
Frequency of
Evaluation

action no default command When SLK is
pressed

Whenever referenced

button no default integer When frame is
opened/updated

Whenever referenced

interrupt inherited value* Boolean When SLK
action descriptor
is evaluated

Whenever referenced

name no default string When frame is
opened/updated

Whenever referenced

oninterrupt inherited value* command After SLKaction
descriptor evalua-
tion is interrupted

Whenever referenced

Table 2-7. Frame Descriptors for Text Frame Definition Files (Cont.)

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

The Form and Menu Language

2-23

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your application,interrupt
defaults to FALSE andoninterrupt defaults tò message operation
interrupted!`nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

Application Level File Descriptors 2

There are three kinds of application level files: the initialization file, the commands file,
and the alias file. The rules which govern the order of descriptors are different for each and
are covered in the appropriate section.

The following tables summarize the available descriptors for application level files. They
also show the default value of each descriptor, the type of string expected as a value, when
the descriptor is referenced, and when it is evaluated by default. (See Chapter 4 for discus-
sions of what these descriptors do and how to use them.) Most descriptors for application
level files are evaluated at initialization time.Initialization time can be either when the
FMLI application session is started via thefmli command, or when the FMLI built-in
utility reinit(1F) is executed. (Thereinit utility parses and evaluates the descrip-
tors in the file named as its argument and continues running the current application.)

Initialization File Descriptors 2

The rules governing the order in which descriptors are defined in an initialization file are
the following:

application descriptors
Descriptors that apply to the application as a whole must be defined first.
There can be only one set of application descriptors in an initialization file. In
that set, each application descriptor should be defined once. If defined more
than once, then the last instance of the descriptor in the set is used. Applica-
tion descriptors fall into four functional groups:

• introductory frame descriptors

• banner line descriptors

• general application descriptors

• color descriptors

application SLK descriptors
Descriptors that apply to application SLKs (the name that appears on the
screen label as well as the function assigned to the function key) must be
defined last in the initialization file. There can be multiple sets of application
SLK descriptors—as many sets as there are SLKs you are defining. In each
set, however, a descriptor should be defined only once.

Application Descriptors for the Initialization File 2

The following tables summarize the four functional groups of application descriptors.

Character User Interface Programming

2-24

Table 2-9 lists the descriptors that can be used to define an introductory frame in an initial-
ization file.

Table 2-10 lists the descriptors that can be used to define the banner line in an initialization
file.

Table 2-9. Introductory Frame Descriptors for the Initialization File

Descriptor
Default
if not
Defined

Type
When
Referenced

Default
Frequency of
Evaluation

columns 50 position At initialization
time

At initialization time

rows 10 position At initialization
time

At initialization time

text no default string At initialization
time

At initialization time

title no default string At initialization
time

At initialization time

Table 2-10. Banner Line Descriptors for the Initialization File

Descriptor
Default
if not
Defined

Type
When
Referenced

Default
Frequency of
Evaluation

bancol center position At initialization
time

At initialization time

banner no default string At initialization
time

At initialization time

working Working string At initialization
time

At initialization time

The Form and Menu Language

2-25

Table 2-11 lists the descriptors that can be used to define features of the application as a
whole.

NOTE

Prior to FMLI Release 4.0, only the$ notation existed for variable
evaluation, and that notation exhibited the behavior now defined
for $! .

For previously written FMLI applications now being run under
FMLI Re lease 4 .0 o r la te r, a Boo lean descr ip to r,
use_incorrect_pre4.0_behavior , can be set in the gen-
eral descriptors section of an initialization file if needed. This will
causefmli to ignore the$! notation and interpret$ in the way
defined for $! . The defau l t - i f -not -defined va lue for
use_incorrect_pre4.0_behavior is FALSE.

This descriptor, and consequently the ability to make the$ nota-
tion behave like the$! notation, will be removed in the next
release of FMLI.

Table 2-11. General Descriptors for the Initialization File

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

interrupt FALSE Boolean When an interrupt-
ible descriptor is
evaluated

When an interruptible
descriptor is evaluated

nobang FALSE Boolean At initialization
time

At initialization time

oninterrupt `message
Operation
Interrupted!`nop

command After descriptor
evaluation is
interrupted

After descriptor evalua-
tion is interrupted

permanentmsg no default string At initialization
time

At initialization time

slk_layout 3-2-3 layout At initialization
time

At initialization time

toggle 3 integer At initialization
time

At initialization time

Character User Interface Programming

2-26

Table 2-12 lists the descriptors that can be used to define the colors of various elements of
the FMLI screen display in an initialization file.

Application SLK Descriptors 2

Table 2-13 lists the descriptors used to define SLKs in the initialization file. When used in
an initialization file, they must be the last descriptors in the file. Thename andbutton

Table 2-12. Color Descriptors for the Initialization File

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

active_border white color At initialization
time

At initialization
time

active_title_bar black color At initialization
time

At initialization
time

active_title_text white color At initialization
time

At initialization
time

banner_text white color At initialization
time

At initialization
time

highlight_bar black color At initialization
time

At initialization
time

highlight_bar_text white color At initialization
time

At initialization
time

inactive_border white color At initialization
time

At initialization
time

inactive_title_text white color At initialization
time

At initialization
time

inactive_title_bar black color At initialization
time

At initialization
time

screen black color At initialization
time

At initialization
time

slk_text white color At initialization
time

At initialization
time

slk_bar black color At initialization
time

At initialization
time

window_text white color At initialization
time

At initialization
time

The Form and Menu Language

2-27

descriptors must be defined, andname must be the first descriptor in each set of SLK
descriptors.

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your application,interrupt
defaults to FALSE andoninterrupt defaults tò message Operation
interrupted!`nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

Commands File Descriptors 2

The commands file has only one set of descriptors, and that set can be defined multiple
times. The maximum sets of descriptors that can be defined in a commands file is 64. The
name descriptor must be first in each set and is required. Each descriptor should be
defined only once in each set. If defined more than once, only the last instance is used.

Table 2-13. Application SLK Descriptors for the Initialization File

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

action no default command When SLK is
pressed

Whenever referenced

button no default integer At initialization
time

Whenever referenced

interrupt inherited value* Boolean When a SLK
action descriptor
is evaluated

Whenever referenced

name no default string At initialization
time

Whenever referenced

oninterrupt inherited value* command After SLKaction
descriptor evalua-
tion is interrupted

Whenever referenced

Character User Interface Programming

2-28

Table 2-14 lists the descriptors that can be used in a commands file to redefine or disable
FMLI commands, and define new commands.

* The action descriptor has no default unlessname evaluates to a predefined
command. In that case, it defaults to the predefined command.

** The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your application,interrupt
defaults to FALSE andoninterrupt defaults tò message Operation
interrupted!`nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

FMLI Commands 2

An FMLI command is a command that is part of the Form and Menu Language and which
forces a screen related operation to occur. FMLI commands cannot be executed in back-
quoted expressions; however, a backquoted expression can generate an FMLI command.
Only descriptors of type command can evaluate to an FMLI command:action , done ,
help , oninterrupt , andrmenu . A command descriptor must evaluate to a single
FMLI command. If it does not, the terminal bell will sound. The FMLI commands that
take arguments are noted (see “Syntax Notation” on page -iv for an explanation of syntax
notation).

Table 2-14. Commands File Descriptors

Descriptor
Default if
not Defined

Type
When
Referenced

Default
Frequency of
Evaluation

action no default* command At initialization
time

Whenever referenced

help no default command When user asks for
help

Whenever referenced

interrupt inherited value** Boolean When anaction
descriptor is
evaluated

Whenever referenced

name no default string At initialization
time

Whenever referenced

oninterrupt inherited value** command After action
descriptor
evaluation is
 interrupted

Whenever referenced

The Form and Menu Language

2-29

NOTE

The maximum number of arguments that may be given in an
FMLI command is 25. Remember, however, that a frame can only
reference the first 10 arguments (ARG0-ARG9).

FMLI Commands: Syntax and Use 2

The following list briefly describes all the FMLI commands.

cancel [frameID . . .]
The cancel command evaluates theclose descriptor of the
specified frame and attempts to close the frame. When selected
from theCommand Menu it closes the previously current
frame.cancel closes a frame without executing thedone
descriptor.

TheframeID argument can be an integer identifying a frame or the
path name of a frame definition file. IfframeID is a path name, it
can be relative or full, but it must match the path name used when
the frame was opened. IfframeID is not given,cancel closes the
current frame.

checkworld The checkworld command evaluates thereread descriptor
for all open frames: any frame whosereread descriptor evalu-
ates to TRUE is updated (seeupdate command). This command
is initiated by theSIGALRM signal everyMAILCHECK seconds. It
is also initiated by many other events, such as executing the
open, close, goto, run, andunix-system commands,
and frame-to-frame navigation. When thecheckworld com-
mand is executed, the message line clears. (This side effect may
confuse users, especially when they are not aware that a
SIGALRM has occurred. A warning in your user documents may
be warranted.)

choices Thechoices command evaluates thermenu andchoicemsg
descriptors (if defined) in the set of field descriptors defining the
current field. If neither is defined, a message informs the user that
no choices are available.

cleanup Thecleanup command evaluates thelifetime descriptor of
all open frames and closes those for whichlifetime evaluates
to shortterm or longterm .

close [frameID . . .] Theclose command evaluates thelifetime , done , and
close descriptors of all frames named in theframeID argument
list and closes them. Frames named as arguments whenfmli is
invoked, and those frames in which thelifetime descriptor
evaluates toimmortal (which means they close only when the
user exits from the FMLI application) will remain open.

The close command has essentially the same functionality as

Character User Interface Programming

2-30

thecancel command, and is a useful alternative when thecan-
cel command has been disabled in the commands file. (Recall
that disabling a command in the commands file makes it unavail-
able to developers as well as to users.)

The argumentframeID must be an integer identifying the frame,
or the path name of the frame to close. IfframeID is a pathname, it
can be relative or full, but it must match the path name used when
the frame was opened. IfframeID is not given,close removes
the current frame.

cmd-menu Thecmd-menu command opens theCommand Menu frame,
displaying it in the center of the work area.

done Thedone command evaluates thedone descriptor (if it has been
defined) in a frame. In menu, text and form frames,done is a
descriptor of type command. If thedone descriptor is not defined,
it defaults to theclose command.

exit Theexit command evaluates theclose descriptor for all open
frames, and terminates the FMLI session.

frm-mgmt [cmd [frameID]]
The frm-mgmt command allows you to move, reshape, or list
currently open frames. It takes a maximum of two arguments,
wherecmd can be one of the sub-commandslist , move, or
reshape , andframeID is an integer or a path name identifying
the frame (menu or text frames only) to act on ifcmd is move or
reshape . If frameID is a path name, it can be relative or full, but
it must match the path name used when the frame was opened. If
frameID is not given, a menu is displayed in the work area, from
which a user can selectlist , move, or reshape . If the argu-
ment list is supplied, a frame will display a list of currently
open frames. Selecting a frame from this list causes navigation to
that frame. The argumentlist does not accept aframeID option.

The argumentmove allows a frame to be moved to a different
location in the work area. The argumentreshape will not work
on a form frame, but menu frames or text frames can be reshaped
and/or moved to a different location in the work area. If the
frameID argument is not supplied to the sub-commandsmove and
reshape , the operation occurs for the current frame whenfrm-
mgmt is used on a descriptor line, or for the most recently current
frame when a user selectsfrm-mgmt from theCommand
Menu or command line. IfframeID is supplied, the operation
occurs for the open frame with thatframeID.

goto [frameID] The goto command makes another frame current.frameID is the
number of a frame or the path name of the frame definition file.
The path name can be relative or full, but it must match the path
name used to open the frame. Users should only be told about the
frame number argument.

Thegoto command is run when the command line is current and

The Form and Menu Language

2-31

an integer is entered. For example,CTRL-j 2 equates togoto
2.

help The help command evaluates thehelp descriptor if one has
been defined for the current frame. If one hasn't been defined the
indicator flashes.

mark Themark command marks or unmarks the current item in menus
for which themultiselect descriptor evaluates to TRUE.

nextpage Thenextpage command pages forward one page in the current
frame, if that frame understands paging, and if the user is not on
the last page of the frame. If the user is on the last page of the
frame the terminal bell sounds. In forms, a page comprises all
fields defined to be on a given page of the form (via thepage
descriptor). In menus and text frames, a page is a frame full of
information.

next-frm The next-frm command makes the next frame the current
frame. FMLI keeps a list of each frame that has been the current
frame: thenext frame in the list is the last frame opened from the
current frame. Since the next frame is always relative to the cur-
rent frame the order of the list does not always follow frame ID
order.

nop The nop command does nothing. Because descriptors of type
command must eventually evaluate to an FMLI command,nop is
useful in those cases where you want to specify a backquoted
expression to evaluate, but you do not want to execute an FMLI
command. The terminal will beep when a descriptor of type com-
mand does not evaluate to an FMLI command. Includingnop in
the descriptor definition will prevent the terminal from beeping,
while invoking no other operation.

open [type] filename [arg . . .]
Theopen command opens a frame. The argumenttype can be one
of the file type castsMENU, FORM, orTEXT, and indicates the type
of frame to be opened. The argumentfilename is the path name of
the frame definition file to be opened. The argumentarg is a
parameter that will be passed to the frame. In the following exam-
ple

OPEN FORM $MYFRAMES/myform ARG1 ARG2

open opens a frame definition file$MYFRAMES/myform, iden-
tified as a form frame definition file by the file type castFORM,
and passes the parametersARG1 andARG2 to it. An example of
passing parameters can be found in “Creating a Dynamic Menu”
on page 3-23.

prev-frm Theprev-frm command makes the previous frame the current
frame. FMLI keeps a list of each frame that has been the current
frame: theprevious frame in the list is the frame from which the
current frame was opened. Since the previous frame is always rel-

Character User Interface Programming

2-32

ative to the current frame the order of the list does not always fol-
low frame ID order.

prevpage Theprevpage command pages backward one page in the cur-
rent frame, if that frame understands paging, and if the user is not
in the first page of the frame. In forms, a page comprises all fields
defined to be on a given page of the form (via thepage descrip-
tor). In menus and text frames, a page is a screen full of informa-
tion. If the user is in the first page of the frame the terminal bell
sounds.

refresh The refresh command redraws the terminal screen. For exam-
ple, refresh can be used if a broadcast message from the oper-
ating system corrupts the FMLI screen.

release The release command displays on the message line the release
number of the version of FMLI you are currently running. The
release command is meant to be used from the command line.
Partial matching cannot be used withrelease (the command
name must be typed in full).

reset Thereset command causes thevalue descriptor of the current
field to be re-evaluated, restoring the default value of the field if
the current value is different. The descriptor is re-evaluated even if
it has been modified byconst .

textframe [options] The textframe command opens a simple text frame. It is a
short-cut to using a full text frame definition file and can be coded
in menu, form, and text frame definition files. The options corre-
spond to the most commonly used text frame descriptors. The
argumenttext is the text to be displayed in the text frame and may
contain embedded newlines and tabs (including the\n and \t
notations). See “The textframe Command” on page 3-56 for
details on the options.

togslk The togslk command causes FMLI to display the set of SLKs
that is not currently being displayed. It is a toggle between the two
sets.

unix-system Theunix-system command brings up the UNIX system shell
in full screen mode.

update [frameID [mkcurr]]
Theupdate command forces a frame definition file to be reread
regardless of the absence or value of thereread descriptor. If
there are differences between what is read and what is on the
screen, the frame will be redrawn.update will not reread the
menu, form , or title descriptors. It takes two optional argu-
ments, whereframeID is an integer or a path name identifying the
frame to update. IfframeID is a path name, it can be relative or
full, but it must match the path name used when the frame was
opened. The argumentmkcurr determines if the frame will be
made current once the update is done. The argumentmkcurr must
be a Boolean value; if it is not given, it defaults to FALSE. If no
arguments are given,update updates the current frame.

The Form and Menu Language

2-33

After update is executed in a menu frame, the cursor is positioned on
the first menu item. In a form frame, the cursor is positioned on the first
field of the first page of the form. In a text frame, the cursor is positioned
on the first line of text.

User Access to FMLI Commands 2

Users can execute some FMLI commands by selecting them from theCommand Menu.

In addition, all FMLI commands can be executed from the command line. (Users can
access the command line in an FMLI application by pressingCTRL-j or CTRL-f c.)
FMLI commands that appear in theCommand Menu or that are assigned to screen-
labeled function keys should be explained in your user documentation. However, you
should not document commands you do not want your users to use.

See Chapter 4 for information about how you can add commands to and disable com-
mands in theCommand Menu and how you can redefine the action assigned to a
screen-labeled function key.

NOTE

When you disable an FMLI command in the commands file, the
command becomes unavailable not only to users, but to develop-
ers. That is, you cannot use that command in frame definition files
or application level files. In particular, do not disable theexit
command.

Table 2-15. Default Assignments of FMLI Commands
to the Command Menu

Command Menu

cancel next-frm

cleanup prev-frm

exit refresh

frm-mgmt unix-system

goto update

help

Character User Interface Programming

2-34

Some FMLI commands also map, directly or indirectly, to default screen-labeled function
keys.

* Function keyF2 is assigned themark command only in multi-select menus.
In single-select menusF2 has no default assigned.

** Function keysF8 andF16 will default tochg-keys only if any of keysF9
throughF15 are defined by the developer.

Built-in Utilities 2

Built-in utilities provide often-needed programming functionality. By building them into
FMLI they are more efficient to use than similar utilities provided in the UNIX system
(that is, there is no need to fork a process to run them). FMLI recognizes built-in utilities
in stand-alone backquoted expressions, and in backquoted expressions on descriptor lines.

FMLI built-in utilities return a Boolean value. It is FALSE if either the stringfalse or a
non-zero integer is returned, TRUE if 0 or any other string is returned. However, Boolean
argumentsto a utility follow standard format.

Overview of the Built-in Utilities 2

Below is a brief summary of the FMLI built-in utilities. There are manual pages in section
1F for each.

Figure 2-1. Default Assignments of FMLI Commands to Function Keys

Function
Key

Menu
Frame

Form
Frame

Text
Frame

Choices
Menu

Command
Menu

F1 help help help help

F2 mark* choices prevpage

F3 enter save nextpage enter

F4 prev-frm prev-frm prev-frm

F5 next-frm next-frm next-frm

F6 cancel cancel cancel cancel cancel

F7 cmd-menu cmd-menu cmd-menu

F8 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

F16 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

The Form and Menu Language

2-35

echo Theecho utility outputs its operands.

fmlcut The fmlcut utility is used to cut out selected fields of each line
of a file. It has essentially the same functionality as the UNIX util-
ity cut . It has been included as an FMLI built-in utility for per-
formance reasons.

fmlgrep The fmlgrep utility is used to search for a certain pattern in a
file. It has essentially the same functionality as the UNIX utility
grep . It has been included as an FMLI built-in utility for perfor-
mance reasons.

fmlexpr The fmlexpr utility evaluates its arguments as an expression,
thus providing arithmetic and logical operations on integers, logi-
cal operations on strings, and some pattern matching facilities. It
evaluates a single expression and writes the result to standard out-
put. It has essentially the same functionality as the UNIX utility
expr . It has been included as an FMLI built-in utility for perfor-
mance reasons.

fmlmax The fmlmax utility is used to either determine the position of the
field in a form or to determine the longest out of a number of
strings. It is useful for the redesign of forms layout when the
autolayout descriptor has been set to TRUE.

getitems The getitems utility takes as its only argument a delimiter
string. It returns a list of the currently selected items, separated by
the delimiter supplied.

getfrm Thegetfrm utility returns the current frame number. It takes no
arguments.

indicator The indicator utility allows you to control theWorking indi-
cator and bell, and allows you to define your own indicators on the
banner line.

message Themessage utility outputs its operands to the FMLI message
line. The-t option outputs atransient message (lasts until
another key is pressed), the-f option outputs aframe permanent
message (lasts as long as the frame is current), and the-p option
outputs apermanent message (lasts until another message is dis-
played, and reappears after that message clears). The terminal bell
can also be made to sound.

pathconv Thepathconv utility converts an alias to a full path name. It can
also produce a shortened version of a path name suitable for use as
a frame title.

readfile , longline
The readfile utility reads the file passed as its argument and
writes it to standard output. If the system's locale is other thanC,
readfile tries to read<dirname>/$LANG/ <file> if the
$LANG subdirectory exists or<dirname>/<file> otherwise. After
a call toreadfile , a call tolongline will return the length
(including carriage return) of the longest line in the previously

Character User Interface Programming

2-36

read file. Thelongline utility can also take a file name argu-
ment, in which case it will return the length of the longest line in
that file.

regex The regex utility performs regular expression matching on its
string input (utilizingregex . The regex utility is useful to
dynamically generate the contents of a frame (see examples in
Chapter 3). It can be used to approximate many of the capabilities
of cut(1), paste(1), andgrep(1), and some of the
capabilities ofsed(1).

reinit The reinit utility takes as an argument the name of an initial-
ization file. It is used to make global changes to the FMLI session
while staying in the current application.

run The run utility is used to invoke an executable in full-screen
mode.

set, unset These utilities set and unset variables either in the FMLI process,
the UNIX system environment, or in files.

setcolor Thesetcolor utility allows you to redefine an existing color, or
define new colors if your terminal allows more than the eight col-
ors already defined in FMLI.

shell Theshell utility is used to run a command using the UNIX sys-
tem shell. Although it is not often needed in an FMLI application,
it is useful when an application has an executable with the same
name as an FMLI built-in or to run a UNIX system shell built-in.

test The test utility checks to see if a condition is true.test is use-
ful in conditional statements. It has essentially the same format as
test in the UNIX system shell.

Five other built-ins allow a frame or several frames (that is, form frames, menu frames, or
text frames) to communicate to an external process through a pipe. The Form and Menu
Language Interpreter will send strings to the external process and interpret the process's
output accordingly. This capability is referred to asco-processing, and the built-in co-pro-
cessing utilities are as follows:

cocreate Thecocreate utility initializes communication to an indepen-
dent co-process using named pipes.

cosend Thecosend utility sends strings from FMLI to the co-process.
The -n option performs ano wait condition that sends text, but
doesn't block for a response.

cocheck Thecocheck utility checks the incoming pipe for information. It
returns TRUE or FALSE.

coreceive Thecoreceive utility performs a “no wait” read on the pipe. It
takes a process ID as an argument.

codestroy Thecodestroy utility terminates the communication.

The Form and Menu Language

2-37

For more information about how these co-processing utilities are used, see the
coproc(1F) manual page.

Conditional Statements 2

The Form and Menu Language provides a conditional statement for use within backquoted
expressions that has the following syntax:

if list then list [elif list then list] . . . [else list] fi

wherelist is an optional newline, followed by a sequence of one or more FMLI statements,
each of which must end with a semicolon.

Like conditional statements in the UNIX system shell language, thelist following if is
executed, and if the last command in the list has a zero exit status, then thelist that follows
then is executed. However, if thelist following if has a non-zero exit status, thelist fol-
lowing else will be executed. Multiple tests can be executed by using theelif clause.
Conditional statements may be nested.

Output of a statement executed within an FMLI conditional construct can be redirected to
a file specified after the statement.

The exit status of the conditional statement is the exit status of the last command executed
in any then clause orelse clause. If no such command was executed, the conditional
statement returns a zero exit status.

NOTE

The FMLI conditional statement differs from the UNIX shell lan-
guage conditional statement in some respects.

The UNIX shell language allows either a newline, a semicolon, or
both, to end a statement, whereas FMLI only allows a semicolon.

Output of statements executed within an FMLI conditional con-
struct cannot be piped to a statement following thefi of the con-
struct. Similarly, output redirection to a file specified after thefi
of the construct does not work.

An FMLI conditional statement cannot occur following the&& or
|| operators in a given backquoted expression.

(See “Built-in Utilities” on page 2-34 and the manual pages in section 1F for information
on test andfmlexpr .)

Character User Interface Programming

2-38

Conditional statements are useful when only one of several actions is appropriate, based
on user input. For example, assume that you have defined a form in which a user must
enter either1 or 2 in the first field to display one of two appropriate text frames. A condi-
tional statement can be used to display an appropriate error message via the use of the
descriptorinvalidmsg , when the user enters an invalid response:

invalidmsg=`if [$F1 -gt 2];
 then
 echo “APPLID:nnn: Selection code has to be less than 3”;
 else
 echo “APPLID:nnn: Selection code has to be more than 0”;
 fi`

where$F1 (an FMLI built-in variable) evaluates to the current value of the first field,
APPLID is the name of your application, andnnn is the message sequence number.

Another conditional statement can be used to open the text frame requested by the user.
The descriptordone in the same form definition file would be defined as follows:

done=`if [$F1 = 1];
then echo “open text dir.explain”;
else echo “open text file.explain”;

 fi`

Signal Handling 2

The following signals are caught by FMLI:

Those signals marked by an asterisk (*) are caught only if the application that invokes
FMLI has not caused them to be ignored. If an FMLI application is terminated by a signal,
the terminalstty(1) settings will be reset and the message “prognameterminated
by signal: description” will be printed, whereprogname is the basename of the exe-
cutable invoked to run the application anddescription is the string provided bypsig-
nal(3C). Not all of the signals listed above cause an application to terminate. These
normally won't—SIGALRM, SIGINT, SIGTSTP, SIGTTIN, SIGTTOU,
SIGUSR1, andSIGUSR2—although they can indirectly cause an FMLI application to
terminate. For example,SIGUSR2, which is generated by thevsig command, could

SIGABRT * SIGIOT * SIGTSTP

SIGALRM SIGINT * SIGTTIN

SIGBUS SIGPIPE * SIGTTOU

SIGEMT SIGQUIT * SIGUSR1

SIGFPE SIGSEGV SIGUSR2

SIGHUP * SIGSYS SIGXCPU

SIGILL SIGTERM * SIGXFSZ

The Form and Menu Language

2-39

cause the application to execute theexit command. See theintro(2) manual page for
a complete discussion of signals.

Interrupt Signal Handling 2

Prior to Release 4.0 of FMLI, the only way an executable invoked from within an FMLI
application could be interrupted was if it was invoked as an argument to the built-in utility
run (except when the-s option is specified).

In FMLI Release 4.0 or later, executables initiated in a backquoted expression that is the
value of either theaction or done descriptors—wherever they occur in your applica-
tion—can also be designated as interruptible through the use of theinterrupt descrip-
tor. No other descriptors of type command (help , rmenu , andoninterrupt) are
affected by theinterrupt descriptor.

The Boolean descriptorinterrupt defines whether or not an executable can be inter-
rupted by the user. It always defaults to FALSE. A companion tointerrupt , the com-
mand descriptoroninterrupt , defines what will be done when the interrupt signal
(SIGINT) is received. It always defaults to`message Operation inter-
rupted!`nop. The value ofoninterrupt can be any action normally permitted for a
command descriptor (both backquoted expressions and FMLI commands). Theonin-
terrupt descriptor is ignored ifinterrupt has not been defined anywhere in your
application or ifinterrupt evaluates to FALSE.

Depending on the kind of frame definition file or application level file they are used in,
these two descriptors are independently subject to one of several inheritance hierarchies
(see Figure 2-16, a table of inheritance hierarchies forinterrupt andoninterrupt).

NOTE

The status of theinterrupt descriptor only affects executables
in backquoted expressions. Its status does not affect FMLI com-
mands (such ascancel), built-in utilities other thanrun (such
asshell), or any of their child processes. Nor does it affect pro-
cesses run from FMLI that “take over the screen,” such as the shell
obtained by using theunix-system command from the com-
mand menu. (In these cases, interrupt handling is done by the full-
screen application.)

The interrupt status in effect for anaction or done descriptor applies to all executables
in the descriptor. However, if the executable that is being executed when the interrupt sig-
nal is received has itself been coded to ignore interrupts, it will complete its normal execu-
tion, but remaining commands in the descriptor will not be executed. (FMLI built-in utili-
ties behave the same as executable utilities that have been coded to ignore interrupts.)
When an executable is interrupted, any commands (built-in utilities and FMLI commands,
as well as other executables) remaining in the descriptor are ignored by the interpreter.
Instead, whatever you have defined to be the value of theoninterrupt descriptor will
be executed.

Character User Interface Programming

2-40

The scope ofinterrupt is independent from the scope ofoninterrupt , and each
depends on where it is coded. The highest level in the inheritance hierarchy is the one in
effect for the currentaction or done descriptor. For example, codinginter-
rupt=true once, in the general descriptors section of an initialization file, means that all
executables in anyaction or done descriptor anywhere in your application (including
any in the commands file or defined for SLKs) can be interrupted by the user.

Continuing this example, ifinterrupt=false is then coded with the frame descriptors
in a menu definition file, then the status of FALSE is inherited by all items defined for that
menu, while all executables in all other frames remain interruptible. Going one step fur-
ther, if interrupt=true is coded with the item descriptors for one item in that menu,
then executables coded in that item'saction descriptor will be interruptible by users, and
all other items will remain uninterruptible. Inheritance of the value of theoninterrupt
descriptor is handled the same way, but is completely distinct from theinterrupt
descriptor.

These descriptors can also be defined in the commands file (see Chapter 4 for a discussion
of the commands file). Ifinterrupt or oninterrupt are not defined for a command
in the commands file, that command will inherit the value ofinterrupt and/oronin-
terrupt defined with the general descriptors in the initialization file. If not defined
there, the FMLI default value is inherited.

Inheritance of these two descriptors is handled slightly differently for screen-labeled func-
tion keys. Redefining a SLK in a frame definition file completely overrides a definition of
it you may have coded in the initialization file. For example, if you defineinterrupt for
a particular SLK in the initialization file, but do not includeinterrupt in a redefinition
of that SLK in a frame definition file, the SLK will inherit the value of theinterrupt
descriptor defined at the next lower inheritance level (from the frame descriptors if defined
there, then from the general descriptors in the initialization file if defined there, then from
the FMLI defaults).

The Form and Menu Language

2-41

The table in Table 2-16 summarizes the inheritance hierarchies for both descriptors wher-
ever they can be used:

* SLK-specific descriptors in a frame definition file completely override SLK
descriptors defined in the initialization file. If either theinterrupt or
oninterrupt descriptor, or any other SLK-specific descriptor, is coded at
level 5 (highest inheritance level), then all SLK-specific descriptors coded at
level 4 are ignored.

Terminal Display Attributes 2

The terminal display at tr ibutes and the al ternate character set defined in
curses(3curses) are supported in FMLI. If the terminal your application is being
run on does not have these capabilities then they are approximated as best as possible by
curses . If the terminal is capable of outputting graphic characters, inverse video, bold/
dim, and so on, then these attributes will be available in FMLI, in the following places:

• in text frame definition files, in text defined in thetext andheader
descriptors

Table 2-16. Inheritance Hierarchies Used to Determine the Values of interrupt and oninterrupt
When Interrupt Key Is Pressed

Inheritance
Level

Executable Code

action Descriptor in: done Descriptor in:

menu items SLK definitions
Command
definitions

any frame

1
(lowest)

FMLI defaults FMLI defaults FMLI defaults FMLI defaults

2 values coded with the
general descriptors in
an initialization file

values coded with the
general descriptors in
an initialization file

values coded with the
general descriptors in
an initialization file

values coded with the
general descriptors in
an initialization file

3 values coded with the
frame descriptors in a
menu definition file

values coded with the
frame descriptors in a
frame definition file

values coded in the
commands file

values coded with the
frame descriptors in a
frame definition file

4 values coded with the
item descriptors in a
menu definition file

values coded with the
SLK descriptors in an
initialization file*

n/a n/a

5
(highest)

n/a values coded with the
SLK descriptors in a
frame definition file*

n/a n/a

Character User Interface Programming

2-42

• in form definition files, in the value assigned to the field-level descriptor
name

• in the initialization file, in the value assigned to thebanner descriptor

• in arguments to themessage built-in utility

• in the argument to theindicator built-in utility

The character sequence to turn a terminal attribute on in FMLI applications is of the form
\+ xx. To turn the attribute off, the form\- xx is used. Ifxx is not a valid FMLI character
sequence for a terminal attribute, the entire character sequence, as coded, is output.

Table 2-17 lists the FMLI character sequence names and maps them to the applicable
curses defined constant.

Using the Alternate Character Set 2

If the alternate character set attribute has been turned on in the text to be displayed (using
\+ac), the alternate character set for line drawing (glyphs) will be displayed. This char-
acter set is shown in Table 2-18.

Table 2-17. Table of FMLI Character Sequences for Display Attributes

FMLI
Character
Sequence

curses
defined-constant

Description

so A_STANDOUT terminal's best highlighting mode

ul A_UNDERLINE underlining

rv A_REVERSE reverse video

bk A_BLINK blinking

dm A_DIM half-bright

bd A_BOLD extra bright or bold

ac A_ALTCHARSET alternate character set

nm A_NORMAL reset all attributes to off

Table 2-18. Alternate Character Set

Character Default* Glyph Description

a + upper right corner**

b + lower right corner**

c + lower left corner**

d + upper left corner**

The Form and Menu Language

2-43

* The defaults listed in this column are the ASCII characters that will be dis-
played if the terminal does not support an alternate character set, or if that par-
ticular character is not implemented in that set.

** The character used to obtain this glyph is different in FMLI from the default
character used interminfo(4) because we feel these are easier to remem-
ber. The following diagram illustrates the first eight glyphs:

1 + top tee**

2 + right tee**

3 + bottom tee**

4 + left tee**

- - horizontal line**

| | vertical line**

+ + plus**

< < arrow pointing left**

> > arrow pointing right**

v v arrow pointing down**

^ ^ arrow pointing up**

: checkerboard (stipple)**

O # solid square block†

I # lantern symbol†

' + diamond†

f ' degree symbol†

g # plus/minus†

h # board of squares†

o - scan line 1†

s _ scan line 9†

~ o bullet†

Table 2-18. Alternate Character Set (Cont.)

Character Default* Glyph Description

Character User Interface Programming

2-44

† This glyph is not supported by all terminals.

An example of the use of terminal display attributes is given in “Example Text Frame Def-
inition Files” on page 3-57.

d

4

c

a1

2

b3

3
Frame Definition Files

Introduction . 3-1
Menu Frame Descriptors . 3-1

Frame Descriptors for Menus. 3-3
Item Descriptors for Menus . 3-6

Examples of Menu Definition Files. 3-8
Defining a Simple Menu. 3-9
Creating Multi-column and Scrollable Menus . 3-12
Using the reread Descriptor . 3-14
Using the interrupt and oninterrupt Descriptors. 3-16
Providing Supplementary Information for Menu Items 3-18
Displaying an Item Message . 3-20
Using the show Descriptor . 3-21
Creating a Dynamic Menu . 3-23

Form Frame Descriptors . 3-26
Frame Descriptors for Forms . 3-27
Field Descriptors . 3-31

Automatic Layout of Form Fields . 3-40
Example Form Definition Files . 3-42

Saving User Input to a Form. 3-42
Validating a Form Field . 3-47
Example of Validating a Field Value with the valid Descriptor 3-50

Text Frames . 3-51
Text Frame Descriptors . 3-52
The textframe Command . 3-56

Options for the textframe Command. 3-56
Example Text Frame Definition Files . 3-57

Defining Attributes of Text Frames . 3-58
Defining a Text Frame with readfile and longline . 3-59
Using Text Frame Headers and Terminal Attributes . 3-59

Other Useful Examples . 3-61
Defining a Help Frame for Menu Items or Form Fields. 3-61

Using the textframe Command as an Alternative . 3-64
Using Co-processing Utilities. 3-65

Character User Interface Programming

3-1

3
Chapter 3Frame Definition Files

3
3
3

Introduction 3

This chapter explains each of the descriptors that you can define for menu frames, form
frames, and text frames.

• “Menu Frame Descriptors” on page 3-1 describes the functionality of the
frame and item descriptors for menus.

• “Examples of Menu Definition Files” on page 3-8 presents some of the dif-
ferent ways you can create menu contents, and customize their appearance.

• “Form Frame Descriptors” on page 3-26 covers the frame and field descrip-
tors for forms.

• “Example Form Definition Files” on page 3-42 gives examples of their use.

• “Text Frames” on page 3-51 describes the frame descriptors for text frames
(text frames have only frame descriptors and SLK descriptors).

• “Example Text Frame Definition Files” on page 3-57 gives examples of
their use.

• “Other Useful Examples” on page 3-61 covers some aspects of frame defi-
nition files that can be equally useful in all three types of frame definition
files.

NOTE

Although SLK descriptors can be used in menu, form, and text
frame definition files, they are discussed in Chapter 4. Their use as
described there applies to frame definition files as well.

Menu Frame Descriptors 3

A menu frame definition file can begin with an optional set of frame descriptors (one set
per menu), followed by at least one set of item descriptors (one set per item in the menu),
and it can end with one or more optional sets of SLK descriptors defining SLKs to be dis-
played when the menu is current (one set per screen-labeled function key).

Some of the attributes of a menu that you can define are the following:

Character User Interface Programming

3-2

• the action to take when the menu is opened

• whether the user may select more than one item (multi-select)

• whether to open a multi-select menu with specific items already selected
(marked)

• where to place the menu on the screen

• the longevity of the menu

• whether or not to show a specific item

• the action to take for each item

• the action to take when the menu is closed

The descriptors in a menu definition file must follow this order:

[frame_descriptor_1
.
.
.
frame_descriptor_n]

item-one_descriptor_1
.
.
.
item-one_descriptor_n

[item-n_descriptor_1
.
.
.
item-n_descriptor_n]

. . .

[SLK-n_descriptor_1
.
.
.
SLK-n_descriptor_n

. . .]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
items, then SLKs—is not followed.

Frame Definition Files

3-3

Frame Descriptors for Menus 3

The optional set of frame descriptors can include any valid frame descriptor, in any order.
Each of these descriptors should be used only once in a menu definition file. If defined
more than once in the set, the last one is used. In the following explanations, FALSE is
defined as the word “false,” irrespective of case, or a non-zero return code. The notation
TRUE is defined as all values other than FALSE as defined above (for example,true ,
TRUE, yes , 0).

altslks Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially opened. Ifaltslks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed. The default,
if this descriptor is not defined, is FALSE, which causes SLKs 1
through 8 to be displayed.

autosort The boolean descriptorautosort defines whether the items in a
menu should be sorted. This might be sensible in international
applications when menu items should appear in alphabetical order
irrespective of the current locale.

begrow , begcol Thebegrow andbegcol descriptors define the original position
of the top left corner of the menu frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) These descriptors accept values of type position:

center the menu frame will be centered in the work
area

current the menu frame overlaps the current frame's
position (valid forbegrow only)

distinct the menu frame will not overlap the current
frame if possible (valid forbegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the menu frame will be positioned in an abso-
lute position, defined byinteger. Defining
begrow andbegcol to be integer values
causes the frame to appear in the given position.

If eitherbegrow or begcol evaluates tocenter , then the other
can only be an integer value orcenter . Any other value is
ignored and the descriptor defaults tocenter .

If neither iscenter , then the value ofbegrow determines the
value ofbegcol ; if begrow is current , distinct , any , or
an invalid value, thenbegcol defaults toany . If begrow is a
valid integer,begcol can be a valid integer; ifbegcol is an
invalid integer in this case, it defaults toany. If integer values are
supplied and eitherbegrow or begcol are outside the screen
boundary, a default value ofany will be used.

Character User Interface Programming

3-4

close Theclose descriptor is evaluated when the menu is closed and/
or when the user exits from the FMLI application. Theclose
descriptor is of type null, which means its only purpose is to
obtain the side effects of backquoted expressions coded in its defi-
nition.

columns Thecolumns descriptor defines the number of items displayed in
a row of a menu frame. It must evaluate to a positive integer; if it
doesn't,columns will be ignored. It will also be ignored if
description is defined for any menu item. If neithercol-
umns nor rows is defined, menu dimensions will be determined
by the interpreter. Givencolumns , the number of rows needed to
display the items in the menu is calculated. If there is a conflict
between the value provided by therows descriptor and the calcu-
lated value, the calculated value takes precedence. Menu item
names will be truncated, if required, to fit in the specifiedcol-
umns. (See Appendix A for a complete discussion of the method
used by FMLI to calculate rows and columns.)

NOTE

This descriptor should not be specified for dynamically generated
menus if there is no way to guarantee that menu items will not be
truncated.

done Thedone descriptor defines the action to be executed when the
user pressesENTER in a multi-select menu. This descriptor is
ignored in a single-select menu.

framemsg The framemsg descriptor displays its value on the message line
as long as the menu is current. It can be temporarily replaced by

• a message displayed when theitemmsg descrip-
tor is defined for a specific item in the menu frame

• a message generated by themessage built-in util-
ity with the-t (default) option

• an FMLI error message

It can be replaced for as long as the frame is current by a message
generated by themessage built-in utility with the -f option.
(See the message(1F) manual page.)

help Thehelp descriptor specifies what will happen when a user asks
for help while in the menu. Since this descriptor is evaluated when
the user requests help, the specification of what help is displayed
can be determined through parameters that are set interactively.

init The init descriptor defines whether the menu frame will be
opened. If this descriptor is not defined, it defaults to TRUE,
which means the menu frame will be opened. Ifinit evaluates to
FALSE, the menu frame will not be opened, but theclose

Frame Definition Files

3-5

descriptor will be evaluated. Ifinit evaluates to FALSE on an
update, the frame is closed, unless it is an initial frame.

interrupt The Boolean descriptorinterrupt defines whether an execut-
able that is coded inaction or done descriptors can be inter-
rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables inaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

If defined among the frame descriptors in a menu definition file,
that value ofinterrupt is inherited by all sets of item descrip-
tors and all sets of SLK descriptors in the menu, unless it is rede-
fined for a specific item or SLK.

lifetime The lifetime descriptor defines when the menu frame will be
closed (that is, removed from the work area). It is evaluated when-
ever the menu is opened, closed, made current, or made non-cur-
rent. The acceptable values are:

shortterm the menu closes whenever the user navigates to
another frame or when the command line is
accessed (the user pressesCTRL-j or CTRL-f
c)

longterm the menu closes when the user issues a
cleanup or close command

permanent the menu closes whenever the user issues a
close command

immortal the menu closes only when the user exits from
the application

The lifetime descriptor is ignored in menu definition files
given as arguments whenfmli is invoked. Such menus have a
lifetime of immortal . See “Other Useful Examples” on page
3-61 for an example of how this descriptor may be used to close a
frame when another is updated.

menu Themenu descriptor defines the title of the menu that appears in
the frame's title bar. If not defined in the frame definition file, it
defaults toMenu. It will be truncated if it is longer thanDIS-
PLAYW-6.

multiselect The multiselect descriptor defines whether the menu is a
multi-select menu. A multi-select menu allows the user to select
more than one menu item. When this descriptor evaluates to
TRUE, the SLKF2 will map to themark command, and the
nature of theaction descriptor changes for all items (see the
description ofaction in “Item Descriptors for Menus” on page
3-6).

Character User Interface Programming

3-6

oninterrupt The command descriptoroninterrupt defines what will hap-
pen when an interrupt signal is received. Ifinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value`mes-
sage Operation interrupted!` nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

For example, if defined among the frame descriptors in a menu
definition file, the value ofoninterrupt is inherited by all sets
of item descriptors and all sets of SLK descriptors in the menu,
unless it is redefined for a specific item or SLK.

reread If reread is not defined, it defaults to FALSE. Ifreread evalu-
ates to TRUE, the menu will be periodically updated by rereading
its description file when thecheckworld command is executed.
checkworld is executed when aSIGALRM alarm occurs (every
$MAILCHECK seconds). Other timescheckworld is executed
include when a frame is opened, closed, or navigated to. (See
checkworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whosereread descriptor eval-
uates to TRUE will be updated. (However, themenu descriptor is
not reread.) Execution ofcheckworld may cause the message
line to clear.

rows The rows descriptor defines the desired number of rows long a
menu frame will be. It must evaluate to an integer value greater
than 0 and less thanDISPLAYH-2 ; if it doesn't,rows will be
ignored. If neither this descriptor norcolumns is defined, menu
dimensions will be determined by FMLI. Givencolumns , the
number of rows needed to display the items in the menu is calcu-
lated. If there is a conflict between the value provided by the
rows descriptor and the calculated value, the calculated value
takes precedence. (A table summarizing these calculations can be
found in Appendix A.)

Item Descriptors for Menus 3

In each set of item descriptors, thename descriptor must be first; but others may be in any
order. If a descriptor appears more than once in a set, the last one is used.

action Theaction descriptor defines an action to be executed when the
user selects this item in a single-select menu. Multiple backquoted
expressions are allowed, as they are with any descriptor, but the
final value of this descriptor must be a single FMLI command.

Frame Definition Files

3-7

If the menu is multi-select (multiselect=true), the nature of
this descriptor changes: FMLI commands are ignored if defined in
this descriptor; however, backquoted expressions are executed
when the item is marked.

description Thedescription descriptor defines a string which is displayed
to the right of the item name but which is not highlighted when
the cursor is on the item. When this descriptor is defined for any
item in a menu, that menu will automatically display a single col-
umn of items, even ifcolumns is defined.

inactive The inactive descriptor defines an item as inactive when the
menu is displayed. An item that is inactive cannot be navigated to,
and consequently cannot be selected or un-selected. If not defined,
inactive defaults to FALSE. If this descriptor evaluates to
TRUE, the item is displayed with half-bright attribute (on most
terminals). In multi-select menus, an inactive item can be selected
only if the selected descriptor evaluates to TRUE for the item.

interrupt The Boolean descriptorinterrupt defines whether an execut-
able that is coded inaction or done descriptors can be inter-
rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables inaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

If defined in a set of item descriptors in a menu definition file, that
value ofinterrupt is inherited only by that menu item.

itemmsg The itemmsg descriptor defines information that will be dis-
played on the message line when the item is navigated to. The
itemmsg descriptor displays a message with transient duration.
That is, it remains on the message line only until the user presses
another key or acheckworld occurs. Transient messages take
precedence over frame duration messages and permanent duration
messages (see themessage(1F) manual page for more infor-
mation).

lininfo The lininfo descriptor defines a string that will be assigned to
the local environment variableLININFO when the user selects
this menu item. Iflininfo is not defined,LININFO evaluates to
null. In multi-select menus, when thegetitems built-in utility is
executed, iflininfo is defined and this item is marked, its value
is output.

name Thename descriptor defines a string that will appear in the menu,
identifying the menu item. This string is highlighted when the
item is navigated to. For multi-select menus, when thegetitems
built-in utility is executed, and thelininfo descriptor has not
been defined for this marked item, the value of thename descrip-
tor is output.

Character User Interface Programming

3-8

oninterrupt The command descriptoroninterrupt defines what will hap-
pen when an interrupt signal is received. Ifinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value`mes-
sage Operation interrupted!` nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

If defined in a set of item descriptors in a menu definition file, that
value ofoninterrupt is inherited only by that menu item.

selected The selected descriptor defines whether a menu item in a
multi-select menu should default to selected (TRUE) or not
selected (FALSE) when the menu is opened. Ifselected evalu-
ates to TRUE, the item is marked with the selected icon (an aster-
isk) when the menu is opened. If this descriptor is not defined, it
defaults to FALSE. This descriptor is ignored whenmultise-
lect evaluates to FALSE (that is, in single-select menus).

show Theshow descriptor defines whether this menu item will be dis-
played. If this descriptor is not defined, it defaults to TRUE, and
the menu item will be displayed. If it evaluates to FALSE, the
menu item will not be displayed.

NOTE

Screen labels and actions for function keys can be defined in a
menu description file as well as in the initialization file. Each set
of screen-labeled function key descriptors must include thename,
button , andaction descriptors, andname must be first. If a
descriptor appears more than once in a set, the last one is used.

See Chapter 4 for a discussion of how to use the screen-labeled
function key descriptors.

Examples of Menu Definition Files 3

The following examples show you how to write menu definition files. Refer to “Writing an
Internationalized Application” on page 1-12 when writing internationalized applications.

Frame Definition Files

3-9

Defining a Simple Menu 3

A menu definition file usually starts with a set of descriptors that pertain to the entire
menu, known as frame descriptors. Frame descriptors are optional in menu definition files.
If you choose not to define any explicitly, their default values apply to the menu.

The following menu definition file has no frame descriptors, and defines four simple menu
items. (Blank lines between logical sections of frame definition files are recommended for
readability.)

name=“Run UNIX System V”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-1. Menu.items: An Example of Menu Item Descriptors

The first item definition permits the user to access a full-screen UNIX system shell. The
second item definition runsfind(1) to locate files whose contents have been modified
within the past seven days and saves the list of filen ames in a file namedmodfiles. The
third item runsfind to locate files that are executable by the owner and also saves the
output in a file namedexecfiles . The fourth menu item permits the user to exit from
the application.

Because no frame or SLK descriptors were defined, their default values apply: for exam-
ple,menu is a frame descriptor used to define a title for a menu. SinceMenu.items did
not explicitly define it, the default valueMenu is displayed in the title bar. This menu
would appear as follows:

Character User Interface Programming

3-10

Figure 3-2. Menu.items: Screen Output

The next example illustrates the use of several frame descriptors in the same menu defini-
tion file to change the appearance and add to the functionality of this menu:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Menu

> Run UNIX System V
 Find Modified Files
 Find Executable Files
 Exit My Application

Frame Definition Files

3-11

menu=“My First Menu”
begrow=center
begcol=30
framemsg=“The message from my first menu”
help=`message “A help message”`

name=“Run UNIX System V”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-3. Menu.frame: An Example of Menu Frame Descriptors

The first group of descriptors are the frame descriptors. The frame descriptormenu
defines a title for the menu,My First Menu. Thebegrow andbegcol descriptors
define the position of the top left corner of the frame in the work area. In this example, the
top left corner of the frame will be located at the vertical center of the work area, and col-
umn 30 horizontally.

The framemsg descriptor defines a string that will appear on the message line when the
frame is opened. It will remain on the message line until the frame is closed or made non-
current (although it can be temporarily replaced by other, shorter-term messages). The
help descriptor defines what will happen when a user requests help while the menu is
active. In this example, the stringA help message will be displayed on the message
line.

Figure 3-4 shows howMenu.frame will be displayed after these frame descriptors have
been defined.

Character User Interface Programming

3-12

Figure 3-4. Menu.frame: Screen Output

Creating Multi-column and Scrollable Menus 3

Thecolumns androws descriptors are used to change the display of a menu. When the
frame descriptorrows is defined in the menu definition file as follows:

menu=“My First Menu”
begrow=center
begcol=30
rows=1
framemsg=“The message from my first menu”
help=`message “A help message”`
.
.
.

Figure 3-5. Menu.rows: An Example of a Scrollable Menu

Menu.rows will create the following menu:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

> Run UNIX System V
 Find Modified Files
 Find Executable Files
 Exit My Application

The message from my first menu

Frame Definition Files

3-13

Figure 3-6. Menu.rows: Screen Output

Because therows descriptor defines this menu to have only one row, only one menu item
can be displayed at a time: as the user navigates to any of the other defined menu items,
the menu will scroll to display it.

The same menu is displayed differently when, instead of defining therows descriptor, the
columns descriptor is defined as follows:

menu=“My First Menu”
begrow=center
begcol=30
columns=2
framemsg=“The message from my first menu”
help=`message “A help message”`
.
.
.

Figure 3-7. Menu.columns: An Example of a Two-Column Menu

The display of the menu changes as follows:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

> Run UNIX System V

The message from my first menu

Character User Interface Programming

3-14

Figure 3-8. Menu.columns: Screen Output

Thecolumns descriptor takes precedence over therows descriptor if there is a conflict.
For example, defining bothrows=1 andcolumns=2 in this menu definition file results
in the same display of the menu as shown in Figure 3-8. That is, the menu items are dis-
played in two columns but not one row.

Using the reread Descriptor 3

The reread descriptor in a frame definition file is used to request that a frame be reread
when acheckworld is executed. One time thatcheckworld is executed is when a
SIGALRM signal occurs (aSIGALRM occurs everyMAILCHECK seconds). The frame is
rebuilt if this descriptor evaluates to any value other than FALSE.

This example uses the output of the UNIX systemdate(1) command in the title of the
menu and in the name of the first item. Recall that themenu descriptor is not re-evaluated
whenreread evaluates to TRUE, but thename descriptor is:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

> Run UNIX System V Find Executable Files
 Find Modified Files Exit My Application

The message from my first menu

Frame Definition Files

3-15

menu=“Menu `date`”
begrow=center
begcol=30
reread=true

name=“Run UNIX System V `date`”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-9. Menu.reread: An Example of a Dynamically Updated Menu

This menu definition file creates the following menu:

Figure 3-10. Menu.reread: Screen Output

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Menu Fri Mar 24 11:48:51 EST 1989

> Run UNIX System V Fri Mar 24 11:48:51 EST 1989
 Find Modified Files
 Find Executable Files
 Exit My Application

Character User Interface Programming

3-16

After aSIGALRM occurs (for example, ifMAILCHECK=180 and 3 minutes have elapsed),
the date in the name of the first item changes but the date in the menu's title does not
change. The menu now looks like this:

Figure 3-11. Menu.reread: Screen Output after a SIGALRM Occurs

Using the interrupt and oninterrupt Descriptors 3

To illustrate the concepts of inheritance and scope of theinterrupt andoninter-
rupt descriptors, the following menu definition files define them with frame descriptors
and item descriptors in a menu definition file:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Menu Fri Mar 24 11:48:51 EST 1989

> Run UNIX System V Fri Mar 24 12:02:15 EST 1989
 Find Modified Files
 Find Executable Files
 Exit My Application

Frame Definition Files

3-17

menu=“My First Menu”
begrow=center
begcol=30
interrupt=true

name=Run UNIX System V
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-12. Menu.interrupt: An Example of Interrupt Signal Handling

When defined among the frame descriptors, the value ofinterrupt is inherited by all
processes initiated inaction descriptors anywhere in the menu definition file, unless it is
redefined for a particular item or SLK. Thus, if the user selects either theFind Modified
Files or Find Executable Files item from this menu, the named process will run till
its normal completion. However, the user can interrupt either process becauseinter-
rupt=true is defined among the frame descriptors for this menu. (Note that output from
Find Modified Files is saved in a file namedmodfiles , and that output fromFind
Executable Files is saved in a file namedexecfiles .)

When a user presses the interrupt key, the messageOperation interrupted!
appears at the bottom of the screen and the process is terminated. This is the default
behavior when no other messages or actions have been defined via theoninterrupt
descriptor, as is the case in this menu.

You can be more specific about what processes you want users to be able to interrupt and
about what you want done when a process is interrupted. For example, you can block the
interrupt mechanism for any item on the menu by setting theinterrupt descriptor to
FALSE for the item. A process initiated from that item cannot be interrupted, even if the
frame descriptorinterrupt is set to true:

Character User Interface Programming

3-18

menu=“My First Menu”
begrow=center
begcol=30
interrupt=true

name=“Run UNIX System V”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop
interrupt=false

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop
oninterrupt=`message Partial output is in execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-13. Menu.oninterr: A Further Example of Interrupt Handling

If a user selectsFind Modified Files from this menu definition file, the process it ini-
tiates cannot be interrupted. If a user selectsFind Executable Files from this menu, it
can be interrupted, and when it is, the processing defined for this item by theoninter-
rupt descriptor will occur.

Providing Supplementary Information for Menu Items 3

The item descriptordescription defines supplementary information to be displayed
on the same line as the menu item. You might want to use it to give your users a brief
explanation of what an item does. This example shows how it is used.

Frame Definition Files

3-19

menu=“My First Menu”
begrow=center
begcol=30

name=“Run UNIX System V”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop
description=“contents changed in past 7 days”
interrupt=false

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop
oninterrupt=`message Partial output is in execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-14. Menu.descrip: An Example of the description Descriptor

This menu definition file creates the following menu:

Figure 3-15. Menu.descrip: Screen Output

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

> Run UNIX System V
 Find Modified Files - contents changed in past 7 days
 Find Executable Files -
 Exit My Application -

Character User Interface Programming

3-20

This is a single-column menu. It will be a single-column menu even if therows or col-
umns descriptors are defined in an attempt to make it multi-column, because when the
description descriptor is explicitly defined, thecolumns descriptor is ignored.

Displaying an Item Message 3

This example shows how to use theitemmsg descriptor to display a message specific to a
single menu item:

menu=“My First Menu”
begrow=center
begcol=30
interrupt=true

name=“Run UNIX System V”
action=unix-system

name=“Find Modified Files”
action=`find $HOME -mtime -7 -print > modfiles`nop
description=“contents changed in past 7 days”
itemmsg=“Once begun, this activity cannot be interrupted”
interrupt=false

name=“Find Executable Files”
action=`find $HOME -perm -100 -print > execfiles`nop
oninterrupt=`message Partial output is in execfiles`nop

name=“Exit My Application”
action=exit

Figure 3-16. Menu.itemmsg: An Example of the itemmsg Descriptor

Whenever the user navigates to the second menu item, the message defined in the
itemmsg descriptor is displayed as shown in Figure 3-17. It will temporarily replace a
frame message if one was created by theframemsg descriptor.

Frame Definition Files

3-21

Figure 3-17. Menu.itemmsg: Screen Output

Using the show Descriptor 3

When theshow descriptor is defined and evaluates to FALSE, the item in which it is
defined does not appear on the menu. Defining theshow descriptor as a variable allows
you to decide dynamically whether or not to display a menu item.

In this example, the third item will not appear on the menu created by the following menu
definition file if the login ID of the user running your application is notroot :

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

 Run UNIX System V -
> Find Modified Files - contents changed in past 7 days
 Find Executable Files -
 Exit My Application -

Once begun, this activity cannot be interrupted

Character User Interface Programming

3-22

menu=“My First Menu”
begrow=center
begcol=30

name=“Run UNIX System V”
action=unix-system

name=“Where am I?”
description=“print working directory”
action=`pwd | message`nop

name=“System Administration”
action=`run sysadm`nop
show=`if [$LOGNAME != root];

 then echo FALSE;
 else echo TRUE;

 fi`

name=“Exit My Application”
action=exit

Figure 3-18. Menu.show: An Example of the show Descriptor

This is howMenu.show is displayed for a user logged in asjoe :

Frame Definition Files

3-23

Figure 3-19. Menu.show: Screen Output

Creating a Dynamic Menu 3

Now let us take a look at some more complex menus. This example shows how to pass
parameters from one frame to another and how to create a menu dynamically. The exam-
ple application will allow users to edit menu, form, and text frame definition files stored in
the same directory. The application displays atop menu from which the user can select the
type of frame definition file to edit:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 My First Menu

 > Run UNIX System V -
 Where am I? - print working directory
 Exit My Application -

Character User Interface Programming

3-24

menu=“Edit Files”

name=“Menu Files”
action=open Menu.dynamic Menu

name=“Form Files”
action=open Menu.dynamic Form

name=“Text Files”
action=open Menu.dynamic Text

name=“Exit”
action=exit

Figure 3-20. Menu.edit: An Example of a Dynamically Created Menu

This menu definition file creates the following menu:

Figure 3-21. Menu.edit: Screen Output

From this menu a user can choose to see a menu of menu frame definition files, form defi-
nition files, or text frame definition files. The action defined for all three menu items
results in the same frame definition file being opened:Menu.dynamic. The last argu-

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Edit Files

 > Menu FIles
 Form Files
 Text Files
 Exit

Frame Definition Files

3-25

ment to theopen command is a parameter that is passed toMenu.dynamic.
Figure 3-22 shows the contents ofMenu.dynamic :

menu=“$ARG1 Files”

`ls | regex '^('$ARG1'.*)$0$' '

name=“$m0”
action=`run '$EDITOR' “$m0”`' nop`

Figure 3-22. Menu.dynamic: An Example of a Dynamically Created Menu

Menu.dynamic is a dynamically built menu that usesregex . The parameter passed to
Menu.dynamic by theopen command is used to build a unique title for the new menu.
The items on this menu are created by a stand-alone backquoted expression. Recall that
stand-alone backquoted expressions are evaluated when the frame definition file is opened,
reread, or updated. That means that whenMenu.dynamic is opened in this case, thels
command is run in the current directory, and its output is piped to the FMLI built-in utility
regex .

The regex utility is used for pattern matching. Since this singleregex pattern matches
only files that begin with$ARG1, only files in the directory that have the name defined by
the parameter, followed by a literal dot (.), then by any other characters, are included in the
list of menu items. The menu definition fileMenu.dynamic will create one of the three
menus, based on the parameter that is passed to it. The items in the menu it creates are
based on the files whose names match the pattern being searched for by theregex utility.
The menu item template defined in this menu definition file provides that thename
descriptor has the value$m0, which evaluates to the pattern enclosed in parentheses (a
file name) in theregex expression. The template provides that theaction descriptor
will invoke the defined editor on the file. All file names matched by theregex utility are
passed to this menu item template, FMLI determines the size and shape of the menu frame
based on the total number of items produced, and the menu frame is posted.

For example, whenMenu F i les is selected from the menu titledEdi t F i les ,
Menu.dynamic receives the parameterMenu, regex searches for file names begin-
ning withMenu. (“menu dot”), and displays the following second menu:

Character User Interface Programming

3-26

Figure 3-23. Menu.edit: Screen Output when Menu Files Is Selected

By selecting the appropriate item from theMenu Files menu, the user is able to edit any
of the menu, form, or text frame definition files in the directory. If one of these types of
frame definition files is not present in the directory, the corresponding menu is not cre-
ated.

Form Frame Descriptors 3

A form definition file can begin with an optional set of frame descriptors, followed by one
or more sets of field descriptors (one set per field), and it can end with one or more
optional sets of descriptors that define the screen-labeled function keys that will be dis-
played when the form is the active frame in the user's work area (one set per SLK).

Some of the attributes of a form that you can define are the following:

• the title of the form

• the screen position of the form

• a label and input area for each field

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Edit Files

 > Menu FIles
 Form Files
 Text Files
 Exit

 2 Menu Files

 > Menu.01 Menu.33 Menu.a
 Menu.03 Menu.34 Menu.abc
 Menu.1 Menu.35 Menu.abd
 Menu.31 Menu.36 Menu.abe
 Menu.32 Menu.37

Frame Definition Files

3-27

• any initial value to display for each field

• a set of choices for the value of a field

• the starting position and length of each field and label

• the validation to be done for each field, and the error message to display if
validation fails

• whether the form is multi-page or not

• labels and functions for the SLKs of the form

The descriptors in a form definition file must be in the following order:

[frame_descriptor_1
.
.
.
frame_descriptor_n]

field-one_descriptor_1
.
.
.
field-one_descriptor_n

[field-two_descriptor_1
.
.
.
field-two_descriptor_n]

...

[SLK-n_descriptor_1
.
.
.
SLK-n_descriptor_n

...]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
fields, then SLKs—is not followed.

Frame Descriptors for Forms 3

The optional set of frame descriptors can be any valid frame descriptors for forms, in any
order. If a descriptor appears more than once in the set, the last one is used.

Character User Interface Programming

3-28

NOTE

Although technically none of the frame descriptors is required in a
form definition file, a form that does not define thedone descrip-
tor is virtually useless, since no user input will be recorded when
theSAVE key is pressed.

altslks Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially opened. Ifaltslks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed.

The default, if this descriptor is not defined, is FALSE, which
causes SLKs 1 through 8 to be displayed.

autolayout Theautolayout descriptor specifies whether FMLI should use
reasonable defaults for thefcol , frow , ncol , nrow , andcol-
umns field descriptors in this form. Ifautolayout evaluates to
TRUE, the reasonable defaults will be used; if it evaluates to
FALSE, the defaults for these 5 field descriptors will be -1. The
default, if this descriptor is not defined, is FALSE.

Using this descriptor and default field descriptor values allows
forms to be created more easily, since when it evaluates to TRUE,
the only required descriptor to define a field is thename descrip-
tor, specifying the field label. Without this descriptor, all fields
require 6 descriptors to be defined. More information may be
found in “Automatic Layout of Form Fields” on page 3-40.

begrow , begcol Thebegrow andbegcol descriptors define the original position
of the top left corner of the form frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) When writing international applications,
autosort should always be set to TRUE, because the fields used
in a form will have different lengths in different languages. These
descriptors accept values of type position:

center the form frame will be centered in the work area

current the form frame overlaps the current frame's
position (valid forbegrow only)

distinct the form frame will not overlap the current
frame if possible (valid forbegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the form frame will be positioned in an absolute
position, defined byinteger. Definingbegrow
andbegcol to be integer values causes the
frame to appear in the given position.

If eitherbegrow or begcol evaluates tocenter , then the other
can only be an integer value orcenter . Any other value is

Frame Definition Files

3-29

ignored and the descriptor defaults tocenter .

If neither iscenter , then the value ofbegrow determines the
value ofbegcol : if begrow is current , distinct , any, or
an invalid value, thenbegcol defaults toany . If begrow is a
valid integer,begcol can be a valid integer; ifbegcol is an
invalid integer in this case, it defaults toany . If integer values are
supplied and eitherbegrow or begcol are outside the screen
boundary, a default value ofany will be used.

close Theclose descriptor is evaluated when the form is closed and
when the user exits from the FMLI application. Theclose
descriptor is of type null, which means its only purpose is to
obtain the side effects of backquoted expressions coded in its defi-
nition.

done Thedone descriptor defines the command to be executed when
the user selectsSAVE. If done is not defined, it defaults to the
FMLI commandclose . Note that user input is not saved auto-
matically; user input to the form should be recorded by back-
quoted expressions in thedone descriptor.

framemsg The framemsg descriptor displays its value on the message line
for as long as the frame is current. It can be temporarily replaced
by a message displayed when:

• the fieldmsg descriptor is defined for a specific
field in the form frame

• a message is generated by themessage built-in
utility with the -t (default) option

• an FMLI error message is generated

It can be replaced for as long as the frame is current by a message
generated bymessage with the -f option. (See themes-
sage(1F) manual page.)

form The form descriptor defines the title of the form frame. It will be
truncated if it is longer thanDISPLAYW-6.

help The help descriptor specifies what will happen when the user
requests help while in the form. Since this descriptor is evaluated
at the time the user requests help, the specification of what help is
displayed can be determined through parameters that are set inter-
actively.

init The init descriptor defines whether the form frame will be
opened. If this descriptor is not defined, it defaults to TRUE,
which means the form frame will be opened. Ifinit evaluates to
FALSE, the form frame will not be opened. Ifinit evaluates to
FALSE on an update, the frame is closed, unless it is an initial
frame.

interrupt The Boolean descriptorinterrupt defines whether an execut-
able that is coded inaction or done descriptors can be inter-

Character User Interface Programming

3-30

rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables inaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

For example, if defined among the frame descriptors in a form
definition file, the value ofinterrupt is inherited by the frame
descriptordone , and theaction descriptor in all sets of SLK
descriptors in the form, unless it is redefined for a specific SLK.

lifetime The lifetime descriptor defines when the form will be closed
(that is, removed from the work area). It is evaluated whenever the
form is opened, closed, made current, or made non-current. The
acceptable values are:

shortterm the form closes whenever the user navigates to
another frame or when the command line is
accessed (the user pressesCTRL-j or CTRL-f
c)

longterm the form closes when the user issues a
cleanup or close command

permanent the form closes whenever the user issues a
close command

immortal the form closes only when the user exits from
the application

The lifetime descriptor is ignored in form definition files that
are given as arguments whenfmli is invoked: such forms have a
lifetime of immortal . See “Other Useful Examples” on page
3-61 for an example of how this descriptor may be used to close a
form when another frame is opened or updated.

oninterrupt The command descriptoroninterrupt defines what will hap-
pen when an interrupt signal is received. Ifinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value`mes-
sage Operation interrupted!` nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

For example, if defined with the frame descriptors in a form defi-
nition file, the value ofoninterrupt is inherited by the frame
descriptordone , and by theaction descriptor in all sets of SLK
descriptors, unless redefined for a specific SLK.

Frame Definition Files

3-31

reread If reread is not defined, it defaults to FALSE. Ifreread evalu-
ates to TRUE, the form will be periodically updated by rereading
its description file when thecheckworld command is executed.
checkworld is executed when aSIGALRM alarm occurs (every
$MAILCHECK seconds). Other timescheckworld is executed
include when a frame is opened, closed, or navigated to. (See
checkworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whosereread descriptor eval-
uates to TRUE will be updated. (However, theform descriptor is
not reread.) Execution ofcheckworld may cause the message
line to clear.

Field Descriptors 3

The following descriptors can be defined once for each field in a form. In each set of field
descriptors,name must be first. If a descriptor appears more than once in a set, the last one
is used.

NOTE

There must be at least one active, visible (that is,show=true)
field in a form. If you open a form and none of the fields can be
posted becauserows or columns is negative or0, or if frow or
fcol is negative, FMLI will display an empty frame with the cur-
sor positioned in the title bar. If the form definition file contains
properly defined field labels, they will be displayed.

autoadvance Theautoadvance descriptor defines whether aRETURN is
automatically performed when a user fills in the last character of a
field. It defaults to FALSE (an automaticRETURN is not per-
formed).

If autoadvance is defined and evaluates to TRUE, when the
user types incolumns characters, the field will be automatically
validated, and if valid, the cursor will be automatically advanced
to the next field. This descriptor is ignored in vertically or hori-
zontally scrollable fields.

choicemsg Thechoicemsg descriptor defines information to be displayed
on the message line when the user pressesCHOICES . The
choicemsg descriptor displays a message with transient dura-
tion. That is, it remains on the message line only until the user
presses another key or acheckworld occurs. Transient mes-
sages take precedence over frame duration messages and perma-
nent duration messages (see the message(1F) manual page for
more information). Ifchoicemsg is not defined, the default is
There are no choices available .

columns See the entry forrows , columns later in this section.

Character User Interface Programming

3-32

fieldmsg Thefieldmsg descriptor defines information that will appear on
the message line when this field is navigated to. Thefieldmsg
descriptor displays a message with transient duration. That is, it
remains on the message line only until the user presses another
key or acheckworld occurs. Transient messages take prece-
dence over frame duration messages and permanent duration mes-
sages (see themessage(1F) manual page for more informa-
tion).

frow , fcol The frow andfcol descriptors define the position of the field
input area in the frame. The value offrow can be an integer
greater than or equal to0 and less thanDISPLAYH-2 ; the value
of fcol can be an integer greater than or equal to0 and less than
DISPLAYW-2. (frow=0 andfcol=0 evaluate to the upper left
corner of the frame, that is, to the first available row and column,
respectively.) If either value is negative or if either value is too
large (the position is off the screen), then the field input area will
not be displayed. If no field input areas are displayed on a page of
a form, the cursor is positioned in the title bar.

When autolayout evaluates to FALSE, these descriptors
default to -1.

Whenautolayout evaluates to TRUE,frow defaults to the
valuecurrent_nrow, wherecurrent_nrow is the value ofnrow for
the field being defined. That is, by default the row in which the
field input area appears will be the same as the row in which the
label of the field appears.

Whenautolayout evaluates to TRUE,fcol defaults to the
greater of

• the valueprevious_fcol, whereprevious_fcol is the
value offcol for the previous field in the form; or

• the value1+current_ncol+lengthOfLabel, where
lengthOfLabel is the number of characters con-
tained in the label specified withname for the field
andcurrent_ncol is the value of thencol descrip-
tor for the field.

If the field is the first field in the form,fcol defaults to
1+current_ncol+lengthOfLabel. By default, then, the input area of
any field whose label is as long or longer than that of a previous
field will be separated from the field label by one space. (Recall
that position 0 is the first available column.) You can code the
name descriptor for the first field with padded blanks to cause the
value oflengthOfLabel to be longer than the actual word length of
the label. The name and padded blanks must be surrounded by
matching single or double quotes. That is,name='Field1'
would have a length of 9, not 6, for the purpose of default posi-
tioning of the field. Assumingncol has a value for 0 for the field,
the value offcol would be 10. Since the field will start at posi-
tion 0, that will leave four spaces between the label and the input
area.

Frame Definition Files

3-33

inactive The inactive descriptor defines a form field that is displayed in
the form, but cannot be navigated to. If this descriptor is not
defined, it defaults to FALSE (the field will be active). If this
descriptor evaluates to TRUE, the field is displayed in the form,
without an underline, and cannot be navigated to. By default, the
inactive descriptor is evaluated when the form is opened and
thereafter whenever navigation occurs from a field whose value
has been changed. There must be at least one active field for a
form to be displayed.

invalidmsg , invalidOnDoneMsg
The invalidmsg descriptor is used with thevalid or men-
uonly descriptors and defines a string that will be printed on the
message line when the input for the field is invalid. The default is
Input is not valid .

The invalidOnDoneMsg descriptor is used with the
validOnDone descriptor and defines a string that will be printed
on the message line whenvalidOnDone evaluates to FALSE.
The default isRelationship of values in 2 or more
fields is not valid . If you use a different message, make
sure it indicates to the user that more than one field is involved.

These descriptors display a message with transient duration. That
is, it remains on the message line only until the user presses
another key or acheckworld occurs. Transient messages take
precedence over frame duration messages and permanent duration
messages (see the message(1F) manual page for more infor-
mation).

lininfo The lininfo descriptor defines a string that will be assigned to
the built-in variableLININFO when the user navigates to the
field. If lininfo is not defined,LININFO evaluates to the null
string.

menuonly The menuonly descriptor defines the choices listed in the
rmenu descriptor to be the only valid input for the field. If this
descriptor evaluates to TRUE, then the user must input one of the
choices inrmenu for the field.menuonly must only be used
when thermenu descriptor has been defined using the curly brace
format; otherwise no input will be valid.

NOTE

If you definemenuonly for a field, do not define thevalid
descriptor.

name Thename descriptor defines the label of the field. The value you
define forname should tell the user what piece of information is
wanted in the field.

Character User Interface Programming

3-34

It can also be used to display a label, such asPage 2 of 5, if it
and these other descriptors for the field are defined as follows:

• the name descriptor is defined as the desired
label—in this casePage 2 of 5

• the page descriptor is set to the appropriate
value—in this case2

• the inactive descriptor evaluates to TRUE

• the columns descriptor evaluates to0, so the
input area does not display

noecho Thenoecho descriptor defines whether what the user enters in
the field input area will be displayed. This descriptor defaults to
FALSE (input will be displayed). Ifnoecho does not evaluate to
FALSE, then what the user enters in the field will not be echoed in
the display (this descriptor is often used when the requested input
is a password).noecho should not be defined for multi-line
fields.

nrow , ncol The nrow andncol descriptors define the position of the first
character ofname in the form. These descriptors accept an integer
value: the value ofnrow can be greater than or equal to0 and less
thanDISPLAYH-2 ; the value ofncol can be greater than or
equal to0 and less thanDISPLAYW-4. (nrow=0 andncol=0
evaluate to the upper left corner of the frame, that is, to the first
available row and column, respectively.) If either value is nega-
tive, name will not be displayed. If either integer is too large (the
position is off the screen), the entire form will not be displayed.

When autolayout evaluates to FALSE, these descriptors
default to -1.

Whenautolayout evaluates to TRUE,nrow defaults to the
valueprevious_nrow+previous_rows, whereprevious_nrow and
previous_rows are the values, respectively, ofnrow androws for
the previous field in the form. If the field is the first field in the
form, or the first field on the page of a multi-page form, the
default is 0. By default, then, unless the field is the first one on a
page, its label will appear one row below the last row of the previ-
ous field.

Whenautolayout evaluates to TRUE,ncol defaults to its
value in the previous field, or 0 if the field is the first field of the
form.

page Thepage descriptor allows you to define the page of a form on
which the field will appear. It accepts integer values greater than
0. A value of 0 or a negative value will cause the field not to
appear in the form.

page defaults to 1 (the field will appear on the first page of the
form). A value greater than 1 creates a multi-page form. That is, if

Frame Definition Files

3-35

page is defined for a field and evaluates to2, for example, the
field will appear on the second page of the form.

rmenu Thermenu descriptor defines a list of choices for a field. Two for-
mats are acceptable when defining this descriptor:

• The first format is a list of choices, separated by
white space, enclosed in braces. The white space
after the opening brace and before the closing one
is mandatory:

rmenu={ item1 item2 item3 ... itemn }

NOTE

If your definition of rmenu degenerates to an empty list,
rmenu={} , the value ofchoicemsg will be displayed: your
definition, if any, or the FMLI default messageThere are no
choices available . If you definechoicemsg , be sure it is
appropriate to the “empty list” case.

By default, if this list has three or fewer items, the choices are dis-
played in the field itself. The first item appears when the user
presses theCHOICES SLK; the user toggles through the choices
by pressing the same key. If the list has more items, the choices
will appear in a pop-up choices menu. (See Chapter 4 for a discus-
sion of thetoggle descriptor, which can be used to change this
default behavior.) When the user selects an item in a pop-up
choices menu, the selection is automatically placed in the built-in
variableForm_Choice , the value of which is entered in the field
when the choices menu closes.

• The second format is anopen command. When
you use this format, thermenu descriptor evalu-
ates to opening a menu, and the user selects from
that menu. For example:

rmenu=open Menu.mtgdates

The action associated with each choice in the menu must set the
built-in variableForm_Choice and close the menu. When the
user selects an item in the menu, the selection is placed in
Form_Choice , the value of which is entered in the field when
the choices menu closes. Thetoggle descriptor is ignored when
this format is used—a pop-up choices menu is always displayed.

NOTE

Do not usemenuonly with this format. To validate the choices in
the menu, use thevalid descriptor.

Character User Interface Programming

3-36

rows , columns The rows andcolumns descriptors define the size of the input
area, the length and width, respectively, of the region in which the
user can enter input. These descriptors accept an integer value: the
value ofrows must be greater than0 and less thanDISPLAYH-
2; the value ofcolumns must be greater than0 and less than
DISPLAYW-4. If either is less than or equal to0, the field will not
be displayed. If either value is too large (the position is off the
screen), the entire form will not be displayed.

rows defaults to 1 (the field will be one row long). A value
greater than1 creates a multi-line field.

If autolayout evaluates to FALSE,columns defaults to -1. If
autolayout evaluates to TRUE,columns defaults to its value
in the previous field, or 4 (the field will be four columns wide) if
the field is the first field of the form. Although a default value can-
not be picked that will be useful for real applications, a default
value can be useful for learning purposes and for writing test
scripts; hence the default 4.

scroll Thescroll descriptor defines whether the field input area can
scroll. There are two types of scrolling: vertical, for multi-line
fields; and horizontal, for single-line fields. If not defined, this
descriptor defaults to FALSE (field input area cannot scroll).

If scroll evaluates to TRUE, then the field input area can be
scrolled. This means that the field input area can be as long as the
entry the user types, and thecolumns descriptor is not a limit for
the length of user input. For single-line fields, the last space in
columns is reserved for scroll symbols:> means the field can be
scrolled to the right,< means the field can be scrolled to the left,
and= means the field can be scrolled either left or right. For
example, after the user types incolumns-1 valid characters, the
field will scroll, and the< symbol will appear in the last space,
indicating that the input in the field has scrolled to the left. For
multi-line fields, scroll indicators for up (^) and down (v) appear
in the bottom right border of the frame when the user has entered
data up to the last character in the last displayed line of the field.
For example, after the user types inrows lines of information, the
scroll indicator for up (̂) appears in the lower right border.

show Theshow descriptor defines whether a field will be displayed in
the form. Ifshow evaluates to FALSE, then the label and input
area will not be shown. There must be at least one field for which
show evaluates to TRUE, or the form will not open. By default,
the show descriptor is evaluated when the form is opened and
thereafter whenever navigation occurs from a field whose value
has been changed. Note that even if the field is not shown, it still
counts as a field for the purpose of evaluating the built-in variable
Fn. (See “Variables” on page 2-6 for more information about the
built-in variableFn.)

valid Thevalid descriptor defines whether the input to a field is valid.
If valid evaluates to FALSE, the current input is considered

Frame Definition Files

3-37

invalid and FMLI will not process the field or evaluate thedone
descriptor. Checking the validity of the field is often done by eval-
uating a backquoted expression. The backquoted expression must
be coded to evaluate to TRUE when the value is valid, FALSE
otherwise.

NOTE

The built-in utility regex is often used in avalid descriptor for
field validation. For example, it can be used to require that part of
a field be non-numeric.

The FMLI conditional statement has essentially the same func-
tionality as the UNIX system shell conditional statement, and can
be used to do more complicated validations.

Before a user leaves a form, each field that defines thevalid
descriptor is validated at least once, at one of the following times.
Note that the critical factors are whether the field was modified,
and which key was used to navigate away from it.

1. If the field has been visited and modified, valida-
tion occurs upon any navigation key being pressed.

2. If the field has been visited but not modified, vali-
dation occurs upon theENTER key being
pressed. The use of other navigation keys will not
initiate validation.

(Note that this behavior is new in FMLI 4.0+.
Thus, users can now navigate to other fields when,
for example, leaving the current field blank would
cause it to fail a validation test.)

3. If the field has not been visited, or if it was visited
but not modified and some key other thanENTER
was used to navigate away from it, validation
occurs upon theSAVE key being pressed.

So, if a user opens a form frame with five fields that define the
valid descriptor, but only modifies the first two fields, the two
modified fields are validated before the use can leave them. The
remaining three fields will be validated when the user saves the
form.

If any field (including fields on other pages in a multi-page form)
does not pass its validation test, FMLI will not process the field,
the cursor will jump to the invalid field if not already on it, the
message defined in the descriptorinvalidmsg (if defined, oth-
erwise the default message) will be displayed on the message line,
and thedone descriptor will not be evaluated. In the case of more

Character User Interface Programming

3-38

than one invalid field, this behavior will be repeated in field order,
each time theSAVE SLK is pressed.

For the reasons given in thevalidOnDone entry below, you
should usevalid only to validate the value of a single field,
without reference to other fields. UsevalidOnDone to validate
the relationship between the values of different fields.

You should be cautious using thevalid descriptor for a field that
could become inactive. Unexpected behavior can occur.

validOnDone ThevalidOnDone descriptor does the same thing as thevalid
descriptor but is evaluated only when the user attempts to save the
form, and is used with theinvalidOnDoneMsg descriptor
rather than theinvalidmsg descriptor. You should use it to val-
idate the relationship between the values of different fields, as in
the following scenario.

Suppose you have definedMajor, Degree, andCollege fields
in a form, in that order. For theDegree field you have defined a
validation test that will disallow the valuesBS or MS whenMajor
has the valueHistory . If you usevalid to perform the test

FMLI will correctly disallow an entry ofBS in Degree whenMajor is History .

Suppose now, though, that the user has enteredElectrical Engineering in Major
andBS, a valid value, inDegree. This user has a change of mind and, after navigating
back toMajor, changes its value toHistory . Becausevalid has already been evalu-
ated forDegree, FMLI will not check its value against the new value ofMajor unless
Degree is revisited. It will check it, however, if thevalidOnDone descriptor is coded
for Degree

valid=`test (“$F1” = “History” -a
 (“$F2” = “BA” -o “$F2” = “MA”)
) -o
 (“$F1” = “Electrical Engineering” -a
 (“$F2” = “BS” -o “$F2” = “MS”)
) `
invalidmsg=vary The “$F2” degree is not offered in “$F1”

Frame Definition Files

3-39

becausevalidOnDone is evaluated when the user attempts to save the form. You would
usevalidOnDone in a similar way if, say, you wanted to disallow the valueBusiness
for College whenMajor had the valueHistory andDegree had the valueBA.

WhenvalidOnDone evaluates to FALSE for a field, the cursor is positioned in the input
area of that field. Because the descriptor is evaluated only when the user attempts to save
the form, the user can navigate away from the field to any other field. In other words, the
user of the example application above could navigate away fromDegree to Major and
change its value toElectrical Engineering . As this implies, allvalidOnDone
descriptors for a form will be re-evaluated each time the user attempts to save the form
(because the new value ofMajor, although valid in relation to the value ofDegree, may
now be invalid in relation to the value ofCollege).

NOTE

The validOnDone descriptor can be coded asvalidOn-
Done=validonentry to request that any validation done with
thevalid descriptor be repeated when the user attempts to save
the form. This allows you to code one validation in two places,
eliminating a possible maintenance problem.

value Thevalue descriptor defines the default value for the input field.
If this descriptor is defined, its value will be displayed in the field
when the form is opened or updated. The default is not changed
by the user entering data into the field. That is, the default value is
restored when the form is opened or updated, or if the built-in util-
ity reset is run while the field is current. Note thatvalid or
validOnDone can be used to validate the input to fields defined
to have default values.

wrap Thewrap descriptor defines whether word wrap will occur if a
word will not fit on the current line of a multi-line field. If this
descriptor is not defined, it defaults to FALSE. Ifwrap evaluates
to FALSE, then the cursor will not automatically wrap to the next
input line. Ifwrap evaluates to TRUE, andword will not fit on the
current line but will fit on the next line, thenword will automati-
cally be moved to the next line. Thewrap descriptor is ignored in
a single-line field.

validOnDone=`test (“$F1” = “History” -a
 (“$F2” = “BA” -o “$F2” = “MA”)
) -o
 (“$F1” = “Electrical Engineering” -a
 (“$F2” = “BS” -o “$F2” = “MS”)
) `
invalidOnDoneMsg=vary The “$F2” degree is not offered in “$F1”

Character User Interface Programming

3-40

NOTE

Screen labels and actions for function keys can be defined in a
form description file as well as at the initialization file level. Each
set of screen-labeled function key descriptors must include the
name andbutton descriptors; thename descriptor must be first.
If a descriptor appears more than once in a set, the last one is used.
See Chapter 4 for a discussion of how to use the screen-labeled
function key descriptors.

Automatic Layout of Form Fields 3

In previous versions of FMLI the descriptors that define the position and size of fields and
their labels (frow , fcol , nrow , ncol , andcolumns), defaulted to -1. In effect, this
meant that those five descriptors had to be defined for each field in the form.

With FMLI Release 4.0+, new, more reasonable defaults are available for these descrip-
tors. However, to preserve compatibility with older applications, the new defaults are only
available if theautolayout frame descriptor for the form evaluates to TRUE, or if the
application descriptorautolayout evaluates to TRUE and the same descriptor for the
form is not coded. When theautolayout descriptor is defined, the new defaults provide
automatic layout of the fields and labels of a form; the only required field descriptor is
name. The new defaults are described in detail in “Field Descriptors” on page 3-31.

The defaults enabled byautolayout allow easier coding for simple forms and test
scripts, rapid prototyping, and provide a reasonable default form appearance, although
nrow , ncol , frow , fcol , andcolumns can still be used to obtain precisely formatted
forms. In addition, it is still possible, using the previous defaults of -1 for these descrip-
tors, to obtain the following refinements:

• labels without corresponding fields (for precisely formatted descriptive text
within a form)

• fields without any labels

Some applications have made use of these capabilities and will not be broken.

A few simple examples will help. A 5-field form can be defined with only 5 field descrip-
tors, instead of the 30 previously required:

autolayout=true
name=field1
name=field2
name=field3
name=field4
name=field5

These fields would appear in the form as:

Frame Definition Files

3-41

A simple form with 2 columns and some other variations could be defined with:

autolayout=true
name=field1
name=field2
name=field3
name=field4
name=field5
name=fieldA
nrow=0
ncol=14
columns=2
name=fieldB
name=fieldC
name=fieldD
fcol=25
name=fieldE

These fields would appear in the form as:

HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Form

field1 ___
field2 ___
field3 ___
field4 ___
field5 ___

Character User Interface Programming

3-42

Figure 3-26 in the next section shows how defaults would work for a less rigid arrange-
ment of fields and labels.

Example Form Definition Files 3

Many of the frame descriptors for forms and menus have the same names and do the same
things. Since they were discussed in the examples of menu definition files, they won't be
covered again here. Some frame descriptors in forms are different from those in menus,
however.

Saving User Input to a Form 3

You can use the frame descriptordone to take information entered in a form by a user and
save it in a file. The address entered by the user in the following form is to be written in a
file namedAddr.file . Figure 3-24 shows how the form definition file would look if you
coded the field descriptors explicitly with values; Figure 3-25 shows the form itself;
Figure 3-26 shows how the definition file would look if you took advantage of the defaults.

HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Form

field1 ___ fieldA___
field2 ___ fieldB___
field3 ___ fieldC___
field4 ___ fieldD ___
field5 ___ fieldE ___

Frame Definition Files

3-43

form=Address Entry Form
done=`echo Name=$F1 >> Addr.file;\
echo Address=$F2 >> Addr.file;\
echo City=$F3 >> Addr.file;\
echo State=$F4 >> Addr.file;\
echo Zip=$F5 >> Addr.file`update

name=Name
nrow=0
ncol=0
frow=0
fcol=5
rows=1
columns=34

name=Address
nrow=1
ncol=0
frow=1
fcol=7
rows=1
columns=31

name=City
nrow=2
ncol=0
frow=2
fcol=5
rows=1
columns=15

name=State
nrow=2
ncol=21
frow=2
fcol=27
rows=1
columns=2

name=Zip
nrow=2
ncol=30
frow=2
fcol=34
rows=1
columns=5

Figure 3-24. Form.addr: Defaults Not Used

This frame definition file creates the following form:

Character User Interface Programming

3-44

Figure 3-25. Form.addr: Screen Output

So does the next form definition file, which takes advantage of the default values for field
descriptors:

HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Address Entry Form

Name __________________________________
Address _______________________________
City _______________ State __ Zip _____

Frame Definition Files

3-45

form=Address Entry Form
autolayout=true
done=`echo Name=$F1 >> Addr.file;\
echo Address=$F2 >> Addr.file;\
echo City=$F3 >> Addr.file;\
echo State=$F4 >> Addr.file;\
echo Zip=$F5 >> Addr.file`update

name=Name
columns=34

name=Address
columns=31

name=City
fcol=5
columns=15

name=State
nrow=2
ncol=21
columns=2

name=Zip
nrow=2
ncol=30
columns=5

Figure 3-26. Form.addr: Defaults Used

As the example suggests, you can save yourself considerable effort by using the default
values for field descriptors, if you have coded theautolayout descriptor as TRUE.
Note thatfcol must be coded forCity because, by default, FMLI takes the greater of
fcol for the previous field (7) or1+current_ncol+lengthOf Label (5). That is, you want
the input area forCity to be separated from its label by one space, not three.nrow must
be coded forState because, by default, FMLI increments its value in the previous field
(2) by the number of rows in the previous field (1). That is, you wantState to appear in
the same row asCity, not the fourth row. The same thing holds for thenrow descriptor in
the Zip field. Finally, ncol must be coded for theState andZip fields because, by
default, FMLI uses its value in the previous field. That is, you do not want different fields
in the same row to start in the same column.

This form can be used in an application where addresses have to be entered into the sys-
tem. If a user fills in this form as follows:

Character User Interface Programming

3-46

Figure 3-27. Form.addr: Screen Output after Being Filled Out by a User

when the user pressesSAVE (or CTRL-f 3), thedone descriptor is evaluated and the
following information is written into theAddr.file file:

Name=Smith, Albert
Address=1234 High Street
City=Best
State=AA
Zip=12345

Figure 3-28. Addr.file: Contents after User Saves the Form

If Addr.file does not exist it is created. If it already exists, the information above is
appended to it.

Note that thedone descriptor in forms is of type command, and thus must evaluate to an
FMLI command. In this example,done evaluates to the FMLI commandupdate. After
the user input is saved in the fileAddr.file, theupdate command causes the form to
be updated to its default values (a blank form), the cursor is positioned on the first field,
and the user can begin to enter a new address record in theAddress Entry Form.

HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Address Entry Form

Name Smith, Albert_____________________
Address 1234 High Street_______________
City Best___________ State AA Zip 12345

Frame Definition Files

3-47

Validating a Form Field 3

Let us add some more functionality to the form. Assume that in this form it is valid to
enter addresses of only three states: New York, New Jersey, and Connecticut. To do this,
three more field descriptors are added to theState field in the frame definition file:

.

.

.

name=State
nrow=2
ncol=21
columns=2
rmenu={ CT NJ NY }
menuonly=true
invalidmsg=Valid state codes are: CT, NJ, NY
.
.
.

Figure 3-29. Form.3choices: An Example of Field Validation Using the menuonly Descriptor

This form definition file will create the same form as above. However, thermenu descrip-
tor is used to create a choices menu, and themenuonly descriptor defines only the
choices in the choices menu to be valid field values. If the user enters an invalid state code
in the State field and pressesRETURN or SAVE , the message defined by the
invalidmsg descriptor appears on the message line and thedone descriptor will not be
evaluated.

When the user pressesCHOICES the first valid state code,CT, will be displayed in the
State field (see the description oftoggle in Chapter 4 for a discussion of how to
change this default behavior). Each press ofCHOICES displays the next valid state code
(wrapping to the first choice after the last one is displayed).

Now we will add some more state codes to the list of states in ourrmenu descriptor and
we will change theinvalidmsg descriptor to reflect the changes:

Character User Interface Programming

3-48

.

.

.
name=State
nrow=2
ncol=21
columns=2
rmenu={ CT IL NJ NY PA FL }
menuonly=true
invalidmsg=(Press CHOICES to see valid state codes)
.
.
.

Figure 3-30. Form.6choices: An Example of a Choices Menu

This frame definition file creates the same form as before. But now if the user enters a
wrong state code, the following message will be displayed at the bottom of the screen:

(Press CHOICES to see valid state codes)

To find the valid state codes, the user can again pressCHOICES. This time the valid
choices are displayed in a pop-up choices menu. This behavior occurs by default when
there are more than three choices in thermenu list:

Frame Definition Files

3-49

Figure 3-31. Form.6choices: Screen Output

When the user selects a code from the choices menu, the code is placed in theState field
and the choices menu is closed, as shown in Figure 3-32:

ENTER CANCEL

 2 CHOICES

 > CT
 FL
 IL
 NJ
 NY
 PA

 1 Address Entry Form

Name __________________________________
Address _______________________________
City _______________ State __ Zip _____

Character User Interface Programming

3-50

Figure 3-32. Form.6choices: Screen Output after User Selects an Item from the Choices Menu

Example of Validating a Field Value with the valid Descriptor 3

Let us add two more descriptors,valid andinvalidmsg , to theZip field definition, as
follows:

.

.

.
name=Zip
nrow=2
ncol=30
columns=5
valid=`regex -v “$F5” '[0-9]{5}'`
invalidmsg=Zip code is numeric. Five digits only.
.
.
.

Figure 3-33. Form.valid: An Example of Field Validation Using the valid Descriptor

HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 Address Entry Form

Name __________________________________
Address _______________________________
City _______________ State __ Zip _____

Frame Definition Files

3-51

The valid descriptor is defined to executeregex to validate the field. If a pattern is
matched byregex , regex will write the corresponding template tostdout . The
regex utility will also return the value TRUE which, for FMLI built-in utilities, is analo-
gous to a UNIX system command that exits with status 0. If no pattern is matched,regex
will not write to stdout and will return FALSE. For FMLI built-in utilities, FALSE is
equivalent to a UNIX system command that exits with a non-zero exit status. For example,
the field validation shown in Figure 3-33 (that is, thevalid descriptor definition) uses the
-v option toregex to specify that the argument that follows (rather thanstdin) should
be used as input. Note that thisregex statement contains a single pattern without a tem-
plate. Inregex , a template is optional if only one pattern exists. The last pattern in a
series of pattern/template pairs is also optional.

This use ofregex will return TRUE if the current value of field 5 consists entirely of
integers and will return FALSE otherwise. Since no template exists,regex will not write
to stdout . If the field is not numeric and not all five digits are entered, the following
message defined by theinvalidmsg descriptor is displayed:

Zip code is numeric. Five digits only.

Text Frames 3

A text frame definition file begins with a single set of frame descriptors (ones that define
attributes of the whole text frame), and it can end with one or more optional sets of SLK
descriptors that define the screen-labeled function keys (one set per SLK) that will be dis-
played when the text frame is the current frame in the user's work area.

Some of the attributes of a text frame that you can define are the following:

• the title of the text frame

• a non-scrolling header for the text frame

• the text to be displayed

• whether users can modify the text

• the position of the text frame in the work area

• the longevity of the text frame

• new labels and functions for the SLKs

The descriptors in a text frame definition file must follow this order:

frame_descriptor_1
.
.
.
frame_descriptor_n
[SLK-n_descriptor_1
.
.

Character User Interface Programming

3-52

.
SLK-n_descriptor_n
...]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
SLKs—is not followed.

Text Frame Descriptors 3

The set of frame descriptors can be any valid frame descriptors for text frames, in any
order. (However, a text frame usually starts with the linetitle= title. The default value
for title , if you do not define it, isText .) If a descriptor is defined more than once in
the set, the last one is used.

altslks Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially opened. Ifaltslks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed. The default,
if this descriptor is not defined, is FALSE, which causes SLKs 1
through 8 to be displayed.

begrow , begcol Thebegrow andbegcol descriptors define the original position
of the top left corner of the text frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) These descriptors accept values of type position:

center the text frame will be centered in the work area

current the text frame overlaps the current frame's posi-
tion (valid forbegrow only)

distinct the text frame will not overlap the current frame
(if possible) (valid forbegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the text frame will be positioned in an absolute
position, defined byinteger. Definingbegrow
andbegcol to be integer values causes the
frame to appear in the given position.

If eitherbegrow or begcol evaluates tocenter , then the other
can only be an integer value orcenter . Any other value is
ignored and the descriptor defaults tocenter .

If neither iscenter , then the value ofbegrow determines the
legal values ofbegcol : if begrow is current , distinct ,
any , or an invalid value, thenbegcol defaults toany . If
begrow is a valid integer,begcol can be a valid integer; if
begcol is an invalid integer in this case, it defaults toany .

Frame Definition Files

3-53

close Theclose descriptor is evaluated when the text frame is closed
and when the user exits from the FMLI application. Theclose
descriptor is of type null, which means its only purpose is to
obtain the side effects of a backquoted expressions coded in its
definition.

columns Thecolumns descriptor defines the width of a text frame. It must
evaluate to an integer value greater than0 and less thanDIS-
PLAYW-4. Thecolumns descriptor defaults to30.

done The done descriptor is evaluated when the user executes the
cancel command. Ifdone is not defined, it defaults to the
FMLI commandclose .

edit If this descriptor evaluates to TRUE, then the user can modify the
text. Otherwise, the text is read-only. The default for this descrip-
tor is FALSE.

If the user modifies the text in the displayed text frame, this does
not modify the frame definition file.

framemsg The framemsg descriptor displays its value on the message line
for as long as the frame is current. It can be temporarily replaced
by a message displayed when:

• a message is generated by themessage built-in
utility with the -t option

• an FMLI error message is generated

It can be replaced for as long as the frame is current by a message
generated by themessage built-in utility with the -f option.
(See themessage(1F) manual page.)

header Theheader descriptor defines information that will remain per-
manently displayed at the top of a text frame. For example, if a
text frame contains a long table of information,header can be
used to define column headings that will remain displayed below
the title of the text frame while the user pages or scrolls through
the rest of the table. The text defined inheader can include
embedded newline characters, and will be left justified in the
frame. The header text will not occupy all rows of the text frame:
at least two lines will remain available for display of the text.

help The help descriptor specifies what will happen when the user
requests help while in this text frame. Since this descriptor is eval-
uated when the user requests help, the specification of what help is
displayed can be determined through parameters that are set inter-
actively.

init If the init descriptor evaluates to FALSE, the frame will not be
displayed. Ifinit evaluates to FALSE on an update, the frame is
closed, unless it is an initial frame.

interrupt The Boolean descriptorinterrupt defines whether an execut-
able that is coded in thedone descriptor can be interrupted by

Character User Interface Programming

3-54

users (FALSE means not interruptible, TRUE means interrupt-
ible). It is subject to an inheritance hierarchy: if not defined any-
where in your application, the default value FALSE applies
throughout. If explicitly defined at any inheritance level, then exe-
cutables inaction anddone descriptors at or above that inherit-
ance level will inherit that defined value. (See “Interrupt Signal
Handling” on page 2-39 for complete information.)

If defined among the frame descriptors in a text frame definition
file, that value ofinterrupt is inherited by theaction
descriptor in all sets of SLK descriptors in the text frame, unless it
is redefined for a specific SLK.

lifetime The lifetime descriptor defines when the text frame will be
closed (that is, removed from the work area). It is evaluated when-
ever the text frame is opened, closed, made current, or made non-
current. The acceptable values are:

shortterm the text frame closes whenever the user navi-
gates to another frame or when the command
line is accessed (the user pressesCTRL-j or
CTRL-f c)

longterm the text frame closes when the user issues a
cleanup or close command

permanent the text frame closes whenever the user issues a
close command

immortal the text frame closes only when the user exits
from the application

The lifetime descriptor is ignored in text frame definition files
that are given as arguments whenfmli is invoked: such text
frames have a lifetime ofimmortal . See “Other Useful Exam-
ples” on page 3-61 for an example of how to use this descriptor to
close a frame when another frame is opened or updated.

oninterrupt The command descriptoroninterrupt defines what will hap-
pen when an interrupt signal is received. Ifinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value`mes-
sage Operation interrupted!` nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

If defined with the frame descriptors in a text frame definition file,
that value ofoninterrupt is inherited by theaction descrip-
tor in all sets of SLK descriptors, unless redefined for a specific
SLK.

Frame Definition Files

3-55

reread If reread is not defined, it defaults to FALSE. Ifreread evalu-
ates to TRUE, the text frame will be periodically updated by
rereading its description file when thecheckworld command is
executed.checkworld is executed when aSIGALRM alarm
occurs (every$MAILCHECK seconds). Other timescheckworld
is executed include when a frame is opened, closed, or navigated
to. (Seecheckworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whosereread descriptor eval-
uates to TRUE will be updated. (However, thetitle descriptor
is not reread.) Execution ofcheckworld may cause the message
line to clear.

rows The rows descriptor defines the desired number of rows long a
text frame will be. It must evaluate to an integer value greater than
0 and less thanDISPLAYH-2 . It defaults to the lesser of 10 or the
number of rows needed to display the complete text.

text The text descriptor defines the text you want to display. It may
contain embedded newlines, as long as the value of the entire
descriptor is enclosed in quotes. Two special characters are also
available for requesting tabs and newlines in the displayed text:

\n insert a newline in this position

\t insert a tab in this position

The alternate character set characters can be coded as well; see
“Using the Alternate Character Set” on page 2-42.

title The title descriptor defines the title of the text frame that will
appear in the title bar. It will be truncated if it is longer thanDIS-
PLAYW-6. If not defined, it defaults to the stringText .

wrap If this descriptor is set to anything except FALSE, the text will be
wrapped to fit the available space when it is read in. Ifwrap eval-
uates to TRUE, word boundaries are respected at newlines. If not
definedwrap defaults to TRUE. Newlines in your text are always
preserved.

NOTE

Screen labels and actions for function keys can be defined in a text
description file as well as in an initialization file. Each set of
screen-labeled function-key descriptors must include thename
andbutton descriptors, and thename descriptor must be first in
each set. If a descriptor appears more than once in a set, the last
one is used.

See Chapter 4 for a discussion of how to use SLK descriptors.

Character User Interface Programming

3-56

The textframe Command 3

The two mechanisms available to present information to the user are the message line and
text frames. Messages are limited to 1 line in length; thus, longer information must be put
into a text frame. However, writing a separate text frame definition file can be inconve-
nient if the text frame is very short and needs none of the special capabilities of text frame
definition files. Some applications may need hundreds of such short text frames. A short-
cut mechanism, thetextframe command, allows applications to be more compact.

There are several advantages to thetextframe command:

• separate text frame definition files do not have to be defined or read-in by
your application.

• messages are easier to maintain, since they are coded in the same file as the
associated action

• application developers may be more inclined to write useful information
more frequently if it can be done in the same file in which it is used

The textframe command is not a built-in utility; it cannot be used in back-quoted
expressions. If it is coded incorrectly, brief error messages will be issued on the message
line and the portion coded incorrectly will be ignored. FMLI will also ignore options and
arguments it cannot recognize and will use appropriate defaults in those cases. The syntax
of this command is

textframe [options] “ text”

The text argument, corresponding to thetext descriptor in text frames, is the only argu-
ment to this command. For example, anaction descriptor could be coded as

action=textframe “This is text for a 1-line text frame”

If no text argument is coded, an empty text frame will appear, just as would a text frame
from a definition file whosetext descriptor is not coded. Thetext argument may contain
embedded newlines as well as the notation\n to request newlines in the text. Thetext
argument must be enclosed in quotes if it includes embedded whitespace or special char-
acters. Thus

action=textframe “line1
line2
line3”

as well as

action=textframe “line1\nline2\nline3”

are both allowed (and are equivalent).

Options for the textframe Command 3

A text frame opened with thetextframe command is a text frame in all respects, just
like one defined in a frame definition file. However, only a subset of the text frame

Frame Definition Files

3-57

descriptors can be specified via options to this command. The options to thetextframe
command, and the text frame descriptors to which they correspond, are:

The defaults and valid arguments for these options are the same as for the corresponding
descriptors in the text frame, except:

• the-l lifetime option defaults toshortterm because the expected use of
textframe frames is for short-term information

• the only valid arguments to the-p option arecenter andcurrent

These options can take arguments, and the arguments must be enclosed in quotes if they
contain whitespace. For example:

action=textframe -t “Frame Title” “line1\nline2\nline3”

Other notes on the behavior of these options and arguments:

• A null string argument to the-f option (-f “”) can be used to temporarily
turn off a message of permanent duration.

• Use of the-a option corresponds to codingaltslks=TRUE in a text
frame definition file; this assumes that you have defined at least one of
SLKs 9-16 in the FMLI initialization file.

• The alternate character set feature of text frames will work with the text
given as an argument to thetextframe command.

Example Text Frame Definition Files 3

The following examples will show you how to write a text frame definition file. We'll
begin by looking at a simple use of the frame descriptors for text frames, and build from
there.

Option Descriptor

-t title title

-l lifetime lifetime

-f text framemsg

-r integer rows

-c integer columns

-p position begrow

-a altslks

Character User Interface Programming

3-58

Defining Attributes of Text Frames 3

Here is a simple description file for a text frame:

title=“Words to Live By”
columns=40
lifetime=longterm
wrap=true
text=“We the people, in order to form a more perfect
union, establish justice, insure domestic tranquillity,
provide for the common defense, promote the general
welfare and secure the blessings of liberty, to
ourselves and our posterity, do ordain and establish
this constitution for the United States of America.”

Figure 3-34. Text.USA: An Example of a Text Frame

The lifetime descriptor defines this text frame to remain on display until the user
issues acleanup or close command. Thewrap descriptor defines word-wrapping to
occur: that is, a word that will not fit entirely on the current line will be displayed in full on
the next line. The frame will look like this:

Figure 3-35. Text.USA: Screen Output

HELP PREVPAGE NEXTPAGE PREV-FRM NEXT-FRM CANCEL CMD-MENU

1 Words to Live By

We the people, in order to form a more
perfect
union, establish justice, insure
domestic tranquillity,
provide for the common defense, promote
the general
welfare and secure the blessings of
liberty, to
ourselves and our posterity, do ordain
and establish

Frame Definition Files

3-59

Notice that even though the text is wrapped at 40 columns, the original newline characters
are preserved.

Defining a Text Frame with readfile and longline 3

A more interesting way to define a text frame is to use the built-in utilitiesreadfile and
longline :

title=“This is a Text Frame”
lifetime=longterm
text=“`readfile $ARG1`”
columns=`longline`

Figure 3-36. Text.readfile: An Example of Using readfile and longline in a
Text Frame

Text.readfile illustrates the use of arguments that may be passed to menu, text, or
form frames. You don't have to define a separate text frame definition file for each file that
is to be displayed. Instead, pass$ARG1 to the text frame when you open it.

For example, ifText.readfile were opened by a line in a menu that looked like this:

action=open $DEF_FILES/Text.readfile help1

$ARG1 would evaluate tohelp1 , that file would be read by the built-in utilityread-
file , and all of the text inhelp1 would become the value of thetext descriptor, which
would then be displayed in a text frame as wide as the longest line of text in the file
help1 . For more on how this happens, see “Variables” on page 2-6, and thereadfile
(1F) manual page.

Using Text Frame Headers and Terminal Attributes 3

Text frame headers, defined by theheader descriptor, are useful when you want to per-
manently display some information, perhaps a warning, or headings for columns of infor-
mation, while the text of the text frame can be scrolled through by the user. The example
below in Figure 3-37 also illustrates the use of the terminal display attribute for underlin-
ing.

Character User Interface Programming

3-60

title=“Department Directory”
columns=30
rows=5
lifetime=longterm
wrap=true
header=“\+ul Name Phone Number \-ul”
text=“Adams, Jane 663-1234
Brown, Tom 687-3443
Deering, Julia 779-6801
Fitzworth, Leslie 299-7775
Flemming, Eric 344-2289
Shultz, Michael 794-1100
Walinsky, Richard 555-8827
Younger, Helen 865-0023”

Figure 3-37. Text.header: An Example of Text Frame Headers

This frame definition file results in the following display:

Figure 3-38. Text.header: Screen Output

The terminal attribute of underlining has been turned on for the text header to set it apart
from the list of department members. Since the frame is defined to be five rows long, and

HELP PREVPAGE NEXTPAGE PREV-FRM NEXT-FRM CANCEL CMD-MENU

1 Department Directory

 Name Phone Number

Adams, Jane 663-1234
Brown, Tom 687-3443
Deering, Julia 779-6801
Fitzworth, Leslie 299-7775

Frame Definition Files

3-61

the header uses one of those rows, the text is displayed in four rows, and the scroll bar
indicates that there is more text that follows.

Other Useful Examples 3

Defining a Help Frame for Menu Items or Form Fields 3

In this example let us take a look how the item descriptorlininfo and the built-in vari-
ableLININFO can be used in conjunction with the frame descriptorhelp to define help
that is specific to the current menu item.

This example defines a menu titledTOP MENU that has three items. The first item does
not have any help information. When help is requested while the cursor is on this item, the
help text frame for the menu is displayed. The second and third item have help text frames
associated with each item. The menu definition file for this menu is:

menu=TOP MENU
help=`if [$LININFO = “”];
 then echo open Text.gen_help;
 else echo open '$LININFO';
 fi`

name=Item 1
action=nop

name=date
action=`date | message`nop
lininfo=Text.item2

name=exit
action=exit
lininfo=Text.item3

Figure 3-39. Menu.lininfo: An Example of Defining Help with LININFO

The text frame definition fileText.gen_help displays information appropriate to the
menu as a whole. (Presumably this information is also sufficient for a user to understand
how to use the first menu item,Item 1.)

columns=20
lifetime=shortterm
title=“Help on TOP MENU”
text=“This menu demonstrates the lininfo descriptor.
The first item does not use the lininfo descriptor.”

Figure 3-40. Text.gen_help: An Example of a Help Text Frame

Character User Interface Programming

3-62

The text frame definition filesText.item2 andText.item3 display appropriate help
information for the second and third items on the menu.

columns=20
lifetime=shortterm
title=“Help on date”
text=“The selection of this item will display the
current date and time on the message line”

Figure 3-41. Text.item2: An Example of a Help Text Frame

columns=20
lifetime=shortterm
title=“Help on exit”
text=“This item will let you get out of the application”

Figure 3-42. Text.item3: An Example of a Help Text Frame

When this application is run, the user sees the following menu:

Figure 3-43. Menu.lininfo: Screen Output

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 TOP MENU

 > Item 1
 date
 exit

Frame Definition Files

3-63

If the user asks for help, either by the appropriate function key, or by thehelp command
(from the command line or theCommand Menu), the appropriate text frame will be
displayed. Thelifetime descriptor, defined in each of the help text frames to be
shortterm , ensures that whenever the user navigates away from the help text frame, it
will be removed from the work area, thus reducing screen clutter:

Figure 3-44. Menu.lininfo: Screen Output after Requesting Help on Item 1

If the user navigates to the second menu item and again asks for help, the following text
frame will be displayed:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 TOP MENU

 > Item 1
 date
 exit

 2 Help on TOP MENU

This menu
demonstrates the
lininfo descriptor.
The first item does
not use the lininfo
descriptor.

Character User Interface Programming

3-64

Figure 3-45. Menu.lininfo: Screen Output after Requesting Help on Item 2

The text defined inText.item3 is displayed in the same manner whenHELP is pressed
while the cursor is positioned on menu item 3,exit. The display of these help frames is
controlled by thelininfo descriptor and theLININFO variable.

Using the textframe Command as an Alternative 3

The previous example of defining help text frames using theLININFO variable could be
coded instead using thetextframe command. This would eliminate the need for 3 text
frames.

To do so, you would change the line inMenu.lininfo that is coded as

else echo open '$LININFO';

to something like

else echo textframe -c20 '$LININFO';

Then the corresponding values forLININFO later in that file would be coded with the text
values from thetext descriptors in the respective text frame definition files in the exam-
ple. If the different titles for each frame were to be kept as well, then theLININFO vari-
able for each item would have to include it:

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

 1 TOP MENU

 Item 1
 > date
 exit

 2 Help on date

The selection of
this item will
display the
current date and
time on the message

Frame Definition Files

3-65

lininfo='-t “frame title” “Text contents”'

Using Co-processing Utilities 3

Co-processing allows an external process to communicate with the user via a menu, form,
or text frame. A co-process does not have direct access to the terminal's screen. It commu-
nicates with the FMLI application, which can then post the messages in the frame that
contains the co-processing descriptors or take other appropriate actions.

The co-processing feature in FMLI consists of five built-in utilities:cocreate , cosend ,
cocheck , coreceive , andcodestroy , which support inter-process communication.

Thecocreate utility is responsible for initializing the co-process and setting up pipes
between it and FMLI. Thecodestroy utility is responsible for cleaning up when the
communication has been completed. The utilitycosend is used to send information to
the co-process via the pipe and block (wait) for some response by the co-process. The-n
option tocosend performs ano wait write. This means thatcosend will send informa-
tion to the co-process but will not block for a response. Thecocheck utility checks the
incoming pipe for information. Thecoreceive utility performs a “no-wait” read on the
pipe. The purpose of these built-in utilities is to provide a flexible means of interaction
between FMLI and a co-process; to be responsive to asynchronous activity.

It is important to note that information passed to FMLI from a co-process is treated as text
only. FMLI commands (for example,open, close, update) will not be recognized
by FMLI unless they become the value of a descriptor of type command.

To illustrate the use of co-processing, consider a UNIX system program that wishes to
“talk” to the user as it executes (an interactive program). The following sample menu dis-
plays the itemtalk. Whentalk is selected, the backquoted expression creates the co-pro-
cess and then opens an “interactive” form,Form.talk.

menu=“My Menu”
name=“talk”
action=`cocreate -i MYPROC talk` open Form.talk

Figure 3-46. Menu.talk: An Example of Co-processing

In the form frame definition fileForm.talk, shown in Figure 3-47, the following
occurs:

• Theclose descriptor is responsible for destroying the communication.

• The reread descriptor checks the pipe and rereads the frame definition
file if there is information pending.

• Field 1 is an inactive field, used simply to display text received from the co-
process.

• Field 2 is an active field which will get information from the user and send
it to the co-process (cosend). This is done via thevalid descriptor
which is evaluated when a field value changes.

Character User Interface Programming

3-66

• A SLK, F8, is defined to abort the co-process at any time. This is done by
forcing a close operation (as usual, the descriptorclose is evaluated when
a frame is closed).

form=“Talking ...”
close=`codestroy MYPROC`
reread=`cocheck MYPROC`

name=“”
fcol=0
rows=5
columns=20
inactive
value=“`coreceive MYPROC`”

name=“”
fcol=0
columns=20
valid=`cosend -n MYPROC “$F2”`TRUE

name=abort
button=8
action=`message “Communication stopped ...”`close

Figure 3-47. Form.talk: An Example of Co-processing

The following code segment illustrates how an interactive co-process (in this casetalk)
may be structured:

response=“nothing”
while :
do
echo “I received $response.”
 vsig
 read response
 if [“$response” = “goodbye”]
 then
 break
 fi
done
echo “goodbye”
vsig

Figure 3-48. talk: An Example of a Co-process

The executablevsig(1F) is used to send a signal telling the interpreter that information
is pending. This interrupt causesreread to be evaluated. For more information about co-
processing, see thecoproc(1F) manual page.

4
Application Level Definition Files

Introduction . 4-1
The Initialization File . 4-1

Introductory Frame Descriptors . 4-2
Example Definition of an Introductory Frame . 4-3

Banner Line Descriptors. 4-3
Example Definitions of a Banner Line . 4-4

Color Attribute Descriptors . 4-4
Examples of Defining Color Attributes. 4-6
Defining Color for the Banner Line . 4-6

General Application Descriptors . 4-6
Screen-labeled Function Key Descriptors . 4-9

Example Definitions of Screen-labeled Function Keys. 4-12
The Commands File. 4-12

Command Descriptors . 4-13
Example of Adding an Application-specific Command 4-13
Example of Disabling an Existing FMLI Command 4-14

The Alias File . 4-14
Examples of Adding Path Aliases . 4-14

fmli Command Syntax. 4-15

Character User Interface Programming

4-1

4
Chapter 4Application Level Definition Files

4
4
4

Introduction 4

This chapter describes the optional application level files that you can define for your
application. The application level definition files define attributes of the application as a
whole.

• “The Initialization File” on page 4-1 describes, among other things, how to
define an introductory frame (say, a copyright notice), and how to redefine
the banner line, the colors to be displayed on color terminals, and the
default functions and labels assigned to screen-labeled keys. Examples are
given.

• “The Commands File” on page 4-12 describes how to disable or redefine
existing FMLI commands, and define new ones. Examples are given.

• “The Alias File” on page 4-14 describes how to define aliases for lengthy
path names to files or devices, and how to define search paths (like$PATH
in the UNIX system shell). Examples are given.

• “fmli Command Syntax” on page 4-15 discusses the syntax of thefmli
command, and explains how to supply names of the initialization file, the
commands file, and the alias file as arguments whenfmli is invoked.

The Initialization File 4

The initialization file is a file containing descriptors that apply to your application as a
whole. If you want to use an initialization file for your application, its name can be sup-
plied as an argument,-i initialization_file, when thefmli command is invoked. As its
name implies, its contents are read when your application is invoked. (It can also be reread
using thereinit command.) In the initialization file you can define the following facets
of your application:

• a transient introductory frame, displaying the application name

• a banner, its position, and other elements of the banner line

• the colors of various elements of the FMLI screen

• the behavior of some aspects of your application, such as choices menus,
and user access to the UNIX system

• screen-labeled function keys (SLKs) and their layout

Character User Interface Programming

4-2

A suggested order for initialization file descriptors is the following, although the only
order that is enforced is that any sets of screen-labeled function key descriptors must be
last in the initialization file.

[introductory_frame_descriptor_1
.
.
.
introductory_frame_descriptor_n]

[banner_line_descriptor_1
.
.
.
banner_line_descriptor_n]

[color_attribute_descriptor_1
.
.
.
color_attribute_descriptor_n]

[general_application_descriptor_1
.
.
.
general_application_descriptor_n]

[SLK-n_descriptor_1
.
.
.
SLK-n_descriptor_n
...]

Note that all sets of descriptors in an initialization file are optional, as is the initialization
file itself.

Introductory Frame Descriptors 4

An introductory frame is a frame that is displayed briefly when your application starts, and
is then cleared from the screen and replaced by the frame(s) you specify as arguments
whenfmli is invoked as the initial frame(s) to open. The introductory frame will be dis-
played again briefly when the user exits from your application.

The introductory frame is defined with four descriptors normally used to define a text
frame. Note, however, that the defaults are different when they are used in an initialization
file.

The introductory frame descriptors are described below. Either thetitle or text
descriptor must be included in the set of introductory frame descriptors.

Application Level Definition Files

4-3

columns Thecolumns descriptor defines how many columns wide you want the intro-
ductory frame to be. It defaults to the integer value50 if not defined for an
introductory frame.

rows The rows descriptor defines how many rows high you want the introductory
frame to be. It defaults to the integer value10 if not defined for an introduc-
tory frame.

text The text descriptor defines the text you want to display in the introductory
frame. It defaults to NULL if not defined. If neither thetitle descriptor or
the text descriptor is defined in the initialization file, the introductory frame
will not be displayed.

title The title descriptor defines the title that will appear at the top of the intro-
ductory frame. It defaults to NULL if not defined. It will be truncated if it is
longer thanDISPLAYW-6. If neither thetitle descriptor or thetext
descriptor is defined, the introductory frame will not be displayed.

Example Definition of an Introductory Frame 4

A definition for an introductory frame is simple, as the following example shows:

title=“WELCOME TO”
text=“My Application
Copyright (c) 1989
My Software, Inc.
All rights reserved.”
rows=5
columns=25

Backquoted expressions, containing calls to built-in utilities, may also be used, as in this
line:

text=“`readfile DEF_FILES/myintrotext`”

which will cause the text frame definition filemyintrotext to be read from the direc-
tory whose alias is defined to beDEF_FILES, and passed to thetext descriptor as the
argument. (See “The Alias File” on page 4-14 for more information about how to define
aliases.)

Banner Line Descriptors 4

Your application can display a different banner on the banner line. Thebanner descriptor
must be included in the set of banner line descriptors.

bancol Thebancol descriptor defines the position of the banner in the banner line. If
not defined, this descriptor defaults tocenter . It accepts the following val-
ues of type position:

center centers the value ofbanner in the banner line

integer the banner will begin in the column specified byinteger

Character User Interface Programming

4-4

banner Thebanner descriptor defines information that will appear in the banner line
on the user's screen while your FMLI application is running. If not defined, it
defaults to NULL.

working Theworking descriptor defines a string used to notify users that they must
wait until FMLI completes an activity. It always appears flush-right on the
banner line. If this descriptor is not defined, it defaults to the stringWorking .

NOTE

Taking care that other items on the banner do not run into this area
is the responsibility of the developer.

Example Definitions of a Banner Line 4

The following lines in an initialization file will give you a banner with the program name,
the date, and the time the FMLI application was started on the banner line (top line of the
screen), starting in the 30th column:

banner=“MYPROGRAM - `date`”
bancol=30

Theworking icon appears right-justified on the banner line. You can change the working
icon, toBUSY for example, by defining theworking descriptor in your initialization file
as follows:

working=“BUSY”

You may also put an application-specific indicator on the banner line by using the built-in
utility indicator (see theindicator(1F) manual page for complete details on its
use).

Color Attribute Descriptors 4

The color attribute descriptors allow you to define the colors of various elements of the
FMLI screen. The color descriptors can only be defined in the initialization file. They will
be ignored in other files.

curses(3curses) requires that the colors be set in pairs. This means you must set
both the foreground and background for a specific element of the screen; otherwise it will
default to monochrome. The pair for each color descriptor is indicated in the descriptions
that follow.

NOTE

If you set the foreground and background to the same color, you
will not be able to see the text.

Application Level Definition Files

4-5

The colors that can be used as values for the color attribute descriptors, for either fore-
ground or background, are the following:

• black

• blue

• green

• cyan

• red

• magenta

• yellow

• white

You may redefine these colors, or add new ones, with thesetcolor built-in utility (see
thesetcolor(1F) manual page for complete details on its use). Of course, if the termi-
nal your application is being run on cannot display color, FMLI automatically defaults to
monochrome.

The following descriptors can be used in the initialization file to specify color attributes
for the various screen elements. All of these descriptors are of type string and accept the
color values listed previously.

If the terminal your application is running on does not support color, these descriptors are
ignored. (You can use the built-in variableHAS_COLORS to test for color support.)

active_border Theactive_border descriptor defines the color of the
frame border when a frame is current (border foreground).
This will enforce the “solid line” look of the screen border.
The background for the active border is defined by
screen .

active_title_bar Theactive_title_bar descriptor defines the color of
the title background when a frame is current (background
for active_title_text).

active_title_text Theactive_title_text descriptor defines the color
of the title text when a frame is current (foreground for
active_title_bar).

banner_text Thebanner_text descriptor defines the color of all text
on the banner line. If this descriptor is not defined in the
initialization file, the banner text defaults to white. The
background for this text is defined byscreen .

highlight_bar Thehighlight_bar descriptor defines the color of the
menu se lec to r bar (background fo r
highlight_bar_text).

highlight_bar_text Thehighlight_bar_text descriptor defines the color
o f the menu se lec to r bar tex t (fo reground fo r
highlight_bar).

Character User Interface Programming

4-6

inactive_border The inactive_border descriptor defines the color of
the frame border when a frame is non-current (border fore-
ground). The background for the inactive border is defined
by screen .

inactive_title_bar The inactive_title_bar descriptor defines the color
of the title background when a frame is non-current (back-
ground forinactive_title_text).

inactive_title_text The inactive_title_text descriptor defines the
color of the title text when a frame is non-current (fore-
ground forinactive_title_bar).

screen The screen descriptor defines the color of the screen
(screen background)

slk_bar Theslk_bar descriptor defines the color of the screen-
labeled function keys (background forslk_text).

slk_text Theslk_text descriptor defines the color of the screen-
labeled function key text (foreground forslk_bar).

window_text The window_text descriptor defines the color of the
text in a frame (text foreground). If this descriptor is not
defined in the initialization file, it defaults to white. The
background for this text is defined byscreen .

Examples of Defining Color Attributes 4

The examples below show how to define the color of an area of the screen, and how to use
the built-in utility setcolor example to redefine one of the default color definitions and
assign it to a portion of the screen.

Defining Color for the Banner Line 4

The color for text on the banner line is controlled by the descriptorbanner_text . If this
descriptor is not set, the default is white text on a background that is the same color as the
background for the rest of the screen.

banner_text=yellow

would make all text on the banner line yellow, and the background would be whatever you
set it to for the rest of the screen.

General Application Descriptors 4

The following descriptors can be used in the initialization file to define some display and
functional characteristics globally for your application.

autolayout The autolayout descriptor in an initialization file defines
whether the reasonable defaults for form field and label position-

Application Level Definition Files

4-7

ing available in this release of FMLI will be used. If not coded, it
defaults to FALSE. If it evaluates to TRUE, then the reasonable
defaults will be used in all forms of the application whoseauto-
layout descriptor is not coded. See “Automatic Layout of Form
Fields” on page 3-40 for full information.

This application-level descriptor may be coded TRUE to get the
defaults for an entire application, while a particular form'sauto-
layout descriptor may be coded FALSE to be explicitly pro-
tected from these defaults. This explicit enabling of the new
defaults is necessary to preserve compatibility with older applica-
tions; it was possible using the previous defaults of -1 for an appli-
cation to obtain labels without corresponding fields (to achieve
precisely formatted descriptive text) or fields without any labels.
Some applications have made use of this capability and will thus
not be broken.

interrupt The interrupt descriptor in an initialization file defines
whether any executable coded inaction or done descriptors in
your application can be interrupted by the user. If not coded, it
defaults to FALSE. If it evaluates to TRUE, then executables will
be interruptible.

If defined in an initialization file, the value ofinterrupt affects
executables in allaction anddone descriptors—in the SLK
section of the initialization file, in all frame definition files, and in
the commands file—unless otherwise defined at one of those lev-
els. (See “Interrupt Signal Handling” on page 2-39 for more infor-
mation.)

nobang Thenobang descriptor allows you to control user access to the
UNIX system shell and UNIX system commands from the com-
mand line. If not defined,nobang defaults to FALSE (users can
access the UNIX system shell).

FMLI allows users to escape to the UNIX system shell from the
command line (accessed withCTRL-j or CTRL-f c) by prefix-
ing an exclamation point (!) to the command to be executed in the
UNIX system. For example,

-->!pwd

But if nobang evaluates to TRUE, use of the! prefix to com-
mands entered on the command line will be disabled, and a mes-
sage to that effect is displayed on the message line. In addition,
whennobang evaluates to TRUE,open is also disabled from the
command line.

Character User Interface Programming

4-8

NOTE

The nobang descriptor does not disable theunix-system
command. See “The Commands File” on page 4-12 later in this
chapter for information on disabling access to the UNIX system
via theunix-system command.

oninterrupt The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received. Ifoninterrupt is not
defined anywhere in your application, it defaults to`message
Operation interrupted!` nop . If interrupt is not
coded anywhere in your application,oninterrupt is ignored.

If defined in an initialization file, the value ofoninterrupt
affects executables in allaction anddone descriptors—in the
SLK section of the initialization file, in all frame definition files,
and in the commands file—unless otherwise defined at one of
those lower levels.

(See “Interrupt Signal Handling” on page 2-39 for more informa-
tion.)

permanentmsg Thepermanentmsg descriptor defines information that will be
displayed on the message line until explicitly replaced or removed
by another message of permanent duration. (Messages of perma-
nent duration are those defined withpermanentmsg or with
message -p .)

A message of permanent duration can be temporarily displaced by
messages of frame duration or transient duration. When the frame
duration or transient duration message expires, the value of the
most recent use ofpermanentmsg or message -p will again
be displayed on the message line. (See themessage(1F) man-
ual page for complete information on message durations.)

slk_layout The slk_layout descriptor defines the layout of the screen
labels for function keys. Two layouts are supported:4-4 and3-
2-3 . The value4-4 causes screen labels to be displayed in two
groups of four, as follows:

F1 F2 F3 F4 F5 F6 F7 F8

The value3-2-3 causes screen labels to be displayed in three
groups of three, two, and three, in that order, as follows:

F1 F2 F3 F4 F5 F6 F7 F8

The default, if this descriptor is not defined, is3-2-3 .

toggle The toggle descriptor defines the way you want valid choices to
be displayed when a user pressesCHOICES in a form field for
which you have defined thermenu descriptor. By default, the
available choices are shown in the field itself if there are three or
fewer choices. If there are more than three choices, a pop-up menu

Application Level Definition Files

4-9

displays the available choices.

You can change this default behavior by defining thetoggle
descriptor in the initialization file. It accepts any of the following
values:

always When theCHOICES function key is pressed, users
will always be toggled through the choices in the field
itself.

integer When the number of choices is greater thaninteger, a
pop-up menu will be displayed. When the number of
choices is less than or equal tointeger, toggling will
occur.

never When theCHOICES function key is pressed, the
user will never be toggled through choices in the field
itself; a pop-up choices menu will always appear.

NOTE

If toggle evaluates to less than 1, it defaults to 3.

use_incorrect_pre4.0_behavior
Theuse_incorrect_pre4.0_behavior descriptor causes
FMLI to re-evaluate variables referenced with the$ notation until
no special characters remain in the expression. If this descriptor is
not defined, it defaults to FALSE.

If this descriptor evaluates to TRUE, then the$ notation behaves
in the manner defined for the$! notation, and the$! notation has
no special meaning. (See “Variable Evaluation” on page 2-8 for a
complete discussion of the$ and$! notation for variable evalua-
tion.)

NOTE

This descriptor, and consequently the ability to make the$ nota-
tion behave like the$! notation, will be removed in the next
release of FMLI.

Screen-labeled Function Key Descriptors 4

Eight labels appear on the last line of the user's screen to indicate the functions currently
assigned to the corresponding keyboard function keysF1 throughF8. The screen labels
are analogous to a set of menu items that are always displayed and from which the user
can make a selection at any time by pressing the corresponding function key. If a keyboard
does not have function keys, the user can select the function by using one of the alternative
keystroke sequencesCTRL-f 1 throughCTRL-f 8.

Character User Interface Programming

4-10

NOTE

FMLI downloads alternative keystroke sequences into the func-
tion keys of some terminals at the user's request. For a discussion,
see Appendix B.

FMLI provides two sets of screen labels for function keys. There are eight screen labels in
each set. FMLI has preassigned functions to only the first set of eight for each frame type.

* Function keyF2 is assigned themark command only in multi-select menus.
In single-select menusF2 has no default assigned.

** Function keysF8 andF16 will default tochg-keys only if any of keysF9
throughF15 are defined by the developer.

Function keysF1 throughF7 in the first set can be disabled but not redefined. Function
keysF8 throughF16 may be defined. However, if you defineF8 or F16, the user loses
the ability to alternate between the two sets of SLKs. If you want to definePREV-FRM,
NEXT-FRM, PREVPAGE, or NEXTPAGE, on the second set of function keys, the
labels must be spelled exactly as they are on the first set (case is irrelevant).

NOTE

When you redefine screen-labeled function keys in the initializa-
tion file, your definitions become the defaults. Screen-labeled
function keys may also be defined in individual form, menu, and
text frame definition files. When they are defined in frame defini-
tion files, those definitions override the defaults (either the FMLI-
defined defaults, or the defaults you may have defined in the ini-
tialization file) while that frame is active.

Figure 4-1. Default Screen-labeled Keys

Function
Key

Menu
Frame

Form
Frame

Text
Frame

Choices
Menu

Command
Menu

F1 help help help help

F2 mark* choices prevpage

F3 enter save nextpage enter

F4 prev-frm prev-frm prev-frm

F5 next-frm next-frm next-frm

F6 cancel cancel cancel cancel cancel

F7 cmd-menu cmd-menu cmd-menu

F8 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

F16 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

Application Level Definition Files

4-11

You can define which set of screen-labeled function keys first appears when a frame is
opened by defining the frame level descriptoraltslks in menu, text, and form definition
files. If altslks evaluates to TRUE, the screen labels for function keys 9 through 16 will
be displayed when the frame is first opened.

The following is a list of the descriptors used to define screen-labeled function keys. The
name andbutton descriptors must be included in each set of SLK descriptors, and
name must be first.

NOTE

Keep in mind that the screen-labeled function keys must be the
last things defined in the initialization file, or in any frame defini-
tion file.

action Theaction descriptor defines the command to execute when the
particular screen-labeled function key is selected.

button Thebutton descriptor specifies the screen-labeled function key
you are defining or disabling. The value ofbutton is an integer
corresponding to the number of the function key (1 through 16) to
which the screen label corresponds.

interrupt The interrupt descriptor defines whether an executable that is
coded in theaction descriptor can be interrupted by the user. If
not coded,interrupt defaults to FALSE. If this descriptor
evaluates to TRUE, then executables will be interruptible.

If the interrupt descriptor is defined for a SLK in the initial-
ization file, that value is inherited by the SLK unless the SLK is
redefined in a frame definition file. Redefining a SLK in a frame
definition file completely overrides a definition of it you may have
coded in the initialization file. For example, if you defineinter-
rupt for a particular SLK in the initialization file, but do not
includeinterrupt in a redefinition of that SLK in a frame defi-
nition file, the SLK will inherit the value of theinterrupt
descriptor defined at the next higher inheritance level (from the
frame descriptors if defined there, then from the general descrip-
tors in the initialization file if defined there, then from the FMLI
defaults).

name The name descriptor defines the name that is displayed on the
screen label. The value ofname must be 8 or fewer characters.
Defining name as a null string (name=“”) will disable the func-
tion key.

oninterrupt The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received. If it is not defined anywhere
in your application, it defaults tòmessage Operation
interrupted!`nop . It is ignored ifinterrupt is not coded
anywhere in your application or ifinterrupt evaluates to
FALSE.

Character User Interface Programming

4-12

If the oninterrupt descriptor is defined for a SLK in the ini-
tialization file, that value is current for the SLK, unless the SLK is
redefined in a frame definition file. If a SLK is redefined in a
frame definition file, all descriptors for that SLK in the initializa-
tion file, including theoninterrupt descriptor, are ignored. If a
SLK definition does not defineoninterrupt , the SLK inherits
the value set foroninterrupt from the frame level descriptors,
then from the application level section of the initialization file.

Example Definitions of Screen-labeled Function Keys 4

The following example shows how to

• disableF7 (labeledCMD-MENU and assigned the FMLI command
cmd-menu by default)

• defineF9 (the first SLK in set 2) to execute theexit command and dis-
play the screen labelEXIT

in the initialization file:

name=“”
button=7

name=“EXIT”
button=9
action=exit

The Commands File 4

FMLI commands can be added to theCommand Menu or disabled. You can also define
new, application-specific commands to appear in theCommand Menu. This is done in a
commands file. If you create a commands file for your application, its name must be sup-
plied as an argument,-c commands_file, whenfmli is invoked. Each set of descriptors is
ordered as follows:

[command_descriptor_1
.
.
.
command_descriptor_n
...]

NOTE

There is an absolute maximum of 64 sets of command descriptors
in a commands file.

Application Level Definition Files

4-13

Command Descriptors 4

Thename andaction descriptors must be included in each set of command descriptors,
andname must be first in each set.

action Theaction descriptor defines the operation to perform when the
commandname is selected.

help Thehelp descriptor defines a command to be executed when the
user asks for help onname. Since this descriptor is evaluated
when the user requests help, the specification of what help is dis-
played can be determined through parameters that are set interac-
tively.

interrupt The interrupt descriptor defines whether an executable that is
coded in theaction descriptor in a command definition can be
interrupted by the user. If not coded, it defaults to FALSE. If this
descriptor evaluates to TRUE, then executables defined for this
command'saction descriptor will be interruptible.

If defined among the general descriptors in an initialization file,
that value ofinterrupt affects all user-defined commands
which do not redefineinterrupt . Note that built-in FMLI com-
mands (such ascheckworld) cannot be interrupted.

name Thename descriptor defines a string (the name of the command)
that will appear in theCommand Menu and that users can enter
on the command line.

oninterrupt The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received. If it is not defined anywhere
in your application, it defaults tòmessage Operation
interrupted!`nop . The oninterrupt descriptor is
ignored if interrupt is not coded or ifinterrupt evaluates
to FALSE.

If defined among the general application descriptors in the initial-
ization file, that value ofoninterrupt affects all user-defined
commands which do not redefineoninterrupt .

Example of Adding an Application-specific Command 4

You might add a new, application-specific command as follows:

name=“date”
action=`date | message`nop
help=open $MYFRAMES/Text.datehelp

That will give the user adate command that puts the current date and time on the mes-
sage line.

Character User Interface Programming

4-14

Example of Disabling an Existing FMLI Command 4

You can disable an existing FMLI command,unix-system , for instance, by specifying

name=“unix-system”
action=nop

When an FMLI command that appears in theCommand Menu by default is disabled in
this way, its name no longer appears in theCommand Menu.

NOTE

When you disable an FMLI command in the commands file, the
command becomes unavailable not only to users, but to develop-
ers. That is, you cannot use that command in frame definition files
or application level files. In particular, do not disable theexit
command.

The contents of the commands file will be reflected in theCommand Menu. You should
avoid giving a command a name that is a partial match of another command, aspr is a
partial match of bothprev-frm andprevpage , because this makes it more difficult for
users to navigate to (select) that command using character matching.

The Alias File 4

The alias file is a file that contains lines of the form

alias=value

wherealias is a name to which you have assigned a path name to a file or a device. There
are two reasons for having an alias file:

• to simplify references to files or devices with lengthy path names

• to define search paths (similar to$PATH in the UNIX system shell)

The name of the alias file must be given as an argument on thefmli command line with
the-a alias_file option when it is invoked.

Examples of Adding Path Aliases 4

Whenever you reference a path name that does not begin with a/ or a$, FMLI will
check the alias file. For example:

MYTEXT=$HOME/myfiles/mytext

Application Level Definition Files

4-15

would allow the developer to refer to the text fileText.file in the directory
$HOME/myfiles/mytext asMYTEXT/Text.file .

The alias may also contain the name of the file or device, for example,

MYTEXT1=$HOME/myfiles/mytext/Text.file

but frame definition file names assigned to an alias must conform to the same naming con-
vention as file names on the invocation line.

More than one possible path may be assigned to a single alias by separating each path with
a colon (:). For example:

MYFILES=$HOME/myfiles:$HOME/test/myfiles

would search$HOME/myfi les fi rs t , and i f the fi le is not found search
$HOME/test/myfiles whenever the alias$MYFILES is used. This is similar to the
way$PATH is searched in the UNIX system.

fmli Command Syntax 4

The executable filefmli invokes the Form and Menu Language Interpreter and opens the
file(s) you have named as the initial frame definition file(s) to open. It requires at least one
argument: an initial frame to open. Subsequent interactions are driven by this initial frame.

The syntax of thefmli command is as follows:

fmli [-i initialization_file] [-c commands_file] [-a alias_file] file ...

wherefile is the path name of a frame definition file describing the frame(s) to be opened
initially. The argumentfile must follow the file naming conventionMenu. xxx for a menu
definition file,Form. xxx for a form definition file, andText. xxx for a text frame defini-
tion file, wherexxx is any string that conforms to UNIX system file naming conventions.
The descriptorlifetime will be ignored for all frames opened by argument tofmli .
Such frames have a lifetime ofimmortal by default.

Optionally, you may provide the names ofinitialization_file, commands_file, andalias_file.
The initialization_file provides specific global instructions that allow for customization of
the application, such as redefining screen colors or the default labels and functions
assigned to SLKs. Thecommands_file allows the definition of commands specific to your
application. Thealias_file provides access to files via a shell-like ($PATH) notation, and
allows you to define short, easy-to-use aliases for long path names to files.

NOTE

FMLI does not use the end-of-file marker to determine when to
exit an application; it uses the FMLIexit command. For this
reason, it is strongly advised that input to FMLI or FMLI applica-
tions not be from a pipe (|), a redirected file (<), or a here docu-
ment (<<).

Character User Interface Programming

4-16

5
Introduction to ETI

Overview . 5-1
What Is ETI? . 5-1

The ETI Libraries . 5-1
The ETI/terminfo Connection . 5-3
Other Components of the Screen Management System. 5-4

Character User Interface Programming

5-1

5
Chapter 5Introduction to ETI

5
5
5

Overview 5

Screen management programs are a common component of many commercial computer
applications. These programs handle input and output at a video display terminal. A
screen program might move a cursor, print a display, or divide a terminal screen into win-
dows. Many screen management programs build end-user terminal interfaces to help users
enter and retrieve information from a database — interfaces such as forms, menus, and
help and error message displays.

This document explains how to use the Extended Terminal Interface (ETI) package to
write screen management programs on a UNIX system. (It also tells you what you need to
know about theterminfo database to use ETI.) To start you writing screen management
programs as soon as possible, the document does not attempt to cover every routine in the
libraries. Although it covers all routines in the high-level libraries (those that build panels,
menus, and forms), it covers only the most frequently used routines in the low-level library
(curses). For more information, this document points you to thecurses(3curses) ,
terminfo(4) , and other manual pages in this guide. Keep these documents close at
hand; you'll find them invaluable when you want to know more about these and other rou-
tines.

Because the routines are compiled C functions, you should be familiar with the C pro-
gramming language before using ETI. You should also be familiar with the UNIX system/
C language standard I/O package (see thestdio(3S) manual page) With that knowl-
edge and an appreciation for the philosophy of building on the work of others, you can
design screen management programs for many purposes.

What Is ETI? 5

ETI is a set of C library routines that promote the development of application programs
that display and manipulate windows, panels, menus, and forms and run under the UNIX
system. The rest of this chapter explains the nature of these libraries and the connection
between ETI and theterminfo library and database.

The ETI Libraries 5

ETI consists of

Character User Interface Programming

5-2

• the low-level (curses) library

• thepanel library

• themenu library

• theform library

• the TAM transition library

The routines are C functions and macros; many of them resemble routines in the standard
C library. For example, there's a routineprintw that behaves much likeprintf(3S)
and another routinegetch that behaves likegetc(3S). The automatic teller program
at your bank might useprintw to print its menus andgetch to accept your requests for
withdrawals (or, better yet, deposits). A visual screen editor like the UNIX system screen
editor vi(1) might also use these and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes the amount
a cursor has to move around a screen to update it. For example, if you designed a screen
editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus.

to read

ETI is the best package for creating forms and menus.

the program would change onlythe best in place ofa great . The other characters
would be preserved. Because the amount of data transmitted—the output—is minimized,
cursor optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for the ter-
minal on which an ETI program is run. This means that ETI can do whatever is required to
update many different terminal types. It searches theterminfo database (described
below) to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs? First, it saves
you time in describing in a program how you want to update screens. Second, it saves a
user's time when the screen is updated. Third, it reduces the load on your UNIX system's
communication lines when the updating takes place. Fourth, you don't have to worry about
the myriad of terminals on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to move a cursor to
the middle of a terminal screen and print the character stringBullsEye . Each of these
routines is described later in this chapter. For now, just look at their names and you will get
an idea of what each of them does:

Introduction to ETI

5-3

Screen 5-1. A Simple ETI Program

The ETI/terminfo Connection 5

terminfo is both a set of routines that make use of the capabilities of a wide range of
terminals and a database that contains descriptions of the terminals that can be used with
ETI. Its use as a database is our concern here. See Chapter 13 for details on its use as a set
of routines.

A screen management program with ETI routines refers to theterminfo database at run
time to obtain the information it needs about the terminal being used—what we'll call the
current terminal from here on.

Suppose, for instance, that you are using a Teletype 5425 terminal to run the simple ETI
program shown in Figure 5-1. To execute properly, the program needs to know how many
lines and columns the terminal screen has to print theBullsEye in the middle of it. The
description of the Teletype 5425 in the terminfo database has this information, as well as
other information about the terminal's capabilities and how it performs various operations
— for example, how its control characters are interpreted. All ETI needs to know before it
goes looking for the information is the name of your terminal.

You tell the program the name by putting it in the environment variable$TERM when you
log in or by setting and exporting$TERM in your .profile file (seeprofile(4)).
Knowing $TERM, an ETI program run on the current terminal can search theterminfo
database to find the correct terminal description.

For example, assume that the following lines are in a.profile :

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports it. (Seeprofile(4) .)
The third line of the example tells the UNIX system to initialize the current terminal. That
is, it makes sure that the terminal is set up according to its description in theterminfo
database. (The order of these lines is important.$TERM must be defined and exported first,
so that whentput(1) is called the proper initialization for the current terminal takes

#include <curses.h>

main()
{
 initscr();

 move(LINES/2 - 1, COLS/2 - 4);
 addstr(“Bulls”);
 refresh();
 addstr(“Eye”);
 refresh();
 endwin();
}

Character User Interface Programming

5-4

place.) If you had these lines in your.profile and you ran an ETI program, the pro-
gram would get the information that it needs about your terminal from the file/usr/
share/lib/terminfo/5/5425 in the database, which provides a match for$TERM.
For more information about theterminfo database, see Chapter 13 in this guide.

Other Components of the Screen Management System 5

You have been given a brief look at the main components of screen management. This sec-
tion will complete the overview by making you familiar with the other components of this
system.

The terminfo database has already been described as one of the main components of
the screen management system. The rules for creating a terminal description source file
are in the manual pageterminfo(4) . The source file is then compiled usingtic .
Unless you have created a shell environment variable calledTERMINFO that indicates a
different path,tic will place the compiled description file into the proper directory under
/usr/share/lib/terminfo (provided that you have permission to create or over-
write files in that directory). To usetic simply type:

tic filename

Figure 5-1. Components of the Screen Management System

Component Brief Description

terminfo
database

Files found under/usr/share/lib/terminfo/?/* ;
these files contain compiled terminal descriptions.? is the
first letter of the terminal name, and* is the terminal name.

tic(1M) terminfo(4) defines terminal description source files.
tic compiles them intoterminfo database files.

infocmp(1M) A routine that prints and compares compiled terminfo
description files.

captoinfo(1M) A routine that converts oldtermcap files toterminfo
database files.

terminfo(4) Defines both theterminfo database files and the routines
used to manipulate and instantiate the strings of data in those
files.

tput(1) A terminfo routine that causes a string from theter-
minfo database to be sent to the terminal, thus setting one
or more parameters.

curses(3curses) A library of C routines that uses information in theter-
minfo database. The routines are terminal independent.
They optimize cursor movement and allow for the easy pro-
gramming of screen handling code.

Other manual pages to
read

layers(1), stdio(3S), profile(4),
scr_dump(4), term(4), term(5)

Introduction to ETI

5-5

You may use the-v option to get a running commentary. An integer from 1 to 10 may fol-
low the option (no space) to set the level of verbosity. The default
is 1.

The system uses the shell environment variableTERMINFO to find the terminal descrip-
tion files. Initializing a terminal will causeTERMINFO to be set to null and then be con-
verted to/usr/share/lib/terminfo unless you have already set it to some other
path ($HOME/bin , for example). The system will look for the definition of a specific ter-
minal under$TERMINFO/?/* , where? is the first letter of the terminal name, and* is
the terminal name.

Once a terminal description file has been compiled, it is no longer human readable. The
routineinfocmp translates a compiled description file back to source statements. Invok-
ing the command without arguments will print out the description of the terminal defined
by the shell environment variableTERM. A single argument is taken as the name of a ter-
minal you want to see the source description for. With no options declared (or-I), you
will see descriptions as defined in terminfo(4) . There are options for seeing the C
variable names (-L), the oldtermcap names (-C), and all output intermcap format
(-r).

If two arguments are given,infocmp assumes they identify two descriptions you want to
compare. If no options are given (or-d), the differences are printed. You may also ask for
a list of capabilities that the two have in common (-c) or a list of capabilities that neither
describes (-n). In all of the above cases, the output lists the Boolean fields first, the
numeric fields second, and the strings third.

infocmp also has options to print, trace, sort, compare files in two different directories,
and output a source file derived from the union of two or more compiled description files.
For more information consult theinfocmp manual page.

Early versions of the UNIX system used a different method of describing terminals, called
termcap . You can convert atermcap file to aterminfo file by usingcaptoinfo . If
the command is invoked with no arguments, the shell environment variableTERMCAP is
used to get the path and the shell environment variableTERM to get the terminal. IfTERM-
CAP is null, the routine tries to convert/usr/share/lib/termcap . If a file name is
given as an option, that is the file that will be converted. The output is to standard out, and
may be piped. Options include a trace mode (-v), one field to a line output (-l), and
changing the output width (-w).

One of the definitions given earlier forterminfo was that it is a group of routines within
curses that allow you to manipulate the data in a terminal description file. This small
library of routines is documented in this guide and in thecurses(3curses) manual
pages. The command tput(1) will allow you to perform many of these manipulations
from the command line or in a shell script.

tput can always be given the-T terminaltype option, but doesn't need it if the shell envi-
ronment variableTERM is set. It can be giveninit , reset , or longname as special
arguments. These initialize, reset, and print out the name of the terminal, respectively.
Finally, you can use the name of aterminfo(4) terminal attribute or capability (called
a (capname) as an argument. These capabilities can fall into three categories; Boolean,
numeric, and strings. If the (capname you specify is a string, you may include, as an argu-
ment, a list of parameters to insert into coded places in the string (instantiation).

Character User Interface Programming

5-6

This completes the overview of the screen management system. More detailed information
starts in the next chapter. If you elect to skip this and go directly to the manual pages,
remember that the examples at the end of the guide might still prove useful.

6
Basic ETI Programming

Introduction . 6-1
What Every ETI Program Needs . 6-1

The Header Files. 6-1
The Routines initscr, refresh, endwin. 6-2

Compiling an ETI Program . 6-4
Using the TAM Transition Library. 6-4

Running an ETI Program. 6-4
More about initscr and Lines and Columns. 6-5
More about refresh and Windows . 6-5

Pads. 6-7

Character User Interface Programming

6-1

6
Chapter 6Basic ETI Programming

6
6
6

Introduction 6

This chapter describes the low-level routines and other components that every ETI pro-
gram needs to work properly. It tells you how to compile and run ETI applications using
the low-level libraries and introduces important concepts (such as refreshing) that recur
throughout this document.

What Every ETI Program Needs 6

All ETI programs need to include the header filecurses.h and call the routines
initscr , refresh , or similar routines, andendwin . Some of the other header files,
however, includecurses.h .

The Header Files 6

The header filesmenu.h , form.h , andpanel.h define several global variables and
data structures and defines several ETI routines as macros.

To begin, let's consider the variables and data structures defined.curses.h , among other
things, defines the integer variablesLINES andCOLS; when an ETI program is run on a
particular terminal, these variables are assigned the vertical and horizontal dimensions of
the terminal screen, respectively, by the routineinitscr described below.

NOTE

LINES andCOLS are external (global) variables that represent the
size of a terminal screen. Two similar variables,$LINES and
$COLUMNS, may be set in a user's shell environment; an ETI pro-
gram uses the environment variables to determine the size of a
screen. Whenever we refer to the environment variables in this
chapter, we will use the$to distinguish them from the C declara-
tions in thecurses.h header file.

Character User Interface Programming

6-2

For more information about these variables, see “The Routines
initscr, refresh, endwin” on page 6-2 and “More about initscr and
Lines and Columns” on page 6-5.

The integer variablesCOLORS andCOLOR_PAIRS are also defined incurses.h . These
will be assigned, respectively, the maximum number of colors and color-pairs the terminal
can support. These variables are initialized by thestart_color routine. (See “Color
Manipulation” on page 7-14.)

The header files define the integer constantsOK, E_OK, ERR (E_OK is ineti.h), and oth-
ers listed in the following chapters. ETI routines that returnint values return these con-
stants under the following conditions:

OK returned if a low-level or panel function completes properly

E_OK returned if a menu or form function does so

ERR returned if a low-level function encounters an error

The other error values returned by the high-level functions are described in the appropriate
chapters below.

Now let's consider the macro definitions.curses.h defines many ETI routines as macros
that call other macros or ETI routines. For instance, the simple routinerefresh is a
macro. The line

#define refresh() wrefresh(stdscr)

shows that whenrefresh is called, it is expanded to call the ETI routinewrefresh . In
turn,wrefresh (although it is not a macro) calls the two ETI routineswnoutrefresh
anddoupdate . Many other routines also group two or three routines together to achieve
a particular result.

CAUTION

Macro expansion in ETI programs may cause problems with cer-
tain sophisticated C features, such as the use of automatic incre-
menting variables.

One final point aboutcurses.h : it automatically includesstdio.h and thetermio.h
tty driver interface file. Including either file again in a program is harmless but wasteful.

The Routines initscr, refresh, endwin 6

The routinesinitscr , refresh , andendwin initialize a terminal screen to an “in ETI
state,” update the contents of the screen, and restore the terminal to an “out of ETI state,”
respectively. Consider the simple program introduced earlier and reproduced in
Screen 6-1.

Basic ETI Programming

6-3

Screen 6-1. The Purposes of initscr, refresh, and endwin in a Program

An ETI program usually starts by callinginitscr ; your program should callinitscr
only once. This routine uses the environment variable$TERM to determine what terminal
is being used. (See “The ETI/terminfo Connection” on page 5-3 for details.) It then initial-
izes all the declared data structures and other variables fromcurses.h . For example,
initscr would initializeLINES andCOLS for the sample program on whatever termi-
nal it was run. If the Teletype 5425 were used, this routine would initializeLINES to 24
andCOLS to 80. Finally, this routine writes error messages tostderr and exits if errors
occur.

During the execution of the program, output and input is handled by routines likemove
andaddstr in the sample program. For example,

 move(LINES/2 - 1, COLS/2 - 4);

says to move the cursor to the left of the middle of the screen. The line

 addstr(“Bulls”);

says to write the character stringBulls . For example, if the Teletype 5425 were used,
these routines would position the cursor and write the character string at (11,36).

NOTE

All ETI routines that move the cursor move it from its home posi-
tion in the upper left corner of a screen. The(LINES,COLS)
coordinate at this position is (0,0) not (1,1). Notice that the verti-
cal coordinate is given first and the horizontal second, which is the
opposite of the common 'x,y' order of screen (or graph) coordi-
nates. The1 in the sample program takes the (0,0) position into
account to place the cursor on the center line of the terminal
screen.

Routines likemove andaddstr do not actually change a physical terminal screen when
they are called. The screen is updated only whenrefresh is called after one or more

#include <curses.h>

main()
{
 initscr(); /* initialize terminal settings and curses.h
 data structures and variables */

 move(LINES/2 - 1, COLS/2 - 4);
 addstr(“Bulls”);
 refresh(); /* send output to (update) terminal screen */
 addstr(“Eye”);
 refresh(); /* send more output to terminal screen */
 endwin(); /* restore all terminal settings */
}

Character User Interface Programming

6-4

windows (internal representations of the screen) are updated. This is a very important con-
cept, which we discuss under “More about refresh and Windows” on page 6-5.

Finally, an ETI program ends by callingendwin . This routine restores all terminal set-
tings and positions the cursor at the lower left corner of the screen.

Compiling an ETI Program 6

You compile programs that include ETI routines as C language programs. This means that
you use thecc(1) command to invoke the C compiler. (See the Concurrent C Reference
Manual for details).

The routines are usually stored in the library/usr/ccs/lib/lib X.a, whereX signifies
eithercurses , panel , menu, or form , depending on which library your program needs.
To direct the link editor to search this library, you must use the-l option with thecc
command.

The general command line for compiling an ETI program follows:

cc file.c [-lX] -lcurses -o file

whereX is eitherpanel , menu, or form ; file.c is the name of the source program; and
file is the executable object module. See the appropriate chapter below for more informa-
tion.

Using the TAM Transition Library 6

Some users may have applications using the TAM library routines that originally ran on
the UNIX PC. Appendix C of this document, explains how to compile and run these appli-
cations on any machine of the 3B2 computer family.

Running an ETI Program 6

ETI programs count on certain information being in a user's environment to run properly.
Specifically, users of a ETI program should usually include the following three lines in
their .profile files:

TERM=current terminal type
export TERM
tput init

For an explanation of these lines, turn again to the section “The ETI/terminfo Connection”
on page 5-3. Users of an ETI program could also define the environment variables
$LINES , $COLUMNS, and$TERMINFO in their .profile files. However, unlike
$TERM, these variables do not have to be defined.

Basic ETI Programming

6-5

If an ETI program does not run as expected, you might want to debug it withsdb(1) .
When usingsdb , you have to keep a few points in mind. First, an ETI program is interac-
tive and always has knowledge of where the cursor is located. An interactive debugger like
sdb , however, may cause changes to the contents of the screen of which the ETI program
is not aware.

Second, an ETI program doesn't output to a window untilrefresh or a similar routine is
called. Because output from the program may be delayed, debugging the output for con-
sistency may be difficult.

Third, setting break points on ETI routines that are macros, such asrefresh , does not
work. You have to use the routines defined for these macros, instead; for example, you
have to usewrefresh instead ofrefresh . See “The Header Files” on page 6-1 for
more information about macros.

More about initscr and Lines and Columns 6

After determining a terminal's screen dimensions,initscr sets the variablesLINES and
COLS. These variables are set from theterminfo variableslines andcolumns .
These, in turn, are set from the values in theterminfo database, unless these values are
overridden by the values of the environment$LINES and$COLUMNS.

More about refresh and Windows 6

As mentioned above, ETI routines do not update a terminal untilrefresh is called.
Instead, they write to an internal representation of the screen called a window. When
refresh is called, all the accumulated output is sent from the window to the current ter-
minal screen.

A window acts a lot like a buffer does when you use a UNIX system editor. When you
invokevi(1) , for instance, to edit a file, the changes you make to the contents of the file
are reflected in the buffer. The changes become part of the permanent file only when you
use thew or ZZ command. Similarly, when you invoke a screen program made up of ETI
routines, they change the contents of a window. The changes become part of the current
terminal screen only whenrefresh is called.

curses.h supplies a default window namedstdscr (standard screen), which is the size
of the current terminal's screen, for all programs using ETI routines. The header file
definesstdscr to be of the typeWINDOW*, a pointer to a C structure which you might
think of as a two-dimensional array of characters representing a terminal screen. The pro-
gram always keeps track of what is on the physical screen, as well as what is instdscr.
Whenrefresh is called, it compares the two screen images and sends a stream of char-
acters to the terminal that make the physical screen look likestdscr. An ETI program
considers many different ways to do this, taking into account the various capabilities of the
terminal and similarities between what is on the screen and what is on the window (std-
scr). It optimizes output by printing as few characters as is possible. Figure 6-1 and
Figure 6-2 illustrate what happens when you execute the sample ETI program that prints

Character User Interface Programming

6-6

BullsEye at the center of a terminal screen. Notice in the figure that the terminal screen
retains whatever garbage is on it until the firstrefresh is called. Thisrefresh clears
the screen and updates it with the current contents ofstdscr.

Figure 6-1. The Relationship between stdscr and a Terminal Screen (Sheet 1 of 2)

stdscr

stdscr physical screen

physical screen

stdscr physical screen

stdscr physical screen

(garbage)

(garbage)

(garbage)
Bulls

Bulls Bulls

refresh()

addstr(“Bulls”)

move(LINES/2-1,)
COLS/1-4)

[2,3]

initscr()

Basic ETI Programming

6-7

Figure 6-2. The Relationship between stdscr and a Terminal Screen (Sheet 2 of 2)

You can create other windows and use them instead ofstdscr. Windows are useful for
maintaining several different screen images. For example, many data entry and retrieval
applications use two windows: one to control input and output and one to print error mes-
sages that don't mess up the other window. It's possible to subdivide a screen into many
windows, refreshing each one of them as desired. And it's possible to create a window
within a window; the smaller window is called a subwindow. See Chapter 8 for more
information.

Pads 6

Some ETI routines are designed to work with a special type of window called a pad. A pad
is a window whose size is not restricted by the size of a screen or associated with a partic-
ular part of a screen. You can use a pad when you have a particularly large window or only
need part of the window on the screen at any one time. For example, you might use a pad
for an application with a spread sheet.

Figure 6-3 represents what a pad, a subwindow, and some other windows could look like
in comparison to a physical screen.

stdscr

stdscr physical screen

physical screen

stdscr physical screen

endwin()

refresh()

addstr(“Eye”)

BullsEye

BullsEye

BullsEye

BullsEye

Bulls

BullsEye

Character User Interface Programming

6-8

Figure 6-3. Multiple Windows and Pads Mapped to a Physical Screen

Chapter 8 describes the routines you use to create and use windows and pads. If you'd like
to see an ETI program with windows now, turn to thewindow program in Appendix D of
this document.

window window

subwindow

window

pad

pad
subpad

terminal screen

7
Simple Input and Output

Introduction . 7-1
Output . 7-1

addch. 7-1
addstr . 7-3
printw . 7-3
move . 7-4
clear and erase . 7-6
clrtoeol and clrtobot . 7-6

Input. 7-7
getch . 7-8
getstr . 7-9
scanw . 7-10

Output Attributes . 7-11
attron, attrset, and attroff . 7-13
standout and standend. 7-13
Color Manipulation . 7-14

How the Color Feature Works. 7-14
Using the COLOR_PAIR(n) Attribute . 7-16
Changing the Definitions of Colors. 7-17
Portability Guidelines . 7-17
Other Macros and Routines. 7-18
start_color . 7-18
init_pair . 7-19
init_color . 7-20

Bells, Whistles, and Flashing Lights: beep and flash . 7-21
Input Options . 7-21

echo and noecho . 7-23
cbreak and nocbreak . 7-23

Character User Interface Programming

7-1

7
Chapter 7Simple Input and Output

7
7
7

Introduction 7

This chapter explains the numerous functions that enable you to do I/O under the ETI
environment. It also covers the set of video attributes and options which can enhance ETI
output with striking visual effects.

Output 7

The routines that low-level {VS} provides for writing tostdscr are similar to those pro-
vided by thestdio(3S) library for writing to a file. They let you

• write a character at a time —addch

• write a string —addstr

• format a string from a variety of input arguments —printw

• move a cursor or move a cursor and print character(s) —move, mvaddch ,
mvaddstr , mvprintw

• clear a screen or a part of it —clear , erase , clrtoeol , clrtobot

Following are descriptions and examples of these routines.

CAUTION

The ETI library provides its own set of output and input functions.
You should not use other I/O routines or system calls, like
printf(3S) andscanf(3S) , in an ETI program. They may
cause undesirable results when you run the program.

addch 7

SYNOPSIS

#include <curses.h>
int addch(ch)
chtype ch;

Character User Interface Programming

7-2

NOTES

• addch writes a single character tostdscr and advances the cursor to the
next character position.

• The character is of the typechtype , which is defined incurses.h .
chtype contains data and attributes (see “Output Attributes” on page 7-11
for information about attributes).

• When working with variables of this type, make sure you declare them as
chtype and not as the basic type (for example, unsignedlong) that
chtype is declared to be incurses.h . This will ensure future compati-
bility.

• addch does some translations. For example, it converts

- the<NL> character to a clear to end of line and a move to the next
line

- the tab character to an appropriate number of blanks

- other control characters to their^X notation

• addch normally returnsOK. The only timeaddch returnsERR is after
adding a character to the lower right-hand corner of a window that does not
scroll.

• addch is a macro.

EXAMPLE

#include <curses.h>
main()
{
 initscr();
 addch('a');
 refresh();
 endwin();
}

The output from this program will appear as follows, witha in position 0, 0:

See also theshow program in Appendix D of this document.

a

$

Simple Input and Output

7-3

addstr 7

SYNOPSIS

#include <curses.h>
int addstr(str)
char * str;

NOTES

• addstr writes a string of characters tostdscr.

• addstr callsaddch to write each character.

• addstr follows the same translation rules asaddch .

• addstr returnsOK on success andERR on error.

• addstr is a macro.

EXAMPLE

Recall the sample program that prints the character stringBullsEye . See
Screen 6-1, Figure 6-1, and Figure 6-2.

printw 7

SYNOPSIS

#include <curses.h>
int printw(fmt [, arg...])
char * fmt;

NOTES

• printw handles formatted printing onstdscr.

• Like printf , printw takes a format string and a variable number of
arguments.

• Like addstr , printw callsaddch to write the string.

• printw returnsOK on success andERR on error.

EXAMPLE

#include <curses.h>
main()
{

char* title = “Not specified”;
int no = 0;

Character User Interface Programming

7-4

/* Missing code. */

initscr();

/* Missing code. */

printw(“%s is not in stock.\n”, title);
printw(

“Please ask the cashier to order %d for you.\n”,
no);

refresh();
endwin();

}

The output from this program will appear as follows:

move 7

SYNOPSIS

#include <curses.h>
int move(y, x)
int y, x;

NOTES

• move positions the cursor forstdscr at the given rowy and the given col-
umnx.

• Notice thatmove takes they coordinate before thex coordinate. The upper
left-hand coordinates forstdscr are (0,0), the lower right-hand (LINES -
1, COLS - 1). See the section “The Routines initscr, refresh, endwin”
on page 6-2 for more information.

• move may be combined with the write functions to form

- mvaddch(y, x, ch) , which moves to a given position and prints a
character

- mvaddstr(y, x, str) , which moves to a given position and prints
a string of characters

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$

Simple Input and Output

7-5

- mvprintw(y, x, fmt [,arg...]) , which moves to a given position
and prints a formatted string.

• move returnsOK on success andERR on error. Trying to move to a screen
position of less than (0,0) or more than (LINES - 1, COLS - 1) causes
an error.

• move is a macro.

EXAMPLE

#include <curses.h>
main()
{
 initscr();
 addstr(“Cursor should be here --> if move() works.”);
 printw(“\n\n\nPress RETURN to end test.”);
 move(0,25);
 refresh();
 getch(); /* Gets RETURN; discussed below. */
 endwin();
}

Here's the output generated by running this program:

After you pressRETURN, the screen looks like this:

See thescatter program in Appendix D of this document for another example using
move.

Cursor should be here --> if move() works.

Press RETURN to end test.

Cursor should be here --> if move() works.

Press RETURN to end test.
$

Character User Interface Programming

7-6

clear and erase 7

SYNOPSIS

#include <curses.h>
int clear()
int erase()

NOTES

• Both routines changestdscr to all blanks.

• clear assumes that the screen may have garbage that it doesn't know
about; this routine first callserase and thenclearok which clears the
physical screen completely on the next call torefresh for stdscr. See
the low-level {VS} orcurses(3curses) manual pages for more infor-
mation aboutclearok .

• initscr automatically callsclear .

• In ETI UNIX System V Release 3.1 and later releases,clear anderase
always returnOK.

• Both routines are macros.

clrtoeol and clrtobot 7

SYNOPSIS

#include <curses.h>
int clrtoeol()
int clrtobot()

NOTES

• clrtoeol changes the remainder of a line to all blanks.

• clrtobot changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

EXAMPLE

#include <curses.h>
main()
{
 initscr();
 addstr(“Press RETURN to delete from here to the end
 of the line and on.”);
 addstr(“\nDelete this too.\nAnd this.”);

Simple Input and Output

7-7

 move(0,30);
 refresh();
 getch();
 clrtobot();
 refresh();
 endwin();
}

Here's the output generated by running this program:

Notice the two calls torefresh : one to send the full screen of text to a terminal, the
other to clear from the position indicated to the bottom of a screen. Here's what the screen
looks like when you pressRETURN:

See theshow andtwo programs in Appendix D of this document for other uses ofclr-
toeol .

Input 7

Low-level ETI routines for reading from the current terminal are similar to those provided
by thestdio(3S) library for reading from a file. They let you

• read a character at a time —getch

• read a <NL>-terminated string —getstr

• parse input, converting and assigning selected data to an argument list —
scanw

The primary routine isgetch , which processes a single input character and then returns
that character. This routine is like the C library routinegetchar , described on the
getc(3S) manual page, except that it makes several terminal- or system-dependent
options available that are not possible withgetchar . For example, you can usegetch
with the ETI routinekeypad , which allows a low-level {VS} program to interpret extra
keys on a user's terminal, such as arrow keys, function keys, and other special keys that

Press RETURN to delete from here to the end of the line and on.
Delete this too.
And this.

Press RETURN to delete from here

$

Character User Interface Programming

7-8

t ransmi t escape sequences, and t reat them as jus t another key. See the
curs_inopts(3curses) manual page for more information aboutkeypad .

The following pages describe and give examples of the basic routines for getting input in a
screen program.

getch 7

SYNOPSIS

#include <curses.h>
int getch()

NOTES

• getch reads a single character from the current terminal.

• getch returns the value of the character orERR on end of file, receipt of
signals, or non-blocking read with no input.

• getch is a macro.

• See the discussions ofecho, noecho, cbreak, nocbreak, raw,
noraw, halfdelay, nodelay, and keypad below and in
curses(3curses) .

EXAMPLE

#include <curses.h>
main()
{
 int ch;

 initscr();
 cbreak();
 /* Explained later in the section “Input Options” */
 addstr(“Press any character: ”);
 refresh();
 ch = getch();
 printw(“\n\n\nThe character entered was a '%c'.\n”,

ch);
 refresh();
 endwin();
}

The output from this program follows. The firstrefresh sends theaddstr character
string fromstdscr to the terminal:

Simple Input and Output

7-9

Now assume that aw is typed at the keyboard.getch accepts the character and assigns it
to ch . Finally, the secondrefresh is called and the screen appears as follows:

For another example ofgetch , see theshow program in Appendix D of this document.

getstr 7

SYNOPSIS

#include <curses.h>
int getstr(str)
char * str;

NOTES

• getstr reads characters and stores them in a buffer until aRETURN,
<NL>, or <ENTER> is received fromstdscr. getstr does not check
for buffer overflow.

• The characters read and stored are in a character string.

• getstr is a macro; it callsgetch to read each character.

• getstr returnsERR if getch returnsERR to it. Otherwise it returnsOK.

• See the discussions ofecho, noecho, cbreak, nocbreak, raw,
noraw, halfdelay, nodelay, andkeypad below and in ETI
curses(3curses) .

EXAMPLE

#include <curses.h>
main()
{

Press any character:

Press any character: w

The character entered was a 'w'.

$

Character User Interface Programming

7-10

char str[256];

 initscr();
 cbreak();
 /* Explained later in the section “Input Options” */
 addstr(“Enter a character string terminated by

 RETURN:\n\n”);
 refresh();
 getstr(str);
 printw(“\n\n\nThe string entered was \n'%s'\n”, str);
 refresh();
 endwin();
}

Assume you entered the string'I enjoy learning about the UNIX system' .
The final screen (after enteringRETURN) would appear as follows:

scanw 7

SYNOPSIS

#include <curses.h>
int scanw(fmt [, arg...])
char * fmt;

NOTES

• scanw callsgetstr and parses an input line.

• Like scanf(3S) , scanw uses a format string to convert and assign to a
variable number of arguments.

• scanw returns the same values asscanf .

• Seescanf(3S) for more information.

EXAMPLE

#include <curses.h>

Enter a character string terminated by RETURN:

I enjoy learning about the UNIX system.

The string entered was
´I enjoy learning about the UNIX system.'

$

Simple Input and Output

7-11

main()
{
 char string[100];
 float number;

 initscr();
 cbreak(); /* Explained later in the */
 echo(); /* section “Input Options” */
 addstr(“Enter a number and a string separated by a

 comma: ”);
 refresh();
 scanw(“%f,%s”,&number,string);
 clear();
 printw(“The string was ”%s” and the number was %f. ”,
 string,number);
 refresh();
 endwin();
}

Notice the two calls torefresh . The first call updates the screen with the character
string passed toaddstr , the second with the string returned fromscanw . Also notice the
call to clear . Assume you entered the following when prompted:2,twin . After run-
ning this program, your terminal screen would appear as follows:

Output Attributes 7

When we talked aboutaddch , we said that it writes a single character of the type
chtype to stdscr. chtype has two parts: a part with information about the character
itself and another part with information about a set of attributes associated with the char-
acter. The attributes allow a character to be printed in reverse video, bold, underlined, in
colors and so on.

stdscr always has a set of current attributes that it associates with each character as it is
written. However, using the routineattrset and related ETI routines described below,
you can change the current attributes. Below is a list of the attributes and what they mean:

• A_BLINK — blinking

• A_BOLD — extra bright or bold

• A_DIM — half bright

• A_REVERSE — reverse video

The string was “twin” and the number was 2.000000.

$

Character User Interface Programming

7-12

• A_STANDOUT — a terminal's best highlighting mode

• A_UNDERLINE — underlining

• A_ALTCHARSET — alternate character set (see “Routines for Drawing
Lines and Other Graphics” on page 12-1)

(See “Color Manipulation” on page 7-14 for information on using colors.)

To use these attributes, you must pass them as arguments toattrset and related rou-
tines; they can also beORed with the bitwiseOR (|) to addch .

NOTE

Not all terminals are capable of displaying all attributes. If a par-
ticular terminal cannot display a requested attribute, an ETI pro-
gram attempts to find a substitute attribute. If none is possible, the
attribute is ignored.

Let's consider a use of one of these attributes. To display a word in bold, you would use the
following code:

Attributes can be turned on singly, such asattrset(A_BOLD) in the example, or in
combinat ion. To turn on bl ink ing bold text , for example, you would use
attrset(A_BLINK|A_BOLD) . Individual attributes can be turned on and off with the
ETI routinesattron andattroff without affecting other attributes.attrset(0)
turns all attributes off.

Notice the attribute calledA_STANDOUT. You might use it to make text attract the atten-
tion of a user. The particular hardware attribute used for standout is the most visually
pleasing attribute a terminal has. Standout is typically implemented as reverse video or
bold. Many programs don't really need a specific attribute, such as bold or reverse video,
but instead just need to highlight some text. For such applications, theA_STANDOUT
attribute is recommended. Two convenient functions,standout andstandend can be
used to turn on and off this attribute.standend , in fact, turns off all attributes.

In addition to the attributes listed above, there are two bit masks calledA_CHARTEXT and
A_ATTRIBUTES. You can use these bit masks with the ETI functioninch and the C log-
ical AND (&) operator to extract the character or attributes of a position on a terminal
screen. See the discussion ofinch on the curses(3curses) manual pages.

Following are descriptions ofattrset and the other ETI routines that you can use to
manipulate attributes.

...
printw(“A word in “);
attrset(A_BOLD);
printw(“boldface”);
attrset(0);
printw(“ really stands out.\n”);
...
refresh();

Simple Input and Output

7-13

attron, attrset, and attroff 7

SYNOPSIS

#include <curses.h>
int attron(attrs)
chtype attrs;
int attrset(attrs)
chtype attrs;
int attroff(attrs)
chtype attrs;

NOTES

• attron turns on the requested attributeattrs in addition to any that are
currently on.attrs is of the typechtype and is defined incurses.h .

• attrset turns on the requested attributesattrs instead of any that are
currently turned on.

• attroff turns off the requested attributesattrs if they are on.

• The attributes may be combined using the bitwise OR (|).

• All return 1 (notOK).

EXAMPLE

See thehighlight program in Appendix D of this document.

standout and standend 7

SYNOPSIS

#include <curses.h>
int standout()
int standend()

NOTES

• standout turns on the preferred highlighting attribute,A_STANDOUT,
fo r the cu r ren t te rm ina l . Th is rou t ine i s equ iva len t to
attron (A_STANDOUT).

• standend turns off all attributes. This routine is equivalent toattr-
set (0), whereattrset takes the argument0.

• Both always return 1 (notOK).

EXAMPLE

Again, see thehighlight program in Appendix D of this document.

Character User Interface Programming

7-14

Color Manipulation 7

Thecurses color manipulation routines allow you to use colors on an alphanumeric ter-
minal as you would use any other video attribute. You can find out if thecurses library
on your system supports the color routines by checking the file/usr/include/
curses.h to see if it defines the macroCOLOR_PAIR(n).

This section begins with a description of the color feature at a general level. Then the use
of color as an attribute is explained. Next, the ways to define color-pairs and change the
definitions of colors is explained. Finally, there are guidelines for ensuring the portability
of your program, and a section describing the color manipulation routines and macros,
with examples.

How the Color Feature Works 7

Colors are always used in pairs, consisting of a foreground color (used for the character)
and a background color (used for the field the character is displayed on).curses uses
this concept of color-pairs to manipulate colors. In order to use color in acurses pro-
gram, you must first define (initialize) the individual colors, then create color-pairs using
those colors, and finally, use the color-pairs as attributes.

Actually, the process is even simpler, sincecurses maintains a table of initialized colors
for you. This table has as many entries as the number of colors your terminal can display
at one time. Each entry in the table has three fields: one each for the intensity of the red,
green, and blue components in that color.

NOTE

curses uses RGB (Red, Green, Blue) color notation. This nota-
tion allows you to specify directly the intensity of red, green, and
blue light to be generated in an additive system. Some terminals
use an alternative notation, known as HSL (Hue, Saturation,
Luminosity) color notation. Terminals that use HSL can be identi-
fied in theterminfo database, andcurses will make conver-
sions to RGB notation automatically.

At the beginning of anycurses program that uses color, all entries in the colors table are
initialized with eight basic colors, as follows:

Table 7-1. The Default Colors Table

Intensity of Component

(R)ed (G)reen (B)lue

/* black: 0 */ 0 0 0

/* red: 1 */ 1000 0 0

/* green: 2 */ 0 1000 0

Simple Input and Output

7-15

Most color alphanumeric terminals can display eight colors at the same time, but if your
terminal can display more than eight, then the table will have more than eight entries. The
same eight colors will be used to initialize additional entries. If your terminal can display
only N colors, whereN is less than eight, then only the firstN colors shown in the colors
table will be used.

You can change these color definitions with the routineinit_color , if your terminal is
capable of redefining colors. (See “Changing the Definitions of Colors” on page 7-17 for
more information.)

The following color macros are defined incurses.h and have numeric values corre-
sponding to their position in the colors table.

curses also maintains a table of color-pairs, which has space allocated for as many
entries as the number of color-pairs that can be displayed on your terminal screen at the
same time. Unlike the colors table, however, there are no default entries in the pairs table:
it is your responsibility to initialize any color-pair you want to use, withinit_pair ,
before you use it as an attribute.

Each entry in the pairs table has two fields: the foreground color, and the background
color. For each color-pair that you initialize, these two fields will each contain a number
representing a color in the colors table. (Note that color-pairs can only be made from pre-
viously initialized colors.)

/* yellow: 3 */ 1000 1000 0

/* blue: 4 */ 0 0 1000

/* magenta: 5 */ 1000 0 1000

/* cyan: 6 */ 0 1000 1000

/* white: 7 */ 1000 1000 1000

COLOR_BLACK 0

COLOR_RED 1

COLOR_GREEN 2

COLOR_YELLOW 3

COLOR_BLUE 4

COLOR_MAGENTA 5

COLOR_CYAN 6

COLOR_WHITE 7

Table 7-1. The Default Colors Table

Intensity of Component

(R)ed (G)reen (B)lue

Character User Interface Programming

7-16

The following example pairs table shows that a programmer has usedinit_pair to ini-
tialize color-pair 1 as a red foreground (entry 1 in the default color table) on cyan back-
ground (entry 6 in the default color table). Similarly, the programmer has initialized color-
pair 2 as a yellow foreground on a magenta background. Not-initialized entries in the pairs
table would actually contain zeros, which corresponds to black on black.

Note that color-pair 0 is reserved for use bycurses and should not be changed or used in
application programs.

Two global variables used by the color routines are defined incurses.h . They areCOL-
ORS, which contains the maximum number of colors the terminal supports, and
COLOR_PAIRS, which contains the maximum number of color-pairs the terminal sup-
ports. Both are initialized by thestart_color routine to values it gets from theter-
minfo database.

Upon termination of yourcurses program, all colors and/or color-pairs will be restored
to the values they had when the terminal was just turned on.

Using the COLOR_PAIR(n) Attribute 7

If you choose to use the default color definitions, there are only two things you need to do
before you can use the attributeCOLOR_PAIR(n). First, you must call the routine
start_color . Once you've done that, you can initialize color-pairs with the routine
init_pair(pair, f, b). The first argument,pair, is the number of the color-pair to be ini-
tialized (or changed), and must be between1 andCOLOR_PAIRS-1. The argumentsf and
b are the foreground color number and the background color number. The value of these
arguments must be between0 andCOLORS-1. For example, the two color-pairs in the
pairs table described earlier can be initialized in the following way:

init_pair (1, COLOR_RED, COLOR_CYAN);
init_pair (2, COLOR_YELLOW, COLOR_MAGENTA);

Once you've initialized a color-pair, the attributeCOLOR_PAIR(n) can be used as you
would use any other attribute.COLOR_PAIR(n) is a macro, defined incurses.h . The

Table 7-2. Example of a Pairs Table

Color-Pair Number Foreground Background

0 (reserved) 0 0

1 1 6

2 3 5

3 0 0

4 0 0

5 0 0

. . .

. . .

. . .

Simple Input and Output

7-17

argument,n, is the number of a previously initialized color-pair. For example, you can use
the routineattron to turn on a color-pair in addition to any other attributes you may cur-
rently have turned on:

attron (COLOR_PAIR(1));

If you had initialized color-pair 1 in the way shown in the example pairs table, then char-
acters displayed after you turned on color-pair 1 withattron would be displayed as blue
characters on a yellow background.

You can also combineCOLOR_PAIR(n) with other attributes, for example:

attrset(A_BLINK|COLOR_PAIR(1));

would turn on blinking and whatever you have initialized color-pair 1 to be. (attron and
attrset are described earlier in this chapter and also on thecurses(3curses) man-
ual pages in this guide.

Changing the Definitions of Colors 7

If your terminal is capable of redefining colors, you can change the predefined colors with
the routineinit_color(color, r, g, b). The first argument,color, is the numeric value of
the color you want to change, and the last three,r, g, andb, are the intensities of the red,
green, and blue components, respectively, that the new color will contain. Once you
change the definition of a color, all occurrences of that color on your screen change imme-
diately.

So, for example, you could change the definition of color 4 (COLOR_BLUE by default), to
be light blue, in the following way.

init_color (COLOR_BLUE, 0, 700, 1000);

If your terminal is not able to change the definition of a color, use ofinit_color
returnsERR.

Portability Guidelines 7

Like the rest ofcurses , the color manipulation routines have been designed to be termi-
nal independent. But it must be remembered that the capabilities of terminals vary. For
example, if you write a program for a terminal that can support 64 color-pairs, that pro-
gram would not be able to produce the same color effects on a terminal that supports at
most eight color-pairs.

When you are writing a program that may be used on different terminals, you should fol-
low these guidelines:

• Use at most seven color-pairs made from at most eight colors.

Programs that follow this guideline will run on most color terminals. Only seven,
not eight, color-pairs should be used, even though many terminals support eight
color-pairs, becausecurses reserves color-pair 0 for its own use.

• Do not use color 0 as a background color.

Character User Interface Programming

7-18

This is recommended because on some terminals, no matter what color you have
defined it to be, color 0 will always be converted to black when used for a back-
ground.

• Combine color and other video attributes.

Programs that follow this guideline will provide some sort of highlighting, even if
the terminal is monochrome. On color terminals, as many of the listed attributes as
possible would be used. On monochrome terminals, only the video attributes would
be used, and the color attribute would be ignored.

Use the global variablesCOLORS andCOLOR-PAIRS rather than constants when
deciding how many colors or color-pairs your program should use.

Other Macros and Routines 7

There are two other macros defined incurses.h that you can use to obtain information
from the color-pair field in characters of typechtype .

• A_COLOR is a bit mask to extract color-pair information. It can be used to
clear the color-pair field, and to determine if any color-pair is being used.

• PAIR_NUMBER(attrs) is the reverse ofCOLOR_PAIR(n). It returns the
color-pair number associated with the named attribute,attrs.

There are two color routines that give you information about the terminal your program is
running on. The routinehas_colors returns a Boolean value:TRUE if the terminal sup-
ports colors,FALSE otherwise. The routinecan_change_colors also returns a Bool-
ean value:TRUE if the terminal supports colorsand can change their definitions,FALSE
otherwise.

There are two color routines that give you information about the colors and color-pairs
that are currently defined on your terminal. The routinecolor_content gives you a
way to find the intensity of the RGB components in an initialized color. It returnsERR if
the color does not exist or if the terminal cannot change color definitions,OK otherwise.
The routinepair_content allows you to find out what colors a given color-pair con-
sists of. It returnsERR is the color-pair has not been initialized,OK otherwise.

These routines are explained in more detail on thecurses(3curses) manual pages in
this guide.

The routinesstart_color , init_color , andinit_pair are described on the fol-
lowing pages, with examples of their use. You can also refer to the programcolors in
Appendix D for an example of using the attribute of color in windows.

start_color 7

SYNOPSIS

#include <curses.h>
int start_color()

Simple Input and Output

7-19

NOTES

• This routine must be called if you want to use colors, and before any other
color manipulation routine is called. It is good practice to call it right after
initscr .

• It initializes eight default colors (black, red, green, yellow, blue, magenta,
cyan, and white), and the global variablesCOLORS andCOLOR_PAIRS. If
the value corresponding toCOLOR_PAIRS in the terminfo database is
greater than 64,COLOR_PAIRS will be set to 64.

• It restores the terminal's colors to the values they had when the terminal
was just turned on.

• It returnsERR if the terminal does not support colors,OK otherwise.

EXAMPLE

See the example underinit_pair .

init_pair 7

SYNOPSIS

#include <curses.h>
int init_pair (pair, f, b)
short pair, f, b;

NOTES

• init_pair changes the definition of a color-pair.

• Color-pairs must be initialized withinit_pair before they can be used
as the argument to the attribute macroCOLOR_PAIR(n).

• The value of the first argument,pair, is the number of a color-pair, and
must be between1 andCOLOR_PAIRS-1.

• The value of thef (foreground) andb (background) arguments must be
between0 andCOLORS-1.

• If the color-pair was previously initialized, the screen will be refreshed and
all occurrences of that color-pair will change to the new definition.

• It returnsOK if it was able to change the definition of the color-pair,ERR
otherwise.

EXAMPLE

#include <curses.h>
main()
{

initscr ();
if (start_color () == OK)

Character User Interface Programming

7-20

{
init_pair (1, COLOR_RED, COLOR_GREEN);
attron (COLOR_PAIR (1));
addstr (“Red on Green”);
getch();

}
endwin();

}

Also see the programcolors in Appendix D of this document.

init_color 7

SYNOPSIS

#include <curses.h>
int init_color(color, r, g, b)
short color, r, g, b;

NOTES

• init_color changes the definition of a color.

• The first argument,color, is the number of the color to be changed. The
value ofcolor must be between0 andCOLORS-1.

• The last three arguments,r, g, andb, are the amounts of red, green, and
blue (RGB) components in the new color. The values of these three argu-
ments must be between0 and1000 .

• Wheninit_color is used to change the definition of an entry in the col-
ors table, all places where the old color was used on the screen immediately
change to the new color.

• It returnsOK if it was able to change the definition of the color,ERR other-
wise.

EXAMPLE

#include <curses.h>
main()
{

initscr();
if (start_color() == OK)
{

init_pair (1, COLOR_RED, COLOR_GREEN);
attron (COLOR_PAIR (1));
if (init_color (COLOR_RED, 0, 0, 1000) == OK)

addstr (“BLUE ON GREEN”);
else

addstr (“RED ON GREEN”);
getch ();

}

Simple Input and Output

7-21

endwin();
}

Bells, Whistles, and Flashing Lights: beep and flash 7

Occasionally, you may want to get a user's attention. Two low-level {VS} routines are
designed to help you do this—they let you ring the terminal's chimes and flash its screen.

flash flashes the screen if possible, and otherwise rings the bell. Flashing the screen is
intended as a bell replacement, and is particularly useful if the bell bothers someone
within ear shot of the user. The routinebeep can be called when a real beep is desired. (If
for some reason the terminal is unable to beep, but able to flash, a call tobeep will flash
the screen.)

SYNOPSIS

#include <curses.h>
int flash()
int beep()

NOTES

• flash tries to flash the terminals screen, if possible, and, if not, tries to
ring the terminal bell.

• beep tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen.

• beep will not work if you redefineTRUE to something other than 1.

• Neither returns any useful value.

Input Options 7

The UNIX system does a considerable amount of processing on input before an applica-
tion ever sees a character. For example, it does the following:

• echoes (prints back) characters to a terminal as they are typed

• interprets an erase character (typically#) and a line kill character (typically
@)

• interprets aCTRL-d (control d) as end of file (EOF)

• interprets interrupt and quit characters

• strips the character's parity bit

• translatesRETURN to <NL>

Character User Interface Programming

7-22

Because an ETI program maintains total control over the screen, low-level ETI turns off
echoing on the UNIX system and does echoing itself. At times, you may not want the
UNIX system to process other characters in the standard way in an interactive screen man-
agement program. Some ETI routines,noecho andcbreak , for example, have been
designed so that you can change the standard character processing. Using these routines in
an application controls how input is interpreted. Table 7-3 shows some of the major rou-
tines for controlling input.

Every low-level {VS} program accepting input should set some input options. This is
because when the program starts running, the terminal on which it runs may be in
cbreak , raw , nocbreak , ornoraw mode. Although the low-level {VS} program starts
up inecho mode, none of the other modes are guaranteed.

The combination ofnoecho andcbreak is most common in interactive screen manage-
ment programs. Suppose, for instance, that you don't want the characters sent to your
application program to be echoed wherever the cursor currently happens to be; instead,
you want them echoed at the bottom of the screen. The ETI routinenoecho is designed
for this purpose. However, whennoecho turns off echoing, normal erase and kill process-
ing is still on. Using the routinecbreak causes these characters to be uninterpreted.

Table 7-3. Input Option Settings for ETI Programs

Input
Options

Characters

Interpreted Uninterpreted

Normal
'out of ETI
state'

interrupt, quit stripping
RETURN to <NL>
echoing erase, kill EOF

Normal
ETI 'start up
state'

echoing (simulated) All else undefined.

cbreak ()
andecho ()

interrupt, quit stripping
echoing

erase, kill EOF

cbreak ()
andnoecho ()

interrupt, quit stripping echoing erase, kill EOF

nocbreak ()
andnoecho ()

break, quit stripping
erase, kill EOF

echoing

nocbreak ()
andecho ()

See caution below.

nl () RETURN to <NL>

nonl () RETURN to <NL>

raw ()
(instead of
cbreak ())

break, quit stripping

Simple Input and Output

7-23

CAUTION

Do not use the combinationnocbreak andecho . If you use it in
a program and also usegetch , the program will go in and out of
cbreak mode to get each character. Depending on the state of
the tty driver when each character is typed, the program may pro-
duce undesirable output.

In addition to the routines noted in Table 7-3, you can use the ETI routinesnoraw ,
halfdelay , andnodelay to control input. See thecurses(3curses) manual
pages for discussions of these routines.

The next few pages describenoecho , cbreak , and the related routinesecho and
nocbreak in more detail.

echo and noecho 7

SYNOPSIS

#include <curses.h>
int echo()
int noecho()

NOTES

• echo turns on echoing of characters by ETI as they are read in. This is the
initial setting.

• noecho turns off the echoing.

• Neither returns any useful value.

• ETI programs may not run properly if you turn on echoing with
nocbreak . See Table 7-3 and accompanying caution. After you turn
echoing off, you can still echo characters withaddch .

EXAMPLE

See theeditor andshow programs in Appendix D of this document.

cbreak and nocbreak 7

SYNOPSIS

#include <curses.h>
int cbreak()
int nocbreak()

Character User Interface Programming

7-24

NOTES

• cbreak turns on “break for each character” processing. A program gets
each character as soon as it is typed, but the erase, line kill, andCTRL-D
characters are not interpreted.

• nocbreak returns to normal “line at a time” processing. This is typically
the initial setting.

• Neither returns any useful value.

• ETI programs may not run properly ifcbreak is turned on and off within
the same program or if the combinationnocbreak andecho is used.

• See Table 7-3 and accompanying caution.

EXAMPLE

See theeditor andshow programs in Appendix D of this document.

8
Windows

Introduction . 8-1
Output and Input . 8-1
The Routines wnoutrefresh and doupdate . 8-2
New Windows . 8-6

newwin . 8-6
subwin. 8-6

ETI Low-level Interface (curses) to High-level Functions . 8-7

Character User Interface Programming

8-1

8
Chapter 8Windows

8
8
8

Introduction 8

“More about refresh and Windows” on page 6-5 explained what windows and pads are and
why you might want to use them. This section describes the ETI routines you use to
manipulate and create windows and pads.

Output and Input 8

The routines that you use to send output to and get input from windows and pads are simi-
lar to those you use withstdscr . The only difference is that you have to give the name of
the window to receive the action. Generally, these functions have names formed by putting
the letterw at the beginning of the name of astdscr routine and adding the window
name as the first parameter. For example,addch('c') would becomewad-
dch(mywin,’c’) if you wanted to write the characterc to the windowmywin. Here's
a list of the window (orw) versions of the output routines.

• waddch(win, ch)

• mvwaddch(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win, fmt[, arg...])

• mvwprintw(win, y, x, fmt[, arg...])

• wmove(win, y, x)

• wclear(win) andwerase(win)

• wclrtoeol(win) andwclrtobot(win)

• wrefresh(win)

You can see from their declarations that these routines differ from the versions that manip-
ulatestdscr only in their names and the addition of awin argument. Notice that the rou-
tines whose names begin withmvw take thewin argument before they, x coordinates,
which is contrary to what the names imply. Seecurses(3curses) for more informa-
tion about these routines or the versions of the input routinesgetch , getstr , and so on
that you should use with windows.

Character User Interface Programming

8-2

All w routines can be used with pads except forwrefresh andwnoutrefresh (see
below). In place of these two routines, you have to useprefresh andpnoutrefresh
with pads.

The Routines wnoutrefresh and doupdate 8

If you recall from the earlier discussion aboutrefresh , we said that it sends the output
from stdscr to the terminal screen. We also said that it was a macro that expands towre-
fresh(stdscr) (see “What Every ETI Program Needs” on page 6-1 and “More about
refresh and Windows” on page 6-5).

Thewrefresh routine is used to send the contents of a window (stdscr or one that you
create) to a screen; it calls the routineswnoutrefresh anddoupdate . Similarly,pre-
fresh sends the contents of a pad to a screen by callingpnoutrefresh anddoup-
date .

Using wnoutrefresh —or pnoutrefresh (this discussion will be limited to the
former routine for simplicity)—anddoupdate , you can update terminal screens more
efficiently than usingwrefresh by itself.wrefresh works by first callingwnoutre-
fresh , which copies the named window to a data structure referred to as the virtual
screen. The virtual screen contains what a program intends to display at a terminal. After
calling wnoutrefresh , wrefresh then callsdoupdate , which compares the virtual
screen to the physical screen and does the actual update. If you want to output several win-
dows at once, callingwrefresh will result in alternating calls townoutrefresh and
doupdate , causing several bursts of output to a screen. However, by callingwnoutre-
fresh for each window and thendoupdate only once, you can minimize the total num-
ber of characters transmitted and the processor time used. Screen 8-1 shows a sample pro-
gram that uses only onedoupdate .

Screen 8-1. Using wnoutrefresh and doupdate

Notice from the sample that you declare a new window at the beginning of an ETI pro-
gram. The lines

#include <curses.h>

main()
{
 WINDOW *w1, *w2;

 initscr();
 w1 = newwin(2,6,0,3);
 w2 = newwin(1,4,5,4);
 waddstr(w1, “Bulls”);
 wnoutrefresh(w1);
 waddstr(w2, “Eye”);
 wnoutrefresh(w2);
 doupdate();
 endwin();
}

Windows

8-3

w1 = newwin(2,6,0,3);
w2 = newwin(1,4,5,4);

declare two windows namedw1 andw2 with the routinenewwin according to certain
specifications.newwin is discussed in more detail below.

Figure 8-1, Figure 8-2, and Figure 8-3 illustrate the effect ofwnoutrefresh anddoup-
date on these two windows, the virtual screen, and the physical screen.

Figure 8-1. Relationship between a Window and Terminal Screen (Sheet 1 of 3)

stdscr@ (0,0)

stdscr@ (0,0) physical screen

physical screen

stdscr@ (0,0) physical screen

(garbage)

(garbage)
w2=newwin
(1,4,5,4)

w1=newwin
(2,6,0,3)

initscr()

w1@ (0,3)

w1@ (0,3) w2@ (5,4)

(garbage)

virtual screen

virtual screen

virtual screen

Character User Interface Programming

8-4

Figure 8-2. Relationship between a Window and Terminal Screen (sheet 2 of 3)

stdscr@ (0,0)

stdscr@ (0,0) physical screen

physical screen

stdscr@ (0,0) physical screen

(garbage)

(garbage)
waddstr(w2,Eye)

wnoutrefresh(w1)

waddstr(w1,Bulls)

w1@ (0,3)

w1@ (0,3) w2@ (5,4)

(garbage)

virtual screen

virtual screen

virtual screen

w2@ (5,4)

w1@ (0,3) w2@ (5,4)

Bulls

Bulls

Bulls

Bulls

Bulls

Eye

Windows

8-5

Figure 8-3. Relationship between a Window and Terminal Screen (sheet 3 of 3)

stdscr@ (0,0)

stdscr@ (0,0) physical screen

physical screen

stdscr@ (0,0) physical screen

(garbage)

Bulls
endwin()

doupdate()

wnoutrefresh(w2)

w1@ (0,3)

w1@ (0,3) w2@ (5,4)

Bulls

virtual screen

virtual screen

virtual screen

w2@ (5,4)

w1@ (0,3) w2@ (5,4)

Bulls

Bulls

Bulls

Bulls

Bulls

Eye

Eye

Eye

Bulls

Eye Eye

Eye Eye

Eye

Character User Interface Programming

8-6

New Windows 8

Following are descriptions of the routinesnewwin andsubwin , which you use to create
new windows. For information about creating new pads withnewpad andsubpad , see
thecurses(3curses) manual pages.

newwin 8

SYNOPSIS

#include <curses.h>
WINDOW *newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_y, begin_x;

NOTES

• newwin returns a pointer to a new window with a new data area.

• The variablesnlines andncols give the size of the new window.

• begin_y andbegin_x give the screen coordinates from (0,0) of the upper left
corner of the window as it is refreshed to the current screen.

EXAMPLE

Recall the sample program using two windows; see Screen 8-1. Also see thewin-
dow program in Appendix D of this document.

subwin 8

SYNOPSIS

#include <curses.h>
WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW *orig;
int nlines, ncols, begin_y, begin_x;

NOTES

• subwin returns a new window that points to a section of another window,
orig.

• nlines andncols give the size of the new window.

• begin_y andbegin_x give the screen coordinates of the upper left corner of
the window as it is refreshed to the current screen.

• Subwindows and original windows can accidentally overwrite one another.

Windows

8-7

CAUTION

Subwindows of subwindows do not work (as of the copyright date
of this guide).

EXAMPLE

#include <curses.h>

main()
{
 WINDOW *sub;

 initscr();
 box(stdscr,'w','w');
 /* See the curses(3curses) manual page for box */
 mvwaddstr(stdscr,7,10,”------- this is 10,10”);
 mvwaddch(stdscr,8,10,'|');
 mvwaddch(stdscr,9,10,'v');
 sub = subwin(stdscr,10,20,10,10);
 box(sub,'s','s');
 wnoutrefresh(stdscr);
 wrefresh(sub);
 endwin();
}

This program prints a border ofw's aroundstdscr (the sides of your terminal screen) and
a border ofs 's around the subwindowsub when it is run. For another example, see the
window program in Appendix D of this document.

ETI Low-level Interface (curses) to High-level Functions 8

In the following chapters, we will consider the ETI high-level functions, which create and
manipulate panels, menus, and forms. All application programs that use these high-level
functions require a set of low-level ETI (curses) calls that properly initialize and termi-
nate the programs. For convenience, you may want to isolate these calls in appropriate
routines. Screen 8-2 shows one way you might do this. It lists routines to start low-level
ETI, terminate it, and handle fatal errors.

Character User Interface Programming

8-8

Screen 8-2. Sample Routines for Low-level ETI (curses) Interface

These house-keeping routines use two global variables,PGM andCURSES. PGM is initial-
ized with the program's name, while the BooleanCURSES is initialized with FALSE
becausecurses itself has not yet been invoked.

Functionstart_curses calls the low-level routines previously mentioned and sets
CURSES to TRUE to indicate that it has initializedcurses . Functionend_curses
checks ifcurses is initialized and, if so, sets the variableCURSES to FALSE and termi-
natescurses . The check is necessary becauseendwin returns an error if called when
curses is not initialized.

Functionerror is a universal fatal error handler—called whethercurses is initialized
or not. It first callsend_curses to terminate it if it is on, and then prints the program's
name (PGM) and message passed to it. Finally, it terminates the program itself using
exit .

static char *PGM= (char *) 0;/* program name*/
static intCURSES= FALSE;/* is curses initialized ?*/

static void start_curses ()/* curses initialization */
{

CURSES = TRUE;
initscr ();
nonl ();
raw ();
noecho ();
wclear (stdscr);

}

static void end_curses ()/* curses termination */
{

if (CURSES)
{

CURSES = FALSE;
endwin ();

}
}

static void error (f, s)/* fatal error handler */
char * f;
char * s;
{

end_curses ();
printf (“%s: ”, PGM);
printf (f, s);
printf (“\n”);
exit (1);

}

9
Panels

Introduction . 9-1
Compiling and Linking Panel Programs . 9-1
Creating Panels . 9-1
Elementary Panel Window Operations . 9-2

Fetching Pointers to Panel Windows . 9-2
Changing Panel Windows. 9-3
Moving Panel Windows on the Screen. 9-3

Moving Panels to the Top or Bottom of the Deck . 9-4
Updating Panels on the Screen . 9-5
Making Panels Invisible. 9-6

Hiding Panels . 9-6
Checking If Panels Are Hidden. 9-7

Reinstating Panels . 9-7
Fetching Panels above or below Given Panels . 9-8
Setting and Fetching the Panel User Pointer . 9-8
Deleting Panels . 9-10

Character User Interface Programming

9-1

9
Chapter 9Panels

9
9
9

Introduction 9

Recall that a window is a rectangular area of the terminal screen on which you can write
using the low-level ETI (curses) routines. You can create many windows on a screen,
but if they overlap, portions of some windows intended to be hidden may nonetheless be
visible when you use the low-level routines alone. To solve this problem, ETI uses the
notion of a panel—a rectangle of text with depth.

Panels have depth only in relation to other panels andstdscr, which lies beneath all pan-
els. The set of non-hidden panels comprises thedeck of panels.

Compiling and Linking Panel Programs 9

To use the panel routines, you specify

#include <panel.h>

in your C program files and compile and link with the command line

cc [flags] files -lpanel -lcurses [libraries]

Creating Panels 9

This function creates a new panel on top of all existing panels in the deck. Its argument is
a pointer to a window.

SYNOPSIS

PANEL *new_panel (window)
WINDOW *window; /* curses window to be associated

with new panel */

A pointer to the panel is returned if the panel is created; otherwise, the function returns
NULL. The new_panel operation fails if there is insufficient memory or if the window
pointer argument is NULL. The window whose address is passed as an argument becomes

Character User Interface Programming

9-2

associated with the panel. The size and location of the panel are the same as that of the
low-level ETI (curses) window.

To create a panel, you create a window, save the pointer to it, and use the pointer as an
argument tonew_panel .

WINDOW *win;
PANEL *pptr;

win = newwin(2,6,0,3);
pptr = new_panel(win); /* after execution, pptr stores
 pointer to new panel */

Note that the newly created panel does not automatically have any adornments such as
titles or borders. If you want your panel to have them, you must call appropriate low-level
ETI routines with the panel's window as the argument.

When you create a new panel, it is automatically placed on top of the panel deck. Later,
when you calldoupdate to adjust the visibility of all panels, the top panel is completely
visible. On lower levels, a portion of a panel is visible only when no region of another
panel is above it. Where two panels overlap, the higher one hides the lower. (The higher
one is the newer one if neither has changed its position in the panel deck because of calls
to top_panel , bottom_panel , or show_panel described below.) If the panels do
not over-lap, the new panel is still logically above the old one. Their relative depth is not
apparent until one of them is moved and overlaps the other.

Elementary Panel Window Operations 9

This section explains how you can fetch pointers to panel windows, change the windows
associated with panels, and move panel windows to new locations on the screen.

Fetching Pointers to Panel Windows 9

Each panel has a low-level ETI window associated with it. To retrieve a pointer to this
window, you use the functionpanel_window .

SYNOPSIS

WINDOW *panel_window(panel)
PANEL * panel; /* Panel whose window pointer is
 returned */

The function returns NULL if the panel pointer argument is NULL.

In general, you may use this returned pointer as an argument to any standard low-level
(curses) routine that takes a pointer to a window as an argument. For example, you can
insert a characterc at a locationy,x in a panel window with the functionmvwin-
sch(win,y,x,c), wherewin is the window pointer returned bypanel_window .

Panels

9-3

WINDOW *win;
PANEL *panel;
int y, x;
chtype c;

win = panel_window(panel);
mvwinsch(win,y,x,c);

Changing Panel Windows 9

To replace a panel's pointer to a window with a pointer to another window, you call func-
tion replace_panel . After the call, the panel remains at the same level within the panel
deck.

SYNOPSIS

int replace_panel (panel, window)
PANEL * panel; /* Panel with window to be

replaced */
WINDOW *window; /* New window pointer for panel */

This function returnsOK if the operation is successful. If not, it returns ERR and leaves the
original panel unchanged. Operationreplace_panel fails if the window pointer is
NULL or there is insufficient memory.

To associate a panel with windowwin1 and later replace its window bywin2, you can
write the following:

WINDOW *win1, win2;
PANEL *panel;

panel = new_panel(win1);

 /* intervening processing with win1 as panel window */

replace_panel(panel, win2);
 /* change window associated with panel to win2 */

Once you have created additional windows with the low-level functionnewwin , you in
effect can reshape panel windows by usingreplace_panel . To do so leaves the con-
tents of the two windows unchanged.

Moving Panel Windows on the Screen 9

You should not move a panel's window by calling the low-level functionmvwin directly.
To update the screen correctly, the panels subsystem must know the location of all panel
windows, but functionmvwin does not inform the panels subsystem of the window's new
location. To move a panel's window, you must call the functionmove_panel , which
moves a panel and its associated window and informs the panels subsystem of the move.

Character User Interface Programming

9-4

SYNOPSIS

int move_panel (panel, firstrow, firstcol)
PANEL * panel; /* Panel to be moved */
int firstrow, firstcol; /* row/col of upper left corner
 of new location of window
 associated with panel */

Note that the screen coordinates you specify are those for the upper-left corner of the win-
dow in its new location. The panel may be moved to any location that the low-level ETI
routines deem legitimate. In particular, a panel may be partly off the screen. The size, con-
tents, and relative depth of the panel remain unchanged bymove_panel .

Functionmove_panel returnsOK if the operation was successful,ERR otherwise. The
move_panel operation fails if the low-level ETI functions are unable to move the panel's
window, or if there is insufficient memory to satisfy the request. In these cases, the origi-
nal panel remains unchanged.

To move the panel pointed to bypanel such that its upper-left corner is at row22, col-
umn45, you can write

PANEL *panel;

move_panel(panel, 22, 45);

Moving Panels to the Top or Bottom of the Deck 9

The relative depth of a panel can be changed by either pulling the panel to the top of the
deck or by pushing it to the bottom. In either case, all other panels remain at the same
depth relative to each other.

SYNOPSIS

int top_panel(panel)
PANEL * panel;

int bottom_panel(panel)
PANEL * panel;

Functiontop_panel moves the panel pointed to by its argument to the top of the panel
deck, while functionbottom_panel moves the panel to the bottom of the deck.

Both functions leave the size of the given panel, the contents of its associated window, and
the relations of the other panels in the deck wholly intact. Both returnOK if the operation
is successful,ERR if not. The functions fail if the panel pointer argument is NULL or if the
panel is hidden by a previous call to functionhide_panel described below.

To move the panel pointed to bypanel1 to the top of the deck of panels and the panel
pointed to bypanel2 to the bottom of the deck, you can write the following:

Panels

9-5

PANEL *panel1, *panel2;

top_panel(panel1);
bottom_panel(panel2);

Updating Panels on the Screen 9

Functionupdate_panels makes all low-levelcurses calls (such astouchwin and
wnoutrefresh) to update all panels so as to maintain proper depth relationships and to
permit display only of the appropriate portions of panels.

SYNOPSIS

void update_panels();

The function does not, however, actually refresh your terminal screen. To do that, you
must make a call todoupdate whenever you want to display your latest changes.

To avoid displaying text on hidden panels, you should not use the low-level routines
wnoutrefresh andwrefresh when working with panels.

CAUTION

In general, do not use the low-level routineswnoutrefresh or
wrefresh to display a window associated with a panel. Instead,
use functionupdate_panels and functiondoupdate to dis-
play the entire deck of panels.

If you use the low-level routineswnoutrefresh or wrefresh for a window associated
with a panel, it is not displayed properly unless it happens to be associated with the top
panel in the deck or is not hidden at all by other panel windows.

Recall that panels are always abovestdscr, the standard ETI window. When a panel is
moved or deleted,stdscr is updated along with the visible panels to ensure that it appears
beneath all panels. Althoughstdscr has depth relative to other panels, it is not a panel
because panel operations liketop_panel andbottom_panel do not apply. However,
becauses t d s c r rests beneath the deck of panels, you should always cal l
update_panels when you work with panels and changestdscr, even if you do not
change any panels themselves.

Functionwgetch automatically callswrefresh . Hence, if echo mode is active, when
you request input from a window associated with a panel, be sure that the window is
totally unobscured.

In summary, to update all panels and display them with their proper depth relationship,
you write:

Character User Interface Programming

9-6

WINDOW *win;

update_panels();
doupdate();

Note finally that there is no way to display the updates to an obscured panel without dis-
playing the changes to all panels.

Making Panels Invisible 9

ETI allows you to hide panels from the deck and later return them to it.

Hiding Panels 9

Panels may be temporarily hidden. This means that they are removed from the panel deck,
but the memory allocated to them is not released.

SYNOPSIS

int hide_panel(panel)
PANEL * panel; /* Pointer to panel to be hidden */

Hidden panels are not refreshed to the screen, but you may nonetheless apply nearly all
panel operations to them.

NOTE

Only the operationstop_panel , bottom_panel , and
hide_panel itself may not be applied to hidden panels because
their panel arguments must belong to the deck of panels.

When you want to return a hidden panel to the deck of panels, you use the function
show_panel described in the next section. When the panel is returned, it is placed on top
of the deck.

To hide the panel pointed to bypanel2 above, you write

PANEL *panel2;

hide_panel(panel2);

Functionhide_panel returnsOK if the operation is successful andERR if its panel
pointer argument is NULL.

If you use functionhide_panel wisely, your program's performance can increase. You
can hide a panel temporarily if no portion of it is to be displayed for awhile. An example is

Panels

9-7

the hiding of a pop-up message. Interim calls to functionupdate_panels will then exe-
cute faster. More importantly, you do not incur the overhead of creating the pop-up mes-
sage.

Checking If Panels Are Hidden 9

To enable you to check if a given panel is hidden, ETI provides the following function.

SYNOPSIS

int panel_hidden (panel)
PANEL * panel;

Functionpanel_hidden returns a Boolean value (TRUE or FALSE) indicating whether
or not its panel argument is hidden.

You might want to use this function before calling functionstop_panel or
bottom_panel , which do not operate on hidden panels. For example, to minimize the
risk of having the error valueERR returned when moving a panel to the top of the deck,
you can write

PANEL *panel;

if (! panel_hidden (panel)) /* panel in deck ? */
top_panel (panel);

/* move panel to top of deck */

Reinstating Panels 9

This function is the opposite of functionhide_panel . It returns the hidden panel refer-
enced in its argument to the top of the panel deck.

SYNOPSIS

int show_panel (panel)
PANEL * panel; /* Panel to return to top of deck */

Note that the panel must have been hidden by a previoushide_panel call. The function
returnsOK if the operation is successful, andERR if the panel pointer is NULL, if there is
insufficient memory, or if the panel is not hidden.

To return, say,panel2 to the deck, you write

PANEL *panel2;

show_panel(panel2);

Character User Interface Programming

9-8

Fetching Panels above or below Given Panels 9

The following functions return a pointer to the panel immediately above or below the
given panel. They are helpful in walking the panel deck from top to bottom or vice versa.

SYNOPSIS

PANEL *panel_above (panel)
PANEL * panel; /* Get panel above this one */

PANEL *panel_below (panel)
PANEL * panel; /* Get panel below this one */

Because hidden panels have no depth, they are excluded from these traversals.

Functionpanel_above returns the panel immediately above the given panel. If its argu-
ment is NULL, it returns the bottommost panel. The function returns NULL if the given
panel is on top or hidden, or if there are no visible panels.

Functionpanel_below returns the panel immediately below the given panel. If its argu-
ment is NULL, it returns the topmost panel. The function returns NULL if the given panel
is on the bottom of the deck of panels or hidden, or if there are no visible panels at all.
There may be no visible panels at all if

• they have been hidden usinghide_panel

• all panels have been deleted

• or no panels have been created.

If you want to do something to all panels or to search all of them for one with a particular
attribute, you can place one of these functions in a loop. For example, to hide all panels
(perhaps to displaystdscr alone), you can write

{
PANEL *panel, *pnl;
for (panel = panel_above (NULL); panel; panel =

panel_above(pnl))
{

pnl = panel;
hide_panel(panel);

}
}

Setting and Fetching the Panel User Pointer 9

To enable your application program to associate arbitrary data with a given panel, the ETI
panel subsystem automatically allocates a pointer associated with each newly created
panel. Initially, the value of this user pointer is NULL. You can set its value to whatever
you want or not use it at all.

Panels

9-9

SYNOPSIS

int *set_panel_userptr (panel, ptr)
PANEL * panel; /* Panel whose user pointer to set */
char * ptr; /* user-defined pointer */

char *panel_userptr (panel)
PANEL * panel; /* Panel whose user pointer to fetch */

The user pointer has no meaning to the panels subsystem. Once the panel is created, the
user pointer is neither changed nor accessed by the subsystem.

Functionset_panel_userptr sets the user pointer of a given panel to the value of
your choice. The function returnsOK if the operation is successful, andERR if the panel
pointer is NULL.

Functionpanel_userptr returns the user pointer for a given panel. If the panel pointer
is NULL, the function returns NULL.

You can use these routines to store and retrieve a pointer to an arbitrary structure that holds
information for your application. For example, you might use them to store a title or, as in
Screen 9-1, create a hidden panel for pop-up messages.

Character User Interface Programming

9-10

Screen 9-1. Example Using Panel User Pointer

After creating a window and its associated panel,main callsset_panel_userptr to
set the panel user pointer to point to the panel's pop-up message string. Function
hide_panel hides the panel from the deck so that it is not normally displayed. Later, the
application-defined routinedisplay_deck checks if the message is to be displayed. If
so, it callsshow_panel which returns the panel to the deck and enables the panel to
become visible on the next update and refresh. The message string returned by
panel_userptr is then written to the panel window. Finally,update_panels
adjusts the relative visibility of all panels in the deck anddoupdate refreshes the screen.
If called for, the pop-up message is now visible.

Deleting Panels 9

The following function deletes a panel, but not its associated window. If you want to
delete the window, you should use the low-level functiondelwin .

PANEL *msg_panel;
char *message = “Pop-up Message Here”; /* initialize message */

int display_deck (show_it)
int show_it;
{

WINDOW *w;
 int rows, cols;

if (show_it)
 { show_panel (msg_panel); /* reinstate panel */
 w = panel_window (msg_panel); /* fetch associated window */

getmaxyx (w, rows, cols); /* fetch window size */

/* center cursor */
wmove (w, (rows-1), ((cols-1) - strlen(message))/2);

 /* fetch and write pop-up message */
 waddstr (w, panel_userptr (msg_panel));

}
update_panels(); /* display deck with message, if called for */
doupdate();
if (show_it)

hide_panel (msg_panel); /* hide panel again, if necessary */
}
main()
{

int show_mess = FALSE;

msg_panel = new_panel (newwin (10, 10, 5, 60));
set_panel_userptr (msg_panel, message); /*associate message with panel */
hide_panel (msg_panel); /* remove from visible deck */

 /* if condition to display pop-up
message is satisfied, set show_mess to TRUE */

display_deck (show_mess);

Panels

9-11

SYNOPSIS

int del_panel (panel)
PANEL * panel; /* Panel to be deleted */

The ETI panels subsystem assumes that the window associated with each panel always
exists.

NOTE

If you want to delete a panel and its associated window, make sure
that you delete the panel first, not the window. Your call to
del_panel should precede your call todelwin .

However, it is not necessary to delete a window after its associated panel is deleted: if you
like, you may associate the window with another panel.

Functiondel_panel returnsOK if the operation was successful,ERR otherwise. The
del_panel operation fails if the panel pointer is NULL.

To delete the panel referenced bypanel and its associated window referenced bywin,
you can write

PANEL *panel;
WINDOW *win = panel_window(panel);

del_panel(panel);
delwin(win);

Character User Interface Programming

9-12

10
Menus

Introduction . 10-1
Compiling and Linking Menu Programs . 10-1
Overview: Writing Menu Programs in ETI . 10-2

Some Important Menu Terminology . 10-2
What a Menu Application Program Does . 10-2
A Sample Menu Program . 10-3

Creating and Freeing Menu Items . 10-5
Two Kinds of Menus: Single- or Multi-valued . 10-7

Manipulating an Item's Select Value in a Multi-valued Menu 10-7
Manipulating Item Attributes . 10-8

Fetching Item Names and Descriptions . 10-8
Setting Item Options. 10-9
Checking an Item's Visibility . 10-10
Changing the Current Default Values for Item Attributes 10-11

Setting the Item User Pointer. 10-11
Creating and Freeing Menus . 10-13
Manipulating Menu Attributes . 10-14

Fetching and Changing Menu Items. 10-14
Counting the Number of Menu Items. 10-16
Changing the Current Default Values for Menu Attributes 10-16

Displaying Menus . 10-17
Determining the Dimensions of Menus . 10-17

Specifying the Menu Format. 10-18
Changing Your Menu's Mark String . 10-20
Querying the Menu Dimensions . 10-22

Associating Windows and Subwindows with Menus. 10-23
Fetching and Changing a Menu's Display Attributes . 10-25
Posting and Unposting Menus . 10-27

Menu Driver Processing . 10-29
Defining the Key Virtualization Correspondence. 10-30
ETI Menu Requests . 10-32

Item Navigation Requests . 10-32
Directional Item Navigation Requests . 10-32
Menu Scrolling Requests . 10-33
Multi-valued Menu Selection Request . 10-33
Pattern Buffer Requests. 10-33

Application-defined Commands. 10-34
Calling the Menu Driver. 10-35
Establishing Item and Menu Initialization and Termination Routines. 10-38

Function set_menu_init . 10-39
Function set_item_init. 10-39
Function set_item_term. 10-39
Function set_menu_term. 10-40

Fetching and Changing the Current Item . 10-41
Fetching and Changing the Top Row . 10-42
Positioning the Menu Cursor . 10-43
Changing and Fetching the Pattern Buffer . 10-44

Character User Interface Programming

Manipulating the Menu User Pointer. 10-45
Setting and Fetching Menu Options. 10-47

10-1

10
Chapter 10Menus

10
10
10

Introduction 10

A menu is a screen display that presents a set of items from which the user selects one or
more, depending on the type of menu. Once the user makes a selection, your application
program responds accordingly. This response may be to generate a message, display
another menu, or take some other action. Screen 10-1 displays a sample menu.

Screen 10-1. A Sample Menu

Compiling and Linking Menu Programs 10

To use the menu routines, you specify

#include <menu.h>

in your C program files and compile and link with the command line

cc [flags] files -lmenu -lcurses [libraries]

If you use the panel routines as well, specify-lpanel before-lcurses on the com-
mand line.

 Black
 Charcoal
 Light Gray
 Brown
 Camel
 Navy
 Light Blue
 Hunter Green
 Gold
 Burgundy
 Rust
 White

Character User Interface Programming

10-2

Overview: Writing Menu Programs in ETI 10

This section introduces basic ETI menu terminology, lists the steps in a typical menu
application program, and reviews the code in a simple example.

Some Important Menu Terminology 10

The following terms will be helpful:

item a character string consisting of a name and an optional description

menu a screen display that presents a set of items from which the user
selects one or more, depending on the type of menu

connecting items to a menu
associating an array of item pointers with a menu

menu subwindow a subwindow on which an associated menu is written

menu window a window on which an associated menu subwindow and titles and
borders, if any, are displayed

posting a menu writing a menu on its associated subwindow

unposting a menu erasing a menu from its associated subwindow

pattern matching checking whether characters entered by the user match an item
name of the menu

freeing a menu deallocating the space for a menu and, as a byproduct, disconnect-
ing an associated array of item pointers from a menu

freeing an item deallocating the space for an item

NULL generic term for a null pointer cast to the type of the particular
object (item, menu, field, form, and so on)

What a Menu Application Program Does 10

In general, a menu application program will

• initialize low-level ETI (curses)

• create the items for the menu

• create the menu

• post the menu

• refresh the screen

Menus

10-3

• process end user menu requests

• unpost the menu

• free the menu

• free items

• terminate low-level ETI (curses)

A Sample Menu Program 10

Screen 10-2 shows the ETI code necessary for generating the menu of colors in
Screen 10-1.

Character User Interface Programming

10-4

Screen 10-2. Sample Menu Program to Create a Menu in ETI

To get an overview of ETI menu routines, we will now briefly walk through this menu pro-
gram. In later sections, we discuss these and remaining ETI routines in detail.

Every menu program should have the line

#include <menu.h>

to instruct the C preprocessor to make the file of ETI menu declarations available. The ini-
tial low-level ETI routines establish the best terminal characteristics for working with the
ETI menu routines.

#include <menu.h>

char * colors[13] =
{

“Black”, “Charcoal”, “Light Gray”,
“Brown”, “Camel”, “Navy”,
“Light Blue”, “Hunter Green”, “Gold”,
“Burgundy”, “Rust”, “White”,
(char *) 0

};

ITEM * items[13];

main ()
{

MENU * m;
ITEM ** i = items;
char * c = colors;

/* low-level ETI (curses) initialization */

initscr ();
nonl ();
raw ();
noecho ();
wclear (stdscr);

/* create items */

while (*c)
*i++ = new_item (*c++, “”);

*i = (ITEM *) 0;

/* create and display menu */

m = new_menu (i = items);
post_menu (m);
refresh;
sleep (5);

/* erase menu and free both menu and items */

unpost_menu (m);
refresh;
free_menu (m);

while (*i)
free_item (*i++);

/* low-level ETI (curses) termination */
endwin ();
exit (0);

}

Menus

10-5

Thewhile loop creates each item for the menu using the ETI functionnew_item . This
function takes as its name argument a color from arraycolors[] . The optional descrip-
tion argument is here the null string. The new item pointers are assigned to a NULL-termi-
nated array.

Next, the menu is created and connected to the item pointer array using function
new_menu. The menu is then posted tostdscr and the screen is refreshed to display the
menu. Thesleep command makes the menu visible for five seconds.

To erase the menu, you unpost it and refresh the screen. Functionfree_menu discon-
nects the menu from its item pointer array and deallocates the space for the menu. The last
while loop uses functionfree_item to free the space allocated for each item.

Finally, functionsendwin andexit terminate low-level ETI and the program itself.

The following sections explain how to use all ETI menu routines. Program fragments
illustrating the menu routines occur throughout this chapter. Many of these fragments are
portions of a larger program example. The current example and others are included in the
set of high-level ETI demonstration programs delivered with the ETI product. Low-level
ETI demonstration programs are reproduced in the last section of this guide.

NOTE

Like all form routines that return anint value, all menu routines
that do so return the valueE_OK when they execute successfully.

Creating and Freeing Menu Items 10

Normally, to create a menu, you must first create the items comprising it. To create a menu
item, you use functionnew_item .

SYNOPSIS

ITEM * new_item (name, description)
char * name;
char * description;

Functionnew_item creates a new item by allocating space for the new item and initializ-
ing it. ETI displays the stringname when the menu is later posted, but callingnew_item
does not alone connect the item to a menu. The itemname is also used in pattern-matching
operations. Ifname is NULL or the null string, thennew_item returns NULL to indicate
an error.

The argumentdescription is a descriptive string associated with the item. It may or may
not be displayed depending on theO_SHOWDESC option, which you can turn on or off
with theset_menu_opts and related functions described below. Ifdescription is NULL
or the null string, no description is associated with the menu item.

Character User Interface Programming

10-6

If successful,new_item returns a pointer to the new item. This pointer is the key to
working with all item routines. When you pass it to them, it enables the menu subsystem
to change, record, and examine the item's attributes.

If there is insufficient memory for the item, orname is NULL or the null string, then
new_item returns NULL.

In general, you use an array to store the item pointers returned bynew_item .
Screen 10-3 shows how you might create an item array of the planets of our solar system.

Screen 10-3. Creating an Array of Items

Functionnew_item does not copy the name or description strings themselves, but saves
the pointers to them. So once you callnew_item , you should not change the strings until
you callfree_item .

SYNOPSIS

free_item(item)
ITEM * item;

Functionfree_item frees an item. It does not, however, deallocate the space for the
item's name or description.

The argument tofree_item is a pointer previously obtained fromnew_item .

NOTE

To free an item, you must have already created it withnew_item
and it must not be connected to a menu. If these conditions are not
met,free_item returns one of the error values listed below.

Once an item is freed, you must not use it again. If a freed item's pointer is passed to an
ETI routine, undefined results will occur.

If successful,free_item returnsE_OK. If it encounters an error, it returns one of the
following:

ITEM * planets[10];

planets[0] = new_item (“Mercury”, “The first planet”);
planets[1] = new_item (“Venus”, “The second planet”);
planets[2] = new_item (“Earth”, “The third planet”);
planets[3] = new_item (“Mars”, “The forth planet”);
planets[4] = new_item (“Jupiter”, “The fifth planet”);
planets[5] = new_item (“Saturn”, “The sixth planet”);
planets[6] = new_item (“Uranus”, “The seventh planet”);
planets[7] = new_item (“Neptune”, “The eighth planet”);
planets[8] = new_item (“Pluto”, “The ninth planet”);
planets[9] = (ITEM *) 0;

Menus

10-7

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT null item

E_CONNECTED item is connected to a menu

Two Kinds of Menus: Single- or Multi-valued 10

Menus are of two kinds:

Single-valued menus from which the user may select only one item

Multi-valued menus from which the user may select one or more items

By default, every menu is single-valued. To create a multi-valued menu, you turn off menu
option O_ONEVALUEusing functionset_menu_opts or menu_opts_off . These
functions are treated in “Setting and Fetching Menu Options” on page 10-47.

Menus of both types always have a current item. With single-valued menus, you determine
the item selected by noting the current item. With multi-valued menus, you determine all
items selected by applying functionitem_value to each menu item and noting the value
returned. Most menu functions pertain to menus whether they are single- or multi-valued.
Functionset_item_value , however, may be used only with multi-valued menus.

Manipulating an Item's Select Value in a Multi-valued Menu 10

Select values of an item are either TRUE (selected) or FALSE (not selected). Function
set_item_value sets the select value of an item, whileitem_value returns it.

SYNOPSIS

int set_item_value (item, value)
ITEM * item;
int value;

int item_value (item)
ITEM * item;

Functionset_item_value fails if given an item that is not selectable (the
O_SELECTABLE option was previously turned off) or the item is connected to a single-
valued menu (connecting items to menus is described in “Creating and Freeing Menus” on
page 10-13). If successful,set_item_value returnsE_OK. Otherwise, one of the fol-
lowing is returned.

E_SYSTEM_ERROR system error

E_REQUEST_DENIED item not selectable or single value menu

Character User Interface Programming

10-8

If the argument toitem_value is an item pointer connected to a single-valued menu,
item_value returns FALSE.

You might want to place the code in Screen 10-4 after your user responds to a menu. Func-
tion process_menu determines which items have been selected, processes them appro-
priately, and marks them as unselected to prepare for further user response.

Screen 10-4. Using item_value in Menu Processing

Manipulating Item Attributes 10

An attribute is any feature whose value can be set or read by an appropriate ETI function.
An item attribute is any item feature whose value can be set or read by an appropriate ETI
function. Item names, descriptions, options, and visibility are examples of item attributes.

Fetching Item Names and Descriptions 10

The routinesitem_name anditem_description take an item pointer as their argu-
ment . Func t ioni tem_name re tu rns the i tem 's name, wh i le func t ion
item_description returns its description.

SYNOPSIS

char * item_name (item)
ITEM * item;

char * item_description (item)
ITEM * item;

Both functions return NULL if given a NULL item pointer.

void process_menu (m) /* process multi-valued menu */
MENU * m;
{

ITEM ** i = menu_items (m);

while (*i) {
{

if (item_value (*i)) {
{

/* take action appropriate for selection of this item */

set_item_value (*i, FALSE);
}
++i;

}
}

Menus

10-9

Setting Item Options 10

An option is an attribute whose value may be either on or off. The current release of ETI
provides the item optionO_SELECTABLE. (In the future, ETI may provide additional
options.) Setting theO_SELECTABLE option lets your user select the item. By default,
O_SELECTABLE is set for every item. Functionset_item_opts lets you turn on or
turn off this and any future options for an item, whileitem_opts lets you examine the
option(s) set for a given item.

SYNOPSIS

int set_item_opts (item, opts)
ITEM * item;
OPTIONS opts;

OPTIONS item_opts (item)
ITEM * item;

options:
O_SELECTABLE

In addition to turning on the named item options, functionset_item_opts turns off
any other item options.

If successful,set_item_opts returnsE_OK. Otherwise, it returns the following:

E_SYSTEM_ERROR system error

If function set_item_opts is passed a NULL item pointer, like other functions it sets
the new current default. If functionitem_opts is passed a NULL pointer, it returns the
current default.

If you turn off optionO_SELECTABLE, the item cannot be selected. You might want to
make an item unselectable to emphasize certain things your application program is doing.
Unselectable items are displayed using the grey display attribute, described in “Fetching
and Changing a Menu's Display Attributes” on page 10-25.

Because options are Boolean values (they are either on or off), you use C Boolean opera-
tors with item_opts to turn them on and off. Consequently, to turn off option
O_SELECTABLEfor item i0 and turn on the same option for itemi1 , you can write:

ITEM * i0, * i1;

set_item_opts (i0, item_opts (i0) & ~O_SELECTABLE);
/* turn option off */

set_item_opts (i1, item_opts (i1) | O_SELECTABLE);
/* turn option on */

ETI also enables you to turn on and off specific item options without affecting others, if
any. The following functions change only the options specified.

Character User Interface Programming

10-10

SYNOPSIS

int item_opts_on (item, opts)
ITEM * item;
OPTIONS opts;

int item_opts_off (item, opts)
ITEM * item;
OPTIONS opts;

These functions return the same error conditions asset_item_opts .

As an example, the following code turns optionO_SELECTABLE off for item i0 and on
for item i1 .

ITEM * i0, * i1;

item_opts_off (i0, O_SELECTABLE); /* turn option off */

item_opts_on (i1, O_SELECTABLE); /* turn option on */

To change the current default to notO_SELECTABLE, you can write either

/* set current defaults for all new items */

set_item_opts ((ITEM *) 0, item_opts((ITEM *) 0)
 & ~O_SELECTABLE);

or

item_opts_off ((ITEM *) 0, O_SELECTABLE);
/* turn default option off */

Checking an Item's Visibility 10

A menu item is visible if it appears in the subwindow of the posted menu to which it is
connected. (Connect ing and post ing menus is described below.) Funct ion
item_visible enables your application program to determine if an item is visible.

SYNOPSIS

int item_visible (item)
ITEM * item;

If the item is connected to a posted menu and it appears in the menu subwindow,
item_visible returns TRUE. Otherwise, it returns FALSE.

To check if the first menu item is currently visible on the display, you can write

int at_top (m) /* check visibility of first menu item */
MENU * m;
{

ITEM ** i = menu_items (m);

Menus

10-11

ITEM * firstitem = i[0];

return item_visible (firstitem);
}

For another example, see “Counting the Number of Menu Items” on page 10-16.

Changing the Current Default Values for Item Attributes 10

ETI establishes initial current default values for item attributes. During item initialization,
each item attribute is assigned the current default value of the attribute. You can change or
retrieve the current default attribute values by calling the appropriate function with a
NULL item pointer. After the current default value changes, all subsequent items created
with new_item will have the new default value.

NOTE

Items created before changing the current default value retain
their previously assigned values.

The following sections offer many examples of how to change item attributes.

Setting the Item User Pointer 10

For each item created, ETI automatically allocates a special user pointer that enables you
to associate arbitrary data with the item. By default, the user pointer's value is NULL. You
may set its value to whatever you want or not use it at all.

SYNOPSIS

int set_item_userptr (item, userptr)
ITEM * item;
char * userptr;

char * item_userptr (item)
ITEM * item;

These two functions are helpful for creating item data such as title strings, help messages,
and the like.

Any defined structure can be connected to an item using the item's user pointer. The
pointer must be cast to (char *) and then later recast back to (defined-struct *). Screen 10-5
shows how to use an item's user pointer with a structITEM_ID , which stores biological
information.

Character User Interface Programming

10-12

Screen 10-5. Using an Item User Pointer

Note that the pointer to each entry in arrayids is cast tochar * , whichset_userptr
requires. You might then write a function that uses functionitem_userptr to return the
information. The following function returns the item type:

char * get_type (i)
ITEM * i;
{

ITEM_ID * id = (ITEM_ID *) item_userptr (i);
return id -> type;

}

Here the value returned byitem_userptr is recast toITEM_ID * so the item'stype
may be found.

Finally, you might callget_type to write the type, thus:

WINDOW * win;

waddstr (win,get_type(i));

If successful,set_item_userptr returnsE_OK. Otherwise, it returns the following:

E_SYSTEM_ERROR system error

If function set_item_userptr is passed a NULL item pointer, the argument
userptr becomes the new default user pointer for all subsequently created items. As an

typedef struct
{

int id;
char * name;
char * type;

}
ITEM_ID;

ITEM_ID ids[7] =
{

1, “apple”, “fruit”,
2, “ant”, “insect”,
3, “cow”, “mammal”,
4, “lizard”, “reptile”,
5, “potato”, “vegetable”,
6, “zebra”, “mammal”,
0, “”, “”,

};

ITEM * items[7];

for (i = 0; ids[i]; ++i)
{
 /* create item from each ids.name */

items[i] = new_item (ids[i].name, “”);

/* set user pointer to point to start of each struct in ids[] */

set_item_userptr (items[i], (char *) &ids[i]);
}
items[i] = (ITEM *) 0;

Menus

10-13

example, the following sets the new default user pointer to point to the stringYou are
Here :

set_item_userptr((ITEM *) 0, “You are Here”);

Creating and Freeing Menus 10

Once you create the items for your menu, you can create the menu itself. To create and ini-
tialize a menu, you use functionnew_menu.

SYNOPSIS

MENU * new_menu (items)
ITEM ** items;

The argument tonew_menu is a NULL-terminated, ordered array ofITEM pointers.
These pointers define the items on the menu. Their order determines the order in which the
items are visited during menu driver processing, described below.

Functionnew_menu does not copy the array of item pointers. Instead, it saves the pointer
to the array for future use.

NOTE

Once your application program has callednew_menu, it should
not change the array of item pointers until the menu is freed by
f ree_menu o r the i tem ar ray i s rep laced by
set_menu_items , described below.

Items passed tonew_menu are connected to the menu created. They cannot be simulta-
neously connected to another menu. To disconnect the items from a menu, you can use
function free_menu or functionset_menu_items , which changes the items con-
nected to a menu from one set to another. See “Fetching and Changing Menu Items” on
page 10-14.

If successful,new_menu returns a pointer to the new menu. The following error condi-
tions hold:

• If there is insufficient memory for the menu or it detects an item connected
to another menu,new_menu returns NULL.

• If the array of item pointers is not NULL-terminated, undefined results
occur.

In addition, ifnew_menu's argumentitems is NULL, as in

MENU * m;

m = new_menu ((MENU *) 0);

Character User Interface Programming

10-14

it creates the menu with no items connected to it and assigns the menu pointer tom.

The menu pointer returned bynew_menu is the key to working with all menu routines.
You pass it to the appropriate menu routine to do such tasks as post menus, call the menu
driver, set the current item, and record or examine menu attributes.

Turn again to Screen 10-2 for an example showing how to create a menu. In general, you
want to use awhile loop as illustrated to create the menu items and assign the item point-
ers to the item pointer array. Note the NULL terminator assigned to the item pointer array
before the menu is created withnew_menu

When you no longer need a menu, you should free the space allocated for it. To do this,
you use functionfree_menu .

SYNOPSIS

int free_menu (menu)
MENU * menu;

Functionfree_menu takes as its argument a menu pointer previously obtained from
new_menu. It disconnects all items from the menu and frees the space allocated for the
menu. The items associated with the menu are not freed, however, because you may want
to connect them to another menu. If not, you can free them by callingfree_item .

Remember that once a menu is freed, you must not pass its menu pointer to another rou-
tine. If you do, undefined results occur.

If successful, calls tofree_menu returnE_OK. If free_menu encounters an error, it
returns one of the following:

E_BAD_ARGUMENT NULL menu pointer

E_POSTED menu is posted

E_SYSTEM_ERROR system error

For E_POSTED, see “Posting and Unposting Menus” on page 10-27.

Manipulating Menu Attributes 10

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A menu attribute is any menu feature whose value can be set or read by an
appropriate ETI function. The set of items connected to a menu and the number of items in
the menu are examples of menu attributes.

Fetching and Changing Menu Items 10

During processing, you may sometimes want to change the set of items connected to a
menu. Functionset_menu_items enables you to do this.

Menus

10-15

SYNOPSIS

int set_menu_items (menu, items)
MENU * menu;
ITEM ** items;

ITEM ** menu_items (menu)
MENU * menu;

Like the argument tonew_menu, the second argument toset_menu_items is a
NULL-terminated, ordered array ofITEM pointers that defines the items on the menu.
Like new_menu, functionset_menu_items does not copy the array of item pointers.
Instead, it saves the pointer to the array for future use.

The items previously connected to the given menu whenset_menu_items is called are
disconnected from the menu (but not freed) before the new items are connected. The new
items cannot be given to other menus unless first disconnected byfree_menu or another
set_menu_items call.

If items is NULL, the items associated with the given menu are disconnected from it, but
no new items are connected.

If function set_menu_items is successful, it returnsE_OK. If it encounters an error, it
returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or NULL associated item array

E_POSTED menu is posted

E_CONNECTED connected item

Functionmenu_items returns the array of item pointers associated with its menu argu-
ment. In the next section, the application-defined functionat_bottom illustrates its use.

If no items are connected to the menu or the menu pointer argument is NULL,
menu_items returns NULL.

As an example ofset_menu_items , consider Screen 10-6 whose code changes the
items associated with a previously created menu.

Character User Interface Programming

10-16

Screen 10-6. Changing the Items Associated with a Menu

Counting the Number of Menu Items 10

Occasionally, you may want to do different processing depending on the number of items
connected to your current menu. Functionitem_count returns the number of items con-
nected to a menu.

SYNOPSIS

int item_count (menu)
MENU * menu;

If menu is NULL, functionitem_count returns -1.

As an example of the use of this function, consider the following routine. Because the
index to the last menu item is one less than the number of items, this routine determines
whether the last item is displayed.

/* check visibility of last menu item */
int at_bottom (m)
MENU * m;
{

ITEM ** i = menu_items (m);
ITEM * lastitem = i[item_count(m)-1];

return item_visible (lastitem);
}

Changing the Current Default Values for Menu Attributes 10

As it does with the attributes of other objects, ETI establishes initial current default values
for menu attributes. During menu creation, each menu attribute is assigned the current
default value of the attribute. You can change or retrieve the current default attribute val-
ues by calling the appropriate function with a NULL menu pointer. After the current

MENU *m;
ITEMS ** olditems, ** newitems;
 /* create items */

m = new_menu(olditems); /* create menu m */

 /* process menu with olditems */

set_menu_items (m,newitems); /* change items associated with menu m */

Menus

10-17

default value changes, all subsequent menus created withnew_menu will have the new
default value.

NOTE

Menus created before changing the current default value retain
their previously assigned values.

The following sections offer many examples of how to change menu attributes.

Displaying Menus 10

In general, to display a menu, you determine the menu's dimensions, optionally associate a
window and subwindow with the menu, optionally set the menu's display attributes, post
the menu, and refresh the screen.

Determining the Dimensions of Menus 10

The simplest way to display a menu is to usestdscr as your default window and subwin-
dow. Any titles, borders, or other decorative matter are displayed in the menu window; the
menu proper is displayed in the menu subwindow. If you want to specify a menu window
or subwindow, you use the functionsset_menu_win or set_menu_sub . (These rou-
tines are treated “Associating Windows and Subwindows with Menus” on page 10-23.)
Whether or not you choose a menu window, ETI calculates the minimum window (or
subwindow) size for your menu.

To determine the minimum window size for a menu, ETI considers five factors:

• the size and number of items in a menu

• whether optionO_ROWMAJOR is on

• whether optionO_SHOWDESC is on

• the format, or maximum number of rows and columns on a displayed page
of the menu

• the mark string for menu items

ETI knows the size and number of items in a menu as soon as you callnew_menu, dis-
cussed above. By default, optionsO_ROWMAJOR andO_SHOWDESC are on. Option
O_ROW_MAJOR ensures that the items are displayed in row major order — fanning out left
to right, then top to bottom. How to change this and other menu options is discussed in
“Setting and Fetching Menu Options” on page 10-47. OptionO_SHOWDESC ensures that
an item's description, if any, is displayed with the item's name.

This section first describes the menu's format and mark string. It then describes the routine
scale_menu , which uses the above information to set the window size for the menu.

Character User Interface Programming

10-18

NOTE

The five factors that determine the minimum window size have
default values. You need not worry about them until you want to
customize your menus.

Specifying the Menu Format 10

In general, the items comprising a menu do not fill a single screen. Sometimes they
occupy considerably less space, sometimes considerably more. The following functions
enable you to set the maximum number of rows and columns of menu items to be dis-
played at any one time.

SYNOPSIS

int set_menu_format (menu, maxrows, maxcols)
MENU * menu;
int maxrows, maxcols;

void menu_format (menu, maxrows, maxcols)
MENU * menu;
int * maxrows, * maxcols;

A menu page is the collection of currently visible items. Functionset_menu_format
establishes the maximum number of rows and columns of items that may be displayed on
a menu page.

The actual number of rows and columns displayed may be less thanmaxrows or maxcols
depending on the number of items and whether theO_ROWMAJOR option is on. (Menu
options are described in “Setting and Fetching Menu Options” on page 10-47.) Function
menu_format returns the maximum number of rows and columns of items that you set
for the given menu.

The default number of item rows is 16, while the default number of item columns is one. If
eithermaxrows or maxcols equals zero in the call toset_menu_format , the current
value is not changed. An error occurs, however, if the value of either of these arguments is
less than zero.

ETI calculates the total number of rows and columns in a row major menu as follows:

#define minimum(a,b)((a) < (b) ? (a) : (b))

total_rows = (number_of_items - 1) / maxcols + 1;
total_cols = minimum (number_of_items, maxcols);

ETI calculates the total number of rows and columns in a column major menu as follows:

total_rows = (number_of_items - 1) /maxcols + 1;
total_cols = (number_of_items - 1) /total_rows + 1;

Whether or not theO_ROW_MAJOR option is on, the number of rows and columns of items
that are displayed at one time on a menu page is

Menus

10-19

displayed_rows = minimum (total_rows, maxrows);
displayed_cols = minimum (total_cols, maxcols);

If total_rows is greater thanmaxrows , the menu is scrollable — your end-user can
scroll up or down through the menu by making the appropriate menu driver request. See
“ETI Menu Requests” on page 10-32.

As an example, consider the displays in Figure 10-1 and Figure 10-2. They portray menus
consisting of five items. The numbers 0 through 4 signify menu items in the order in which
they live in the item pointer array. Figure 10-1 shows the menu displayed with a format of
maximum number of rows two, maximum number of columns two. To stipulate this for-
mat for menu m, you write

set_menu_format(m,2,2);

Using the formulas above, we see thattotal_rows is 3 andtotal_cols is 2 in all
four cases displayed in the two figures. The first display in each figure shows the menu in
row major format (O_ROW_MAJOR on), the second in column major format. The displayed
number of rows and columns in Figure 10-1 is 2. To see the last row of items, your user
can make theREQ_SCR_DLINE request to scroll down. If, instead, you set the format of
this menu to three rows, two columns, you get one of the two displays in Figure 10-2. The
enclosing block in each case indicates the items displayed at one time.

For a larger example, consider Figure 10-3. Here the number of items is 18 and the format
in both cases is four rows, three columns. In both cases, the total number of rows comes to
six, the total number of columns to three, and the displayed number of rows to four. Calcu-

Figure 10-1. Examples of Menu Format (2, 2)

0 1 0 3

2 3 1 4

4 2

Row Major Column Major

Maximum Rows 2

Figure 10-2. Examples of Menu Format (3, 2)

0 1 0 3

2 3 1 4

4 2

Row Major Column Major

Maximum Rows 3

Character User Interface Programming

10-20

lation shows that changing the number of items in this example to 19 changes the number
of rows to seven.

The column major examples emphasize that when the total number of rows is greater than
the maximum number of rows, the items displayed do not exactly follow the order of the
items in the array of item pointers. The items are arranged in column-major format
throughout the entire menu, not within each displayed page. This conception agrees with
your user's ability to scroll through the menu.

If successful, functionset_menu_format returnsE_OK. If an error occurs, it returns
one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT rows < 0 or cols < 0

E_POSTED menu is posted

If function set_menu_format is passed a NULL menu pointer, it sets a new system
default. Suppose, for instance, that you want to change the default maximum number of
rows of items displayed to ten, and the default maximum number of columns displayed to
three. You can write

set_menu_format((MENU *)0,10,3);

The functionset_menu_format resets the value oftop_row to 0. See “Fetching and
Changing the Top Row” on page 10-42 for details.

Finally, if functionmenu_format receives a NULL menu pointer, it returns the current
default format.

Changing Your Menu's Mark String 10

The mark string distinguishes

• selected items in a multi-valued menu

• the current item in a single-valued menu.

The mark string appears just to the left of the item name.

Figure 10-3. Examples of Menu Format (4, 3)

0 1 2 0 6 12

3 4 5 1 7 13

6 7 8 2 8 14

9 10 11 3 9 15

12 13 14 4 10 16

15 16 17 5 11 17

Row Major Column Major

Menus

10-21

SYNOPSIS

int set_menu_mark (menu, mark)
MENU * menu;
char * mark;

char * menu_mark (menu)
MENU * menu;

Functionset_menu_mark sets the mark string, whilemenu_mark returns the string.
The initial default mark string is a minus sign (-). The mark string may be as long as you
want, provided each item fits on one line of the menu's subwindow.

NOTE

Do not change the mark string area as long as you want that mark
because ETI does not copy it.

You can callset_menu_mark either before or after the menu is posted. (See “Posting
and Unposting Menus” on page 10-27.) However, there is a restriction to calling it after-
wards.

NOTE

If you call set_menu_mark with a posted menu, the length of
the mark string must stay the same.

If the menu is posted and the length of the mark string changes, the function returns
E_BAD_ARGUMENT and leaves the mark unchanged.

To change the mark string for menu m to ---> you can write

MENU * m;

set_menu_mark (m, “--->”);
/* change mark string for menu m */

If successful, functionset_menu_mark returnsE_OK. If an error occurs, function
set_menu_mark returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT menu is posted: change in string length impossible or string
is NULL

Note that you can change the current default mark string for all subsequently created
menus in your program by passingset_menu_mark a NULL menu pointer. To change
the current default mark string to---> you write

set_menu_mark ((MENU *) 0, “--->”);
/* change default mark string */

Character User Interface Programming

10-22

All subsequently created menus will have---> as their mark string. To return the current
default mark string, you callmenu_mark with NULL:

char * mark = menu_mark ((MENU *) 0);
/* default mark string */

Querying the Menu Dimensions 10

Remember that the size of menu items, theO_ROWMAJOR menu option, the menu format,
and the menu mark determine the smallest window size for a menu. Function
scale_menu returns this smallest window size in terms of the number of character rows
and columns.

SYNOPSIS

int scale_menu (menu, rows, cols)
MENU * menu;
int * rows, * cols;

Because functionscale_menu must return more than one value (namely, the minimum
number of rows and columns for the menu) and C passes parameters “by value” only, the
arguments ofscale_menu are pointers. The pointer argumentsrows andcols point to
locations used to return the minimum number of rows and columns for displaying the
menu.

NOTE

You should callscale_menu only after the menu's items have
been connec ted to the menu us ingnew_menu o r
set_menu_items .

The following code places the minimal number of rows and columns necessary for menu
m in rows andcols :

MENU *m;
int rows, cols;

scale_menu (m, &rows, &cols);
/* return dimensions of menu m */

You use the values returned fromscale_menu to create menu windows and subwin-
dows. In the next section, we will see how to do this.

If successful,scale_menu returnsE_OK. If an error occurs, the function returns one of
the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer

E_NOT_CONNECTEDno connected items

Menus

10-23

Associating Windows and Subwindows with Menus 10

Two windows are associated with each menu — the menu window and the menu subwin-
dow. The following functions assign windows and subwindows to menus and fetch those
previously assigned to them.

SYNOPSIS

int set_menu_win (menu, window)
MENU * menu;
WINDOW * window;

WINDOW * menu_win (menu)
MENU * menu;

int set_menu_sub (menu, window)
MENU * menu;
WINDOW * window;

WINDOW * menu_sub (menu)
MENU * menu;

To place a border around your menu or give it a title, you callset_menu_win and write
to the associated window.

NOTE

By default, (1) the menu window is NULL, which by convention
means that ETI usesstdscr as the menu window; and (2) the
menu subwindow is NULL, which means that ETI uses the menu
window as the menu subwindow.

If you do not want to use the system defaults, you may create a window and a subwindow
for every menu. ETI automatically writes all output of the menu proper on the menu's sub-
window. You may write additional output (such as borders, titles, and the like) on the
menu's window. The relationship between ETI menu routines, your application program, a
menu window, and a menu subwindow is illustrated in Figure 10-4.

Character User Interface Programming

10-24

Figure 10-4. Menu Functions Write to Subwindow, Application to Window

NOTE

You should apply all output and refresh operations to the menu
window, not its subwindow.

Figure 10-7 shows how you can create and display a menu with a border of the default
characters,ACS_VLINE and ACS_HLINE. (See thebox command in the
curses(3curses) manual pages.)

window

sub
window

ETI
Menu

Functions

C Application
Program

Menus

10-25

Screen 10-7. Creating a Menu with a Border

Variablesrows andcols provide the menu dimensions without the border. The dimen-
sions of the menu subwindow are set to these values. In general, if you want a simple bor-
der, you should set the number of rows and columns in the menu's window to be two more
than the numbers in its subwindow, as in the example.

Remember that the initial default menu window and subwindow are NULL. (By conven-
tion, this means thatstdscr is used as the menu window and the menu window is used as
the menu subwindow.) If you want to change the current default menu window or subwin-
dow, you can pass functionsset_menu_win andset_menu_sub a NULL menu
pointer. Thus, the code

WINDOW * dftwin;

set_menu_win ((MENU *) 0, dftwin);
/* sets default menu window to dftwin */

changes the current default window todftwin.

If successful, functionsset_menu_win andset_menu_sub returnE_OK. If not, they
return one of the following:

E_SYSTEM_ERROR system error

E_POSTED menu is posted

Fetching and Changing a Menu's Display Attributes 10

Menu display attributes are visible menu characteristics that distinguish classes of menu
items from each other. Low-level ETI (curses) video attributes are used to differentiate
the menu display attributes. These menu display attributes include

MENU * m;
WINDOW * w;
int rows, cols;

scale_menu (m, &rows, &cols); /* get dimensions of menu */

/* create window 2 characters larger than menu dimensions
with top left corner at (0, 0). subwindow is positioned
at (1, 1) relative to menu window origin with dimensions
equal to the menu dimensions. */

if (w = newwin (rows+2, cols+2, 0, 0))
{

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, cols, 1, 1));

box (w, 0, 0); /* draw border in w */
}

Character User Interface Programming

10-26

foreground attribute distinguishes the current item, if selectable, on all menus and
selected items on multi-valued menus

background attribute distinguishes selectable, but unselected, items on all menus

grey attribute distinguishes unselectable items on multi-valued menus

pad character the character that fills (pads) the space between a menu item's
name and description

The following functions enable you to set and read these attributes.

SYNOPSIS

int set_menu_fore (menu, attr)
MENU ** menu;
chtype attr;

chtype menu_fore (menu)
MENU ** menu;

int set_menu_back (menu, attr)
MENU ** menu;
chtype attr;

chtype menu_back (menu)
MENU ** menu;

int set_menu_grey (menu, attr)
MENU ** menu;
chtype attr;

chtype menu_grey (menu)
MENU ** menu;

int set_menu_pad (menu, pad)
MENU ** menu;
int pad;

int menu_pad (menu)
MENU ** menu;

In general, to establish uniformity throughout your program, you should set the menu dis-
play attributes with these functions at the start of the program.

Functionset_menu_fore sets thecurses foreground attribute. The default is
A_STANDOUT.

Functionset_menu_back sets thecurses background attribute. The default is
A_NORMAL.

Functionset_menu_grey sets thecurses attribute used to display nonselectable
items in multi-valued menus. The default isA_UNDERLINE.

Menus

10-27

To set the foreground attribute of menum to A_BOLD and its background attribute to
A_DIM, you write

MENU *m;

set_menu_fore(m,A_BOLD);
set_menu_back(m,A_DIM);

All these functions can change or fetch the current default if passed a NULL menu pointer.
As an example, to set the default grey attribute toA_NORMAL, you write

set_menu_grey((MENU *)0, A_NORMAL);

If functionsset_menu_fore , set_menu_back , andset_menu_grey encounter an
error, they return one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT badcurses attribute

Functionset_menu_pad sets the pad character for a menu. The initial default pad char-
acter is a blank. The pad character must be a printable ASCII character.

To change the pad character for menum to a dot (.), you write

MENU * m;

set_menu_pad(m,'.');

If function set_menu_pad encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT non-printable pad character

Posting and Unposting Menus 10

To post a menu is to write it on the menu's subwindow. To unpost a menu is to erase it
from the menu's subwindow, but not destroy its internal data structure. ETI provides two
routines for these actions.

SYNOPSIS

int post_menu (menu)
MENU * menu;

int unpost_menu (menu)
MENU * menu;

Note that neither of these functions actually change what is displayed on the terminal.
After posting or unposting a menu, you must callwrefresh (or its equivalents,
wnoutrefresh anddoupdate) to do so.

Character User Interface Programming

10-28

If function post_menu encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer

E_POSTED menu is already posted

E_NOT_CONNECTEDno connected items

E_NO_ROOM menu does not fit in subwindow

RegardingE_NO_ROOM, recall from “Querying the Menu Dimensions” on page 10-22
that functionscale_menu returns the number of rows and columns necessary to display
the menu. It does not, however, know the size of the subwindow you are associating with
the menu. Only when the menu is posted is this point checked. Any failure of the menu to
fit in the subwindow is then detected.

If function unpost_menu executes successfully, it returnsE_OK. In the following situa-
tions, it fails and returns the indicated values:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer

E_NOT_POSTED menu is not posted

E_BAD_STATE called from init or term

You might, for instance, receiveE_NOT_POSTED if you forgot to post the menu in the
first place or you mistakenly tried to unpost it twice.

Screen 10-8 illustrates two routines you might write to post and unpost menus. Function
display_menu creates the window and subwindow for the menu and posts it. Function
erase_menu unposts the menu and erases its associated window and subwindow.

Menus

10-29

Screen 10-8. Sample Routines Displaying and Erasing Menus

Functionkeypad is called with a second argument of1 to enable virtual keysKEY_LL,
KEY_LEFT, and others to be properly interpreted in the routineget_request
described in “Menu Driver Processing” on page 10-29. See the discussion ofkeypad in
thecurses(3curses) manual pages for details. Finally, note the placement of checks
for error returns in this example.

Menu Driver Processing 10

Themenu_driver is the workhorse of the menu system. Once the menu is posted, the
menu_driver handles all interaction with the end-user. It responds to

• item navigation requests

• menu scrolling requests

static void display_menu (m)/* create menu windows and post */
MENU * m;
{

WINDOW * w;
int rows;
int cols;

scale_menu (m, &rows, &cols);/* get dimensions of menu */

/* create menu window, subwindow, and border */

if (w = newwin (rows+2, cols+2, 0, 0)) {

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, cols, 1, 1));
box (w, 0, 0); /* create border of 0's */

 keypad (w, 1); /* set for each data entry window */
}
else

error (“error return from newwin”, NULL);

/* post menu */

if (post_menu (m) != E_OK)
error (“error return from post_menu”, NULL);

else
wrefresh (w);

}

static void erase_menu (m) /* unpost and delete menu windows */
MENU * m;
{

WINDOW * w = menu_win (m);
WINDOW * s = menu_sub (m);

unpost_menu (m); /* unpost menu */
werase (w); /* erase menu window */
wrefresh (w); /* refresh screen */
delwin (s); /* delete menu windows */
delwin (w);

}

Character User Interface Programming

10-30

• item selection requests

• pattern buffer requests

SYNOPSIS

int menu_driver (menu, c)
MENU * menu;
int c;

Your application program passes a character to the menu driver for processing and evalu-
ates the results.

To enable your application program to fetch the character for the menu driver, you write a
routine that defines the input key virtualization. This is the correspondence between spe-
cific input keys, control characters, or escape sequences on the one hand and menu driver
requests on the other. The virtualization routine returns a specific menu request or applica-
tion command that the menu driver can process. Upon return from the menu driver, your
application can check if the input was processed appropriately. If not, your application
specifies the action to be taken. These actions may include terminating interaction with the
menu, responding to help requests, generating an error message, and so forth.

Defining the Key Virtualization Correspondence 10

To illustrate a key virtualization routine, consider Screen 10-9, which shows the key virtu-
alization routineget_request . Nearly all the values it returns are the ETI menu
requests to be discussed in the sections below.

Menus

10-31

Screen 10-9. Sample Routine that Translates Keys into Menu Requests

Note that becausewgetch here automatically does a refresh before reading a character,
you can omit explicit calls towrefresh in applications that do character input.

/* define application commands */

#define QUIT(MAX_COMMAND + 1)

/* Note that ^X represents the character control-X.

^Q - end menu processing

^N - move to next item
^P - move to previous item
home key- move to first item
home down- move to last item

left arrow- move left to item
right arrow- move right to item
down arrow- move down to item
up arrow- move up to item

^U - scroll up a line
^D - scroll down a line
^B - scroll up a page
^F - scroll down a page

^X - clear pattern buffer
^H <BS> - delete character from pattern buffer
^A - request next pattern match
^Z - request previous pattern match

^T - toggle item */

static int get_request (w)/* virtual key mapping */
WINDOW * w;
{

int c = wgetch (w);/* read a character */

switch (c)
{

case 0x11: /* ^Q */ return QUIT;

case 0x0e: /* ^N */ return REQ_NEXT_ITEM;
case 0x10: /* ^P */ return REQ_PREV_ITEM;
case KEY_HOME: return REQ_FIRST_ITEM;
case KEY_LL: return REQ_LAST_ITEM;

case KEY_LEFT: return REQ_LEFT_ITEM;
case KEY_RIGHT: return REQ_RIGHT_ITEM;
case KEY_UP: return REQ_UP_ITEM;
case KEY_DOWN: return REQ_DOWN_ITEM;

case 0x15: /* ^U */ return REQ_SCR_ULINE;
case 0x04: /* ^D */ return REQ_SCR_DLINE;
case 0x06: /* ^F */ return REQ_SCR_DPAGE;
case 0x02: /* ^B */ return REQ_SCR_UPAGE;

case 0x18: /* ^X */ return REQ_CLEAR_PATTERN;
case 0x08: /* ^H */ return REQ_BACK_PATTERN;
case 0x01: /* ^A */ return REQ_NEXT_MATCH;
case 0x1a: /* ^Z */ return REQ_PREV_MATCH;

case 0x14: /* ^T */ return REQ_TOGGLE_ITEM;
}
return c;

}

Character User Interface Programming

10-32

ETI Menu Requests 10

ETI menu requests are made by calling functionmenu_driver with anint value that
signifies the request. To appreciate the effects of some requests, bear in mind what a menu
page is.

A menu page is the collection of currently visible menu items,
that is, those displayed in the menu subwindow.

A menu page is distinct from a form page, which is a logical portion of a form. Form
pages are treated in Chapter 11.

Item Navigation Requests 10

These requests enable your end user to navigate from item to item whether or not the items
are displayed at the moment.

REQ_NEXT_ITEM move to next item

REQ_PREV_ITEM move to previous item

REQ_FIRST_ITEM move to first item

REQ_LAST_ITEM move to last item

The order of the items in the array originally passed tonew_menu or set_menu_items
determines the order in which items are visited in response to these requests.

The REQ_NEXT_ITEM and REQ_PREV_ITEM requests are not cyc l ic . A
REQ_NEXT_ITEM request from the last item or aREQ_PREV_ITEM request from the
first item returns the valueE_REQUEST_DENIED.

Often, a scrolling operation not explicitly requested by the user may nonetheless take
place in response to these requests. For example, theREQ_FIRST_ITEM request on a
menu that is not currently displaying the first item may scroll to display the menu's first
item at the top of the screen.

Directional Item Navigation Requests 10

These requests enable your end-user to navigate from item to item in different directions.

REQ_LEFT_ITEM move left to item

REQ_RIGHT_ITEM move right to item

REQ_UP_ITEM move up to item

REQ_DOWN_ITEM move down to item

Directional item navigation requests are not cyclic. If there is no item on the current page
to the left or right of the current item, the menu driver returnsE_REQUEST_DENIED in
response to the corresponding request.

Menus

10-33

On the other hand, if the menu is scrollable and there are more items above or below the
current menu page, the corresponding requestsREQ_UP_ITEM andREQ_DOWN_ITEM
generate an automatic scrol l ing operat ion. I f not, the menu driver returns
E_REQUEST_DENIED.

Menu Scrolling Requests 10

These requests enable your users to scroll easily through menus that span more than one
menu page.

REQ_SCR_DLINE scroll menu down a line

REQ_SCR_ULINE scroll menu up a line

REQ_SCR_DPAGE scroll menu down a page

REQ_SCR_UPAGE scroll menu up a page

The current and top items are adjusted by these operations.

Menu scrolling requests are also not cyclic. Attempts to scroll up from the first menu page,
o r sc ro l l down f rom the las t , re tu rn f rom the menu d r ive r the va lue
E_REQUEST_DENIED.

Multi-valued Menu Selection Request 10

This request enables your end user to select or deselect an item in a multi-valued menu.

REQ_TOGGLE_ITEMselect/deselect item

If the item is currently selected, this request deselects it, and vice versa.

To use this request, theO_ONEVALUE option must be off. (See “Setting and Fetching
Menu Options” on page 10-47.) If the option is on, you have a single-valued menu. In that
case, this request fails andE_REQUEST_DENIED is returned from the menu driver.

Pattern Buffer Requests 10

The pattern buffer is an area automatically allocated for your menu application programs.
It is used to position the current menu item at an item name that matches the pattern. You
can modify the pattern buffer

• by callingset_menu_pattern (described below)

• by passing the menu driver printable ASCII characters one at a time.

Each non-printable ASCII character that is received by the menu driver is assumed to be a
menu request. On the other hand, each printable ASCII character that is received by the
menu driver is entered into the pattern buffer. At the same time, the current item advances
to the first matching item. If no matching item is found, the current item remains
unchanged, the character is deleted from the pattern buffer, and the menu driver returns
E_NO_MATCH.

Character User Interface Programming

10-34

The following requests enable you to change and read the pattern buffer.

REQ_CLEAR_PATTERN clear pattern buffer

REQ_BACK_PATTERN delete last character from pattern buffer

REQ_NEXT_MATCH move to next pattern match

REQ_PREV_MATCH move to previous pattern match

RequestREQ_CLEAR_PATTERN clears the pattern buffer entirely.

NOTE

Without requestREQ_CLEAR_PATTERN, the pattern buffer is
automatically cleared after each successful scrolling or item navi-
gation operation. In other words, any time the top item or current
item changes, the pattern buffer is cleared automatically.

REQ_BACK_PATTERN deletes the last character from the pattern buffer. This request can
be used to support a backspace operation on the pattern buffer.

Sometimes more than one menu item will match the character(s) entered by the user.
REQ_NEXT_MATCH moves the user forward on the displayed menu to the next array item
that matches the data in the pattern buffer.REQ_PREV_MATCH, on the other hand, moves
the user backward on the displayed menu to the previous array item that matches the pat-
tern buffer. In both cases, if no additional match is found, the current item remains
unchanged andE_NO_MATCH is returned from the menu driver.

RequestsREQ_NEXT_MATCH andREQ_PREV_MATCH are cyclic through all menu items.
In addition, these requests generate automatic scrolling requests if the menu is scrollable
and the next or previous matching item is not visible.

NOTE

An empty pattern buffer matches all items.

Application-defined Commands 10

ETI menu requests are implemented as integers above thecurses maximum key value
KEY_MAX. A symbolic constantMAX_COMMAND is provided to enable your applications
to implement their own requests (commands) without conflicting with the ETI form and
menu system. All menu requests are greater thanKEY_MAX and less than or equal to
MAX_COMMAND. Your appl icat ion-defined requests should be greater than
MAX_COMMAND. Two illustrations occur in the example in the next section. Figure 10-5
diagrams this relationship between ETI key values, ETI menu requests, and your applica-
tion program's menu requests.

Menus

10-35

Figure 10-5. Integer Ranges for ETI Key Values and MENU Requests

Calling the Menu Driver 10

The menu driver checks whether the virtualized character passed to it is an ETI menu
request. If so, it performs the request and reports the results. If the character is not a menu
request, the menu driver checks if the character is data, that is, a printable ASCII character.
If so, it enters the character in the pattern buffer and looks for the first match among the
item names. If no match is found, the menu driver deletes the character from the pattern
buffer and returnsE_NO_MATCH. If the character is not recognized as a menu request or
data, the menu driver assumes the character is an application-defined command and
returnsE_UNKNOWN_COMMAND.

To illustrate a sample design for calling the menu driver, we will consider a program that
permits interaction with a menu of astrological signs. Screen 10-10 displays the menu.

Screen 10-10. Sample Menu Output (2)

You have already seen much of the astrological sign program in previous examples. Its
functionget_request , for instance, appeared in Screen 10-9. Screen 10-11 shows its
remaining routines.

ETI Key Values

KEY _MAX MAX_COMMAND

ETI MENU Requests Application-Defined Requests

+-----------------------------+
| Aries The Ram |
| Taurus The Bull |
| Gemini The Twins |
| Cancer The Crab |
| Leo The Lion |
| Virgo The Virgin |
| Libra The Balance |
| Scorpio The Scorpion |
| Sagittarius The Archer |
| Capricorn The Goat |
| Aquarius The Water Bearer|
| Pisces The Fishes |
+-----------------------------+

Character User Interface Programming

10-36

Screen 10-11. Sample Program Calling the Menu Driver

/* This program displays a sample menu.

 Omitted here are the key mapping defined by get_request
 in Screen 10-9; application-defined routines display_menu
 and erase_menu in Screen 10-8; and the curses initialization
 routine start_curses in section “ETI Low-level Interface to
 High-level Functions” */

#include <string.h>
#include <menu.h>

static char *PGM= (char *) 0;/* program name */

static int my_driver (m, c)/* handle application commands */
MENU * m;
int c;
{

switch (c)
{

case QUIT:
return TRUE;
break;

}
beep ();/* signal error */
return FALSE;

}

main (argc, argv)
int argc;
char * argv[];
{

WINDOW *w;
MENU * m;
ITEM ** i;
ITEM ** make_items ();
void free_items ();
int c, done = FALSE;

PGM = argv[0];
start_curses ();

if (! (m = new_menu (make_items ())))
error (“error return from new_menu”, NULL);

display_menu (m);

/* interact with user */

w = menu_win (m);

while (! done)
{

switch (menu_driver (m, c = get_request (w)))
{

case E_OK:
break;

case E_UNKNOWN_COMMAND:
done = my_driver (m, c);
break;

default:
beep ();/* signal error */
break;

}
}

Menus

10-37

Functionmain first calls the application-defined routinemake_items to create the items
from the arraysigns . The value returned is passed tonew_menu to create the menu.
Functionmain then initializescurses usingstart_curses and displays the menu
usingdisplay_menu .

In its while loop,main repeatedly callsmenu_driver with the character returned by
get_request . If the menu driver does not recognize the character as a request or data, it
returnsE_UNKNOWN_COMMAND, whereupon the application-defined routinemy_driver
is called with the same character. Routinemy_driver processes the application-defined
commands. In this example, there is only one, QUIT. If the character passed does not sig-
nify QUIT, my_driver signals an error and returns FALSE and the signal prompts the

erase_menu (m);
end_curses ();
i = menu_items (m);
free_menu (m);
free_items (i);
exit (0);

}

typedef struct
{

char * name;
char * desc;

}
ITEM_RECORD;

/* item definitions */

static ITEM_RECORD signs [] =
{

“Aries”, “The Ram”,
“Taurus”, “The Bull”,
“Gemini”, “The Twins”,
“Cancer”, “The Crab”,
“Leo”, “The Lion”,
“Virgo”, “The Virgin”,
“Libra”, “The Balance”,
“Scorpio”, “The Scorpion”,
“Sagittarius”, “The Archer”,
“Capricorn”, “The Goat”,
“Aquarius”, “The Water Bearer”,
“Pisces”, “The Fishes”,
(char *) 0,(char *) 0,

};

#define MAX_ITEM 512

static ITEM *items [MAX_ITEM + 1]; /* item buffer */

static ITEM ** make_items () /* create the items */
{

int i;

for (i = 0; i < MAX_ITEM && signs[i].name; ++i)
items[i] = new_item (signs[i].name, signs[i].desc);

items[i] = (ITEM *) 0;
return items;

}

static void free_items (i) /* free the items */
ITEM ** i;
{

while (*i)
free_item (*i++);

}

Character User Interface Programming

10-38

user to re-enter the character. If the character passed is the QUIT character,my_driver
returns TRUE. In turn, this setsdone to TRUE, and thewhile loop is exited.

Finally, main erases the menu, terminates low-level ETI (curses), frees the menu and
its items, and exits the program.

This example shows a typical design for calling the menu driver, but it is only one of sev-
eral ways you can structure a menu application.

If the menu_driver recognizes and processes the input character argument, it returns
E_OK. In the following error situations, themenu_driver returns the indicated value:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu

E_BAD_STATE called from init/term routines

E_NOT_POSTED menu is not posted

E_UNKNOWN_COMMANDunknown command

E_NO_MATCH item match failed

E_REQUEST_DENIED recognized request failed

NOTE

Because the menu driver calls the initialization and termination
routines described in the next section, it may not be called from
within them. Any attempt to do so returnsE_BAD_STATE.

Establishing Item and Menu Initialization and Termination Routines 10

Sometimes, you may want the menu driver to execute a specific routine during the change
of an item or menu. The following functions let you do this easily.

SYNOPSIS

typedef void (*PTF_void) ();

int set_menu_init (menu, func)
MENU * menu;
PTF_void func;

PTF_void menu_init (menu)
MENU * menu;

int set_menu_term (menu, func)
MENU * menu;
PTF_void func;

Menus

10-39

PTF_void menu_term (menu)
MENU * menu;

int set_item_init (menu, func)
MENU * menu;
PTF_void func;

PTF_void item_init (menu)
MENU * menu;

int set_item_term (menu, func)
MENU * menu;
PTF_void func;

PTF_void item_term (menu)
MENU * menu;

The argumentfunc is a pointer to the specific function you want executed by the menu
driver. This application-defined function takes a menu pointer as an argument.

If you want your application to execute an application-defined function at one of the ini-
tialization or termination points listed below, you should call the appropriateset_ routine
at the start of your program. If you do not want a specific function executed in these cases,
you may refrain from calling these routines altogether.

The following subsections summarize when each initialization and termination routine is
executed.

Function set_menu_init 10

The argumentfunc to this function is automatically called by the menu system

• just before the menu is posted

• just after each menu scrolling operation, that is, every time the top row
changes on a posted menu, whether by the menu driver in response to a
request or by a program's call toset_current_item or top_row

Function set_item_init 10

The argumentfunc is automatically called by the menu system

• just before the menu is posted

• just after the current item on a posted menu is changed, whether by the
menu dr iver 's response to a request or by a program's cal l to
set_current_item or top_row

Function set_item_term 10

The argumentfunc is automatically called by the menu system

Character User Interface Programming

10-40

• just before the current item changes on a posted menu

• just before the menu is unposted

Function set_menu_term 10

The argumentfunc is automatically called by the menu system

• just before a scrolling operation on a posted menu

• just before the menu is unposted

If funct ions set_menu_init , set_menu_term , set_item_init , or
set_item_term encounter an error, they return

E_SYSTEM_ERROR system error

Screen 10-12 shows how you can use functionset_item_init to implement a menu
prompting feature as your end-user moves from item to item.

Screen 10-12. Using an Initialization Routine to Generate Item Prompts

WINDOW * prompt_window;

void display_prompt (s)
char * s;
{

WINDOW * w = prompt_window;

werase (w);
wmove (w, 0, 0); /* move to window origin */
waddstr (w, s); /* write prompt in window */
wrefresh (w); /* display prompt */

}
void generate_prompt (m)
MENU * m;
{

/* display the prompt string associated with the current item */

char * s = item_userptr (current_item (m));
display_prompt (s);

}
ITEM * items[NUMBER_OF_ITEMS + 1];

main ()
{

MENU * m;

for (i = 0; i < NUMBER_OF_ITEMS; ++i)
{

/* read in name and prompt strings here */

items[i] = new_item (name, “”);
set_item_userptr (items[i], prompt);

}
items[i] = (ITEM *) 0;

m = new_menu (items);
set_item_init (m, generate_prompt); /* set initialization routine */

}

Menus

10-41

Functionset_item_init arranges to callgenerate_prompt whenever the menu
item changes. Functiongenerate_prompt fetches the item user pointer associated
with the current item and callsdisplay_prompt , which displays the item prompt.
Functiondisplay_prompt is a separate function to enable you to use it for other
prompts as well.

Fetching and Changing the Current Item 10

The current item is the item where your end-user is positioned on the screen. Unless it is
invisible, this item is highlighted and the cursor rests on the item. To have your application
program set or determine the current item, you use the following functions.

SYNOPSIS

int set_current_item (menu, item)
MENU * menu;
ITEM * item;

ITEM * current_item (menu)
MENU * menu;

int item_index (item)
ITEM * item;

Functionset_current_item enables you to set the current item by passing an item
pointer, while functioncurrent_item returns the pointer to the current item.

The functionitem_index takes an item pointer argument and returns the index to that
item in the item pointer array. The value of this index ranges from 0 through N-1, where N
is the total number of items connected to the menu.

Because the menu driver satisfies ETI-defined item navigation requests automatically,
your application program need not callset_current_item , unless you want to imple-
ment additional item navigation requests for your application. You may, for instance, want
a request to jump to a particular item or an item, say, two items down from the current one
on the menu page.

When a menu is created bynew_menu or the items associated with a menu are changed
by set_menu_items , the current item is set to the first item of the menu.

As an example ofset_current_item , the following function sets the current item of
menum to the first item of the menu:

int set_first_item (m) /* set current item to first
item */

MENU * m;
{

ITEM ** i = menu_items (m);
return set_current_item (m, i[0]);

}

Character User Interface Programming

10-42

As an example ofcurrent_item , the following routine checks if the first menu item is
the current one:

int first_item (m) /* check if current item is first
item */

MENU * m;
{

ITEM * i = current_item (m);
return item_index (i) == 0;

}

If successful, functionset_current_item returnsE_OK. If an error occurs, function
set_current_item returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or item not connected to menu

E_BAD_STATE called from initialization or termination routines

Functioncurrent_item returns (ITEM *) 0 if given a NULL menu pointer or there are
no items connected to the menu.

Functionitem_index returns -1 if the item pointer is NULL or the item is not con-
nected to a menu.

Fetching and Changing the Top Row 10

Functiontop_row returns the number of the menu row currently displayed at the top of
your end-user's menu. Functionset_top_row sets the top of the menu to the named
row, unless the row does not start a complete page of items. In this case, it returns
E_BAD_ARGUMENT.

SYNOPSIS

int set_top_row(menu, row)
MENU * menu;
int row;

int top_row(menu)
MENU * menu;

Functionset_top_row sets the current item to the leftmost item in the new top row.
Variablerow must be in the range of 0 throughTR-VR, whereTR is the total number of
rows as determined by the menu format andVR is the number of visible rows. If the value
of row is greater, the row does not start a complete page of items. See “Specifying the
Menu Format” on page 10-18 for details on menu display.

When a menu is created bynew_menu or the items associated with the menu are changed
by set_menu_items , the top row is set to 0.

Menus

10-43

NOTE

If the menu format or theO_ROWMAJORoption is changed, the
top row is automatically set to 0. See “Specifying the Menu For-
mat” on page 10-18 and “Setting and Fetching Menu Options” on
page 10-47 for details on changing these menu attributes.

In addi t ion, i f the current i tem is changed byset_current_i tem or
set_menu_pattern to an item that is not currently visible, the top row is generally set
to the row that contains the new current item. The sole exception occurs when, as noted
above, the top row does not start a complete page of items.

I f successful , funct ionset_top_row returnsE_OK. I f an error occurs,
set_top_item returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or index out of range

E_BAD_STATE called from init/term routines

E_NOT_CONNECTEDno connected items

Functiontop_row returns -1 if given a NULL menu pointer or no items are connected to
the menu.

Positioning the Menu Cursor 10

Some applications may need to move the menu's window cursor from the position
required for continued processing by the ETI menu driver. To move the cursor back to
where it belongs, you use functionpos_menu_cursor .

SYNOPSIS

int pos_menu_cursor (menu)
MENU * menu;

If your application does not change the cursor position in the menu window, calling this
function is unnecessary.

Your application might change the cursor position automatically because of prior calls to
menu driver initialization routines such asset_item_init . Or it might do so because
of explicit calls to application routines such as writing a prompt. Screen 10-13 illustrates
this usage.

Character User Interface Programming

10-44

Screen 10-13. Returning Cursor to Its Correct Position for Menu Driver Pro-
cessing

If function pos_menu_cursor is successful, it returnsE_OK. In the following error sit-
uations, it fails and returns the indicated value:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer

E_NOT_POSTED menu is not posted

Changing and Fetching the Pattern Buffer 10

Remember that the pattern buffer is used to make the first item that matches the pattern be
the current item. In general, to match the current menu item, your application program
inserts characters into the pattern buffer that have been passed to the menu driver from the
user's data entry. As an alternative, you can insert characters into the pattern buffer with
the functionset_menu_pattern .

SYNOPSIS

int set_menu_pattern (menu, pattern)
MENU * menu;
char * pattern;

char * menu_pattern (menu)
MENU * menu;

Functionset_menu_pattern first clears the pattern buffer and then adds the characters
in pattern to the buffer untilpattern is exhausted. The function next tries to find the
first item that matches thepattern . If it does not find a complete match, the pattern
buffer is cleared and the current item does not change. Ifpattern is the null string (“”),
the pattern buffer is simply cleared. The pattern buffer is automatically cleared whenever

• each successful scrolling or item navigation operation is completed (in
other words, whenever the top or current item changes)

void generate_prompt (m)
MENU * m;
{

/* display the prompt string associated with the current item */

WINDOW * w = menu_win (m);
char * s = item_userptr (current_item (m));
box (w, 0, 0);
wmove (w, 0, 0);
waddstr (w, s);
pos_menu_cursor (m);

}

Menus

10-45

• a menu is created bynew_menu

• the items associated with a menu are changed byset_menu_items

If successful, functionset_menu_pattern returnsE_OK. If an error occurs, function
set_menu_pattern returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or NULL pattern pointer

E_NO_MATCH complete match failed

Functionmenu_pattern returns the value of the string in the pattern buffer. If the pat-
tern buffer is empty (the null string “”), it returns the null string (“”). If the menu pointer
argument is NULL, it returns NULL, that is, (char *) 0.

To determine if your user has entered data that matches an item, you might write a routine
that usesset_menu_pattern , as follows:

int find_match (m, newpattern)
/* returns TRUE or FALSE */

MENU * m;
char * newpattern;
{
 return set_menu_pattern(m, newpattern) == E_OK;
}

If the newpattern matches a menu item, functionset_menu_pattern returnsE_OK
and hencefind_match returns TRUE. In addition,find_match advances the current
item to the matching item.

Manipulating the Menu User Pointer 10

As it does for panels and forms, ETI provides user pointers for each menu. You can use
these pointers to reference menu messages, titles, and the like.

SYNOPSIS

int set_menu_userptr (menu, userptr)
MENU * menu;
char * userptr;

char * menu_userptr (menu)
MENU * menu;

By default, the menu user pointer (whatmenu_userptr returns) is NULL.

If successful,set_menu_userptr returnsE_OK. If an error occurs, it returns the fol-
lowing:

E_SYSTEM_ERROR system error

Character User Interface Programming

10-46

The code in Screen 10-14 illustrates how you can use these two functions to display a title
for your menu. Functionmain sets the menu user pointer to point to the title of the menu.
Later, functiondisplay_menu initializes the title with the value returned by
menu_userptr . We have previously seen a version ofdisplay_menu in Screen 10-8.

Screen 10-14. Example Setting and Using a Menu User Pointer

If function set_menu_userptr is passed a NULL menu pointer, like all ETI functions,
it assigns a new current default menu user pointer. In the following, the new default is the
stringDefault Menu Title .

MENU * m;

char * userprtr = “Default Menu Title”;

set_menu_userptr((MENU *) 0, userptr);
/* sets new default userptr */

static void display_menu (m)/* create menu windows and post */
MENU * m;
{

char * title = menu_userptr (m); /* fetch menu title */

WINDOW *w;
int rows;
int cols;

scale_menu (m, &rows, &cols);/* get dimensions of menu */

/* create menu window and subwindow */

if (w = newwin (rows+2, cols+2, 0, 0))
{

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, cols, 1, 1));
box (w, 0, 0);
keypad (w, 1);

}
else

error (“error return from newwin”, NULL);

if (post_menu (m) != E_OK)
error (“error return from post_menu”, NULL);

if (title) /* if title set */
{

size = strlen (title);
wmove (w, 0, (cols-size)/2+1); /* position cursor */
waddstr (w, title);/* write title */

}
}
main ()
{

MENU * m;
char * menutitle; /* initialize menutitle to desired string */

set_menu_userptr (m, menutitle); /* set user pointer to point to title */
display_menu (m);

}

Menus

10-47

Setting and Fetching Menu Options 10

ETI provides several menu options, some of which we have already met. Two functions
manipulate options: one sets them, the other returns their settings.

SYNOPSIS

int set_menu_opts (menu, opts)
MENU * menu;
OPTIONS opts;

OPTIONS menu_opts (menu)
MENU * menu;

options:
O_ONEVALUE
O_SHOWDESC
O_ROWMAJOR
O_IGNORECASE
O_SHOWMATCH

Besides turning the named options on, functionset_menu_opts turns off all other
menu options. By default, all menu options are on.

The menu options and their effects are as follows:

O_ONEVALUE determines whether the menu is a single-valued or multi-valued.
In general, menus are single-valued and this option is on. Recall
that upon exit from single-valued menus, your application queries
the current item to ascertain the item selected. Turning off this
option signifies a multi-valued menu. One way to select several
items is to use theREQ_TOGGLE_ITEM request, another is to call
set_item_value . (See “Multi-valued Menu Selection
Request” on page 10-33 and “Manipulating an Item's Select Value
in a Multi-valued Menu” on page 10-7.) Recall that your applica-
tion must examine each item's select value to determine whether it
has been selected. When this option is on, all item select values
are FALSE.

O_SHOWDESC determines whether or not the description of an item is displayed.
By default, this option is on and both the item name and descrip-
tion are displayed. If this option is off, only the name is displayed.

O_ROWMAJOR determines how the menu items are presented on the screen — in
row-major or column-major order. In row-major order, menu
items are displayed first left to right, then top to bottom. In col-
umn-major order, they are displayed first top to bottom, then left
to right. By default, this option is on, so menu items are displayed
in row-major order. If the option is off, the items are displayed in
column-major order. See “Specifying the Menu Format” on page
10-18 for more on how menus are displayed.

Character User Interface Programming

10-48

O_IGNORECASE instructs the menu driver to ignore upper- and lower-case during
the item match operation. If this option is off, character case is not
ignored and the match must be exact.

O_SHOWMATCH determines whether visual feedback is provided as each item's
data entry is processed. Ordinarily, as soon as a match occurs, the
cursor is advanced through the item to reflect the contents of the
pattern buffer. If this option is off, however, the cursor remains to
the left of the current item.

Like all ETI options, menuOPTIONS are Boolean values, so you use Boolean operators to
turn them on or off with functionsset_menu_opts andmenu_opts . For example, to
turn off optionO_SHOWDESC for menum0 and turn on the same option for menum1,
you can write:

MENU * m0, * m1;

set_menu_opts (m0, menu_opts (m0) & ~O_SHOWDESC);
/* turn option off */

set_menu_opts (m1, menu_opts (m1) | O_SHOWDESC);
/* turn option on */

ETI provides two alternative functions for turning options on and off for a given menu.

SYNOPSIS

int menu_opts_on (menu, opts)
MENU * menu;
OPTIONS opts;

int menu_opts_off (menu, opts)
MENU * menu;
OPTIONS opts;

Unlike functionset_menu_opts , these functions do not affect options that are unmen-
tioned in their second argument. In addition, if you want to change one option, you need
not apply Boolean operators or usemenu_opts .

As an example, the following code turns optionO_SHOWDESC off for menum0 and on
for menum1:

MENU * m0, * m1;

menu_opts_off (m0, O_SHOWDESC); /* turn option off */
menu_opts_on (m1, O_SHOWDESC); /* turn option on */

As usual, you can change the current default for each option by passing a NULL menu
pointer. For instance, to turn the default optionO_SHOWDESC off, you write

menu_opts_off ((MENU *) 0, O_SHOWDESC);
/* turn default option off */

In general, functionsset_menu_opts , menu_opts_on , andmenu_opts_off return
E_OK. If an error occurs, they return one of the following:

Menus

10-49

E_SYSTEM_ERROR system error

E_POSTED menu is posted

Character User Interface Programming

10-50

11
Forms

Introduction . 11-1
Compiling and Linking Form Programs . 11-1
Overview: Writing Form Programs in ETI . 11-1

Some Important Form Terminology . 11-2
What a Typical Form Application Program Does . 11-2
A Sample Form Application Program . 11-3

Creating and Freeing Fields. 11-6
Manipulating Field Attributes . 11-8

Obtaining Field Size and Location Information. 11-8
Dynamically Growable Fields . 11-9
Moving a Field . 11-11
Changing the Current Default Values for Field Attributes 11-12
Setting the Field Type to Ensure Validation . 11-13

TYPE_ALPHA . 11-14
TYPE_ALNUM . 11-15
TYPE_ENUM . 11-15
TYPE_INTEGER . 11-16
TYPE_NUMERIC . 11-17
TYPE_REGEXP . 11-18

Justifying Data in a Field . 11-18
Setting the Field Foreground, Background, and Pad Character 11-19
Some Helpful Features of Fields . 11-21

Setting and Reading Field Buffers . 11-21
Setting and Reading the Field Status . 11-22
Setting and Fetching the Field User Pointer. 11-24

Manipulating Field Options. 11-26
Creating and Freeing Forms . 11-29
Manipulating Form Attributes . 11-31

Changing and Fetching the Fields on an Existing Form 11-31
Counting the Number of Fields . 11-32
Querying the Presence of Offscreen Data . 11-33
Changing ETI Form Default Attributes . 11-33

Displaying Forms. 11-33
Determining the Dimensions of Forms . 11-34

Scaling the Form . 11-34
Associating Windows and Subwindows with a Form . 11-35
Posting and Unposting Forms . 11-38

Form Driver Processing . 11-40
Defining the Virtual Key Mapping . 11-40
ETI Form Requests. 11-43

Page Navigation Requests . 11-43
Inter-field Navigation Requests on the Current Page 11-43
Intra-field Navigation Requests. 11-44
Field Editing Requests . 11-45
Scrolling Requests. 11-46
Field Validation Requests . 11-47
Choice Requests . 11-48

Character User Interface Programming

Application-defined Commands . 11-48
Calling the Form Driver . 11-48
Establishing Field and Form Initialization and Termination Routines 11-53

Function set_form_init. 11-54
Function set_field_init . 11-54
Function set_field_term . 11-55
Function set_form_term. 11-55

Manipulating the Current Field. 11-57
Changing the Form Page. 11-59
Positioning the Form Cursor. 11-60

Setting and Fetching the Form User Pointer . 11-61
Setting and Fetching Form Options . 11-62
Creating and Manipulating Programmer-defined Field Types. 11-65

Building a Field Type from Two Other Field Types . 11-65
Creating a Field Type with Validation Functions . 11-66
Freeing Programmer-defined Field Types. 11-68
Supporting Programmer-defined Field Types . 11-68

Argument Support for Field Types . 11-69
Supporting Next and Previous Choice Functions . 11-72

11-1

11
Chapter 11Forms

11
11
11

Introduction 11

A form is a collection of one or more pages of fields. The fields may be used for titles,
labels to guide the user, or for data entry. Screen 11-1 displays a simple form with five
fields including two for data entry.

Screen 11-1. Sample Form Display

Compiling and Linking Form Programs 11

To use the form routines, you specify

#include <form.h>

in your C program files and compile and link with the command line

cc [flags] files -lform -lcurses [libraries]

If you want to use the menu or panel routines as well, place the appropriate-l option
before the option-lcurses .

Overview: Writing Form Programs in ETI 11

This section introduces the basic ETI form terminology, lists the steps in a typical form
application, and reviews the sample program that produced the output of Screen 11-1

 Sample Form

Field 1: ___________
Field 2: ___________

Character User Interface Programming

11-2

Some Important Form Terminology 11

The following terms are helpful in working with ETI form functions:

field anm x n block of form character positions that ETI functions can
manipulate as a unit

active field a field that is visited during form processing for data entry,
change, selection, and so forth

inactive field a field that is completely ignored during form processing, such as
a title, field marker or other label

dynamic field a field whose buffer grows beyond its original size if more data is
entered into the field than the original buffer will hold.

form a collection of one or more pages of fields

connecting fields to a form
associating an array of field pointers with a form

page a logical subdivision of a form usually occupying one screen

posting a form writing a form on its associated subwindow

unposting a form erasing a form from its associated subwindow

freeing a form deallocating the memory for a form and, as a by-product, discon-
necting the previously associated array of field pointers from the
form

freeing a field deallocating the memory for a field

NULL generic term for a null pointer cast to the type of the particular
object (field, form, and so on)

What a Typical Form Application Program Does 11

In general, a form application program will

• initialize low-level ETI (curses)

• create the fields for the form

• create the form

• post the form

• refresh the screen

• process end user form requests

• unpost the form

• free the form

Forms

11-3

• free the fields

• terminate low-level ETI (curses)

A Sample Form Application Program 11

Screen 11-2 shows the ETI program necessary for producing the form in Screen 11-1.

Screen 11-2. Code to Produce a Simple Form

#include <form.h>
#include <string.h>

FIELD * make_label (frow, fcol, label)
int frow;/* first row*/
int fcol;/* first column*/
char * label;/* label*/
{

FIELD * f = new_field (1, strlen (label), frow, fcol, 0, 0);

if (f)
{

set_field_buffer (f, 0, label);
set_field_opts (f, field_opts(f) & ~O_ACTIVE);

}
return f;

}

FIELD * make_field (frow, fcol, cols)
int frow;/* first row*/
int fcol;/* first column*/
int cols;/* number of columns*/
{

FIELD * f = new_field (1, cols, frow, fcol, 0, 0);

if (f)
set_field_back (f, A_UNDERLINE);

return f;
}

main ()
{

FORM * form;
FIELD * f[6];
int i = 0;

/*
ETI initialization

*/
initscr ();
nonl ();
raw ();
noecho ();
wclear (stdscr);

/*
create fields

*/
f[0] = make_label (0, 7, “Sample Form”);
f[1] = make_label (2, 0, “Field 1:”);
f[2] = make_field (2, 9, 16);
f[3] = make_label (3, 0, “Field 2:”);
f[4] = make_field (3, 9, 16);
f[5] = (FIELD *) 0;

Character User Interface Programming

11-4

In this example, all text within the form is associated with a field. Fields may be active or
inactive: active fields are affected by form processing, inactive fields are not. The under-
lined fields are active, whereas the label fieldsSample Form, Field 1:, andField 2:
are inactive.

Turn now to the program itself. This example starts with two#include files. Every form
program must include the header fileform.h , which contains important definitions of
form objects. This particular program uses the C string library functionstrlen , so it
includes the header filestring.h , whose definitions the string library function needs.
Seestring(3C) for details.

Next, there are two programmer-defined functionsmake_label andmake_field ,
which we will discuss in a moment. Consider proceduremain . It declares three objects:

• form , a pointer to a form

• f[6] , an array of field pointers

• i , an index variable, initialized to 0

The first five functions initialize low-level ETI (curses) for high-level ETI form func-
tions. Functioninitscr initializes the screen,nonl ensures that a carriage return on
usingwgetch will not automatically generate a newline,raw passes input characters
without interpretation to your program,noecho disables echoing of your user's input (the
form functions provide echoing where appropriate), andwclear(stdscr) clears the
standard screen.

The statements that create the form's fields and labels in this example make calls to the
programmer-defined functionsmake_label andmake_field . You can do without
these programmer-defined functions, but you may find them convenient. Both of them use
the ETI functionnew_field . They take three arguments, which correspond to three of
the six arguments ofnew_field .

The first argument ofnew_field is the number of rows of the field. In this example, it is
always one. The last two arguments are often 0 as they are here; they will be explained in

/*
create and display form

*/
form = new_form (f);
post_form (form);
wrefresh (stdscr);
sleep (5);

/*
erase form and free both form and fields

*/
unpost_form (form);
wrefresh (stdscr);
free_form (form);

while (f[i])
free_field (f[i++]);

/*
ETI termination

*/
endwin ();
exit (0);

}

Forms

11-5

the next section. The second argument ofnew_field is the number of columns in the
field. This number is determined from the third parameter inmain 's calls to
make_label andmake_field . For the label fields, the calls tomake_label pass the
string that is to constitute the field so thatstrlen can be used to count the length or num-
ber of columns of the string. For the fields to be edited by the end-user (had this example
permitted entering data into the fields), calls tomake_field simply pass the number of
columns directly.

The third and fourth arguments tonew_field correspond to the first and second argu-
ments tomake_label andmake_field . They are the starting position (firstrow ,
firstcol) of the label or field in the form subwindow. (In this example, the default sub-
window stdscr is used.) The last assignment tof[5] terminates the array with the
NULL field pointer.

Once the functionmake_label creates the field for the label, it places the label in the
field using functionset_field_buffer . The second argument to this function is 0
because the value of a field is stored in buffer 0. Finally, functionmake_label calls
set_field_opts , which turns off theO_ACTIVE option for the field. This means that
the field is ignored during form driver processing.

On the other hand, once the functionmake_field creates the field proper, it sets the
field's background attribute toA_UNDERLINE. This has the effect of underlining the field
so that it is visible.

After you create the fields for a form, you create the form itself usingnew_form . This
function takes the pointer to the array of field pointers and connects the fields to the form.
The pointer returned is stored in variableform — it will be passed to subsequent form
manipulation routines. To display the form, functionpost_form posts it on the default
subwindowstdscr, while wrefresh(stdscr) actually displays this subwindow on
the terminal screen. The display remains for 5 seconds, as determined bysleep .

At this point, most forms would accept and process user input. To illustrate a very simple
form, this program does not accept user input.

To erase the form, you first unpost it usingunpost_form . This erases it from the form
subwindow. The call towrefresh actually erases the form from the display screen.
Functionfree_form disconnects the form from its array of field pointersf .

Thewhile loop, starting with the first field in the field pointer array, frees each field ref-
erenced in the array. The effect is to deallocate the space for each field.

We have met the last two lines of the program before. Functionendwin terminates low-
level ETI, whileexit(0) terminates the program.

There are many ETI form routines not listed in Screen 11-2. These routines enable you to
tailor your form programs to suit local needs and preferences. The following sections
explain how to use all ETI form routines. Each routine is illustrated with one or more code
fragments. Many of these are drawn from two larger form application programs listed at
the end of the chapter. By reviewing the code fragments, you will come to understand the
larger programs.

Character User Interface Programming

11-6

Creating and Freeing Fields 11

To create a form, you must first create its fields. The following functions enable you to cre-
ate fields and later free them.

SYNOPSIS

FIELD * new_field (rows, cols, firstrow, firstcol, nrow, nbuf)
int rows, cols, firstrow, firstcol, nrow, nbuf;

FIELD * dup_field (field, firstrow, firstcol)
FIELD * field;
int firstrow, firstcol;

FIELD * link_field (field, firstrow, firstcol)
FIELD * field;
int firstrow, firstcol;

int free_field (field)
FIELD * field;

Unlike menu items which always occupy one row, the fields on a form may contain one or
more rows. Functionnew_field creates and initializes a new field that isrows by cols
large and starts at point (firstrow, firstcol) relative to the origin of the form subwindow. All
current system defaults are assigned to the new field when it is created usingnew_field .

Variablenrow is the number of offscreen rows allocated for this field. Offscreen rows
enable your program to display only part of a field at a given moment and let the user
scroll through the rest. A zero value means that the entire field is always displayed, while a
nonzero value means that the field is scrollable. A field can be created withnrow set to
zero and allowed to grow and scroll if the field is made dynamic. See “Dynamically Grow-
able Fields” on page 11-9 for more detail.

Variablenbuf is the number of additional buffers allocated for this field. You can use it to
support default field values, undo operations, or other similar operations requiring one or
more auxiliary field buffers.

Variablesrows andcols must be greater than zero, whilefirstrow, firstcol, nrow, andnbuf
must be greater than or equal to zero.

Each field buffer is ((rows + nrow) * cols + 1) characters large. (The extra character posi-
tion holds the NULL terminator.) All fields have one buffer (namely, field buffer 0) that
maintains the field's value. This buffer reflects any changes your end-user may make to the
field. See “Setting and Reading Field Buffers” on page 11-21 for more details.

To create a form fieldoccupation one row high and 32 columns wide, starting at posi-
tion 2,15 in the form subwindow, with no offscreen rows and no additional buffers, you
can write:

FIELD * occupation;

occupation = new_field (1, 32, 2, 15, 0, 0);
/* create field */

Forms

11-7

Generally you create all the fields for a form at the same point in your program, as
Screen 11-2 demonstrated.

The functiondup_field duplicates an existing field at the new locationfirstrow, firstcol.
During initialization,dup_field copies nearly all the attributes of its field argument as
well as its size and buffering information. However, certain attributes, such as being the
first field on a page or having the field status set, are not duplicated in the newly created
field. See “Creating and Freeing Forms” on page 11-29 and “Manipulating Field Options”
on page 11-26 for details on these attributes.

Like dup_field , functionlink_field duplicates an existing field at a new location
on the same form or another one. Unlikedup_field , however,link_field arranges
that the two fields share the space allocated for the field buffers. All changes to the buffers
of one field appear also in the buffers of the other. Besides enabling your user to enter data
into two or more fields at once, this function is useful for propagating field values to later
pages where only the first field is active (currently open to form processing). In this case,
the inactive fields in effect become dynamic labels. See “Manipulating Field Options” on
page 11-26.

NOTE

Linked fields share only the space allocated for the field buffers--
the attribute values of either field may be changed without affect-
ing the other.

Consider fieldoccupation in the previous example. To duplicate it at location3,15 and
link it at location4,15 , you write:

FIELD * dup_occ, * link_occ;

dup_occ = dup_field (occupation, 3, 15);
link_occ = link_field (occupation, 4, 15);

Functionsnew_field , dup_field , andlink_field return a NULL pointer, if there
is no available memory for the FIELD structure or if they detect an invalid parameter.

Functionfree_field frees all space allocated for the given field. Its argument is a
pointer previously obtained fromnew_field , dup_field , or link_field .

NOTE

To free a field, be sure that the field is not connected to a form.

As described in “Creating and Freeing Forms” on page 11-29, you can disconnect fields
from forms by using functionsfree_form or set_form_fields .

To free a form and all its fields, you write:

FORM * form;

Character User Interface Programming

11-8

/* get pointer to form's field pointer array using
form_fields described in section below,
“Changing and Fetching the Fields on an
Existing Form” */

FIELD ** f = form_fields (form);

free_form (form); /* free form */

while (*f)
free_field (*f++);

/* free each field and increment pointer */

Notice that you free the form before its fields.

If successful, functionfree_field returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field pointer

E_CONNECTED connected field

Remember that the field pointer returned bynew_field , dup_field , or
link_field is passed to all field routines that record or examine the field's attributes.
As with menu items, once a form field is freed, it must not be used again. Because the
freed field pointer does not point to a genuine field, undefined results occur.

Manipulating Field Attributes 11

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A field attribute is a feature of a field whose value can be set or read by an appro-
priate ETI function. Field attributes include the field size and location.

Obtaining Field Size and Location Information 11

This function enables you to determine the defining characteristics of a field — its size,
position, number of offscreen rows, and number of associated buffers.

SYNOPSIS

int field_info (field, rows, cols, firstrow, firstcol, nrow, nbuf)
FIELD * field;
int * rows, * cols, * firstrow, * firstcol, * nrow, * nbuf;

Because functionfield_info must return more than a single value and C passes argu-
ments to functions “by value” only,field_info uses the pointer argumentsrows, cols,
firstrow, firstcol, nrow, andnbuf. These arguments are pointers to the locations used to
return the requested information: the number of rows and columns comprising the field,

Forms

11-9

the field starting location relative to the origin of its form subwindow, the number of off-
screen rows, and the number of additional buffers.

As an example, consider how you might usefield_info to determine a field's buffer
size. You fetch the field's number of onscreen and offscreen rows and number of columns,
and do the arithmetic, thus:

int bufsize (f)
FIELD * f;
{

int rows, cols, firstrow, firstcol, offrow, nbuf;

field_info (f, &rows, &cols, &firstrow, &firstcol,
&offrow, &nbuf);

/* add up size of field and its terminator */

return (rows + offrow) * cols + 1;
}

Note the use of the address operator& to passfield_info the requisite pointers to the
locations used to return the requested field information.

If successful, functionfield_info returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field pointer

Dynamically Growable Fields 11

A dynamically growable field within a form will allow a user to add more data to a field
than was specified when the field was originally created. Recall, when a field is created, a
buffer is allocated based on the size of the field. With dynamically growable fields, if a
user enters more data than the original buffer can hold, the buffer will grow as the user
enters more data into the field. The application developer can specify the maximum
growth of a field or allow a field to grow without bound.

A field can be made dynamically growable by turning off theO_STATIC field option. See
“Manipulating Field Options” on page 11-26 for more information on changing field
options.

Recall the library routinenew_field ; a new field created withrows set to one andnrow
set to zero will be defined to be a one line field. A new field created withrows + nrow
greater than one will be defined to be a multi-line field.

A one line field withO_STATIC turned off will contain a single fixed row, but the number
of columns can increase if the user enters more data than the initial field will hold. The
number of columns displayed will remain fixed and the additional data will scroll horizon-
tally.

A multi-line field withO_STATIC turned off will contain a fixed number of columns, but
the number of rows can increase if the user enters more data than the initial field will hold.

Character User Interface Programming

11-10

The number of rows displayed will remain fixed and the additional data will scroll verti-
cally.

It may be desirable to allow a field to grow, but within bounds. The following function can
be used to limit the growth of a dynamic field either horizontally or vertically.

SYNOPSIS

int set_max_field(field, max_growth)
FIELD * field;
int max_growth;

If field is a horizontally growable one line field, its growth will be limited tomax_growth
columns. Iffield is a vertically growable field, its growth will be limited tomax_growth
rows. To remove any growth limit, callset_max_field with max_growth set to zero.
To query the current maximum, if specified, seedynamic_field_info below.

If successful this procedure will returnE_OK, otherwise the following is returned:

E_BAD_ARGUMENT NULL field pointer or field size is already greater than
max_growth or max_growth is less than zero.

This procedure will work regardless of the setting of theO_STATIC option.

In order to allow the user to query the current size of the buffer, the following function is
provided.

SYNOPSIS

int dynamic_field_info(field, drows, dcols, max)
FIELD * field;
int * drows, * dcols, * max;

If successful this procedure will returnE_OK, anddrows anddcols will contain the actual
number of rows and columns offield . If a maximum growth has been specified (see
set_max_field above) forfield, max will contain the specified growth limit, otherwise
max will contain zero.

If field is NULL, drows, dcols, andmax are unchanged and the following is returned:

E_BAD_ARGUMENT NULL field pointer

This procedure will work regardless of the setting of theO_STATIC option.

Making a field dynamic by turning off theO_STATIC option will affect the field in the
following ways:

1. If parameternbuf in the originalnew_field library call is greater than
zero, all additional buffers will grow simultaneously with buffer 0. Recall,
buffer 0 is used by the system to store data entered by the user,nbuf can be
used to request the allocation of additional buffers available to the applica-
tion. The field buffers will grow in chunks of sizebuf_size = ((rows +
nrow) * cols) , the size of the original buffer minus one.

If a field is dynamic, the remainder of the forms library is affected in the following way.

Forms

11-11

1. The field optionO_AUTOSKIP will be ignored if the optionO_STATIC is
off and there is no maximum growth specified for the field. Currently,
O_AUTOSKIP generates an automaticREQ_NEXT_FIELD form driver
request when the user types in the last character position of a field. On a
growable field with no maximum growth specified, there is no “last” char-
acter position. If a maximum growth is specified, theO_AUTOSKIP option
will work as normal if the field has grown to its maximum size.

2. The field justification will be ignored if the optionO_STATIC is off. Cur-
rent ly, set_f ield_just can be used toJUSTIFY_LEFT ,
JUSTIFY_RIGHT, JUSTIFY_CENTER the contents of a one line field. A
growable one line field will, by definition, grow and scroll horizontally and
may contain more data than can be just i fied. The return from
field_just will be unchanged.

3. The overloaded form driver requestREQ_NEW_LINE will operate the same
way regardless of theO_NL_OVERLOAD form option if the field option
O_STATIC is off and there is no maximum growth specified for the field.
Currently, if the form optionO_NL_OVERLOAD is on,REQ_NEW_LINE
implicitly generates aREQ_NEXT_FIELD if called from the last line of a
field. If a field can grow without bound, there is no last line, so
REQ_NEW_LINE will never implicitly generate aREQ_NEXT_FIELD. If a
maximum growth limit is specified and theO_NL_OVERLOAD form option
is on,REQ_NEW_LINE will only implicitly generateREQ_NEXT_FIELD
if the field has grown to its maximum size and the user is on the last line.

4. The library calldup_field will work as described in “Creating and Free-
ing Fields” on page 11-6; it will duplicate the field, including the current
buffer size and contents of the field being duplicated. Any specified maxi-
mum growth will also be duplicated.

5. The library calllink_field will work as described in the section “Cre-
ating and Freeing Fields” on page 11-6; it will duplicate all field attributes
and share buffers with the field being linked. If theO_STATIC field option
is subsequently changed by a field sharing buffers, how the system reacts to
an attempt to enter more data into the field than the buffer will currently
hold will depend on the setting of the option in the current field.

6. The library callfield_info will work as described in “Obtaining Field
Size and Location Information” on page 11-8; the variablenrow will con-
tain the value of the original call tonew_field . The user should use
dynamic_field_info , described above, to query the current size of the
buffer.

Moving a Field 11

ETI provides the following function to move an existing disconnected field to a new loca-
tion.

SYNOPSIS

int move_field (field, firstrow, firstcol)
FIELD * field;

Character User Interface Programming

11-12

int firstrow;
int firstcol;

Screen 11-3 shows one way you might use functionmove_field . Function
shift_fields receives theint valueupdown , which it uses to change the row num-
ber of each field in a given field pointer array. You could, of course, shift the columns in
like fashion.

Screen 11-3. Example Shifting All Form Fields a Given Number of Rows

See “Obtaining Field Size and Location Information” on page 11-8 for more on
field_info used in this example.

If successful, functionmove_field returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field or firstrow/firstcol < 0

E_CONNECTED connected field

Changing the Current Default Values for Field Attributes 11

ETI establishes initial current default values for field attributes. During field initialization,
every field attribute is assigned the current default value for the attribute. As you can with
menu functions, you can change or retrieve the current default attribute values by calling
the appropriate function with a NULL field pointer. After the current default changes,
every field created usingnew_field will have the new default value.

NOTE

Fields previously created do not have their attributes changed by
changing the current system default.

void shift_fields (f, updown)
FIELD ** f;
int updown; /* signed number of rows to shift */
{

int rows, cols, frow, fcol, nrow, nbuf;

while (*f)
{

/* field_info fetches the values of the field parameters */

field_info (*f, &rows, &cols, &frow, &fcol, &nrow, &nbuf);
move_field (*f, frow + updown, fcol);
++f;

}
}

Forms

11-13

Several of the following sections show how to change the default values for various field
attributes.

Setting the Field Type to Ensure Validation 11

Every field is created with the current default field type. The initial ETI default field type
is a no_validation field. Any data may occupy it. (This default can be changed as described
below.) To change a field's type from the default, ETI provides the following functions for
manipulating a field's (data) type.

SYNOPSIS

int set_field_type (field, type, [arg_1, arg_2, ...])
FIELD * field;
FIELDTYPE * type;

FIELDTYPE * field_type (field)
FIELD * field;

char * field_arg (field)
FIELD * field;

The functionset_field_type takes aFIELDTYPE pointer and a variable number of
arguments depending on the field type. The field type ensures that the field is validated as
your end-user enters characters into the field or attempts to leave it.

The form driver (described later in “Form Driver Processing” on page 11-40) validates the
data in a field only when data is entered by your end-user. Validation does not occur when

• the app l ica t ion program changes the fie ld va lue by ca l l ing
set_field_buffer

• linked field values are changed indirectly — by changing the field to which
they are linked

In all cases, validation occurs only if data is changed by passing data or making requests to
the form driver. To make requests, your user enters characters or escape sequences
mapped to commands that the form driver recognizes. See“Form Driver Processing” on
page 11-40.

If successful,set_field_type returnsE_OK. If not, it returns the following:

E_SYSTEM_ERROR system error

Functionfield_type returns the field type of the field, while functionfield_arg
returns the field argument pointer. For more on the field argument pointer in programmer-
defined field types, see “Supporting Programmer-defined Field Types” on page 11-68.

If the functionset_field_type is not applied to a field, the field type is the current
default.

Character User Interface Programming

11-14

NOTE

Remember that the initial ETI default is not to validate the field at
all — any kind of data may be entered into the field.

You can change the ETI default by giving functionset_field_type a NULL field
pointer. Suppose, for instance, that you want to change the system default field type to a
minimum 10-character field of typeTYPE_ALNUM. As described below, this field type
accepts alphanumeric data — every entered character must be a digit or an alphabetic (not
a special) character. You can write

set_field_type ((FIELD *) 0, TYPE_ALNUM, 10);

ETI provides several generic field types besidesTYPE_ALNUM. Moreover, you can define
your own field types, as described in “Creating and Manipulating Programmer-defined
Field Types” on page 11-65. The following sections describe all ETI generic field types.

TYPE_ALPHA 11

The form driver restricts a field of this type to alphabetic data.

SYNOPSIS

set_field_type (field, TYPE_ALPHA, width);
int width; /* minimum token width */

TYPE_ALPHA takes one additional argument, the minimum width specification of the
field. Note that when you previously create a field with functionnew_field , yourcols
argument is the maximum width specification of the field. WithTYPE_ALPHA (and
TYPE_ALNUM as well), your specificationwidth must be less than or equal tocols. If not,
the form driver cannot validate the field.

NOTE

TYPE_ALPHA does not allow blanks or other special characters.

To set amiddlename field, for instance, toTYPE_ALPHA with a minimum of 0 charac-
ters (in effect, to make the end-user's completing the field optional), you can write

FIELD * middlename;

set_field_type (middlename, TYPE_ALPHA, 0);

TYPE_ALNUM 11

This type restricts the set field to alphanumeric data, alphabetic characters (upper- or
lower-case) and digits.

Forms

11-15

SYNOPSIS

set_field_type (field, TYPE_ALNUM, width);
int width; /* minimum token width */

Like TYPE_ALPHA, TYPE_ALNUM takes one additional argument, the field's minimum
width specification.

NOTE

Like TYPE_ALPHA, TYPE_ALNUM does not allow blanks or other
special characters.

To set a field, saypartnumber , to receive alphanumeric data at least eight characters
wide, you write

FIELD * partnumber;

set_field_type (partnumber, TYPE_ALNUM, 8);

TYPE_ENUM 11

This field type enables you to restrict the valid data for a field to a set of enumerated val-
ues. The type takes three arguments beyond the minimum two thatset_field_type
requires.

SYNOPSIS

set_field_type (field, TYPE_ENUM, keyword_list, checkcase,
checkunique);

char ** keyword_list; /* list of acceptable values */
int checkcase; /* check character case */
int checkunique; /* check for unique match */

The argumentkeyword_list is a NULL-terminated array of pointers to character strings
that are the acceptable enumeration values. Argumentcheckcase is a Boolean flag that
indicates whether upper- or lower-case is significant during match operations. Finally,
checkunique is a Boolean flag indicating whether a unique match is required. If it is off and
your end-user enters only part of an acceptable value, the validation procedure completes
the field value automatically with the first matching value in the type. If it is on, the valida-
tion procedure completes the field value automatically only when enough characters have
been entered to make a unique match.

To create a field, sayresponse, with valid responses ofyes (y) or no (n) in upper- or
lower-case, you write:

char * yesno[] = { “yes”, “no”, (char *)0 };
FIELD * response;

set_field_type (response, TYPE_ENUM, yesno, FALSE,
FALSE);

Character User Interface Programming

11-16

For an example that sets the last field (checkunique) to TRUE, see Screen 11-4 which
sets theTYPE_ENUM of fieldcolor to a list of colors.

Screen 11-4. Setting a Field to TYPE_ENUM of Colors

Setting the field to TRUE requires the user to enter the seventh character of the color name
in certain cases (Light Blue andLight Gray) before a unique match is made.

TYPE_INTEGER 11

This type enables you to restrict the data in a field to integers.

SYNOPSIS

set_field_type (field, TYPE_INTEGER, precision, vmin, vmax);
int precision; /* width for left padding with 0's */
long vmin; /* minimum acceptable value */
long vmax; /* maximum acceptable value */

TYPE_INTEGER takes three additional arguments: a precision specification, a minimum
acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validity. ATYPE_INTEGER
value is valid if it consists of an optional minus sign followed by some number of digits.
As the end-user tries to leave the field, the range check is applied.

NOTE

If, contrary to possibility, the maximum valuevmax is less than or
equal to the minimum valuevmin, the range check is ignored —
any integer that fits in the field is valid.

If the range check is passed, the integer is padded on the left with zeros to the precision
specification. For instance, if the current value were 18, a precision of 3 would display

018

char * colors[13] =
{

“Black”, “Charcoal”, “Light Gray”,
“Brown”, “Camel”, “Navy”,
“Light Blue”, “Hunter Green”, “Gold”,
“Burgundy”, “Rust”, “White”,
(char *) 0

};
FIELD * color;

set_field_type (color, TYPE_ENUM, colors, FALSE, TRUE);

Forms

11-17

whereas a precision of 4 would display

0018

For more on ETI's handling of precision, see the manual pageprintf(3S) .

As an example of how to useset_field_type with TYPE_INTEGER, the following
might represent a month, padded to two digits:

FIELD * month;

set_field_type (month, TYPE_INTEGER, 2, 1L, 12L);
/* displays single digit months with leading 0 */

Note the requirement that the minimum and maximum values be converted to typelong
with theL.

TYPE_NUMERIC 11

This type restricts the data for the set field to decimal numbers.

SYNOPSIS

set_field_type (field, TYPE_NUMERIC, precision, vmin, vmax);
int precision; /* digits to right of the decimal point */
double vmin; /* minimum acceptable value */
double vmax; /* maximum acceptable value */

TYPE_NUMERIC takes three additional arguments: a precision specification, a minimum
acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validity as decimal numbers. A
TYPE_NUMERIC value is valid if it consists of an optional minus sign, some number of
digits, a decimal point, and some additional digits.

The precision is not used in validation; it is used only in determining the output format.
Seeprintf(3S) for more on precision. As the end-user tries to leave the field, the range
check is applied.

As with TYPE_INTEGER, if the maximum value is less than or equal to the minimum
value, the range check is ignored.

For instance, to set a maximum value of $100.00 for a monetary fieldamount, you write:

FIELD * amount;

set_field_type (amount, TYPE_NUMERIC, 2, 0.00, 100.00);

TYPE_REGEXP 11

This type enables you to determine whether the data entered into a field matches a specific
regular expression.

Character User Interface Programming

11-18

SYNOPSIS

set_field_type (field, TYPE_REGEXP, expression);
char * expression; /* regular expression */

TYPE_REGEXP takes one additional argument, the regular expression. Seeregcmp(3G)
for regular expression details.

Consider, for example, how you might create a field that represents a part number with an
upper- or lower-case letter followed by exactly 4 digits:

FIELD * partnumber;

set_field_type (partnumber, TYPE_REGEXP,
 “^[A-Za-z][0-9]{4}$”);

Note that this example assumes the field is five characters wide. If not, you may want to
change the pattern to accept blanks on either side, thus:

FIELD * partnumber;

set_field_type (partnumber, TYPE_REGEXP,
 “^ *[A-Za-z][0-9]{4} *$”);

Justifying Data in a Field 11

Unlike menu items, which always occupy one line, form fields may occupy one or more
lines (rows). Fields that occupy one line may be justified left, right, center, or not at all.

SYNOPSIS

int set_field_just (field, justification)
FIELD * field;
int justification;

int field_just (field)
FIELD * field;

Fields that occupy more than one line are not justified because the data entered typically
extends into subsequent lines. Justification is also ignored on a one line field if the
O_STATIC option is off or the field was dynamic and has grown beyond its original size.
See “Dynamically Growable Fields” on page 11-9 for more detail.

Field contents justification is not allowed for non-editable fields. However, if the field was
already justified before making it, it will remain justified.

Setting the number of field columns (cols) and the minimum width or precision does not
always determine where the data fits in the field — there may be excess character space
before or after the data. Functionset_field_just lets you justify data in one of the
following ways:

NO_JUSTIFICATION no justification processing (initial default)

Forms

11-19

JUSTIFY_LEFT left justify value in field

JUSTIFY_RIGHT right justify value in field

JUSTIFY_CENTER center value in the field

No matter what the justification, fields are automatically left justified as your end-user
enters data and edits the field. Once field validation occurs upon the user's request to leave
the field, ETI justifies the field as specified.

For instance, to left justify a name field and right justify an amount field, you can write:

FIELD * name, * amount;

set_field_just (name, JUSTIFY_LEFT);
/* left justify a field */

set_field_just (amount, JUSTIFY_RIGHT);
/* right justify a field */

If successful,set_field_just returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT bad justification

E_REQUEST_DENIED justification request denied

As with most other ETI functions, if one of these functions is passed a NULL field pointer,
it assigns or fetches the system default. For instance, to change the system default from no
justification to centering the value in its field, you write

set_field_just((FIELD *) 0, JUSTIFY_CENTER);
/* set new default */

Setting the Field Foreground, Background, and Pad Character 11

The following functions enable you to set and read the pad character and the low-level ETI
(curses) attributes associated with your field's foreground and background. The fore-
ground attribute applies only to those field characters that represent data proper, while the
background attribute applies to the entire field.

SYNOPSIS

int set_field_fore (field, attr)
FIELD * field;
chtype attr;

chtype field_fore (field)
FIELD * field;

Character User Interface Programming

11-20

int set_field_back (field, attr)
FIELD * field;
chtype attr;

chtype field_back (field)
FIELD * field;

int set_field_pad (field, pad)
FIELD * field;
int pad;

int field_pad (field)
FIELD * field;

The initial default for both the foreground and background areA_NORMAL. (See the sec-
tion on attribute descriptions earlier in this guide or thecurses(3curses) pages for
more on screen attributes.) The pad character is the character displayed wherever a blank
occurs in the field value stored in field buffer 0.

As an example, to change the background of a fieldtotal to A_UNDERLINE and
A_STANDOUT, you write:

FIELD * total;

set_field_back (total, A_UNDERLINE | A_STANDOUT);

If function set_field_fore or set_field_back encounter an error, they return
one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT bad curses attribute

The functionset_field_pad sets the field's pad character. The default pad character is
a blank. During form processing, pad characters in the field are translated to blanks in the
field's value.

NOTE

Because ETI does not distinguish between system-generated pad
characters and those entered as data, be sure to choose your pad
character so as not to conflict with valid data.

To set the pad character for fieldtotal to an asterisk (*) you write:

FIELD * total;

set_field_pad (total, '*');

If successful, functionset_field_pad returnsE_OK. If not, it returns one of the fol-
lowing:

E_SYSTEM_ERROR system error

Forms

11-21

E_BAD_ARGUMENT unprintable pad character

As usual, you can change or access the ETI defaults. To change the default background to
A_UNDERLINE, you write:

set_field_back ((FIELD *) 0, A_UNDERLINE);

Some Helpful Features of Fields 11

ETI provides special features that promote development of a wide range of form applica-
tions. These include field buffers, field status flags, and field user pointers.

Setting and Reading Field Buffers 11

Recall that you set the number of additional buffers associated with a field upon its cre-
ation withnew_field . Buffer 0 holds the value of the field. The following functions let
you store values in the buffers and later read them.

SYNOPSIS

int set_field_buffer (field, buffer, value)
FIELD * field;
int buffer;
char * value;

char * field_buffer (field, buffer)
FIELD * field;
int buffer;

The parameterbuffer should range from 0 throughnbuf, wherenbuf is the number of
additional buffers in thenew_field call. All buffers besides 0 may be used to suit your
application.

If field in set_field_buffer is a dynamic field and the length ofvalue is greater than
the current buffer size, the buffer will expand, up to the specified maximum, if any, to
accommodatevalue. See “Dynamically Growable Fields” on page 11-9 for more detail on
dynamic fields and setting a maximum growth. If the field is not dynamic or the length of
value is greater than any specified maximum field size, thenvalue may be truncated.

As an example, suppose your application kept a field's default value in field buffer 1. It
could use the following code to reset the current field to its default value.

#define VAL_BUF 0
#define DFL_BUF 1

void reset_current (form)
FORM * form;
{

Character User Interface Programming

11-22

/* set f to current field, described in
 section “Manipulating the Current
 Field” below */

FIELD * f = current_field (form);

/* set field f to default value */

set_field_buffer (f, VAL_BUF,
 field_buffer (f, DFL_BUF));

}

If successful,set_field_buffer returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field pointer, NULL value, or buffer out of range

Functionfield_buffer , however, returns NULL if itsfield pointer is NULL or
buffer is out of range.

The functionfield_buffer always returns the correct value if the field is not current.
However, if the field is current, the function is sometimes inaccurate because data is not
moved to field buffer 0 immediately upon entry. You may rest assured that
field_buffer is accurate on the current field if

• it is called from the field check validation routine, if any

• it is called from the form or field initialization or termination routines, if
any

• it is called just after aREQ_VALIDATION request to the form driver

See “Creating a Field Type with Validation Functions” on page 11-66, “Establishing Field
and Form Initialization and Termination Routines” on page 11-53, and “Field Validation
Requests” on page 11-47 for details on these routines.

Setting and Reading the Field Status 11

Every field has an associated status flag that is set whenever the field's value (field buffer
0) changes. The following functions enable you to set and access this flag.

SYNOPSIS

int set_field_status (field, status)
FIELD * field;
int status;

int field_status (field)
FIELD * field;

The field status is TRUE if set or FALSE if cleared. By default, the field status is FALSE
when the field is created.

Forms

11-23

These routines promote increased efficiency where processing need occur only if a field
has been changed since some previous state. Two examples are undo operations and data-
base updates. Functionupdate in Screen 11-5 for instance, loops through your field
pointer array to save the data in each field if it has been changed (if itsfield_status is
TRUE).

Screen 11-5. Using the Field Status to Update a Database

If successful,set_field_status returnsE_OK. If not, it returns the following:

E_SYSTEM_ERROR system error

The initial ETI default field status is clear. As always, you can change the default by pass-
ing set_field_status a NULL field pointer.

Like the functionfield_buffer , functionfield_status always returns the correct
value if the field is not current. However, if the field is current, the function is sometimes
inaccurate because the status flag is not set immediately. You may rest assured that
field_status is accurate on the current field if

void update (form)
FORM * form;
void save_field_data (f)
FIELD * f;
{

char * data = field_buffer (f, 0); /* fetch data in field */

/* save data */

}

{
FIELD ** f = form_fields (form); /* fetch pointer to field pointer array

*/

while (*f)
{

if (field_status (*f)) /* field data changed ? */
{

save_field_data (*f); /* yes, save new data */
set_field_status (*f, FALSE); /* set field status back */

}
++f;

}
}

Character User Interface Programming

11-24

• it is called from the field check validation routine, if any

• it is called from the form or field initialization or termination routines, if
any

• it is called just after aREQ_VALIDATION request to the form driver

See “Creating a Field Type with Validation Functions” on page 11-66, “Establishing Field
and Form Initialization and Termination Routines” on page 11-53, and “Field Validation
Requests” on page 11-47 for details on these routines.

Setting and Fetching the Field User Pointer 11

As it does with panels and menus, ETI provides functions to manipulate an arbitrary
pointer convenient for field data such as title strings, help messages, and the like.

SYNOPSIS

int set_field_userptr (field, userptr)
FIELD * field;
char * userptr;

char * field_userptr (field)
FIELD * field;

You can connect an application-defined structure to the field using this pointer. By default,
the field user pointer is NULL.

Screen 11-6 for example, shows three routines that use these field functions:

set_field_id allocates space for astruct ID to be associated with a field and
callsset_field_userptr to establish the field's pointer to it

free_field_id frees the space for the associated ID

find_field searches the names associated with all fields on the form to deter-
mine whether any of them match an arbitrary name passed to it

Forms

11-25

Screen 11-6. Using the Field User Pointer to Match Items

Note that if a match is not found,find_field returns a NULL field pointer. See the pre-
vious sections on panel and menu user pointers for more examples.

If successful,set_field_userptr returnsE_OK. If not, it returns the following:

E_SYSTEM_ERROR system error

To change the system default user pointer from NULL to one of your choice, you need
only passset_field_userptr a NULL field pointer. Passing a NULL field pointer to
field_userptr returns the current default user pointer.

#define match(a,b) (strcmp (a, b) == 0)

typedef struct
{

int type;
char * name;

}
ID; /* to be hooked onto field userptr */

void set_field_id (f, type, name) /* associate type and name with field f */
FIELD * f;
int type;
char * name;
{

/* allocate space, see malloc(3curses) */
ID * id = (ID *) malloc (sizeof (ID));

if (id) /* if space allocated */
{

id -> type = type; /* assign type and name */
id -> name = name;

}
set_field_userptr (f, (char *) id); /* point to id */

}

void free_field_id (f) /* free id connected to field */
FIELD * f;
{

x = (ID *) field_userptr (*f); /* fetch field user pointer */

if (x)
free (x);

}

FIELD * find_field (f, name) /* find field on form with name */
FORM * form;
char * name;
{

FIELD ** f = form_fields (form); /* fetch pointer to form's field array */
ID * x;

while (*f) / * for each field in the form */
{

x = (ID *) field_userptr (*f); /* fetch ID associated with field */

if (x && x -> name && match (name, x -> name))
 /* does its name match ? */

break;
++f;

}
return *f; /* return field pointer of match or NULL */

}

Character User Interface Programming

11-26

Manipulating Field Options 11

ETI provides several field options for controlling how data is entered and displayed in a
field. The following functions let you set or clear these options or read their settings.

SYNOPSIS

int set_field_opts (field, opts)
FIELD * field;
OPTIONS opts;

OPTIONS field_opts (field)
FIELD * field;

options:
O_VISIBLE
O_ACTIVE
O_PUBLIC
O_EDIT
O_WRAP
O_BLANK
O_AUTOSKIP
O_NULLOK
O_PASSOK
O_STATIC

Functionset_field_opts turns off all options that do not appear in its second argu-
ment. By default, all options are on.

The field options and their effects are as follows:

O_VISIBLE determines field visibility. If this option is on, the field is dis-
played. If this option is off, it is erased. This option is useful for
supporting pop-up fields, fields visible or not depending on
another field's value.

O_ACTIVE determines if a field is visited during form processing. If inacti-
vated, the field is ignored during form processing. Inactive fields
enable you to create field labels and other static form symbols or
changeable symbols that are not affected during form processing.
Examples of fields that change value but are not affected during
form processing are row and column totals, as in a spreadsheet
program. You can change fie ld va lues us ing ca l ls to
set_field_buffer .

O_PUBLIC determines how feedback is presented to the user as data is
entered. The data in public fields is displayed as entered, while the
data in non-public fields is not displayed at all. Further, in non-
public fields, the cursor does not actually move across the field,
but the forms subsystem internally maintains the cursor position
relative to the field data. You can use non-public fields to imple-
ment password fields.

Forms

11-27

O_EDIT determines if field editing is permitted. By default, this option is
on and a field may be edited. If theO_EDIT option is off, the field
may be visited but not changed. Editing requests or attempts to
en te r da ta w i l l fa i l . (REQ_PREV_CHOICE and
REQ_NEXT_CHOICE requests, however, are honored, if they are
defined for the field's type.) This is useful for creating fields for
browsing such as scrollable help messages.

O_WRAP determines if word wrapping occurs at the end of each line of the
field. If any character of the word does not fit on the line as it is
entered, the entire word is automatically moved to the beginning
of the next line, if there is one. If theO_WRAP option is off, the
word is split between the two lines.

O_BLANK determines if the whole field is automatically erased when the
end-user types a character in the first character position of the
field before any character position has been changed. If the
O_BLANK option is off, this does not occur.

O_AUTOSKIP determines how the field responds when it becomes full. Ordi-
narily, when a field is full, an automatic request to move to the
next field on the form is generated. If, however, theO_AUTOSKIP
option is off, the end-user remains at the end of the field.

The O_AUTOSKIP option wil l be ignored if the option
O_STATIC is off and there is no maximum growth specified for
the field. On a growable field with no maximum growth specified,
there is no “last” character position. If a maximum growth is spec-
ified, theO_AUTOSKIP option will cause anREQ_NEXT_FIELD
to be generated from the last character position if the field has
grown to its maximum size.

O_NULLOK determines how the field responds when your end-user tries to
leave a blank field. By default, this option is on — when a field is
blank, a request to leave the field is honored without validating the
field. If, on the other hand, theO_NULLOK option is off, the vali-
dation procedure is applied to the blank field.

O_PASSOK When this option is on, the field is checked for validity only if
your end-user entered data into the field or edited it. If it is off, the
validity check occurs whenever your user leaves the field, whether
or not the field was changed. This is useful for fields whose vali-
dation function may change dynamically.

O_STATIC When this option is on, the field is fixed in size and any attempt to
add more data than the current field buffer will hold will fail. If it
is off, the field will grow dynamically to accommodate additional
data entered by the user. See “Dynamically Growable Fields” on
page 11-9 for more information on dynamic fields.

Remember that options are Boolean values. So to turn off optionO_ACTIVE for field f0
and to turn it on for fieldf1, you use the Boolean operators and write:

FIELD * f0, * f1;

Character User Interface Programming

11-28

set_field_opts (f0, field_opts (f0) & ~O_ACTIVE);
/* turn option off */

set_field_opts (f1, field_opts (f1) | O_ACTIVE);
/* turn option on */

NOTE

Although you can change field option settings on posted forms,
you cannot change option settings for the current field.

ETI also provides the following two functions which let you turn a field option on or off
without using functionfield_opts .

SYNOPSIS

int field_opts_on (field, opts)
FIELD * field;
OPTIONS opts;

int field_opts_off (field, opts)
FIELD * field;
OPTIONS opts;

Unlike functionset_field_opts , these functions leave unnamed option settings
intact.

As an example, the following code turns optionsO_BLANK andO_AUTOSKIP off for field
f0 and on for fieldf1:

FIELD * f0, * f1;

field_opts_off (f0, O_BLANK | O_AUTOSKIP);
/* turn options off */

field_opts_on (f1, O_BLANK | O_AUTOSKIP);
/* turn options on */

I f success fu l , func t ionsset_f ie ld_opts , f ie ld_opts_on , and
field_opts_off returnE_OK. If not, they return the following:

E_SYSTEM_ERROR system error

E_CURRENT cannot change current field options

As usual, you can change the ETI default option settings by passing function
set_field_options , field_opts_on , or field_opts_off a NULL field
pointer. Callingfield_opts with a NULL field pointer returns the system default.

Forms

11-29

Creating and Freeing Forms 11

Once you have established a set of fields and their attributes, you are ready to create a
form to contain them.

SYNOPSIS

FORM * new_form (fields)
FIELD ** fields;

int free_form (form)
FORM * form;

The functionnew_form takes as an argument a NULL-terminated, ordered array of
FIELD pointers that define the fields on the form. The order of the field pointers deter-
mines the order in which the fields are visited during form driver processing discussed
below.

As with the comparable ETI menu functionnew_menu, functionnew_form does not
copy the array of field pointers. Instead, it saves the pointer to the array. Be sure not to
change the array of field pointers once it has been passed tonew_form , until the form is
freed byfree_form or the field array replaced byset_form_fields described in the
next section.

Fields passed tonew_form are connected to the resulting form.

NOTE

Fields may be connected to only one form at a time.

To connect fields to another form, you must first disconnect them usingfree_form or
set_form_fields . If fields is NULL, the form is created but no fields are con-
nected to it.

Unlike menus, ETI forms are logically divided into pages. Two functions enable you to
mark a field that is to start a new page and to return a Boolean value indicating whether a
given field does so.

SYNOPSIS

int set_new_page(field, bool)
FIELD * field;
int bool; /* TRUE or FALSE */

int new_page(field)
FIELD * field;

The initial system default value ofnew_page is FALSE. This means that, unless speci-
fied withset_new_page , each field is assumed to continue the current page.

Character User Interface Programming

11-30

NOTE

In general, you should make the size of each form page smaller
than the form's window size.

If function set_new_page executes successfully, it returnsE_OK. If not, it returns one
of the following:

E_SYSTEM_ERROR system error

E_CONNECTED field connected to form

Screen 11-7 shows how to create a simple two-page form.

Screen 11-7. Creating a Form

If successful,new_form returns a pointer to the new form. If there is no memory avail-
able for the form or one of the given fields is connected to another form,new_form
returns NULL. Undefined results occur if the array of field pointers is not NULL-termi-
nated.

The functionfree_form disconnects all fields and frees any space allocated for the
form. Its argument is a form pointer previously obtained fromnew_form . The fields
themselves are not automatically freed.

NOTE

You should free the fields comprising a form usingfree_field
only after you free their form usingfree_form .

If successful,free_form returnsE_OK. If not, it returns one of the following:

FIELD * f[7];
FORM * form;

/* create fields as described in “Creating and Freeing Fields” on page 11-6 */

f[0] = new_field (...); /* 1st field on page 1 */
f[1] = new_field (...); /* 2nd field on page 1 */
f[2] = new_field (...); /* 3rd field on page 1 */
f[3] = new_field (...); /* 4th field on page 1 */

f[4] = new_field (...); /* 1st field on page 2 */
f[5] = new_field (...); /* 2nd field on page 2 */

f[6] = (FIELD *) 0; /* signal end of form */

set_new_page (f[4], TRUE); /* start new page with fifth field f[4] */

form = new_form (f); /* create the form */

Forms

11-31

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_POSTED form is posted

Posting forms is described below.

As with panel, item, menu, and field pointers, form pointers should not be used once they
are freed. If they are, undefined results occur.

Manipulating Form Attributes 11

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A form attribute is any form feature whose value can be set or read by an appro-
priate ETI function. The set of fields connected to a form and the number of fields con-
nected to it are examples of form attributes.

Changing and Fetching the Fields on an Existing Form 11

Once you create a form with one set of fields usingnew_form , you can change the fields
connected to it.

SYNOPSIS

int set_form_fields (form, fields)
FORM * form;
FIELD ** fields;

FIELD ** form_fields (form)
FORM * form;

Like new_form , functionset_form_fields takes as an argument a NULL-termi-
nated, ordered array of FIELD pointers that define the fields on the form and determine the
order in which the fields are visited during form driver processing.

Whenset_form_fields is called, the fields previously connected to the form are dis-
connected from it (but not freed) before the new fields are connected. Like any set of fields
connected to a form, the new fields cannot be passed to other forms while they are con-
nected to the given form. You must first disconnect them by callingfree_form or again
callingset_form_fields .

There are two ways to disconnect the fields associated with a form without connecting
another set of fields to the form:

• you can callfree_form

• you can callset_form_fields with fields set to NULL

Character User Interface Programming

11-32

The first method frees the space allocated for the form, whereas the second does not.

To change the fields associated withform to those referenced in array pointernew-
fields , you can write:

FORM * form;
FIELD ** newfields;

set_form_fields (form, newfields);
/* associate new set of fields with form */

If function set_form_fields encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_POSTED form is posted

E_CONNECTED connected field

Posting forms is discussed in “Posting and Unposting Forms” on page 11-38.

The functionform_fields returns the array of field pointers defining the form's fields.
The function returns NULL if no fields are connected to the form or the form pointer is
NULL.

Counting the Number of Fields 11

The following function returns the number of fields connected to the given form.

SYNOPSIS

int field_count (form)
FORM * form;

If form is NULL, field_count returns -1.

As an example, consider the following routine, which determines whether your user is on
the last field of the form as numbered in the field pointer array:

int on_last_field (form)
FORM * form;
{

/* fetch number of last field */

int lastindex = field_count (form) - 1;

/* determine whether number of current field
is the same */

Forms

11-33

return field_index (current_field (form)) ==
lastindex;

}

Note the use of functionsfield_index andcurrent_field , described in “Manipu-
lating the Current Field” on page 11-57.

Querying the Presence of Offscreen Data 11

It may be desirable to indicate to the user whether there is additional data either ahead or
behind in a scrollable field. It is the responsibility of application developers to indicate,
however they like, the presence of off screen data. The following functions allow the
developer to query the presence of offscreen data.

SYNOPSIS

int data_ahead(form)
FORM *form;

int data_behind(form)
FORM *form;

data_ahead returns TRUE, if there is either more data offscreen to the right if the cur-
rent field is a one line field, or more data offscreen below if the current field is multi-line.
Otherwise FALSE is returned. Data is defined to be any non-pad character; see “Setting
the Field Foreground, Background, and Pad Character” on page 11-19 for more detail on
the pad character.

data_behind returns TRUE, if the first character position of the current field is not cur-
rently being displayed. Otherwise FALSE is returned.

Changing ETI Form Default Attributes 11

During form initialization usingnew_form , all form attributes are assigned default val-
ues. As you can with menu attributes, you can change these default attribute values by
calling the appropriate function with a NULL form pointer as its first argument. All subse-
quent forms created usingnew_form will then have the new default attribute value. How-
ever, forms created before the change to the current default value will retain the initial val-
ues of their attributes. Several examples of changing default values occur throughout the
rest of this chapter.

Displaying Forms 11

In general, to display a form, you determine the form dimensions, optionally associate a
window and subwindow with the form, post the form, and refresh the screen.

Character User Interface Programming

11-34

Determining the Dimensions of Forms 11

Every form is associated with a window and subwindow.

NOTE

By default, (1) the form window is NULL, which by convention
means that ETI usesstdscr as the form window; and (2) the form
subwindow is NULL, which means that ETI uses the form win-
dow as the form subwindow.

Windows are used to create borders, titles, and the like. Before ETI posts a form, it must
determine the sizes of its window and subwindow.

To determine the minimum window or subwindow size for a form, ETI considers the fol-
lowing:

• the number of rows and columns for each field

• the starting position (upper left corner) of each field within the form sub-
window

By automatically fetching this information previously established by calls to
new_field , functionscale_form saves you the effort of calculating the size of your
form subwindow.

Scaling the Form 11

Considering the above information, this function returns the minimum window size neces-
sary for containing the form.

SYNOPSIS

int scale_form (form, rows, cols)
FORM * form;
int * rows;
int * cols;

Because functionscale_form must return more than one value (namely, the minimum
number of rows and columns for the form) and C passes parameters “by value” only, the
arguments ofscale_form are pointers. The pointer argumentsrows andcols point to
locations used to return the minimum number of rows and columns for the form.

NOTE

You should callscale_menu only after the form's fields have
been connec ted to the fo rm us ingnew_form o r
set_form_fields .

Forms

11-35

As an example, to return the minimum (sub)window size for formf in variablesrows and
cols, you can write:

FORM * form;
int rows, cols;

/* create fields
create form */

/* determine minimum row and column size */
scale_form (form, &rows, &cols);

 /* create form subwindow, as described
 in next section */

If function scale_form encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_NOT_CONNECTEDno fields connected to the form

Associating Windows and Subwindows with a Form 11

Remember that two windows are associated with every form — the form window and the
form subwindow. The following functions assign windows and subwindows to forms and
fetch those previously assigned to them.

SYNOPSIS

int set_form_win (form, window)
FORM * form;
WINDOW * window;

WINDOW * form_win (form)
FORM * form;

int set_form_sub (form, window)
FORM * form;
WINDOW * window;

WINDOW * form_sub (form)
FORM * form;

These functions enable you to place stylistic borders, titles, and other decoration around a
form.

Character User Interface Programming

11-36

NOTE

Remember that if the form window is NULL (the default), ETI
usesstdscr. If the form subwindow is NULL (the default), ETI
uses the form window so you need not use funct ions
set_form_win or set_form_sub at all.

If you do not want to usestdscr, you should create a window and a subwindow for every
form. ETI automatically writes all low-level ETI (curses) output of the form proper on
the form subwindow. If you want further output (such as borders, titles, or static mes-
sages), you should write it on the form window. However, you need not write any further
output at all.

NOTE

Be sure to apply all low—level ETI (curses(3curses)) com-
mand output and refresh operations to your form's window, not its
subwindow.

Figure 11-1 diagrams the relationship between ETI Form functions, your application pro-
gram, and its form window and subwindow.

Figure 11-1. Form Functions Write to Subwindow, Application to Window

Screen 11-8 shows how to create a form with a border of the terminal's default vertical and
horizontal characters.

window

sub
window

ETI
Form

Functions

C Application
Program

Forms

11-37

Screen 11-8. Creating a Border around a Form

Functionscale_form sets the values of the variablesrows andcols , which provide
the form dimensions without the border. Adding four to the dimensions of the form win-
dow clearly sets off the form border from the fields of the form (the form proper).

If functionsset_form_win or set_form_sub encounter an error, they return one of
the following:

E_SYSTEM_ERROR system error

E_POSTED form is posted

As usual, you can change the default form window or subwindow. For instance, you can
change the default form window fromstdscr to a windoww by passing a NULL form
pointer, as follows:

int rows, cols, firstrow, firstcol;

/* create form window */

WINDOW * w = newwin (rows, cols, firstrow, firstcol);

set_form_win((FORM *)0, w);
/* change default form window to w */

Note that if you later change a posted form by writing directly to its window, before con-
tinuing you must reposition the form window cursor usingpos_form_cursor . See
“Positioning the Form Cursor” on page 11-60.

/* create window 4 characters larger than form dimensions
with top left corner at (0, 0). subwindow is positioned
at (2, 2) relative to the form window origin with dimensions
equal to the form dimensions. */

FORM * f;
WINDOW * w;
int rows, cols;

scale_form (f, &rows, &cols); /* get dimensions of form */

if (w = newwin (rows+4, cols+4, 0, 0))
{

set_form_win (f, w); /* associate window and subwindow with form */

set_form_sub (f, derwin (w, rows, cols, 2, 2));

box (w, 0, 0); /* create border */
}

Character User Interface Programming

11-38

Posting and Unposting Forms 11

When you have created a form and its window and subwindow, you are ready to post it. To
post a form is to display it on the form's subwindow; to unpost a form is to erase it from
the form's subwindow.

SYNOPSIS

int post_form (form)
FORM * form;

int unpost_form (form)
FORM * form;

Unposting a form does not remove its data structure from memory.

NOTE

To post a form, be sure that you have connected fields to it first.

Screen 11-9 uses two application routines,display_form anderase_form , to show
how you might post and later unpost a form. The code builds on that used previously in
Screen 11-8 to create the form's window and subwindow.

Forms

11-39

Screen 11-9. Posting and Unposting a Form

If successful, functionpost_form returnsE_OK. If not, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_POSTED form is already posted

E_NOT_CONNECTEDno connected fields

E_NO_ROOM form does not fit in subwindow

If successful, the functionunpost_form returnsE_OK. If not, it returns one of the fol-
lowing:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

static void display_form (f)/* create form windows and post */
FORM * f;
{

WINDOW *w;
int rows;
int cols;

scale_form (f, &rows, &cols);/* get dimensions of form */

/* create form window as in Screen 11-8 */

if (w = newwin (rows+4, cols+4, 0, 0))
{

set_form_win (f, w);
set_form_sub (f, derwin (w, rows, cols, 2, 2));
box (w, 0, 0);
keypad (w, 1);

}
else

/* error routine in previous section “ETI Low-level Interface to
 High-level Functions” */
error (“error return from newwin”, NULL);

if (post_form (f) != E_OK) /* post form */

error (“error return from post_form”, NULL);
else

refresh (w);
}

static void erase_form (f)/* unpost and delete form windows */
FORM * f;
{

WINDOW * w = form_win (f);
WINDOW * s = form_sub (f);

unpost_form (f); /* unpost form */
werase (w); /* erase form window */
wrefresh (w); /* refresh screen */
delwin (s); /* delete form windows */
delwin (w);

}

Character User Interface Programming

11-40

E_NOT_POSTED form is not posted

E_BAD_STATE called from init/term function

The initialization and termination routines are discussed in the next section.

Form Driver Processing 11

Like the functionmenu_driver for the menu subsystem, functionform_driver is the
workhorse of the form system. Once the form is posted, the form driver handles all inter-
action with your end-user. The form driver responds to

• field navigation requests

• page navigation requests

• field editing requests

• data entry

• field validation requests

Your application passes a character to the form driver for processing and evaluates the
results.

SYNOPSIS

int form_driver (form, c)
FORM * form;
int c;

As with menu processing, to enable the form driver to process your end-users' requests,
you must write an input key virtualization routine. This routine defines a correspondence
between input keys, control characters, and escape sequences on the one hand and ETI
form requests on the other. The routine returns a specific form request or application com-
mand that the form driver can process. Upon return from the form driver, your application
can check if the input was processed appropriately. If not, it can specify actions to be
taken. These may include terminating interaction with the form, responding to help
requests, generating an error message, and so on.

Defining the Virtual Key Mapping 11

For a sample virtual key mapping, consider Screen 11-10, which contains the application-
defined functionget_request . Most of the values returned byget_request are ETI
form requests defined in header fileform.h and described in the next section. The other
values returned (in this example, only value QUIT are defined by the application program
treated in “Calling the Form Driver” on page 11-48.

Forms

11-41

Screen 11-10. A Sample Key Virtualization Routine

/* The following key mapping is defined by get_request.
Note that ^X represents the character control-X.

^Q - end form processing

^F - move to next page
^B - move to previous page
^N - move to next field
^P - move to previous field
home key- move to first field
home down- move to last field
^L - move left to field
^R - move right to field
^U - move up to field
^D - move down to field

^W - move to next word
^T - move to previous word
^S - move to beginning of field data
^E - move to end of field data
left arrow- move left in field
right arrow- move right in field
down arrow- move down in field
up arrow- move up in field

^M <CR> - enter new line
^I - insert blank character
^O - insert blank line
^V - delete character
^H <BS> - delete previous character
^Y - delete line
^G - delete word
^C - clear to end of line
^K - clear to end of field
^X - clear entire field
^A - request next field choice
^Z - request previous field choice
ESC - toggle between insert and overlay mode

define application commands */

#define QUIT(MAX_COMMAND + 1)

static int get_request (w)/* virtual key mapping */
WINDOW * w;
{

static intmode= REQ_INS_MODE;
int c = wgetch (w);/* read a character */

switch (c)
{

Character User Interface Programming

11-42

In get_request , only a subset of the requests are defined so that the requests your end-
user can make are limited. If you like, you can also map two or more keys onto one
request. This is helpful where some terminals lack one of the keys in question. In that case,
the user can press the other key to the same effect.

Functionget_request first sets the data entry mode for the end-user. Here it is set ini-
tially to insert mode. The last case statement in the routine enables your end-user to press
the escape keyESC to switch to overlay mode. Both modes are discussed in “Field Edit-
ing Requests” on page 11-45.

Next,get_request callswgetch to read a character entered by the user. Theswitch
statement maps the character read onto a specific application command or form request.
The application command QUIT appears here as the first case; the other cases map charac-
ters onto form requests. Any character that is not an application command or form request
is simply returned unchanged—it is treated as data being entered into the current field.

Note that this key mapping assumes your end-user will be using a terminal with arrow
keys (K E Y _ L E F T, K E Y _ R I G H T, K E Y _ U P, K E Y _ D OW N), a home key
(KEY_HOME), and a home down key (KEY_LL).

case 0x11: /* ^Q */ returnQUIT;

case 0x06: /* ^F */ return REQ_NEXT_PAGE;
case 0x02: /* ^B */ return REQ_PREV_PAGE;
case 0x0e: /* ^N */ return REQ_NEXT_FIELD;
case 0x10: /* ^P */ return REQ_PREV_FIELD;
case KEY_HOME: return REQ_FIRST_FIELD;
case KEY_LL: return REQ_LAST_FIELD;
case 0x0c: /* ^L */ return REQ_LEFT_FIELD;
case 0x12: /* ^R */ return REQ_RIGHT_FIELD;
case 0x15: /* ^U */ return REQ_UP_FIELD;
case 0x04: /* ^D */ return REQ_DOWN_FIELD;
case 0x17: /* ^W */ return REQ_NEXT_WORD;
case 0x14: /* ^T */ return REQ_PREV_WORD;
case 0x13: /* ^S */ return REQ_BEG_FIELD;
case 0x05: /* ^E */ return REQ_END_FIELD;
case KEY_LEFT: return REQ_LEFT_CHAR;
case KEY_RIGHT: return REQ_RIGHT_CHAR;
case KEY_DOWN: return REQ_DOWN_CHAR;
case KEY_UP: return REQ_UP_CHAR;
case 0x0d: /* ^M */ return REQ_NEW_LINE;
case 0x09: /* ^I */ return REQ_INS_CHAR;
case 0x0f: /* ^O */ return REQ_INS_LINE;
case 0x16: /* ^V */ return REQ_DEL_CHAR;
case 0x08: /* ^H */ return REQ_DEL_PREV;
case 0x19: /* ^Y */ return REQ_DEL_LINE;
case 0x07: /* ^G */ return REQ_DEL_WORD;
case 0x03: /* ^C */ return REQ_CLR_EOL;
case 0x0b: /* ^K */ return REQ_CLR_EOF;
case 0x18: /* ^X */ return REQ_CLR_FIELD;
case 0x01: /* ^A */ return REQ_NEXT_CHOICE;
case 0x1a: /* ^Z */ return REQ_PREV_CHOICE;
case 0x1b: /* ESC */

if (mode == REQ_INS_MODE)
return mode = REQ_OVL_MODE;

else
return mode = REQ_INS_MODE;

}
return c;

}

Forms

11-43

ETI Form Requests 11

The ETI form subsystem places the following requests at your application program's dis-
posal.

Page Navigation Requests 11

These requests enable your end-user to navigate or move from page to page on a multi-
page form.

REQ_NEXT_PAGE move to next page

REQ_PREV_PAGE move to previous page

REQ_FIRST_PAGE move to first page

REQ_LAST_PAGE move to last page

Page navigation requests are cyclic so that

• theREQ_NEXT_PAGE request from the last page moves to the first page

• theREQ_PREV_PAGE from the first page moves to the last.

Inter-field Navigation Requests on the Current Page 11

These requests enable your end-user to move from field to field on the current page of a
single form.

REQ_NEXT_FIELD move to next field

REQ_PREV_FIELD move to previous field

REQ_FIRST_FIELD move to first field

REQ_LAST_FIELD move to last field

REQ_SNEXT_FIELD move to sorted next field

REQ_SPREV_FIELD move to sorted previous field

REQ_SFIRST_FIELD move to sorted first field

REQ_SLAST_FIELD move to sorted last field

REQ_LEFT_FIELD move left to field

REQ_RIGHT_FIELD move right to field

REQ_UP_FIELD move up to field

REQ_DOWN_FIELD move down to field

All field navigation requests are cyclic on the current page so that

Character User Interface Programming

11-44

• theREQ_NEXT_FIELD request from the last field on a page moves to the
first field on that page.

• theREQ_PREV_FIELD request from the first field on a page moves to the
last field on that page.

and so forth. The order of the fields in the field array passed tonew_form determines the
order in which the fields are visited using theREQ_NEXT_FIELD, REQ_PREV_FIELD,
REQ_FIRST_FIELD, andREQ_LAST_FIELD requests.

NOTE

Remember that the order of fields in the form array is simply the
order in which fields are processed during form processing. This
order bears no necessary relation to the order of the fields as they
are displayed on the form page.

Your end-user may also move from field to field on the form page in row-major order —
lef t to r ight , top to bot tom. To do so, you use theREQ_SNEXT_FIELD,
REQ_SPREV_FIELD, REQ_SFIRST_FIELD, andREQ_SLAST_FIELD requests.

F inal ly, your end-user can move about in d i fferent d i rect ions us ing the
REQ_LEFT_FIELD, REQ_RIGHT_FIELD, REQ_UP_FIELD, andREQ_DOWN_FIELD
requests. Note that the first character (top left corner) of the field is used to determine
where the field is located relative to other fields. This means, for example, that a multi-line
field whose first character is on the second row of a form is not on the same row as a field
whose first character is on the third row of a form even though the multi-line field may
extend below the third row.

Intra-field Navigation Requests 11

These requests let your end-user move about inside a field. They may generate implicit
scrolling operations on scrollable fields.

REQ_NEXT_CHAR move to next character in field

REQ_PREV_CHAR move to previous character in field

REQ_NEXT_LINE move to next line in field

REQ_PREV_LINE move to previous line in field

REQ_NEXT_WORD move to next word in field

REQ_PREV_WORD move to previous word in field

REQ_BEG_FIELD move to beginning of field

REQ_END_FIELD move after last character in field

REQ_BEG_LINE move to beginning of line

REQ_END_LINE move after last character in line

Forms

11-45

REQ_LEFT_CHAR move left in field

REQ_RIGHT_CHAR move right in field

REQ_UP_CHAR move up in field

REQ_DOWN_CHAR move down in field

The effect of these requests is as follows:

• TheREQ_NEXT_CHAR andREQ_PREV_CHAR requests step forward and
backward through the field.

• TheREQ_NEXT_LINE andREQ_PREV_LINE requests move the cursor to
the beginning of the next and previous line.

• TheREQ_NEXT_WORD andREQ_PREV_WORD requests move the cursor to
the beginning of the next or previous word.

• TheREQ_BEG_FIELD places the cursor at the first non-pad character in
the field. TheREQ_END_FIELD request places the cursor after the last
non-pad character in the field. This lets the user easily add characters to the
field. If there is no room, it returns the cursor to the start of the field.

• TheREQ_BEG_LINE request places the cursor at the first non-pad charac-
ter in the current line of the field. TheREQ_END_LINE request places the
cursor after the last non-pad character in the current line. If there is no
room, it returns the cursor to the start of the line.

• The REQ_LEFT_CHAR, REQ_RIGHT_CHAR, REQ_UP_CHAR, and
REQ_DOWN_CHAR requests move one character position in the stated
direction.

Field Editing Requests 11

These requests set the editing mode — insert or overlay.

REQ_INS_MODE begin insert mode

REQ_OVL_MODE begin overlay mode

In insert mode (the default), all text is inserted at the current cursor position, while all
existing text starting at the current cursor position is moved to the right. In overlay mode,
text entered by your end-user overlays (replaces) existing text in the field. In both modes,
the cursor is advanced one character position as each character is entered.

The following requests provide a complete set of field editing requests.

REQ_NEW_LINE new line request

REQ_INS_CHAR insert blank character at cursor

REQ_INS_LINE insert blank line at cursor

REQ_DEL_CHAR delete character at cursor

REQ_DEL_PREV delete character before cursor

Character User Interface Programming

11-46

REQ_DEL_LINE delete line at cursor

REQ_DEL_WORD delete word at cursor

REQ_CLR_EOL clear to end of line

REQ_CLR_EOF clear to end of field

REQ_CLR_FIELD clear entire field

The effects ofREQ_NEW_LINE andREQ_DEL_PREV requests depend on several factors
such as the current mode (insert or overlay) and the cursor position within the field.

• The effects ofREQ_NEW_LINE are as follows:

- In insert mode — if the cursor is at the beginning of a field or on the
last line of a field, theREQ_NEW_LINE request acts like a
REQ_NEXT_FIELD request. Otherwise, theREQ_NEW_LINE
request inserts a new line after the current line and moves the text on
the current line starting at the cursor position to the beginning of the
new line. The cursor is moved to the beginning of the new line.

- In overlay mode — if the cursor is at the beginning of a field, the
REQ_NEW_LINE request acts like aREQ_NEXT_FIELD request. If
the cursor is on the last line of a field, theREQ_NEW_LINE request
erases all data from the cursor position to the end of the line and sat-
i s fies a REQ_NEXT_FIELD reques t . O therw ise , the
REQ_NEW_LINE request erases all data from the cursor position to
the end of the line and moves the cursor to the beginning of the next
line.

• The effects of theREQ_DEL_PREV request is as follows:

- In insert mode — if the cursor is at the beginning of a field, the
REQ_DEL_PREV request behaves like aREQ_PREV_FIELD
request. If the cursor is at the beginning of a line other than the first
and the text on that line will fit at the end of the preceding line, the
text is moved and the current line is deleted. Otherwise, the
REQ_DEL_PREV request simply deletes the previous character.

- In overlay mode — if the cursor is positioned at the beginning of a
fie ld , the REQ_DEL_PREV reques t behaves l i ke a
REQ_PREV_FIELD request. Otherwise, theREQ_DEL_PREV
request simply deletes the previous character.

Because the requestsREQ_NEW_LINE andREQ_DEL_PREV automatically do a request
REQ_NEXT_FIELD or REQ_PREV_FIELD as described, they are said to be overloaded
field edi t ing requests. See the remarks on opt ionsO_NL_OVERLOAD and
O_BS_OVERLOAD in “Setting and Fetching Form Options” on page 11-62.

Scrolling Requests 11

Fields can scroll if they have offscreen data. A field can have offscreen data if it was origi-
nally created with offscreen rows-the parameternrow in thenew_field library routine

Forms

11-47

was greater than 0-or the field has grown larger than its original size. See “Dynamically
Growable Fields” on page 11-9 for more details on the growth of fields.

There are two kinds of scrolling fields, vertically scrolling fields and horizontally scrolling
fields. Multi-line fields with offscreen data scroll vertically and one line fields with off-
screen data scroll horizontally. Recall the library routinenew_field ; a new field created
with rows set to one andnrow set to zero will be defined to be a one line field. A new field
created withrows + nrow greater than one will be defined to be a multi-line field.

The following form driver requests are used on vertically scrolling multi-line fields.

REQ_SCR_FLINE scroll field forward a line

REQ_SCR_BLINE scroll field backward a line

REQ_SCR_FPAGE scroll field forward a page

REQ_SCR_BPAGE scroll field backward a page

REQ_SCR_FHPAGE scroll field forward half a page

REQ_SCR_BHPAGE scroll field backward half a page

In the descriptions above, a page is defined to be the number of visible rows of the field as
displayed on the form.

The following form driver requests are used on horizontally scrolling one line fields.

REQ_SCR_FCHAR scroll field forward a character

REQ_SCR_BCHAR scroll field backward a character

REQ_SCR_HFLINE scroll field forward a line

REQ_SCR_HBLINE scroll field backward a line

REQ_SCR_HFHALF scroll field forward half a line

REQ_SCR_HBHALF scroll field backward half a line

In the descriptions above, a line is defined to be the width of the field as displayed on the
form.

In addition, intra-field navigation requests may generate implicit scrolling on scrollable
fields. See “Intra-field Navigation Requests” on page 11-44.

Field Validation Requests 11

This request supports field validation for those field types that have it.

REQ_VALIDATION validate current field

Character User Interface Programming

11-48

NOTE

In general, the ETI form driver automatically performs validation
on a field before the user leaves it. (If your user leaves a field, it is
valid.) However, before your user terminates interaction with the
form, you should make theREQ_VALIDATION request to vali-
date the current field.

Recall that on current fields, the values returned by functionsfield_buffer and
field_status are sometimes inaccurate. (See “Setting and Reading Field Buffers” on
page 11-21 and “Setting and Reading the Field Status” on page 11-22.) If, however, you
make requestREQ_VALIDATION immediately before calling these functions, you can be
sure that the values they return are accurate—they agree with what your end-user has
entered and appears on the screen.

Choice Requests 11

The following requests enable your user to request the next or previous value of a field
type.

REQ_NEXT_CHOICEdisplay next field choice

REQ_PREV_CHOICEdisplay previous field choice

TYPE_ENUM is the only generic field type that supports these choice requests. In addi-
tion, programmer-defined field types may support these requests. See “Setting the Field
Type to Ensure Validation” on page 11-13 and “Creating and Manipulating Programmer-
defined Field Types” on page 11-65 for information on these field types.

Application-defined Commands 11

Form requests are implemented as integers above the low-level ETI (curses) maximum
key valueKEY_MAX. A symbolic constantMAX_COMMAND is provided so applications can
implement their own commands without conflicting with the ETI form or menu sub-
systems. All ETI system form requests are greater thanKEY_MAX and less than or equal to
MAX_COMMAND. You should set your application-defined commands to an integer greater
thanMAX_COMMAND.

Calling the Form Driver 11

The ETI form driver works very much like the ETI menu driver. As soon as the form
driver receives a request, it checks if it is an ETI form request. If so, it performs the request
and reports the results. If the request is not an ETI form request, the form driver checks if
the character is data, that is, a printable ASCII character. If it is, it enters the character at
the current position in the current field. If the character is not recognized as a form request
or data, the form driver assumes the character is an application-defined command and
returnsE_UNKNOWN_COMMAND.

Forms

11-49

To illustrate a sample design for calling the form driver, we will consider a program that
permits interaction with a sweepstakes entry form reproduced in Screen 11-2.

Figure 11-2. Sweepstakes Form Output

You have already seen much of the sweepstakes program in previous examples.
Screen 11-11 shows its remaining routines.

+--+
| |
| Sweepstakes Entry Form |
| |
| Last Name First Middle |
| _________________ ____________ ___________ |
| |
| Comments |
| ___ |
| ___ |
| ___ |
| ___ |
| |
+--+

Character User Interface Programming

11-50

Screen 11-11. An Example of Form Driver Usage

/* This program displays a sweepstakes entry form. */

#include <string.h>
#include <form.h>

static void start_curses()/* see the previous section “ETI Low-level */
/* Interface to High-level Functions” */

static void display_form (f)/* create form windows and post */
/* see Screen 11-9 for details */

static void erase_form (f)/* unpost and delete form windows */
/* see Screen 11-9 for details */

/* define application commands */

#define QUIT (MAX_COMMAND + 1)

static int get_request (w)/* virtual key mapping; see Screen 11-10 */

static int my_driver (form, c)/* handle application commands */
FORM * form;
int c;
{

switch (c)
{

case QUIT:

/* validate current field */

if (form_driver (form, REQ_VALIDATION) == E_OK)
return TRUE;

break;
}
beep ();/* signal error */
return FALSE;

}

main (argc, argv)
int argc;
char * argv[];
{

WINDOW *w;
FORM * form;
FIELD **f;
FIELD **make_fields ();
void free_fields ();
int c, done = FALSE;

PGM = argv[0];

Forms

11-51

if (! (form = new_form (make_fields ())))
error (“error return from new_form”, NULL);

start_curses ();
display_form (form);

/* interact with user */

w = form_win (form);

while (! done)
{

switch (form_driver (form, c = get_request (w)))
{

case E_OK:
break;

case E_UNKNOWN_COMMAND:
done = my_driver (form, c);
break;

default:
beep ();/* signal error */
break;

}
}

/* terminate form processing */

erase_form (form);
end_curses ();
f = form_fields (form);
free_form (form);
free_fields (f);
exit (0);

}

typedef FIELD *(* PF_field) ();

typedef struct /* define struct for creation */
{

PF_fieldtype;/* field constructor*/
int rows;/* number of rows*/
int cols;/* number of columns*/
int frow;/* first row*/
int fcol;/* first column*/
char * v; /* field value*/

}
FIELD_RECORD;

static FIELD * LABEL (x)/* create a LABEL field */
FIELD_RECORD * x;
{

Character User Interface Programming

11-52

Functionmain first calls an application-defined routinemake_fields to create the
fields andnew_form to create the form. Routinemake_fields offers a somewhat dif-
ferent way to create fields from what we have seen previously. (ArrayF holds the string
labels and field sizes; it can be changed so thatmake_fields can create any form.)
Functionmain then initializescurses usingstart_curses and displays the form
usingdisplay_form .

In its while loop,main repeatedly callsform_driver with the character returned by
get_request . If the form driver does not recognize the character as a request or data, it
returnsE_UNKNOWN_COMMAND, whereupon the application-defined routine

FIELD * f = new_field (1, strlen (x->v), x->frow, x->fcol, 0, 0);

if (f)
{

set_field_buffer (f, 0, x->v);
field_opts_off (f, O_ACTIVE);

}
return f;

}

static FIELD * STRING (x)/* create a STRING field */
FIELD_RECORD * x;
{

FIELD * f = new_field (x->rows, x->cols, x->frow, x->fcol, 0, 0);

if (f)
set_field_back (f, A_UNDERLINE);

return f;
}

/* field definitions */

static FIELD_RECORD F [] =
{

LABEL, 0, 0, 0, 11, “Sweepstakes Entry Form”,
LABEL, 0, 0, 2, 0, “Last Name”,
LABEL, 0, 0, 2, 20, “First”,
LABEL, 0, 0, 2, 34, “Middle”,
LABEL, 0, 0, 5, 0, “Comments”,
STRING, 1, 18, 3, 0, (char *) 0,
STRING, 1, 12, 3, 20, (char *) 0,
STRING, 1, 12, 3, 34, (char *) 0,
STRING, 4, 46, 6, 0, (char *) 0,
(PF_field) 0,0,0,0,0, (char *) 0,

};

#define MAX_FIELD512

static FIELD *fields [MAX_FIELD + 1];/* field buffer */

static FIELD ** make_fields ()/* create the fields */
{

FIELD ** f = fields;
int i;

for (i = 0; i < MAX_FIELD && F[i].type; ++i, ++f)
f = (F[i].type) (& F[i]);

*f = (FIELD *) 0;
return fields;

}

static void free_fields (f)/* free the fields */
FIELD ** f;
{

while (*f)
free_field (*f++);

}

Forms

11-53

my_driver is called with the same character. Routinemy_driver processes the appli-
cation-defined commands. In this example, there is only one, QUIT. Note how this request
automatically calls the form driver again, now with theREQ_VALIDATION request.
Remember that this request is necessary to ensure that current field validation occurs
before your end-user leaves the form. If validation is successful,my_driver returns
TRUE. In turn, this setsdone to TRUE, and the while loop is exited.

Finally, main erases the form, terminates low-level ETI (curses), frees the form and its
fields, and exits the program.

This example is typical, but it is only one of many ways you can structure an application.
ETI's flexibility lets you use it over a wide range of applications.

Like other ETI routines that return anint , the form driver returnsE_OK if it recognizes
and processes the input character argument. If it encounters an error, it returns one of the
following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_BAD_STATE called from init/term routines

E_NOT_POSTED form is not posted

E_UNKNOWN_COMMANDunknown command

E_REQUEST_DENIED recognized request failed

E_INVALID_FIELD failed field validation

NOTE

Like the menu driver, the form driver may not be called from any
of the initialization or termination routines described next. Any
attempt to do so returnsE_BAD_STATE.

Establishing Field and Form Initialization and Termination Routines 11

As with the menu driver, you may sometimes want the form driver to execute a specific
routine whenever the current field or form changes. The following routines let you do this.

SYNOPSIS

typedef void (* PTF_void) ();

int set_form_init (form, func)
FORM * form;
PTF_void func;

Character User Interface Programming

11-54

PTF_void form_init (form)
FORM * form;

int set_form_term (form, func)
FORM * form;
PTF_void func;

PTF_void form_term (form)
FORM * form;

int set_field_init (form, func)
FORM * form;
PTF_void func;

PTF_void field_init (form)
FORM * form;

int set_field_term (form, func)
FORM * form;
PTF_void func;

PTF_void field_term (form)
FORM * form;

The argumentfunc is a pointer to the specific function you want executed by the form
driver. This application-defined function itself takes a form pointer as an argument.

As with menus, if you want your application to execute a routine at one of the initializa-
tion or termination points listed below, you should call the appropriate form initialization
or termination routine at the start of your program. If you do not want a specific function
called in these cases, you may refrain from calling these routines altogether.

Function set_form_init 11

The argumentfunc to this function is automatically called by the form driver

• when the form is posted

• just after every form page operation, that is, after the page changes on a
posted form

Function set_field_init 11

The argumentfunc to this function is automatically called by the form driver

• when the form is posted

• just after a field change operation, that is, every time the current field
changes on a posted form.

Forms

11-55

Function set_field_term 11

The argumentfunc to this function is automatically called by the form driver

• just after the field is validated, that is, just before the current field changes
on a posted form

• when the form is unposted

Function set_form_term 11

The argumentfunc to this function is automatically called by the form driver

• just before every form page operation, that is, just before the page changes
on a posted form

• when the form is unposted

To see more precisely when the initialization and termination routines may be executed,
note that your form page and current field can be changed in the following circumstances:

• Both the form page and the current field may be changed automatically by
the form driver in response to a user's request.

• The form page may be changed when the current field is changed using
set_current_field .

• The current fie ld is changed when the page is changed using
set_form_page .

NOTE

All of these initialization and termination functions are NULL by
default. This means that no function need be called.

These functions promote common operations, such as row or column total updates, dis-
play of previously invisible fields, activation of previously inactive fields, and more. As an
example, Screen 11-12 shows a field termination routineupdate_total , which dynam-
ically adjusts a column total field whenever a row field value changes. Functionmain
callsset_field_term to establishupdate_total as the field termination routine.

Character User Interface Programming

11-56

Screen 11-12. Sample Termination Routine that Updates a Column Total

Functionset_field_buffer sets the column total field to the valuetotal stored in
buf . See “Setting and Reading Field Buffers” on page 11-21 for details on
field_buffer andset_field_buffer .

For another example, consider Screen 11-13. It shows a common use for field initializa-
tion and termination—highlighting a field when it becomes current and removing the
highlight when it is no longer current.

void update_total (form)
FORM * form;
{

FIELD ** f = form_fields (form);
char buf[80];
double total, atof(); /* atof() converts string to float */

switch (field_index (current_field (form)))
{

case ROW_1:
case ROW_2:
case ROW_3:

/* field_buffer returns field's value as string,
 which atof converts to float */

total = atof (field_buffer (f[ROW_1], 0)) +
/* calculate total */

 atof (field_buffer (f[ROW_2], 0)) +
 atof (field_buffer (f[ROW_3], 0));

sprintf (buf, “%.2f”, total);
set_field_buffer (f[TOTAL], 0, buf);
break;

}
}

main ()
{

FORM * form;

set_field_term (form, update_total); /* establish termination routine */
}

Forms

11-57

Screen 11-13. Field Initialization and Termination to Highlight Current Field

I f functions set_form_init , set_form_term , set_field_init , or
set_field_term encounter an error, they return the following:

E_SYSTEM_ERROR system error

As usual, if you want a specific default initialization or termination function for all forms
or all fields, you can pass the appropriate set function a NULL form pointer. Passing a
NULL form pointer to the access functions returns the current ETI default.

Manipulating the Current Field 11

The current field is the field where your end-user is positioned on the display screen. It
changes as the end-user moves about the form entering or changing data. The cursor rests
on the current field. To have your application program set or determine the current field,
you use the following functions.

SYNOPSIS

int set_current_field (form, field)
FORM * form;
FIELD * field;

FIELD * current_field (form)
FORM * form;

void bold_off (form)
FORM * form;
{

/* remove highlight */

set_field_back (current_field (form), A_UNDERLINE);
}

void bold_on (form)
FORM * form;
{

/* highlight field */

set_field_back (current_field (form), A_STANDOUT | A_UNDERLINE);
}

main ()
{

FORM * form;

/* establish initialization and termination routines */

set_field_init (form, bold_on);
set_field_term (form, bold_off);

}

Character User Interface Programming

11-58

int field_index (field)
FIELD * field;

The functionset_current_field enables you to set the current field, while function
current_field returns the pointer to it. The value returned byfield_index is the
index to the given field in the field pointer array associated with the connected form. This
value is in the range of 0 throughN-1 , whereN is the total number of fields.

When a form is created bynew_form or the fields associated with the form are changed
by set_form_fields the current field is automatically set to the first visible, active
field on page 0.

NOTE

Your application program need not callset_current_field
unless you want to implement field navigation requests that are
not supported by the form driver and discussed in “ETI Form
Requests” on page 11-43.

Screen 11-14 illustrates the use of these functions. Functionset_first_field uses
set_current_field to set the current field to the first field in the form's field pointer
array. Functionfirst_field , on the other hand, returns a Boolean value indicating
whether the current field is the first field.

Screen 11-14. Example Manipulating the Current Field

If function set_current_field encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer or field not connected to
form

E_BAD_STATE called from init/term routines

E_INVALID_FIELD current field is invalid on posted form

E_REQUEST_DENIED field not active or not visible

int set_first_field (form) /* set current field to first field */
FORM * form;
{

FIELD ** f = form_fields (form);
return set_current_field (form, f[0]);

}

int first_field (form) /* check if current field is first field */
FORM * form;
{

FIELD * f = current_field (form);
return field_index (f) == 0;

}

Forms

11-59

The functioncurrent_field returns (FIELD *) 0 if given a NULL form pointer or
there are no fields connected to the form.

The functionfield_index returns -1 if its field pointer argument is NULL or the field
is not connected to a form.

Changing the Form Page 11

Two form functions enable your application program to change to another page on the
form or to determine the current page of the form.

SYNOPSIS

int set_form_page (form, page)
FORM * form;
int page;

int form_page (form)
FORM * form;

Upon execution ofset_form_page , the current field is set to the first field on the new
page that is visible and active (visited during form driver processing). Variablepage must
be in the range of 0 throughN-1 , whereN is the total number of pages. The function
form_page returns the page number of the page currently visible on the screen.

When functionnew_form creates a form or functionset_form_fields changes the
fields associated with a form, the form page is automatically set to 0.

NOTE

Your application program need not callset_form_page unless
you want to implement page navigation requests that are not sup-
ported by the form driver and discussed in “ETI Form Requests”
on page 11-43.

Screen 11-15 illustrates the use of these functions. Functionset_first_page uses
set_form_page to change to the first page of the form, while functionfirst_page
usesform_page to return a Boolean value indicating whether the first page of the form is
currently displayed. Note that the first page is numbered 0.

Character User Interface Programming

11-60

Screen 11-15. Example Changing and Checking the Form Page Number

If function set_form_page encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form or page out of range

E_BAD_STATE called from init/term routines

E_INVALID_FIELD current field is invalid on posted form

The functionform_page returns -1 if given a NULL form pointer or there are no fields
connected to the form.

Positioning the Form Cursor 11

As with menu processing, some processing of user form requests may move the cursor
from the location required for continued processing by the form driver. This function
moves the cursor back to where it belongs.

SYNOPSIS

int pos_form_cursor (form)
FORM * form;

You need call this function only if your application program changes the cursor position of
the form window.

Screen 11-16 illustrates one use of this function. Functionprintpage repositions the
cursor after it prints the page number in the form window.

int set_first_page (form) /* set to first form page */
FORM * form;
{

return set_form_page (form, 0);
}

int first_page (form) /* check if on the first form page */
FORM * form;
{

return form_page (form) == 0; /* return Boolean */
}

Forms

11-61

Screen 11-16. Repositioning the Cursor after Printing Page Number

If pos_form_cursor encounters an error, it returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_NOT_POSTED form is not posted

Setting and Fetching the Form User Pointer 11

As it does for items, menus, and fields, ETI supplies a form user pointer for data such as
titles, help messages, and the like. These functions enable you to set the pointer and return
its referent.

SYNOPSIS

int set_form_userptr (form, userptr)
FORM * form;
char * userptr;

char * form_userptr (form)
FORM * form;

void printpage (form)
FORM * form;
{

int p = form_page (form) + 1;
WINDOW *w = form_win (form);
int rows, cols;
char buf[80];

box (w, 0, 0); /* put border around form window */
getmaxyx (w, rows, cols); /* fetch window size */
sprintf (buf, “ %d ”, p); /* store next page number */

wmove (w, (rows-1), ((cols-1)-strlen(buf))/2); /* position cursor */
waddstr (w, buf); /* print page number */

/* position the form cursor for continued form processing */

pos_form_cursor (form);
}

main ()
{

FORM * form;

set_form_init (form, printpage);
}

Character User Interface Programming

11-62

You can define a structure to be connected to the form using this pointer. By default, the
form user pointer is NULL.

Screen 11-17 illustrates the use of these form user pointer functions to determine whether
a given name matches a pattern name. Functionmain usesset_form_userptr to
establish the pattern name, whilecompare usesform_userptr to fetch the pattern and
do the comparison.

Screen 11-17. Pattern Match Example Using Form User Pointer

For more user pointer examples, see the previous sections on item, menu, and field user
pointers and the sample programs at the end of this guide.

If successful,set_form_userptr returnsE_OK. If not, it returns the following:

E_SYSTEM_ERROR system error

As usual, you change the default by passingset_form_userptr a NULL form pointer.
So to change the default user pointer to point to the string*** , you write:

/* change default user pointer */
set_form_userptr((form *) 0, “***”);

Setting and Fetching Form Options 11

ETI provides form options regulating how specific user requests are handled. These func-
tions enable you to set the options and read their settings.

SYNOPSIS

int set_form_opts (form, opts)
FORM * form;

#define match(a,b)(strcmp (a, b) == 0)

int compare (form, name)
FORM * form;
char * name;
{

char * s = form_userptr (form); /* fetch pattern string */
return match (name, s); /* return Boolean indicating match or not */

}

main ()
{

FORM * form;
char * form_name; /* initialize form_name to desired string */

set_form_userptr (form, form_name); /* set user pointer
 to point to string */

}

Forms

11-63

OPTIONS opts;

OPTIONS form_opts (form)
FORM * form;

options:
O_NL_OVERLOAD
O_BS_OVERLOAD

Note that functionset_form_opts automatically turns off all form options not refer-
enced in its second argument. By default, all options are on.

The effects of the options are as follows:

O_NL_OVERLOAD determines how aREQ_NEW_LINE request is processed. If
O_NL_OVERLOAD is on, the request is overloaded. See “Field
Editing Requests” on page 11-45 for a description of overloading.
If O_NL_OVERLOAD is off, theREQ_NEW_LINE request behav-
ior depends on whether insert mode is on.

In insert mode, theREQ_NEW_LINE request first inserts a new
line after the current line. It then moves the text on the current line
starting at the cursor position to the beginning of the new line. The
cursor is repositioned to the beginning of the new line.

In overlay mode, theREQ_NEW_LINE request erases all data
from the cursor position to the end of the line. It then repositions
the cursor at the beginning of the next line.

If the field optionO_STATIC if off and there is no maximum
growth specified for the field, the overloaded form driver request
REQ_NEW_LINE will operate the same way regardless of the set-
ting of theO_NL_OVERLOAD form option. If a field can grow
without bound, there is no last line, soREQ_NEW_LINE will
never implicitly generate aREQ_NEXT_FIELD. If a maximum
growth limit is specified and theO_NL_OVERLOAD form option is
on , REQ_NEW_LINE w i l l on ly imp l i c i t l y genera te
REQ_NEXT_FIELD if the field has grown to its maximum size
and the user is on the last line.

O_BS_OVERLOAD determines how aREQ_DEL_PREV request is processed. If
O_BS_OVERLOAD is on, the request is overloaded. See again
“Field Editing Requests” on page 11-45 for information on over-
loading. IfO_BS_OVERLOAD is off, theREQ_DEL_PREV request
depends on whether insert mode is on.

In insert mode, if the cursor is at the beginning of any line except
the first and the text on the line will fit at the end of the previous
line, the text is appended to the previous line and the current line
is deleted. If not, theREQ_DEL_PREV request simply deletes the
previous character, if there is one. If the cursor is at the first char-
ac te r o f the fi e ld , the fo rm d r ive r s imp ly re tu rns
E_REQUEST_DENIED.

Character User Interface Programming

11-64

In overlay mode, theREQ_DEL_PREV request simply deletes the previ-
ous character, if there is one.

Options are Boolean values, so you use Boolean operators to turn them on or off. For
example, to turn off optionO_NL_OVERLOAD of form f0 and turn on the same option of
form f1, you write:

FORM * f0, * f1;

set_form_opts (f0, form_opts (f0) & ~O_NL_OVERLOAD);
/* turn option off */

set_form_opts (f1, form_opts (f1) | O_NL_OVERLOAD);
/* turn option on */

ETI provides two more functions to turn options on and off.

SYNOPSIS

int form_opts_on (form, opts)
FORM * form;
OPTIONS opts;

int form_opts_off (form, opts)
FORM * form;
OPTIONS opts;

Unlike functionset_form_opts , these functions do not affect options unreferenced in
their second argument.

Another way to turn off optionO_NL_OVERLOAD on formf0 and turn it on on formf1 is
to write

FORM * f0, * f1;

form_opts_off (f0, O_NL_OVERLOAD); /* turn option off */
form_opts_on (f1, O_NL_OVERLOAD); /* turn option on */

If functionsset_form_opts , form_opts_off , or form_opts_on encounter an
error, they return the following:

E_SYSTEM_ERROR system error

To change the current system default from, say,O_NL_OVERLOAD to not-
O_NL_OVERLOAD without affecting theO_BS_OVERLOAD option, you write:

form_opts_off((FORM *) 0, O_NL_OVERLOAD);

Forms

11-65

Creating and Manipulating Programmer-defined Field Types 11

In addition to the wealth of field types that ETI automatically provides, ETI lets you create
new field types from old ones. For most applications, you may not need them, but when
you do, you will have them.

Building a Field Type from Two Other Field Types 11

One way to define a new field type is to create one from two existing field types. The func-
tion link_fieldtype lets you do this.

SYNOPSIS

FIELDTYPE * link_fieldtype(type1, type2)
FIELDTYPE * type1;
FIELDTYPE * type2;

The constituent types may be system-defined or programmer-defined types. They may
require additional arguments for the later call toset_field_type and may be associ-
ated with validation functions or choice functions. Validation functions validate the value
in the field, while choice functions enable the user to choose the next or previous value of
the field type. See “Creating a Field Type with Validation Functions” on page 11-66 and
“Supporting Next and Previous Choice Functions” on page 11-72.

If additional arguments are required for the later call toset_field_type , those of
type1 should precede those oftype2. If there are validation or choice functions associated
with the constituent types, the new type first executes the function associated withtype1. If
it is successful, it returns TRUE. If not, the new type executes the function associated with
type2. Whatever it returns is the value returned by the new type.

As an example, the following code creates a new field type that accepts either a color key-
word or an integer between 0 and 255, inclusive:

FIELD *f1;

extern char ** colors;

ENUM_OR_INT = link_fieldtype
(TYPE_ENUM, TYPE_INTEGER);
 /* Constituent types are System types
 described in “Setting the Field Type
 to Ensure Validation” */

set_field_type (f1, ENUM_OR_INT, colors,
FALSE, FALSE, 0, 0L, 255L);
 /* create field of field type
 ENUM_OR_INT */

Once you have created the new field type, you can create fields of that type. The last state-
ment here creates fieldf1, which accepts only values of typeENUM_OR_INT.

Character User Interface Programming

11-66

If an error occurs,link_fieldtype returns the following:

NULL no available memory

Creating a Field Type with Validation Functions 11

Another way to create a new field type is by specifying

• a function that validates each character as it is entered into the field

• a function that validates the entire value entered into the field

or both. Functionnew_fieldtype returns your new field type given pointers to these
validation functions.

SYNOPSIS

typedef int (* PTF_int) ();

FIELDTYPE * new_fieldtype (f_check, c_check)
PTF_int f_check;
PTF_int c_check;

The form driver automatically calls the named validation functions during form driver pro-
cessing.

To create a new field type, you must write at least one of the two validation functions.
Functionf_check is a pointer to a function that takes two arguments: a field pointer and an
argument pointer. The argument pointer is treated in the next section.f_check is called
whenever the end-user tries to leave the field. It should check the field value stored in field
buffer 0 and return TRUE if the field is valid or FALSE if not. If the validation function
fails, your end-user remains on the offending field.

Functionc_check is also a pointer to a function that takes two arguments: an integer that
represents an ASCII character and an argument pointer. Functionc_check is called as each
character is entered by your end-user. It should check the character for validity and return
TRUE if it is and FALSE if not.

Functionnew_fieldtype is useful for creating field types for specialized applications.
For example, Screen 11-18 defines a new field typeTYPE_HEX as a hex number between
0x0000 and0xffff .

Forms

11-67

Screen 11-18. Creating a Programmer-defined Field Type

Later, you assign fields with the field typeTYPE_HEX as you do with any field type and
field:

FIELD * field;

set_field_type (field, TYPE_HEX);

Functionccheck_hex checks that the input character is a valid hexadecimal digit, while
functionfcheck_hex examines the field value for valid characters and checks the range.
If successful,fcheck_hex pads the field to four digits and returns TRUE. If not, it
returns FALSE.

#include <ctype.h>
#include <form.h>
extern long strtol ();

#define isblank(c) ((c) == ' ')

static int padding = 4; /* pad on left to 4 digits */
static long vmin = 0x0000L; /* minimum acceptable value */
static long vmax = 0xffffL; /* maximum acceptable value */

static int fcheck_hex (f, arg)
FIELD * f;
char * arg; /* unnecessary here, discussed in the next section */
{

char buf[80];
char * x = field_buffer (f, 0);
while (*x && isblank (*x)) ++x;

if (*x)
{

char * t = x;
while (*x && isxdigit (*x)) ++x;
while (*x && isblank (*x)) ++x;

if (! *x)
{

long v = strtol (t, (char **) 0, 16);

if (v >= vmin && v <= vmax)
{

sprintf (buf, “%.*lx”, padding, v);
set_field_buffer (f, 0, buf);
return TRUE;

}
}

}
return FALSE;

}
static int ccheck_hex (c, arg)
int c;
char * arg; /* unnecessary in this example, discussed in next section */
{

return isxdigit (c);
}
FIELDTYPE * TYPE_HEX = new_fieldtype (fcheck_hex, ccheck_hex);

/* create new field type */

Character User Interface Programming

11-68

NOTE

The argumentarg to functionsf_check andc_check is not
used in this version of theTYPE_HEX example because the new
type does no t requ i re add i t i ona l a rguments to the
set_field_type routine.

If successful,new_fieldtype returns a pointer to the new field type. If either argument
to new_fieldtype is a NULL pointer, the corresponding validation is not performed. If
no memory is available or both function pointers are NULL,new_fieldtype returns
NULL.

Freeing Programmer-defined Field Types 11

This function frees any space allocated for a field type created withnew_fieldtype or
link_fieldtype . Its argument is a field type pointer previously obtained from one of
these functions.

SYNOPSIS

int free_fieldtype (fieldtype)
FIELDTYPE * fieldtype;

You may want to free the field typeTYPE_HEX from the previous example once fields of
that type have been processed. To do so, you write

/* create field type TYPE_HEX */
create fields of this type
free fields of this type */

free_fieldtype(TYPE_HEX);
/* free programmer-defined type */

If successful, functionfree_fieldtype returnsE_OK. If an error occurs, it returns
one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field type

E_CONNECTED type is connected to one or more fields

Once a field type is freed, you must not use it again. If you do, the effect is undefined.

Supporting Programmer-defined Field Types 11

You may want to support some programmer-defined field types with additional arguments
or with previous and next choice functions. This section explains how to do so.

Forms

11-69

Argument Support for Field Types 11

Some field types may require additional arguments to theset_field_type routine,
which sets the field type of a field. Functionset_fieldtype_arg takes as arguments
pointers to functions that manage storage for the additional arguments.

SYNOPSIS

typedef char * (* PTF_charP) ();
typedef void (* PTF_void) ();

int set_fieldtype_arg (fieldtype, make_arg, copy_arg, free_arg)
FIELDTYPE * fieldtype;
PTF_charP make_arg;
PTF_charP copy_arg;
PTF_void free_arg;

You must write the functions referenced by pointersmake_arg, copy_arg, andfree_arg.
These functions should do the following:

make_arg a l loca te a s t ruc tu re fo r the fi e ld spec i fi c pa ramete rs to
set_field_type and return a pointer to the saved data

copy_arg duplicate the structure created bymake_arg

free_arg free any storage allocated bymake_arg or copy_arg

Functionmake_arg is called automatically when your application program calls
set_field_type . It takes one argument, ava_list * . (Seevarargs(5) for
details.) Functionmake_arg in turn should callva_arg for each additional argument to
set_field_type associated with the field type. Note that functionva_start is
called byset_field_type beforemake_arg gains control, while functionva_end is
called byset_field_type aftermake_arg returns.

Functionmake_arg must allocate space for the information associated with the additional
arguments, save the information, and return the pointer to the information cast to a charac-
ter pointer. It is this character pointer that is the argumentarg to the other functions associ-
ated with the field type, namelycopy_arg , free_arg , f_check , c_check ,
next_choice , andprev_choice .

Functioncopy_arg takes as its sole argument a pointer to existing argument information. It
returns a pointer to a copy of this information. Functionfree_arg takes as its sole argument
a pointer to existing argument information. It should free any space allocated by
make_arg.

Screen 11-19 illustrates how you can add padding and range arguments to ourTYPE_HEX
defined above.

Character User Interface Programming

11-70

Screen 11-19. Creating TYPE_HEX with Padding and Range Arguments

/* TYPE_HEX
set_field_type (f, TYPE_HEX, padding, vmin, vmax);

int padding; for padding with leading zeros
long vmin; minimum acceptable value
long vmax; maximum acceptable value */

#include <form.h>
#include <ctype.h>
#include <varargs.h>
extern long strtol ();

#define isblank(c) ((c) == ' ')

typedef struct {
int padding;
long vmin, vmax;

} HEX;

static char * make_hex (ap)
va_list * ap;
{

HEX * n = (HEX *) malloc (sizeof (HEX));

if (n)
{

n -> padding = va_arg (*ap, int);
n -> vmin = va_arg (*ap, long);
n -> vmax = va_arg (*ap, long);

}
return (char *) n;

}
static char * copy_hex (arg)
char * arg;
{

HEX * n = (HEX *) malloc (sizeof (HEX));
if (n) *n = *((HEX *) arg);
return (char *) n;

}
static void free_hex (arg)
char * arg;
{

free (arg);
}

static int fcheck_hex (f, arg)
FIELD * f;
char * arg;
{

HEX * n = (HEX *) arg;
int padding = n -> padding;

Forms

11-71

Later, to create a field that stores a hex number between0x0000 and0xffff , we have:

set_field_type (field, TYPE_HEX, 4, 0x0000L, 0xffffL);

From this example, note that

• Your functionmake_arg (here,make_hex) picks off the additional argu-
ments toset_field_type usingva_arg .

• Functionmake_hex allocates a HEX structure, saves the information pro-
vided by the additional arguments, and returns a pointer to the saved infor-
mation.

• Functioncopy_hex allocates and copies a HEX structure.

• Functionfree_hex frees a HEX structure.

• Functionsmake_hex andcopy_hex return NULL if the memory alloca-
tion fails.

• Functioncheck_hex uses the argument information to do the necessary
padding and range check and returns TRUE if successful.

• ETI's internal caller tomake_hex andcopy_hex automatically checks
that the values (arg) returned from the functions are not NULL. So there is

long vmin = n -> vmin;
long vmax = n -> vmax;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;

if (*x)
{

char * t = x;

while (*x && isxdigit (*x)) ++x;
while (*x && isblank (*x)) ++x;

if (! *x)
{

long v = strtol (t, (char **) 0, 16);

if (v >= vmin && v <= vmax)
{

sprintf (buf, “%.*lx”, padding, v);
set_field_buffer (f, 0, buf);
return TRUE;

}
}

}
return FALSE;

}
static int ccheck_hex (c, arg)
int c;
char * arg;
{

return isxdigit (c);
}
FIELDTYPE * TYPE_HEX = new_fieldtype (fcheck_hex, ccheck_hex);
set_fieldtype_arg (TYPE_HEX, make_hex, copy_hex, free_hex);

Character User Interface Programming

11-72

no need for functions (such asfcheck_hex) that use these values to
check that they are not NULL.

If successful, functionset_fieldtype_arg returnsE_OK. If an error occurs, it
returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT field type,make_arg, copy_arg, or free_arg is NULL

Supporting Next and Previous Choice Functions 11

Some field types comprise a set of values from which your user chooses (enters) one. The
following functions support those types that have a set of choices.

SYNOPSIS

typedef char * (* PTF_charP) ();

int set_fieldtype_choice (type, next_choice, prev_choice)
FIELDTYPE * type;
PTF_int next_choice;
PTF_int prev_choice;

int next_choice(f, arg);
FIELD * f;
char * arg;

int prev_choice(f, arg);
FIELD * f;
char * arg;

These functions enable the ETI form driver to support theREQ_NEXT_CHOICE and
REQ_PREV_CHOICE requests mentioned in “Form Driver Processing” on page 11-40.

To support these requests, your application-defined functionsnext_choice andprev_choice
must

• take two arguments: a pointer to the current field and a pointer to the value
arg that themake_arg function (such asmake_hex above) returned

• use functionfield_buffer to read the current value

• call functionset_field_buffer with buffer argument 0 to set the
next or previous value

• return success or failure if there is no logically next or previous value

Both functions can be quite similar.

Screen 11-20 shows an implementation of functionnext_choice for the field type
TYPE_HEX as defined above, such thatREQ_NEXT_CHOICE increments the current
value andREG_PREV_CHOICE decrements the current value.

Forms

11-73

Screen 11-20. Creating a Next Choice Function for a Field Type

If given a blank field, your functionsnext_choice andprev_choice should, of course, do
something reasonable, such as setting the field to the first or last value of the type.

If function set_fieldtype_choice encounters an error, it returns one of the follow-
ing:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT field type,next_choice , orprev_choice is NULL

static int next_hex (f, arg)
FIELD * f;
char * arg;
{

HEX * n = (HEX *) arg;
long v = n -> vmin;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;

if (*x)
{

v = strtol (x, (char **) 0, 16);
if (v >= n -> vmin && v < n -> vmax)

++v;
}
sprintf (buf, “%.*lx”, n -> padding, v);
set_field_buffer (f, 0, buf);
return TRUE;

}
static int prev_hex (f, arg)
FIELD * f;
char * arg;
{

HEX * n = (HEX *) arg;
long v = n -> vmax;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;

if (*x)
{

v = strtol (x, (char **) 0, 16);
if (v > n -> vmin && v <= n -> vmax)

--v;
}
sprintf (buf, “%.*lx”, v -> padding, v);
set_field_buffer (f, 0, buf);
return TRUE;

}

/* associate previous and next choice functions */
set_fieldtype_choice (TYPE_HEX, next_hex, prev_hex);

Character User Interface Programming

11-74

12
Other ETI Routines

Introduction . 12-1
Routines for Drawing Lines and Other Graphics . 12-1
Routines for Using Soft Labels . 12-2
Working with More Than One Terminal . 12-3

Character User Interface Programming

12-1

12
Chapter 12Other ETI Routines

12
12
12

Introduction 12

Knowing how to use the basic ETI routines to get output and input and to work with win-
dows, panels, menus, and forms, you can design screen management programs that meet
the needs of many users. The ETI library, however, has routines that let you do still more
in your program. The following few pages briefly describe some of these routines and
what they can help you do—namely, draw simple graphics, use a terminal's soft labels,
and work with more than one terminal in a single ETI program.

You should be comfortable using the routines previously discussed and the other routines
for I/O and window manipulation discussed on thecurses(3curses) manual pages
before you try to use the following ETI features.

Routines for Drawing Lines and Other Graphics 12

Many terminals have an alternate character set for drawing simple graphics (or glyphs or
graphic symbols). You can use this character set in ETI programs. ETI uses the same
names for glyphs as the VT100 line drawing character set.

To use the alternate character set in an ETI program, you pass a set of variables whose
names begin withACS_ to the ETI routinewaddch or a related routine. For example,
ACS_ULCORNER is the variable for the upper left corner glyph. If a terminal has a line
drawing character for this glyph,ACS_ULCORNER's value is the terminal's character for
that glyphOR'd (|) with the bit-maskA_ALTCHARSET. If no line drawing character is
available for that glyph, a standard ASCII character that approximates the glyph is stored
in its place. For example, the default character forACS_HLINE, a horizontal line, is a -
(minus sign). When a close approximation is not available, a+ (plus sign) is used. All the
standardACS_ names and their defaults are listed on thecurses(3curses) manual
pages.

Part of an example program that uses line drawing characters follows. The example uses
the ETI routinebox to draw a box around a menu on a screen.box uses the line drawing
characters by default or when| (the pipe) and- are chosen. Up and down more indicators
are drawn on the box border (usingACS_UARROW andACS_DARROW) if the menu con-
tained within the box continues above or below the screen:

Character User Interface Programming

12-2

Here's another example. Because a default down arrow (like the lowercase letter v) isn't
very discernible on a screen with many lowercase characters on it, you can change it to an
uppercase V.

For more information, see thecurses(3curses) pages in this guide.

Routines for Using Soft Labels 12

Another feature available on most terminals is a set of soft labels across the bottom of their
screens. A terminal's soft labels are usually matched with a set of hard function keys on
the keyboard. There are usually eight of these labels, each of which is usually eight char-
acters wide and one or two lines high.

The ETI library has routines that provide a uniform model of eight soft labels on the
screen. If a terminal does not have soft labels, the bottom line of its screen is converted
into a soft label area. It is not necessary for the keyboard to have hard function keys to
match the soft labels for an ETI program to make use of them.

Let's briefly discuss most of the ETI routines needed to use soft labels:slk_init, slk_set,
slk_refresh, andslk_noutrefresh, slk_clear, andslk_restore.

When you use soft labels in an ETI program, you have to call the routineslk_init
beforeinitscr . This sets an internal flag forinitscr to look at that says to use the
soft labels. Ifinitscr discovers that there are fewer than eight soft labels on the screen,
that they are smaller than eight characters in size, or that there is no way to program them,
then it will remove a line from the bottom ofstdscr to use for the soft labels. The size of
stdscr and theLINES variable will be reduced by one to reflect this change. A properly

box(menuwin, ACS_VLINE, ACS_HLINE);
...
/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)
 waddch(menuwin, ACS_UARROW);
else
 addch(menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)
 waddch(menuwin, ACS_DARROW);
else
 waddch(menuwin, ACS_HLINE);

if (! (ACS_DARROW & A_ALTCHARSET))
 ACS_DARROW = 'V';

Other ETI Routines

12-3

written program, one that is written to use theLINES andCOLS variables, will continue to
run as if the line had never existed on the screen.

slk_init takes a single argument. It determines how the labels are grouped on the
screen should a line get removed fromstdscr. The choices are between a 3-2-3 arrange-
ment as appears on AT&T terminals, or a 4-4 arrangement as appears on Hewlett-Packard
terminals. The ETI routines adjust the width and placement of the labels to maintain the
pattern. The widest label generated is eight characters.

The routineslk_set takes three arguments, the label number (1-8), the string to go on
the label (up to eight characters), and the justification within the label (0 = left justified, 1
= centered, and 2 = right justified).

The routineslk_noutrefresh is comparable townoutrefresh in that it copies the
label information onto the internal screen image, but it does not cause the screen to be
updated. Since aslk_refresh commonly follows,slk_noutrefresh is the func-
tion that is most commonly used to output the labels.

Just aswrefresh is equivalent to awnoutrefresh followed by adoupdate , so too
the functionslk_refresh is equivalent to aslk_noutrefresh followed by a
doupdate .

To prevent the soft labels from getting in the way of a shell escape,slk_clear may be
called before doing theendwin . This clears the soft labels off the screen and does a
doupdate . The functionslk_restore may be used to restore them to the screen. See
the curses(3curses) manual pages for more information about the routines for
using soft labels.

Working with More Than One Terminal 12

An ETI program can produce output on more than one terminal at the same time. This is
useful for single process programs that access a common database, such as multi-player
games.

Writing programs that output to multiple terminals is a difficult business, and the ETI
library does not solve all the problems you might encounter. For instance, the programs—
not the library routines—must determine the file name of each terminal line, and what
kind of terminal is on each of those lines. The standard method, checking$TERM in the
environment, does not work, because each process can only examine its own environment.

Another problem you might face is that of multiple programs reading from one line. This
situation produces a race condition and should be avoided. However, a program trying to
take over another terminal cannot just shut off whatever program is currently running on
that line. (Usually, security reasons would also make this inappropriate. But, for some
applications, such as an inter-terminal communication program, or a program that takes
over unused terminal lines, it would be appropriate.) A typical solution to this problem
requires each user logged in on a line to run a program that notifies a master program that
the user is interested in joining the master program and tells it the notification program's
process ID, the name of the tty line, and the type of terminal being used. Then the program
goes to sleep until the master program finishes. When done, the master program wakes up
the notification program and all programs exit.

Character User Interface Programming

12-4

An ETI program handles multiple terminals by always having a current terminal. All func-
tion calls always affect the current terminal. The master program should set up each termi-
nal, saving a reference to the terminals in its own variables. When it wishes to affect a ter-
minal, it should set the current terminal as desired, and then call ordinary ETI routines.

References to terminals in an ETI program have the typeSCREEN*. A new terminal is ini-
tialized by callingnewterm(type, outfd, infd) . newterm returns a screen reference to the
terminal being set up.type is a character string, naming the kind of terminal being used.
outfd is astdio(3S) file pointer (FILE*) used for output to the terminal andinfd a file
pointer for input from the terminal. This call replaces the normal call toinitscr , which
callsnewterm(getenv(”TERM”), stdout, stdin) .

To change the current terminal, callset_term (sp) wheresp is the screen reference to be
made current.set_term returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and options. Each
terminal must be initialized separately withnewterm . Options such ascbreak and
noecho must be set separately for each terminal. The functionsendwin andrefresh
must be called separately for each terminal. Screen 12-1 shows a typical scenario to output
a message to several terminals.

Screen 12-1. Sending a Message to Several Terminals

See thetwo program in Appendix D for a more complete example.

for (i=0; i<nterm; i++)
{
 set_term(terms[i]);
 mvaddstr(0, 0, “Important message”);
 refresh();
}

13
terminfo

Introduction . 13-1
Organization of This Chapter . 13-1
What Is terminfo? . 13-1

Working with terminfo Routines . 13-2
What Every terminfo Program Needs . 13-3
Compiling and Running a terminfo Program . 13-4
An Example terminfo Program . 13-4

Working with the terminfo Database. 13-6
Writing Terminal Descriptions . 13-6

Name the Terminal . 13-7
Learn About the Capabilities. 13-7
Specify Capabilities. 13-8

Basic Capabilities. 13-10
Screen-oriented Capabilities . 13-10
Keyboard-entered Capabilities. 13-11
Parameter String Capabilities. 13-11

Compile the Description . 13-12
Test the Description. 13-13

Comparing or Printing terminfo Descriptions . 13-14
Converting a termcap Description to a terminfo Description. 13-14

Character User Interface Programming

13-1

13
Chapter 13terminfo

13
13
13

Introduction 13

This chapter explains how to use theterminfo database and theterminfo routines to
write terminal-independent screen management programs on the UNIX system. Other
support tools are also described.

The purpose of this chapter is to explain how to write screen management programs as
quickly as possible. Therefore, this chapter does not attempt to cover every detail. Use this
chapter to get familiar with the way these routines work, then use the manual pages for
more information.

Organization of This Chapter 13

This chapter has the following sections:

• “What Is terminfo?” on page 13-1 introduces you to theterminfo rou-
tines and theterminfo database.

• “Working with terminfo Routines” on page 13-2 describes how theter-
minfo routines access and manipulate data in theterminfo database.

• “Working with the terminfo Database” on page 13-6 describes theter-
minfo database, related support tools, and their relationship to the
curses library.

What Is terminfo? 13

terminfo refers to both of the following:

• It is a group of routines within thecurses library that handles certain ter-
minal capabilities. You can use theseterminfo routines to write a filter
or program the function keys, if your terminal has programmable keys.
Shell programmers can use the commandtput(1) to perform many of
the manipulations provided by these routines.

• It is a database containing the descriptions of many terminals that can be
used withcurses programs. These descriptions specify the capabilities of
a terminal and the way it performs various operations—for example, how
many lines and columns it has and how its control characters are inter-
preted.

Character User Interface Programming

13-2

Each terminal description in the database is a separate, compiled file. You use the
source code that terminfo(4) describes to create these files and the command
tic(1M) to compile them.

The compiled files are normally located in the directories/usr/share/lib/
terminfo/? . These directories have single character names, each of which is the
first character in the name of a terminal. For example, an entry for the AT&T Tele-
type 5425 is normally located in the file/usr/share/lib/terminfo/a/
att5425 .

Here's a simple shell script that uses theterminfo database.

Screen 13-1. A Shell Script Using terminfo Routines

Working with terminfo Routines 13

Some programs need to use lower level routines (that is, primitives) than those offered by
thecurses routines. For such programs, theterminfo routines are offered. They do
not manage your terminal screen, but rather give you access to strings and capabilities
which you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to useterminfo routines. The first is
when you need only some screen management capabilities, for example, making text stand
out on a screen. The second is when writing a filter. A typical filter does one transforma-
tion on an input stream without clearing the screen or addressing the cursor. If this trans-
formation is terminal dependent and clearing the screen is inappropriate, use of theter-
minfo routines is worthwhile. The third is when you are writing a special purpose tool
that sends a special purpose string to the terminal, such as programming a function key,
setting tab stops, sending output to a printer port, or dealing with the status line. Other-
wise, you are discouraged from using these routines: the higher levelcurses routines
make your program more portable to other UNIX systems and to a wider class of termi-
nals.

Clear the screen and show the 0,0 position.

tput clear
tput cup 0 0 # or tput home
echo “<- this is 0 0”

Show line 5, column 10.

tput cup 5 10
echo “<- this is 5 10”

terminfo

13-3

NOTE

You are discouraged from usingterminfo routines except for
the purposes noted, becausecurses routines take care of all the
glitches present in physical terminals. When you use theter-
minfo routines, you must deal with the glitches yourself. Also,
these routines may change and be incompatible with previous
releases.

What Every terminfo Program Needs 13

A terminfo program typically includes the header files and routines shown in
Screen 13-2.

Screen 13-2. Typical Framework of a terminfo Program

The header filescurses.h andterm.h are required because they contain the defini-
tions of the strings, numbers, and flags used by theterminfo routines.setupterm
takes care of initialization. Passing this routine the values(char*)0, 1, and(int*)0
invokes reasonable defaults. Ifsetupterm can't figure out what kind of terminal you are
on, it prints an error message and exits.reset_shell_mode performs functions similar
to endwin and should be called before aterminfo program exits.

A global variable likeclear_screen is defined by the call tosetupterm . It can be
output using theterminfo routinesputp or tputs , which gives a user more control.
This string should not be directly output to the terminal using the C library routine
printf(3S) , because it contains padding information. A program that directly outputs
strings will fail on terminals that require padding or that use thexon/xoff flow control
protocol.

At the terminfo level, the higher level routines likeaddch andgetch are not avail-
able. It is up to you to output whatever is needed. For a list of capabilities and a description
of what they do, seeterminfo(4) ; seecurses(3curses) for a list of all theter-
minfo routines.

#include <curses.h>
#include <term.h>
...
 setupterm((char*)0, 1, (int*)0);

...
 putp(clear_screen);

...
 reset_shell_mode();
 exit(0);

Character User Interface Programming

13-4

Compiling and Running a terminfo Program 13

The general command line for compiling and the guidelines for running a program with
terminfo routines are the same as those for compiling any othercurses program. See
“Compiling an ETI Program” on page 6-4 and “Running an ETI Program” on page 6-4 for
more information.

An Example terminfo Program 13

The example programtermhl shows a simple use ofterminfo routines. It is a version
of thehighlight program (see Appendix D) that does not use the higher levelcurses
routines.termhl can be used as a filter. It includes the strings to enter bold and underline
mode and to turn off all attributes.

Screen 13-3. Example of terminfo Program

/*
 * A terminfo level version of the highlight program.
 */

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main(argc, argv)
 int argc;
 char **argv;
{
 FILE *fd;
 int c, c2;
 int outch();

 if (argc > 2)
 {
 fprintf(stderr, “Usage: termhl [file]\n”);
 exit(1);
 }

 if (argc == 2)
 {
 fd = fopen(argv[1], “r”);
 if (fd == NULL)
 {
 perror(argv[1]);
 exit(2);
 }
 }
 else
 {
 fd = stdin;
 }
 setupterm((char*)0, 1, (int*)0);

terminfo

13-5

Let's discuss the use of the functiontputs(cap, affcnt, outc) in this program to gain some
insight into theterminfo routines.tputs applies padding information. Some terminals
have the capability to delay output. Their terminal descriptions in theterminfo database
probably contain strings like$<20> , which means to pad for 20 milliseconds (see “Spec-
ify Capabilities” on page 13-8).tputs generates enough pad characters to delay for the
appropriate time.

tputs has three parameters. The first parameter is the string capability to be output. The
second is the number of lines affected by the capability. (Some capabilities may require
padding that depends on the number of lines affected. For example,insert_line may
have to copy all lines below the current line, and may require time proportional to the

 for (;;)
 {
 c = getc(fd);
 if (c == EOF)
 break;
 if (c == '\')
 {
 c2 = getc(fd);

 switch (c2)
 {
 case 'B':

tputs(enter_bold_mode, 1, outch);
continue;

 case 'U':
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

 case 'N':
tputs(exit_attribute_mode, 1, outch);
ulmode = 0;
continue;

 }
 putch(c);
 putch(c2);
 }
 else
 putch(c);
 }
 fclose(fd);
 fflush(stdout);
 resetterm();
 exit(0);
}

/*
 * This function is like putchar, but it checks for underlining.
 */
putch(c)
 int c;
{
 outch(c);
 if (ulmode && underline_char)
 {
 outch('\b');
 tputs(underline_char, 1, outch);
 }
}

/*
 * Outchar is a function version of putchar that can be passed to
 * tputs as a routine to call.
 */
outch(c)
 int c;
{
 putchar(c);
}

Character User Interface Programming

13-6

number of lines copied. By conventionaffcnt is 1 if no lines are affected. The value 1 is
used, rather than 0, for safety, sinceaffcnt is multiplied by the amount of time per item,
and anything multiplied by 0 is 0.) The third parameter is a routine to be called with each
character.

For many simple programs,affcnt is always 1 andoutc always callsputchar . For these
programs, the routineputp (cap) is a convenient abbreviation.termhl could be simpli-
fied by usingputp .

Now to understand why you should use thecurses level routines instead ofterminfo
level routines whenever possible, note the special check for theunderline_char capa-
bility in this sample program. Some terminals, rather than having a code to start underlin-
ing and a code to stop underlining, have a code to underline the current character.termhl
keeps track of the current mode, and if the current character is supposed to be underlined,
outputsunderline_char , if necessary. Low level details such as this are precisely why
thecurses level is recommended over theterminfo level.curses takes care of ter-
minals with different methods of underlining and other terminal functions. Programs at the
terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of theterminfo routines. It is more com-
plex than it need be in order to illustrate some properties ofterminfo programs. The
routinevidattr (seecurses(3curses)) could have been used instead of directly
ou tpu t t ing enter_bold_mode , enter_under l ine_mode , and
exit_attribute_mode . In fact, the program would be more robust if it did, since
there are several ways to change video attribute modes.

Working with the terminfo Database 13

The terminfo database describes the many terminals with whichcurses programs, as
well as some UNIX system tools, likevi(1) , can be used. Each terminal description is a
compiled file containing the names that the terminal is known by and a group of comma-
separated fields describing the actions and capabilities of the terminal. This section
describes theterminfo database, related support tools, and their relationship to the
curses library.

Writing Terminal Descriptions 13

Descriptions of many popular terminals are already contained in theterminfo database.
However, it is possible that you'll want to run acurses program on a terminal for which
there is not currently a description. In that case, you'll have to build the description.

The general procedure for building a terminal description is as follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly created description entry.

4. Test the entry for correct operation.

terminfo

13-7

5. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts of the
description and test them as you go along. These tests can expose deficiencies in the abil-
ity to describe the terminal. Also, modifying an existing description of a similar terminal
can make the building task easier. (Lest we forget the motto: Build on the work of others.)

In the next few pages, we follow each step required to build a terminal description for the
fictitious terminal namedmyterm .

Name the Terminal 13

The name of a terminal is the first information given in aterminfo terminal description.
This string of names, assuming there is more than one name, is separated by pipe symbols
(|). The first name given should be the most common abbreviation for the terminal. The
last name given should be a long name that fully identifies the terminal. The long name is
usually the manufacturer's formal name for the terminal. All names between the first and
last entries should be known synonyms for the terminal name. All names but the formal
name should be typed in lowercase letters and contain no blanks. Naturally, the formal
name is entered as closely as possible to the manufacturer's name.

Here is the name string from the description of the AT&T Teletype 5420 Buffered Display
Terminal:

5420|att5420|AT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation and the last is the long
name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious terminalmyterm :

myterm|mytm|mine|fancy|terminal|My FANCY Terminal,

Terminal names should follow common naming conventions. These conventions start with
a root name, like 5425 ormyterm , for example. The root name should not contain odd
characters, like hyphens, that may not be recognized as a synonym for the terminal name.
Possible hardware modes or user preferences should be shown by adding a hyphen and a
“mode indicator” at the end of the name. For example, the “wide mode” (which is shown
by a-w) version of our fictitious terminal would be described asmyterm -w. term(5)
describes mode indicators in greater detail.

Learn About the Capabilities 13

After you complete the string of terminal names for your description, you have to learn
about the terminal's capabilities so that you can properly describe them. To learn about the
capabilities your terminal has, you should do the following:

• See the owner's manual for your terminal. It should have information about
the capabilities available and the character strings that make up the
sequence transmitted from the keyboard for each capability.

Character User Interface Programming

13-8

• Test the keys on your terminal to see what they transmit, if this information
is not available in the manual. You can test the keys in one of the following
ways. Type:

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow(<Right-Arrow>) transmits.
<CR>
<CTRL-D>
stty echo

or

cat >dev/null
Type in the escape sequences you want to test;
for example, see what\E[H transmits.
<CTRL-D>

• The first line in each of these testing methods sets up the terminal to carry
out the tests. The<CTRL-D> helps return the terminal to its normal set-
tings.

• See theterminfo(4) manual page. It lists all the capability names you
have to use in a terminal description. “Specify Capabilities” on page 13-8
gives details.

Specify Capabilities 13

Once you know the capabilities of your terminal, you have to describe them in your termi-
nal description. You describe them with a string of comma-separated fields that contain
the abbreviatedterminfo name and, in some cases, the terminal's value for each capa-
bility. For example,bel is the abbreviated name for the beeping or ringing capability. On
most terminals, aCTRL-G is the instruction that produces a beeping sound. Therefore,
the beeping capability would be shown in the terminal description asbel=^G, .

The list of capabilities may continue onto multiple lines as long as white space (that is,
tabs and spaces) begins every line but the first of the description. Comments can be
included in the description by putting a# at the beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities you can use in a
terminal description. This list contains the name of the capability, the abbreviated name
used in the database, the two-letter code that corresponds to the oldtermcap database
name, and a short description of the capability. The abbreviated name that you will use in
your database descriptions is shown in the column titled “Capname.”

NOTE

For acurses program to run on any given terminal, its descrip-
tion in theterminfo database must include, at least, the capabil-
ities to move a cursor in all four directions and to clear the screen.

terminfo

13-9

A terminal's character sequence (value) for a capability can be a keyed operation (like
CTRL-G), a numeric value, or a parameter string containing the sequence of operations
required to achieve the particular capability. In a terminal description, certain characters
are used after the capability name to show what type of character sequence is required.
Explanations of these characters follow:

This shows a numeric value is to follow. This character follows a capability
that needs a number as a value. For example, the number of columns is
defined ascols#80, .

= This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

^ This shows a control character is to be used. For example, the beeping sound
is produced by aCTRL-G. This would be shown aŝG.

\E or \e These characters followed by another character show an escape instruction.
An entry of\EC would transmit to the terminal asESCAPE-C.

\n These characters provide a<NL> character sequence.

\l These characters provide a linefeed character sequence.

\r These characters provide a return character sequence.

\t These characters provide a tab character sequence.

\b These characters provide a backspace character sequence.

\f These characters provide a form-feed character sequence.

\s These characters provide a space character sequence.

\ nnn This is a character whose three-digit octal isnnn, wherennn can be one to
three digits.

$< > These symbols are used to show a delay in milliseconds. The desired length of
delay is enclosed inside the “less than/greater than” symbols (< >). The
amount of delay may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*). The * shows that the
delay will be proportional to the number of lines affected by the operation. For
example, a 20-millisecond delay per line would appear as$<20*> . See the
terminfo(4) manual page for more information about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal ignores
this particular field. This is done by placing a period (.) in front of the abbreviated name
for the capability. For example, if you would like to comment out the beeping capability,
the description entry would appear as

.bel=^G,

With this background information about specifying capabilities, let's add the capability
string to our description ofmyterm . We'll consider basic, screen-oriented, keyboard-
entered, and parameter string capabilities.

Character User Interface Programming

13-10

Basic Capabilities 13

Some capabilities common to most terminals are bells, columns, lines on the screen, and
overstriking of characters, if necessary. Suppose our fictitious terminal has these and a few
other capabilities, as listed below. Note that the list gives the abbreviatedterminfo
name for each capability in the parentheses following the capability description:

• An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction required to produce
the beeping sound is ^G (bel).

• An 80-column wide screen (cols).

• A 30-line long screen (lines).

• Use of xon/xoff protocol (xon).

By combining the name string (see “Name the Terminal” on page 13-7) and the capability
descriptions that we now have, we get the following generalterminfo database entry:

myterm|mytm|mine|fancy|terminal|My FANCY terminal,
am, bel=^G, cols#80, lines#30, xon,

Screen-oriented Capabilities 13

Screen-oriented capabilities manipulate the contents of a screen. Our example terminal
myterm has the following screen-oriented capabilities. Again, the abbreviated command
associated with the given capability is shown in parentheses.

• A <CR> is aCTRL-M (cr).

• A cursor up one line motion is aCTRL-K (cuu1).

• A cursor down one line motion is aCTRL-J (cud1).

• Moving the cursor to the left one space is aCTRL-H (cub1).

• Moving the cursor to the right one space is aCTRL-L (cuf1).

• Entering reverse video mode is anESCAPE-D (smso).

• Exiting reverse video mode is anESCAPE-Z (rmso).

• A clear to the end of a line sequence is anESCAPE-K and should have a
3-millisecond delay (el).

• A terminal scrolls when receiving a<NL> at the bottom of a page (ind).

The revised terminal description formyterm including these screen-oriented capabilities
follows:

terminfo

13-11

Keyboard-entered Capabilities 13

Keyboard-entered capabilities are sequences generated when a key is typed on a terminal
keyboard. Most terminals have, at least, a few special keys on their keyboard, such as
arrow keys and the backspace key. Our example terminal has several of these keys whose
sequences are, as follows:

• The backspace key generates aCTRL-H (kbs).

• The up arrow key generates anESCAPE-[A (kcuu1).

• The down arrow key generates anESCAPE-[B (kcud1).

• The right arrow key generates anESCAPE-[C (kcuf1).

• The left arrow key generates anESCAPE-[D (kcub1).

• The home key generates anESCAPE-[H (khome).

Adding this new information to our database entry formyterm produces:

Parameter String Capabilities 13

Parameter string capabilities are capabilities that can take parameters — for example,
those used to position a cursor on a screen or turn on a combination of video modes. To
address a cursor, thecup capability is used and is passed two parameters: the row and col-
umn to address. String capabilities, such ascup and set attributes (sgr) capabilities, are
passed arguments in aterminfo program by thetparm routine.

The arguments to string capabilities are manipulated with special '%' sequences similar to
those found in a printf(3S) statement. In addition, many of the features found on a
simple stack-based RPN calculator are available.cup , as noted above, takes two argu-
ments: the row and column.sgr , takes nine arguments, one for each of the nine video
attributes. Seeterminfo(4) for the list and order of the attributes and further examples
of sgr .

myterm|mytm|mine|fancy|terminal|My FANCY Terminal,
am, bel=^G, cols#80, lines#30, xon,
cr=^M, cuu1=^K, cud1=^J, cub1=^H, cuf1=^L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

myterm|mytm|mine|fancy|terminal|My FANCY Terminal,
am, bel=^G, cols#80, lines#30, xon,
cr=^M, cuu1=^K, cud1=^J, cub1=^H, cuf1=^L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=
kbs=^H, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,

Character User Interface Programming

13-12

Our fancy terminal's cursor position sequence requires a row and column to be output as
numbers separated by a semicolon, preceded byESCAPE-[and followed withH. The
coordinate numbers are 1-based rather than 0-based. Thus, to move to row 5, column 18,
from (0,0), the sequence'ESCAPE-[6 ; 19 H' would be output.

Integer arguments are pushed onto the stack with a '%p' sequence followed by the argu-
ment number, such as '%p2' to push the second argument. A shorthand sequence to incre-
ment the first two arguments is '%i '. To output the top number on the stack as a decimal, a
'%d' sequence is used, exactly as inprintf .

Our terminal'scup sequence is built up as follows:

or

cup=\E[%i%p1%d;%p2%dH,

Adding this new information to our database entry formyterm produces:

Seeterminfo(4) for more information about parameter string capabilities.

Compile the Description 13

The terminfo database entries are compiled using thetic compiler. This compiler
translatesterminfo database entries from the source format into the compiled format.

The source file for the description is usually in a file suffixed with.ti . For example, the
description ofmyterm would be in a source file namedmyterm.ti . The compiled

cup= Meaning

\E[outputESCAPE-[

%i increment the two arguments

%p1 push the 1st argument (the row) onto the stack

%d output the row as a decimal

; output a semi-colon

%p2 push the 2nd argument (the column) onto the stack

%d output the column as a decimal

H output the trailing letter

myterm|mytm|mine|fancy|terminal|My FANCY Terminal,
am, bel=^G, cols#80, lines#30, xon,
cr=^M, cuu1=^K, cud1=^J, cub1=^H, cuf1=^L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=
kbs=^H, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,
cup=\E[%i%p1%d;%p2%dH,

terminfo

13-13

description ofmyterm would usually be placed in/usr/share/lib/terminfo/m/
myterm , since the first letter in the description entry ism. Links would also be made to
synonyms ofmyterm , for example, to/f/fancy . If the environment variable$TER-
MINFO were set to a directory and exported before the entry was compiled, the compiled
entry would be placed in the$TERMINFO directory. All programs using the entry would
then look in the new directory for the description file if$TERMINFO were set, before
looking in the default/usr/share/lib/terminfo . The general format for thetic
compiler is as follows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and output information about its
progress. The-c option causes a check for errors; it may be combined with the-v option.
file shows what file is to be compiled. If you want to compile more than one file at the
same time, you have to first usecat(1) to join them together. The following command
line shows how to compile theterminfo source file for our fictitious terminal:

tic -v myterm.ti RETURN

(The trace information appears as the compilation proceeds.)

Refer to the tic(1M) manual page for more information about the compiler.

Test the Description 13

Let's consider three ways to test a terminal description. First, you can test it by setting the
environment variable$TERMINFO to the path name of the directory containing the
description. If programs run the same on the new terminal as they did on the older known
terminals, then the new description is functional.

Second, you can test for correct insert line padding by commenting outxon in the descrip-
tion and then editing (usingvi(1)) a large file (over 100 lines) at 9600 baud (if possible),
and deleting about 15 lines from the middle of the screen. Typeu (undo) several times
quickly. If the terminal messes up, then more padding is usually required. A similar test
can be used for inserting a character.

Third, you can use thetput(1) command. This command outputs a string or an integer
according to the type of capability being described. If the capability is a Boolean expres-
sion, thentput sets the exit code (0 forTRUE, 1 forFALSE) and produces no output. The
general format for thetput command is as follows:

tput [-T type] capname

The type of terminal you are requesting information about is identified with the-T type
option. Usually, this option is not necessary because the default terminal name is taken
from the environment variable$TERM. Thecapname field is used to show what capability
to output from theterminfo database.

The following command line shows how to output the “clear screen” character sequence
for the terminal being used:

tput clear

(The screen is cleared.)

Character User Interface Programming

13-14

The following command line shows how to output the number of columns for the terminal
being used:

tput cols

(The number of columns used by the terminal appears here.)

The tput(1) manual page contains more information on the usage and possible mes-
sages associated with this command.

Comparing or Printing terminfo Descriptions 13

Sometime you may want to compare two terminal descriptions or quickly look at a
description without going to theterminfo source directory. The infocmp(1M) com-
mand was designed to help you with both of these tasks. Compare two descriptions of the
same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic old5420.ti
TERMINFO=/tmp/new tic new5420.ti
infocmp -A /tmp/old -B /tmp/new -d 5420 5420

compares the old and new 5420 entries.

To print out theterminfo source for the 5420, type

infocmp -I 5420

Converting a termcap Description to a terminfo Description 13

CAUTION

The terminfo database is designed to take the place of the
termcap database. Because of the many programs and processes
that have been written with and for thetermcap database, it is
not feasible to do a complete cutover at one time. Any conversion
from termcap to terminfo requires some experience with
both databases. All entries into the databases should be handled
with extreme caution. These files are important to the operation of
your terminal.

Thecaptoinfo(1M) command convertstermcap descriptions toterminfo(4)
descriptions. When a file is passed tocaptoinfo , it looks fortermcap descriptions
and writes the equivalentterminfo descriptions on the standard output. For example,

captoinfo /usr/share/lib/termcap

converts the file/usr/share/lib/termcap to terminfo source, preserving com-
ments and other extraneous information within the file. The command line

terminfo

13-15

captoinfo

looks up the current terminal in thetermcap database, as specified by the$TERM and
$TERMCAP environment variables and converts it toterminfo .

If you must have bothtermcap andterminfo terminal descriptions, keep theter-
minfo description only and useinfocmp -C to get thetermcap descriptions. This is
recommended because theterminfo entry will be more complete, descriptive, and accu-
rate than thetermcap entry possibly could be.

If you have been using cursor optimization programs with the-ltermcap or -lterm-
lib option in thecc command line, those programs will still be functional. However,
these options should be replaced with the-lcurses option.

Character User Interface Programming

13-16

A-1

A
Appendix AProgramming Tips and Known Problems

1
1
1

Programming Tips 1

Internationalization Support 1

FMLI accepts as input any character from a standard 7- or 8-bit character set. This means
that descriptor and variable values and application-specific command names may be coded
in a language other than English, provided the language implementation employs a stan-
dard 8-bit code set. It also means that users may enter input in a form, or edit the text in a
text frame, in any such language. Note, however, that the built-in utilitiesfmlexpr(1F) ,
fmlgrep(1F) , andregex(1F) do not support regular expression matching for non-
ASCII character sets, and that FMLI error messages are always displayed in English.

FMLI uses thesetlocale(3C) function to examine the user's environment for a cur-
rent locale—a collection of information that describes conventions appropriate to some
nationality, culture, and language. This information is stored in databases that specify how
to sort or classify characters, for instance, according to these conventions. If such data-
bases exist on a user's system, they are accessed through theLANG variable in the user's
environment. An application coded for a German locale, then, should instruct users to set
theLANG environment variable tode[utsche]; character classification, sorting, and so on
will be done in the appropriate way. For details on this mechanism, see thesetlo-
cale(3C) andenviron(5) manual pages.

Building Trusted FMLI Applications 1

This section gives tips on how to build FMLI applications that prevent unauthorized users
from circumventing access controls or mechanisms that protect sensitive system opera-
tions.

Access to External Executables 1

An FMLI application may allow users to access UNIX system executables by escaping to
the shell, either with the! shell escape or theunix-system command, or by selecting a
menu item or SLK for which the action coded invokes an external executable. It is your
responsibility to make sure these means of access are not abused.

Both means of escaping to the shell can be disabled if necessary. When thenobang
descriptor is defined and evaluates to TRUE, users cannot use the! shell escape to invoke
external executables. Nor will they be able to invoke theopen command from the com-

Character User Interface Programming

A-2

mand line. That means the user cannot, for instance, create a menu that invokes an external
executable and open it to gain access to the shell. You can disable theunix-system
command as described in “The Commands File” on page 4-12. Keep in mind that dis-
abling the command will also make it unavailable to your own FMLI scripts.

FMLI does not try to second-guess your application by setting shell variables such as
PATH or IFS . It leaves it to you to insure that the execution environment is correct, and
that the correct executable will be found. Similarly, it is your responsibility to make sure
that any commands you add or redefine in the commands file perform as expected and do
not violate security principles. For discussions, see Chapter 4.

Interruptible Commands 1

By default, FMLI commands and executables invoked through FMLI (except those run-
ning under a full-screen mode executable) are not interruptible. If you enable interrupts for
some or all parts of your application, you must insure that not completing the interrupted
action will not compromise the system and thatoninterrupt is defined such that the
appropriate recovery actions are taken. The risks here include leaving sensitive data files
or incomplete or inconsistent data on the system after the unfinished operation. You need
to weigh these risks against the “friendliness” of allowing interrupts. At the very least,
interrupts should be enabled at the lowest possible level, rather than for the whole applica-
tion. Theoninterrupt in effect should always be the appropriate one. It, too, should be
defined at the lowest level of the hierarchy. For a discussion, see “Interrupt Signal Han-
dling” on page 2-39.

Variables 1

FMLI uses four distinct types of variables, each of which can produce unexpected results
if handled improperly.

UNIX system shell environment variables are inherited from the invocation environment
and can be modified with theset andunset built-in utilities. The effects of any modifi-
cation are visible to child processes of the application.

File-based variables are stored in and read from the file that is part of their name, so that
multiple applications or sessions can share data.

So-called local variables are local to FMLI but global within the application. Any line that
references$foo , for example, will reference the same value; changing the variable's value
in one frame changes its value in all frames. For this reason, extreme care should be taken
to avoid name collision when developing applications, especially when there is more than
one programmer involved. For this reason, too, you should be sure to implement valida-
tion tests with appropriate criteria when using FMLI's mechanisms for validating user
input. In particular, if you set a variable based on user input in one frame and reference it
in another, the data may be valid at the time of entry but not at the time of use. For a dis-
cussion and example, see “Validation of Form Fields” on page A-4.

Built-in variables are read-only variables that are visible only within the FMLI session.
Some are maintained on a per-frame basis and have different values in each frame. Others
are visible throughout the application.

Programming Tips and Known Problems

A-3

There are two ways to dereference a variable.$VAR parses the variable once.$! VAR rep-
arses the variable as long as it contains special characters. That is, if you setVAR to
`pwd` , $VAR is `pwd` , whereas$!VAR may be/home/chris . You should never use
the $! notation when referencing built-in variables because it is impossible to guard
against users entering special characters in fields. Note that if the initialization file descrip-
tor use_incorrect_pre_4.0_behavior is set to TRUE, the first form implies the
second. For discussions, see “Variables” on page 2-6.

NOTE

A significant amount of FMLI code was written to implement
software that is now obsolete. This code should not be used by
other applications. To avoid unexpected results in this regard, the
UNIX shell environment variableVMFMLI should not be passed
to the FMLI environment. Better still, the variable can be set to
FALSE. Since this variable is tested only when FMLI is invoked,
changes made to it later by the user will not affect FMLI's behav-
ior.

Frequency of Evaluation Type Casts 1

By default, FMLI determines how often descriptors are evaluated. You can use theconst
type cast to make sure that a descriptor is evaluated only once, no matter how many times
it is referenced, or thevary type cast to make sure that a descriptor is evaluated whenever
it is referenced. Use these casts with care. In particular, do not useconst if the data could
become out of date, that is, unless you know that the descriptor value will be the same no
matter how many times it is referenced, or are certain that the first value must be retained
(a startup-time value, for example). For a discussion, see “Descriptor Evaluation” on page
2-10.

Co-processing 1

Co-processes for trusted applications should use named pipes created by the application
with the appropriate permissions; the default pipes created by FMLI are readable and writ-
able by everyone. Handshaking can also be used to enhance security. For a discussion and
examples, see “Other Useful Examples” on page 3-61.

FACE-specific Code 1

There is a significant amount of code in FMLI that was written to implement FACE. This
code should not be used by other applications. To avoid unexpected results in this regard,
the UNIX shell environment variableVMFMLI should not be passed to the FMLI environ-
ment. Better still, the variable can be set to FALSE. Because it is tested only when FMLI
is invoked, changes made to it by the user after that will not affect FMLI's behavior.

Although the executablefacesuspend is provided only with the FACE product, access
to it may give the knowledgeable user the ability to return to an FMLI application before
completing a task begun in a full-screen window. Access to this executable should be

Character User Interface Programming

A-4

restricted. Alternatively, appropriate validation should be performed to insure that the task
begun in the full-screen window was completed.

Validation of Form Fields 1

Developers should be aware that information stored in FMLI variables via theset utility
or the argument passing mechanism ($ARGn) may not be valid at the time it is used even if
it was validated at the time it was set. This can occur when variables set from data in one
frame are used in the processing activity of another frame. If the use of a variable contain-
ing invalid data could seriously corrupt or compromise the system, it must be re-validated
at the time it is used.

Developer-set variables are known to all frames in an FMLI session—there is noframe
scoping of variables, no way to make a variable known only to the frame it is set in. This
results in the classic programming issues around global variables.

Here are two scenarios that can result in the value of a variable no longer being valid.

Scenario 1 1

Thedone descriptor ofForm.1 sets a variableset -l FOO=$F1, the value of field one,
and opensForm.1a. The user enters data inForm.1 and presses theSAVE SLK;
Form.1a opens and becomes the current frame. The user now has a change of mind, nav-
igates back toForm.1, and enters a new value in field one. If, instead of pressing the
SAVE SLK for Form.1 again, the user navigates toForm.1a, when the user saves
Form.1a it will not know the value inForm.1 has changed and any action inForm.1a
based on the value ofFOO will be different from what the user expects. The user's error of
not pressingSAVE after changingForm.1 will not be detected.

Scenario 2 1

The done descriptor ofForm.1 opensForm.1a passing the value of$F1 as the first
argument (as inopen Form.1a $F1). Assume this value is a user ID thatForm.1 val-
idated. Now the user navigates to another menu and deletes the user, then navigates back
to Form.1a. Now the value ofARG1 is not a valid user ID even thoughForm.1 validated
it. Form.1a must re-validate the value before doing anything based on it.

Commands 1

• If an FMLI application initiates a call to a UNIX system command (for
example,action=`unix_command`nop) and theinterrupt
descriptor evaluates to FALSE for thataction descriptor (see “Interrupt
Signal Handling” on page 2-39), users will not be able to do other tasks
until the command completes even if the command could be interrupted. If
the command takes a considerable amount of time to execute, the applica-
tion writer may want the command to execute in the background.

Programming Tips and Known Problems

A-5

Since FMLI does not recognize the shell background symbol&, theshell
built-in command must be used, for instance,

 action=`shell “unix_command > /dev/null &”`nop

If you want the user to continue to be able to interact with the application
while the background job is running, the output of an executable run by
shell in the background must be redirected: to a file if you want to save
the output, or to/dev/null if you don't want to save it (or if there is no
output); otherwise your application may appear to be hung until the back-
ground job finishes processing. The application writer may also wish to
explore the co-processing facilitycoproc(1F) which establishes a pipe
between FMLI and another independent UNIX system process.

• When an FMLI command is disabled in the commands file, as in

name=update
action=nop

this disables it throughout the interface. There is no way to remove it from the
Command Menu and still leave it available for use in the application code itself.

Co-processing Functions 1

• When writing programs to use as co-processes, the following tips may be
useful. If the co-process program is written in C language, be sure to flush
output after writing to the pipe. (Currently,awk(1) andsed(1) cannot
be used in a co-process program because they do not flush after lines of
output.) Shell scripts are well-mannered, but slow. C language is recom-
mended. If possible, use the defaultsend_string, rpath, andwpath. In most
cases,expect_string has to be specified. This, of course, depends on the co-
process.

Forms 1

• Choices for a form field can be specified using thermenu descriptor. If the
value ofrmenu is a list of items enclosed in brackets, there must be at least
one whitespace character that separates the brackets from the item list:
rmenu={ “item 1” “item 2” “item 3” } .

• If a definition of thermenu descriptor degenerates to an empty list,
rmenu={} , the value ofchoicemsg is displayed—your definition if you
have defined one, or the FMLI default messageThere are no
choices available . If you definechoicemsg and there might not
be any choices, be sure the message is appropriate to the “empty list” case.

• There must be at least one active field visible in a form. If you open a form
with all fields defined as inactive, orshow=FALSE, FMLI does not display
the frame.

Character User Interface Programming

A-6

• Field n in a form frame cannot reference fieldm, wherem is greater thann,
and fieldm does not have avalue descriptor defined. That is, you cannot
reference the value of a field that is defined later in the form definition file
because that field may not have been evaluated at the time you reference it.

• If a second or subsequent page of a form is defined to be larger than can be
displayed on the terminal being used, it is not displayed at all (for example,
if rows=25 is defined, and the terminal being used only has 24 rows avail-
able for display).

Menus 1

• The precise rules for how rows and columns are determined in menus are
given in the following table. This table should only be needed in excep-
tional cases (for example, when a developer has coded “unreasonable” val-
ues for therows andcolumns descriptors in a menu definition file). In
general, the number of columns in a menu is determined before the number
of rows, and columns specified with thecolumns descriptor takes prece-
dence if there is a conflict with the number of rows requested. The number
of rows is usually the minimum of the three variablesaR (available rows),
sR (specified rows), andnR (needed rows).

The table entries for the two cases whencolumns is specified and
description is not specified imply that menu items are truncated to fit
in the column size determined fromsC. Thus, thecolumns descriptor
should not be specified for menus that are dynamically generated, when
there is no way to guarantee that such a menu will not have truncated items.

Descriptors set? step 1 step 2 step 3

d r c pC pR uC uR

yes no no not needed not needed 1 min(10,nR)

yes no yes not needed not needed 1* min(10,nR)

yes yes no not needed not needed 1 min(aR,nR,sR)

yes yes yes not needed not needed 1* min(aR,nR,sR)

no no no —** —** —** —**

no no yes if sC > mC, 1;
otherwise,sC***

((tI-1) modpC)+1 if pR > aR, 1:
otherwise,pC

if pR > aR,
min(aR,10);
otherwise,pR

no yes no ((tI-1) modpR)+1† min(aR,nR,sR)† if pC > fC, 1;
otherwise,pC

pR

no yes yes if sC > mC, 1;
otherwise,sC***

((tI-1) modpC)+1 if pR > aR, 1;
otherwise,pC

if pR > aR,
min(aR,sR);
otherwise,pR††

Programming Tips and Known Problems

A-7

Footnotes

* columns descriptor is ignored

** the algorithm attempts to open a menu with a 3:1 aspect ratio of width to
height

*** menu items are truncated if they are too long to fit; equal-width columns
are kept after truncation

† step 1 and step 2 are reversed for this case (pR must be computed first)

†† rows descriptor is ignored

Legend

d description descriptor

r rows descriptor

c columns descriptor

sR (specified rows) the value coded with therows descriptor

aR (available rows) the number of rows that frames can occupy on the ter-
minal screen

nR (needed rows) the number or rows needed to open the menu—for sin-
gle-column menus this equalstI

pR (probable rows) the number of rows needed to open the menu, as deter-
mined from the first (preliminary) calculations

uR (used rows) the number of rows used to open the menu, after all steps
are done

tI (total items) the total number of menu items for the menu (the number
of menu descriptors)

sC (specified columns) the value coded with thecolumns descriptor

fC (fittable columns) the number of columns that can fit on the screen,
given the screen width and the length of the longest menu item; equals
(screenWidth-2) mod (maxItemWidth+1); this is amaximum value—the
maximum fittable columns

mC (max columns) the maximum number of columns that could fit on the
screen if each column were only 1 character wide; equals (screenWidth-
3) mod 2

pC (probable columns) the number of columns needed to open the menu, as
determined from the first (preliminary) calculations

uC (used columns) the number of columns used to open the menu, after all
steps are done

Character User Interface Programming

A-8

Text 1

• The SCROLL-DOWN key displays the complete final page of a text
frame, even if much of it was already visible. TheSCROLL-UP key dis-
plays the entire first page of a text object, even if most of it was already vis-
ible. The action ofSCROLL-DOWN might be a surprise to users if they
are not also aware that the scroll-down icon has disappeared, signaling that
they are at the end of the text.

Backquoted Expressions 1

• Backquoted expressions that appear on a line by themselves are evaluated
before any descriptors are parsed. That is, they are evaluated before the
frame is fully current. Thus, the following can occur:

- if a stand-alone backquoted expression produces output to the mes-
sage line, it may appear before the frame being parsed is posted. This
delay may or may not be significant and depends on the complexity
of the frame definition file.

- message -f statements in stand-alone backquoted expressions are
ignored.

- the built-in functiongetfrm , if used in a stand-alone backquoted
expression, may be parsed before the frame ID it is supposed to
return is available.

• If a command run in a backquoted expression changes thestty(1) set-
ting, the FMLI session may be corrupted. Frames may not display correctly
and the command line may not function (the latter occurs ifRETURN is
mapped toLINEFEED or toRETURN LINEFEED).

• If a daemon process is started via a shell script that FMLI code invokes in a
backquoted expression, FMLI waits for this process until the UNIX system
clears up zombies. While waiting, FMLI appears to be locked because the
backquoted command that wasexec 'd created a child whosestdout is
still connected to FMLI via a pipe. When the command becomes a zombie,
FMLI continues reading the pipe that the (daemon) child still has open.
FMLI does not know if its grandchildren are going to be daemons or if they
are going to write to the pipe. To preserve the ability of grandchildren to
output to FMLI, the following fix must be placed in the script executed by
the backquoted expression, to redirect thestdout of the daemon:

nohup my_daemon > /dev/null &

Color 1

• Some color devices may reverse a color request. For example,
highlight_bar=red andhighlight_bar_text=green may be
displayed as “red on green” rather than “green on red.” If this happens, set

Programming Tips and Known Problems

A-9

highlight_bar=green andhighlight_bar_text=red to pro-
duce the proper color combination. This solution will, of course, cause the
problem on devices that handle color requests as expected.

Message Line 1

• When thecheckworld command is executed explicitly, or when a
SIGALRM occurs afterMAILCHECK seconds, the message line may clear.
Because the reason the message line clears may not be apparent to users,
documents about your application should include an explanation of this
behavior.

Syntax 1

• In general, FMLI does not generate messages on syntax errors. However,
some of the built-in functions, such asfmlgrep andfmlcut, and the
if-then-else statement generate their own syntax error messages.
Developers should be aware that the absence of an error message does not
necessarily mean that there is not a syntax error in their code.

• When creating a new menu, form, or text frame, all quotes and backquotes
must match. Quoting mismatches may cause unpredictable results; the
frame may never appear, or appear incorrectly.

• Prior to FMLI Release 4.0, only the$ notation existed for variable evalua-
tion, and that notation exhibited the behavior now defined for$! . For pre-
viously written FMLI applications now being run under FMLI Release 4.0
or 4.0+, a Boolean descriptor,use_incorrect_pre4.0_behavior ,
can be set in the initialization file, which causes FMLI to ignore the$!
notation and interpret$ in the way defined above for$! . The default value
(if not defined in the initialization file) for this descriptor is FALSE.

Miscellaneous 1

• The FMLI interpreter does not useEOF to exit a program. The assumption
is that applications are interactive and at some point allow the user to select
an item that evaluates to theexit command. Otherwise, the FMLI appli-
cation will run indefinitely. Thus, if the input to FMLI is to come from a
file, the file must include theexit command.

• If you are running FMLI on a system with the shell job control feature, you
can interrupt an FMLI application using theCTRL-z key and resume it
with thefg utility.

Character User Interface Programming

A-10

Known Problems 1

Messages 1

• When a mouse is used to navigate to a new frame and the mouse is pointing
within the frame title or its scroll bar, the item message or field message for
the current item or field may flash on the message line.

• If the evaluation of a descriptor results in a short-term message being
issued, followed by the opening of another frame, then frame or permanent
messages defined in the new frame will not be displayed until another key
is pressed. For example, if thedone descriptor were defined as follows:

done=`message “I'm doing something; please wait.”;
 ...
 `open Text.confirm

whereText.confirm defines

framemsg=“Press CONT to continue”

then whenText.confirm opens, the messageI'm doing something;
please wait. will continue to be displayed. Only when another key is pressed
will the frame message appear.

To avoid this, you can use theindicator command instead of themessage com-
mand in the original descriptor definition. (However, you must turn off the indicator
before opening the frame.) Alternatively, in the frame that is opened, theframemsg
descriptor could be defined as follows”

framemsg=`message -o “Press CONT to continue”`

Screen Labels for Function Keys 1

• The only way to get the commandsprev-frm , next-frm , prevpage ,
andnextpage to work on an application-defined SLK is to make the label
of the SLK (using thename descriptor) the same as the command name.
Also, if the SLK label is set to one of these (case irrelevant), that is the
command that will be executed by that application-defined SLK, no matter
what theaction descriptor is coded to.

Programming Tips and Known Problems

A-11

Forms 1

Multi-page forms 1

• An attempt to access a form page that has no active (inactive=true) or
shown (show=false) fields causes the cursor to be positioned on the first
field (inactive or “not shown” field) and input to the field is allowed.

• Sometimes on multi-page forms the scroll indicators (^ andv) may not be
shown when and after any page after the first is displayed.

Other Form Problems 1

• If a user enters data in a one-line scrollable field, then navigates away from
the frame without having pressedENTER, the field is reset when the
frame becomes current again.

• Theshow, value, andinactive descriptors are not re-evaluated for a field
when a SLK is pressed, unless theENTER key has been pressed after the
data are entered in the field.

• When an application-defined SLK is pressed after a value has been entered
in a field, the new value of the field is not set in the field variable (Fn)
unless theENTER key has also been pressed. This is particularly relevant
for forms with only one field in them.

• If an active form field is dynamically made to be inactive, then underlining
is retained on those characters of the field that already have data entered in
them.

• When toggling between choices, if consecutive choices are identical, the
remaining choices cannot be reached. Note that this does not occur when
there are enough choices to generate a menu.

Text Frames 1

• Theregex built-in utility used in atext descriptor, with a template argu-
ment thatcat 's a file containing tabs and newlines, does not preserve the
tabs and newlines in the opened text frame.

• A text frame withwrap=true set may lose its correct wrapping if the
update command is issued for it.

• If the rows descriptor of a text frame is reduced after the frame is opened,
and the frame is later updated, the display of the frame will be corrupted.

• The header in a text frame is truncated if it is longer than thecolumns
descriptor specified, even if the title of the frame causes the actual size of
the frame to be big enough to hold the header.

Character User Interface Programming

A-12

Commands 1

• If a user-defined command contains a compound backquoted expression
including arun statement, such as

name=my_cmd
action=`executableA;run executableB; executable C`nop

then, if the command is selected from the command menu, everything up to and
including therun statement (executableB) occurs with the command menu as
the current frame; the rest of the statement (executableC) occurs with the previ-
ously current frame as the current frame.

• Thereset command does not work in thedone descriptor of a form.

• When a second set of SLKs are defined, thetogslk command issued
from the command line works once, to switch from the first set to the sec-
ond, but subsequent executions of it are ignored.

• If the rmenu descriptor defines consecutive choices as identical (which
shouldn't be done, since it serves no purpose), toggling the choices using
theCHOICES function key prevents those choices after the duplicated
one from being reachable.

Built-in Utilities 1

regex 1

• Theregex built-in utility used in atext descriptor, with a template argu-
ment thatcat 's a file containing tabs and newlines, does not preserve the
tabs and newlines in the opened text frame.

readfile 1

• The longline utility cannot be used to determine the longest line of a
header read with thereadfile utility if the text descriptor also con-
tains areadfile .

• If a menu contains areadfile in a backquoted expression on a line by
itself and the file read contains a series of backquoted expressions on lines
by themselves, the first one of those lines is ignored. Making the first line a
blank or a comment will get around this.

Co-processing Utilities 1

• The frame border of a form may not complete until input is provided from
the keyboard when co-processing is used.

Programming Tips and Known Problems

A-13

• Input and output strings from co-processing should not use non-alphabetic
printable characters, because the FMLI special characters are not correctly
transmitted.

• When thereread descriptor is used with co-processing and thevsig
utility causes the reread to occur frequently, the FMLI process may grow
out of memory space.

if-then-else 1

• Omitting the terminatingfi causes the remainder of a frame definition file
to be incorrectly parsed.

• The standard output ofif-then-else cannot be redirected using the>
operator. However, individual parts of the statement (thethen part and the
else part) can be.

• A null statement following athen followed by anelse can cause a syn-
tax error.

fmlcut 1

• The fmlcut built-in utility reads standard input piped to it, but does not
read a file redirected using<.

Descriptors 1

• The init descriptor for a frame is not evaluated first, although it should
be. In forms, thevalue descriptors are evaluated first, followed by the
page, show, andinactive descriptors for each field; in menus, theshow
descriptors for items are evaluated first. If an application uses backquoted
expressions in these descriptors, this ordering must be taken into consider-
ation; init cannot be relied on to be evaluated first.

• When thereread descriptor is used with co-processing and thevsig
utility causes the reread to occur frequently, the FMLI process may grow
out of memory space.

• Thepermanentmsg descriptor available in the initialization file incor-
rectly takes precedence over aframemsg descriptor in a frame file.

Interrupt Facility 1

• If an interrupt is generated by the user just as a frame is being displayed,
corruption may occur. Use therefresh command to redraw the screen.

• If interrupts are enabled in a text frame and theoninterrupt descriptor
does not evaluate to a valid command, then an interrupt generated just after
the frame is canceled causes the frame to be canceled, when the result

Character User Interface Programming

A-14

should just be a beep, the standard action when theclose descriptor does
not evaluate to a valid command.

• If interrupts are enabled and theoninterrupt descriptor in effect does
not evaluate to a valid command, then an interrupt generated when an
application-defined command is being executed causes the current frame to
close.

• The action specified in theclose descriptor is not interruptible. But the
action specified in theclose descriptor in a text frame is getting inter-
rupted. After the interrupt, the action is incorrect.

Miscellaneous 1

• Broadcast messages from root (for example, ones sent using thewall
(1) command) may not be readable while an FMLI application is running,
and can corrupt the screen. Users of your FMLI application should be
warned that this can happen and that they can access the command line
with CTRL-j and execute therefresh command to redraw the screen.

• FMLI does not recognizeEOF on its input stream, so the only way that
piped input can cause anfmli execution to properly terminate is for a cor-
rect string issuing anexit command to reach FMLI at the right time (for
example,CTRL-j exit , when the operation to go to the command line is
recognizable). If theexit is not executed, the FMLI session will hang and
must be terminated with thekill(1) utility.

• Although FMLI Release 4.0 and 4.0+ work with the shell job control fea-
ture of UNIX System V Release 4, an FMLI session cannot be started in
the background, using a command of the form

fmli Menu.1 &

It can be started in the foreground, interrupted with theCTRL-Z key, and then put
in the background using thebg utility.

• Characters that are special to FMLI (such as\) may require unreasonable
and seemingly arbitrary escaping backslashes to be correctly assigned to
variables or used as arguments.

• If FMLI is running in a dynamically resizable window (for example, under
layers or xterm), it will not recognize a new window size if the window
is enlarged or shrunk; this may cause corruption.

B-1

B
Appendix BKeyboard Support

2
2
2

Named Keys and Alternative Keystroke Sequences 2

The following table shows each of the named keys defined by FMLI and the alternative
keystroke sequence that will produce the same result.CTRL represents the control key.

NAMED KEY ALTERNATIVE SEQUENCE

BACKSPACE CTRL-h

Form:
moves cursor left one position,
replacing the character there with a
space.

Menu:
same as LEFT-ARROW.

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

BACKTAB CTRL-t

Form:
moves cursor to the previous field,
whether above the current field or to
the left, wrapping from the first field
of the form to the last.

Menu:
same as LEFT-ARROW.

Text:
n/a

BEG CTRL-b

Form:
moves cursor to the first field of the
current page.

Menu:
moves cursor to the first item,
whether currently visible or not.

Text:
displays first frame full of text.

CLEAR CTRL-y
CLEAR-LINE CTRL-y

Form:
clears the current line.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

CLEAR-EOL CTRL-f y

Form:
clears the current line from the cur-
rent cursor position to the end of the
line.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

Character User Interface Programming

B-2

NAMED KEY ALTERNATIVE SEQUENCE

COMMAND LINE CTRL-j
or CTRL-f c

Form:
moves cursor to command line.

Menu:
same.

Text:
same.

DEL CTRL-x
DELETE-CHAR CTRL-x

Form:
deletes the character under cursor
and closes the gap.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

DELETE-LINE CTRL-k

Form:
in multi-line fields, deletes the cur-
rent line and closes the gap. In sin-
gle-line fields, same as CLEAR-
LINE.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

DOWN-ARROW CTRL-d

Form:
in a single-line field, moves cursor
to the next field below the current
one, wrapping from the last field of
the column to the first. In a multi-
line field, it moves cursor to the next
line; on the last line, it moves cursor
to the next field below the current
one.

Menu:
moves cursor down one item, wrap-
ping to the top of the column in a
single-column menu, the top of the
next column in a multi-column
menu. On the last item in the last
column of a multi-column menu, it
wraps to the top of the first column.

Text:
moves cursor down one line. It does
not wrap.

END CTRL-e

Form:
moves cursor to the last field of the
current page.

Menu:
moves cursor to the last item,
whether currently visible or not.

Text:
displays last frame full of text.

ENTER CTRL-m

Form:
in a single-line field, moves cursor
to the next field, whether below the
current field or to the right, wrap-
ping from the last field of the form
to the first. In a multi-line field, it
moves the cursor to the next line.
This key cannot be used to navigate
from a multi-line field (it scrolls on
the last line if the field is scrollable,
stops and beeps if it is non-scrolla-
ble). Validation occurs even if no
data have been entered or modified
in the field since it became current.

Menu:
selects the current item in a single-
select menu, the marked items in a
multi-select menu.

Text:
moves cursor down one line. It does
not wrap.

Keyboard Support

B-3

NAMED KEY ALTERNATIVE SEQUENCE

HOME CTRL-f b

Form:
moves cursor to the first character of
the current field.

Menu:
moves cursor to the first item cur-
rently visible.

Text:
displays first frame full of text.

HOME-DOWN CTRL-f e

Form:
moves cursor to the last character of
the current field.

Menu:
moves cursor to the last item cur-
rently visible.

Text:
displays last frame full of text.

INSERT-CHAR CTRL-a

Form:
inserts a space to the left of the char-
acter under cursor and moves cursor
over the space. The next character
entered will replace the space.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

INSERT-LINE CTRL-o

Form:
in a multi-line field, if space is avail-
able, opens a line below the current
line and puts cursor on that line.
Otherwise, n/a.

Menu:
n/a

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

LEFT-ARROW CTRL-l

Form:
moves cursor non-destructively one
character to the left. It does not wrap
to the previous field, or the previous
line in a multi-line field.

Menu:
moves cursor left one item in a
multi-column menu, up one item in
a single-column menu. In a multi-
column menu, it does not wrap. In a
single-column menu, it wraps to the
bottom of the column.

Text:
same as for forms.

MARK CTRL-f m

Form:
n/a

Menu:
In a multi-select menu, marks the
item to be selected. In a single-select
menu, n/a.

Text:
n/a

NEXT CTRL-n

Form:
same as TAB.

Menu:
same as DOWN-ARROW.

Text:
n/a

PAGE-DOWN CTRL-w

Form:
in a multi-page form, moves cursor
to the first field of the next page.

Menu:
in a scrollable menu, moves cursor
to the first item of the next frame full
of items and displays that frame full,
unless there are fewer than 10 items,
in which case the terminal rings (or
flashes).

Text:
in a scrollable text frame, moves
cursor to the first line of the next
frame full of text and displays that
frame full, preserving two lines from
the current frame.

Character User Interface Programming

B-4

NAMED KEY ALTERNATIVE SEQUENCE

PAGE-UP CTRL-v

Form:
in a multi-page form, moves cursor
to the first field of the previous page.

Menu:
in a scrollable menu, moves cursor
to the first item of the previous
frame full of items and displays that
frame full, unless there are fewer
than 10 items, in which case the ter-
minal rings (or flashes).

Text:
in a scrollable text frame, moves
cursor to the first line of the previous
frame full of text and displays that
frame full, preserving two lines from
the current frame.

PREV CTRL-p

Form:
same as BACKTAB.

Menu:
same as UP-ARROW.

Text:
n/a

RESET CTRL-f r

Form:
resets a field to its default value.

Menu:
n/a

Text:
n/a

RETURN CTRL-m

Form:
same as ENTER.

Menu:
same as ENTER.

Text:
same as ENTER.

RIGHT-ARROW CTRL-r

Form:
moves cursor non-destructively one
character to the right. It does not
wrap to the next field, or the next
line in a multi-line field.

Menu:
moves cursor right one item in a
multi-column menu, down one item
in a single-column menu. In a multi-
column menu, it does not wrap. In a
single-column menu, it wraps to the
top of the column.

Text:
same as for forms.

SCREEN-LABELED KEYS
CTRL-f 1 ... CTRL-f 8

Form:
performs the action assigned to the
function key by default or by pro-
grammer.

Menu:
same.

Text:
same.

SCROLL-DOWNCTRL-f d

Form:
rolls the contents of a multi-line
scrollable field down by the number
of lines displayed.

Menu:
rolls the contents of a scrollable
menu down one line, without mov-
ing the cursor.

Text:
rolls the contents of a scrollable text
frame down one line, without mov-
ing the cursor.

SCROLL-UP CTRL-f u

Form:
rolls the contents of a multi-line
scrollable field up by the number of
lines displayed.

Menu:
rolls the contents of a scrollable
menu up one line, without moving
the cursor.

Text:
rolls the contents of a scrollable text
frame up one line, without moving
the cursor.

Keyboard Support

B-5

Automatic Function Key Downloading 2

FMLI applications rely heavily on the use of function keysF1 throughF8. Because these
keys are not available on some terminals or are not assigned default escape sequences that
curses can use, FMLI provides alternative keystroke sequences,CTRL-f 1 through
CTRL-f 8, respectively, whose use is equivalent to that of function keys. Some terminals,
such as the AT&T 5620 and 630 terminals, as defined in theirterminfo(4) entries, do
not assign default escape sequences to these function keys, but can download strings into
them. FMLI will automatically download the alternative keystroke sequences if either of
the following is true:

• the environment variableLOADPFK is set toyes , true , or the null string;

• the user chooses FMLI function key downloading at a prompt given during
initialization of the application. This prompt is not given ifLOADPFK is set
to any value.

In either case, the alternative sequences replace any previously defined strings for the
function keys. You can, however, restore the previously defined strings if you have taken
the precaution of storing them as an executable shell script. Such a script might use the
tput utility as follows:

tput pfx 1 ' string-for-function-key-1'
tput pfx 2 ' string-for-function-key-2'

NAMED KEY ALTERNATIVE SEQUENCE

SPACEBAR none

Form:
replaces the current character with a
space and moves cursor one charac-
ter to the right.

Menu:
same as RIGHT-ARROW

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

TAB CTRL-i

Form:
moves cursor to the next field,
whether below the current field or to
the right, wrapping from the last
field of the form to the first.

Menu:
same as RIGHT-ARROW.

Text:
n/a

UP-ARROW CTRL-u

Form:
in a single-line field, moves cursor
to the previous field above the cur-
rent one, wrapping from the first
field of the column to the last. In a
multi-line field, it moves cursor to
the previous line; on the first line, it
moves cursor to the previous field
above the current one.

Menu:
moves cursor up one item, wrapping
to the bottom of the column in a sin-
gle-column menu, the bottom of the
previous column in a multi-column
menu. On the first item in the first
column of a multi-column menu, it
wraps to the bottom of the last col-
umn.

Text:
moves cursor up one line. It does not
wrap.

Character User Interface Programming

B-6

tput pfx 3 ' string-for-function-key-3'
tput pfx 4 ' string-for-function-key-4'
tput pfx 5 ' string-for-function-key-5'
tput pfx 6 ' string-for-function-key-6'
tput pfx 7 ' string-for-function-key-7'
tput pfx 8 ' string-for-function-key-8'

If you execute this script after exiting from an FMLI application, the stored function key
definitions will be downloaded.

An FMLI appl icat ion wi l l execute this scr ipt automatical ly i f i t is named
.restorePFKs . FMLI looks for a file named.restorePFKs first in the current direc-
tory, then in$HOME. If it finds such a file, the FMLI application displays the message

Running the shell script in filename
to restore function key settings

wherefilename is either.restorePFKs or $HOME/.restorePFKs .

NOTE

Thetput utility must be UNIX System V Release 4 or later.

Referencing aterminfo entry for the AT&T 5620 terminal from
a terminfo database older than UNIX System V Release 4 will
cause the alternative keystroke sequences to be incorrectly down-
loaded. Not all the alternative sequences will be downloaded, and
garbage may be output to the screen. This can occur if a user
maintains a private variant of theterminfo entry. Such a user
should not choose function key downloading.

C-1

C
Appendix CTAM Transition Library

3
3
3

Introduction 3

Character mode applications that run under the Terminal Access Method (TAM) on the
UNIX PC can now run under ETI with a wide range of terminals. This appendix explains
how to use the TAM transition library, the source of this portability. In addition, it explains
how you can eventually rewrite your TAM application programs to run more efficiently
under ETI without the TAM transition library.

Compiling and Running TAM Applications under ETI 3

The TAM transition library consists of a header filetam.h and a set of library routines.
The filetam.h translates between TAM routines and equivalent sets of low-level ETI rou-
tines. For example, the TAM functionwcreate is mapped to the conversion library func-
tion TAMwcreate , which consists of a series of low-level ETI calls, such asnewwin and
subwin .

To use the TAM transition library, be sure to include the standard TAM header filetam.h
in your application program. So at the beginning of your TAM application program, you
should already have

#include <tam.h> /* as usual, for TAM calls */

Next, you recompile and link your application program, saytamprog.c , to form an exe-
cutable, as follows:

cc -I /usr/add-on/include tamprog.c -ltam -lcurses \
-o executable_name

Note the use of the-I option, which tells the compiler where to find the TAM header files.
The two uses of the-l option link the requisite library subroutines, the TAM transition
library and the low-level ETI library.

Alternatively, you might separately compile one or more TAM application files (say,
tam1.c , tam2.c , andmain.c) and later link them to form an executable program.

cc -c -I /usr/add-on/include/ tam1.c
/* compile files individually */

cc -c -I /usr/add-on/include/ tam2.c
cc -c -I /usr/add-on/include/ main.c

/* link objects to form executable */

Character User Interface Programming

C-2

cc -o executable_name tam1.o tam2.o main.o -ltam -lcurses

Note that the-I option is required for the compilation of any file that uses the TAM
library.

Tips for Polishing TAM Application Programs Running under
ETI 3

To enable the code in your TAM application program to run smoothly under ETI, you
should do the following:

• remove code that would be executed if a low-leveliswind function call
returned a non-zero value, that is, TRUE. Under the TAM transition library,
iswind always returns FALSE.

• remove all TAM calls to mouse management routines and the callswicon ,
wicoff , andwrastop , because they will translate to null operations.

• remove all machine-specific code, because the TAM transition library does
not translate system calls specifically tailored to the UNIX PC or calls
(such asioctl(2)) that have no meaning under ETI. These calls fail
under the TAM transition library on all machines except the UNIX PC.

• note that all calls totrack(3T) map to the low-level functionwgetc .

• remove all references to TAM calls that bear the same name as ETI calls
because calls that have the same names in both systems have different
effects.

• remove all arbitrary ANSI escape sequences for display output. For exam-
ple, the TAM transition library does not recognize the escape sequence
used on the UNIX PC in the commandecho “\ 33[J” , which clears the
screen. Instead, you should use equivalent ETI routines (here,clear).

Eliminating the superfluous code in the first three cases reduces your program's size and
execution time.

How the TAM Transition Library Works 3

The TAM Transition Library translates between TAM function calls and low-level ETI
function calls. It also ensures that escape and control sequences entered at a terminal's
keyboard are properly interpreted.

TAM Transition Library

C-3

Translations from TAM Calls to ETI Calls 3

The table in Table C-1 summarizes the translation of TAM to low-level ETI (curses)
functions. Eventually, if you want to rewrite your TAM applications to make ETI calls
directly and to run more efficiently, you can use this table as a guide.

Table C-1. Translations from TAM to ETI Function Calls

TAM Function Low-level ETI (curses(3curses)) Equivalent

winit Call initscr .

wexit Call endwin andexit .

iswind Return FALSE.

wcreate Call newwin or new_panel .

wdelete Call delwin or del_panel .

wselect Call touchwin andwrefresh, then update the list of windows to
indicate the new ordering.

wgetsel Call top_panel or bottom_panel with NULL pointer.

wgetstat Call getyx , getmaxyx , orgetbegyx .

wsetstat Call del_panel , thennew_panel .

wputc Call waddch .

wputs Call waddstr .

wprintf Call wprintw .

wslk Create small window at bottom and usecurses routines with
wprintw .

wcmd The character string passed bywcmd is copied to the
bottom of the screen.

wprompt The character string passed bywprompt is copied to the bottom of
the screen.

wlabel The character string is printed in the upper left corner of the specified
window.

wrefresh Call wrefresh . If the window index is -1, all windows should be
refreshed in the appropriate order.

wuser This functionality is not necessary. Remove this from your code.

wgoto Call wmove.

wgetpos Call getyx .

wgetc Call wgetch . Character translation from ETI to ANSI may be
required, depending on the currentkeypad mode.

kcodemap This functionality is not necessary. Remove this from your code.

keypad Call keypad .

Character User Interface Programming

C-4

wsetmouse This is a null operation.

wgetmouse This is a null operation.

wreadmouse This is a null operation.

wprexec Call erase andrefresh .

wpostwait Call wrefresh for each window in the window list.

wnl The functionality of this routine is not supported bycurses .

wicon This is a null operation.

wicoff This is a null operation.

wrastop This is a null operation.

track Call wgetch .

initscr Call initscr .

nl The functionality of this routine is not supported bycurses .

nonl The functionality of this routine is not supported bycurses .

cbreak Call cbreak .

nocbreak Call nocbreak .

echo Call echo .

noecho Call noecho .

insch Call insch .

getch Call getch .

flushinp Call flushinp .

attron Call attron .

attroff Call attroff .

savetty Call savetty .

resetty Call resetty .

addch Call addch .

addstr Call addstr .

beep Call beep .

clear Call clear .

clearok This is a null operation.

clrtobot Call clrtobot .

clrtoeol Call clrtoeol .

delch Call delch .

deleteln Call deleteln .

Table C-1. Translations from TAM to ETI Function Calls (Cont.)

TAM Function Low-level ETI (curses(3curses)) Equivalent

TAM Transition Library

C-5

Because the high-level TAM functions in the table in Table C-2 make calls only to the
low-level functions in the previous table, you can continue to use those high-level TAM
functions in your application programs as well. However, with ETI, you cannot use other
TAM high-level functions such aswtargeton .

erase Call erase .

flash Call flash .

getyx Call wgetyx .

insertln Call insertln .

leaveok This is a null operation.

move Call move.

mvaddch Call move andaddch .

mvaddstr Call move andaddstr .

mvinch Call move andinch .

nodelay Call nodelay .

wndelay Call nodelay .

refresh Call refresh .

resetterm Call resetterm .

baudrate Call baudrate .

endwin Call endwin .

fixterm Call fixterm .

printw Call printw .

Table C-2. TAM High-level Functions

Usable TAM High-level Functions

form menu message

pb_empty pb_gets adf_gttok

pb_open pb_check pb_seek

pb_name pb_puts pb_weof

pb_gbuf adf_gtwrd adf_gtxcd

wind exhelp

Table C-1. Translations from TAM to ETI Function Calls (Cont.)

TAM Function Low-level ETI (curses(3curses)) Equivalent

Character User Interface Programming

C-6

The TAM Transition Keyboard Subsystem 3

Both TAM and ETI use a set of virtual function keys that translate between an escape
character sequence entered at the keyboard and a bit pattern inside the machine. Under the
TAM transition library, the TAM virtual key values are translated into ETI virtual key val-
ues.

The table in Table C-3 lists these equivalent virtual key values. Entering the escape
sequence listed in the left column will generate the corresponding TAM virtual function
key value given in the middle column. The right column lists the ETI equivalent of the
TAM virtual key and is for reference only.

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values

TAM
Escape
Sequence

Virtual Key Value

TAM ETI

ESC-! s_F1 KEY_F(8)

ESC-@ s_F2 KEY_F(9)

ESC-# s_F3 KEY_F(10)

ESC-$ s_F4 KEY_F(11)

ESC-% s_F5 KEY_F(12)

ESC-^ s_F6 KEY_F(13)

ESC-& s_F7 KEY_F(14)

ESC-* s_F8 KEY_F(15)

ESC-f1 PF1 KEY_F(16)

ESC-f2 PF2 KEY_F(17)

ESC-f4 PF3 KEY_F(18)

ESC-f4 PF4 KEY_F(19)

ESC-f5 PF5 KEY_F(20)

ESC-f6 PF6 KEY_F(21)

ESC-f7 PF7 KEY_F(22)

ESC-f8 PF8 KEY_F(23)

ESC-f9 PF9 KEY_F(24)

ESC-f0 PF10 KEY_F(25)

ESC-f- PF11 KEY_F(26)

ESC-f= PF12 KEY_F(27)

ESC-1 F1 KEY_F(0)

ESC-2 F2 KEY_F(1)

TAM Transition Library

C-7

ESC-3 F3 KEY_F(2)

ESC-4 F4 KEY_F(3)

ESC-5 F5 KEY_F(4)

ESC-6 F6 KEY_F(5)

ESC-7 F7 KEY_F(6)

ESC-8 F8 KEY_F(7)

ESC-bg Beg KEY_BEG

ESC-BG s_Beg KEY_SBEG

ESC-br Break KEY_BREAK

ESC-bw Back KEY_LEFT

ESC-BW s_Back KEY_SLEFT

ESC-ce Clear KEY_CLEAR

ESC-CE Clear KEY_CLEAR

ESC-ci ClearLine KEY_EOL

ESC-CI s_ClearLine KEY_SEOL

ESC-cl Close KEY_CLOSE

ESC-CL Close KEY_CLOSE

ESC-cm Cmd KEY_COMMAND

ESC-CM s_Cmd KEY_SCOMMAND

ESC-cn Cancl KEY_CANCEL

ESC-CN s_Cancl KEY_SCANCEL

ESC-cp Copy KEY_COPY

ESC-CP s_Copy KEY_SCOPY

ESC-cr Creat KEY_CREATE

ESC-CR s_Creat KEY_SCREATE

ESC-dc DleteChar KEY_DC

ESC-Del DleteChar KEY_DC

ESC-DC s_DleteChar KEY_SDC

ESC-dl Dlete KEY_DL

ESC-DL s_Dlete KEY_SDL

ESC-dn Down KEY_DOWN

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values (Cont.)

TAM
Escape
Sequence

Virtual Key Value

TAM ETI

Character User Interface Programming

C-8

ESC-DN RollDn KEY_SF

ESC-en End KEY_END

ESC-EN s_End KEY_SEND

ESC-ESC Esc none

ESC-ex Exit KEY_EXIT

ESC-EX s_Exit KEY_SEXIT

ESC-fi Find KEY_FIND

ESC-FI s_Find KEY_SFIND

ESC-fw Forward KEY_RIGHT

ESC-FW s_Forward KEY_SRIGHT

ESC-hl Help KEY_HELP

ESC-? Help KEY_HELP

ESC-HL s_Help KEY_SHELP

ESC-hm Home KEY_HOME

ESC-HM s_Home KEY_SHOME

ESC-im InputMode KEY_IC

ESC-NJ s_InputMode KEY_SIC

ESC-mk Mark KEY_MARK

ESC-MK Slect KEY_SELECT

ESC-ms Msg KEY_MESSAGE

ESC-MS s_Msg KEY_SMESSAGE

ESC-mv Move KEY_MOVE

ESC-MV s_Move KEY_SMOVE

ESC-nx Next KEY_NEXT

ESC-NX s_Next KEY_SNEXT

ESC-op Open KEY_OPEN

ESC-OP Close KEY_CLOSE

ESC-ot Opts KEY_OPTIONS

ESC-OT s_Opts KEY_SOPTIONS

ESC-pg Page KEY_NPAGE

ESC-PG s_Page KEY_PPAGE

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values (Cont.)

TAM
Escape
Sequence

Virtual Key Value

TAM ETI

TAM Transition Library

C-9

ESC-pr Print KEY_PRINT

ESC-PR s_Print KEY_SPRINT

ESC-pv Prev KEY_PREVIOUS

ESC-PV s_Prev KEY_SPREVIOUS

ESC-rd RollDn KEY_SF

ESC-RD RollDn KEY_SF

ESC-re Ref KEY_REFERENCE

ESC-RE Rstrt KEY_RESTART

ESC-rf Rfrsh KEY_REFRESH

ESC-RF Clear KEY_CLEAR

ESC-rm Rsume KEY_RESUME

ESC-RM s_Rsume KEY_SRSUME

ESC-ro Redo KEY_REDO

ESC-RO s_Redo KEY_SREDO

ESC-rp Rplac KEY_REPLACE

ESC-RP s_Rplac KEY_SREPLACE

ESC-rs Rstrt KEY_REFERENCE

ESC-RS Rstrt KEY_RESTART

ESC-ru RollUp KEY-SR

ESC-RU RollUp KEY_SR

ESC-sl Slect KEY_SELECT

ESC-SL Slect KEY_SELECT

ESC-ss Suspd KEY_SUSPEND

ESC-SS s_Suspd KEY_SSUSPEND

ESC-sv Save KEY_SAVE

ESC-SV s_Save KEY_SSAVE

ESC-ud Undo KEY_UNDO

ESC-UD s_Undo KEY_SUNDO

ESC-up Up KEY_UP

ESC-UP RollUp KEY_SR

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values (Cont.)

TAM
Escape
Sequence

Virtual Key Value

TAM ETI

Character User Interface Programming

C-10

Some keyboards have one or more keys that emit escape sequences that are identical to the
UNIX PC keyboard sequences but do not match in terms of functionality. The function of
an operationally incompatible key will always map to itsterminfo specification. The
TAM specific function implied by the same escape sequence will be accessible through the
technique describe above. Mechanisms incurses(3curses) automatically handle
timing conflicts between actual keyboard function keys and UNIX PC keyboard escape
sequences.

D-1

D
Appendix DETI Program Examples

4
4
4

Program Examples 4

The following programs demonstrate uses of low-level ETI (curses) functions.

The editor Program 4

This program illustrates how to usecurses routines to write a screen editor. For simplic-
ity, editor keeps the buffer instdscr; obviously, a real screen editor would have a sep-
arate data structure for the buffer. This program has many other simplifications: no provi-
sion is made for files of any length other than the size of the screen, for lines longer than
the width of the screen, or for control characters in the file.

Several points about this program are worth making. First, it uses themove, mvaddstr ,
flash , wnoutrefresh , andclrtoeol routines that are all discussed in this docu-
ment.

Second, it also uses somecurses routines that are not discussed in this document. For
example, the function to write out a file uses themvinch routine, which returns a charac-
ter in a window at a given position. The data structure used to write out a file does not keep
track of the number of characters in a line or the number of lines in the file, so trailing
blanks are eliminated when the file is written. The program also uses theinsch , delch ,
insertln , anddeleteln routines. These functions insert and delete a character or
line. See the curses(3curses) manual pages for more information about these rou-
tines.

Third, the editor command interpreter accepts special keys, as well as ASCII characters.
On one hand, new users find an editor that handles special keys easier to learn about. For
example, it's easier for new users to use the arrow keys to move a cursor than it is to mem-
orize that the letterh means left,j means down,k means up, andl means right. On the
other hand, experienced users usually like having the ASCII characters to avoid moving
their hands from the home row position to use special keys.

NOTE

Because not all terminals have arrow keys, yourcurses pro-
grams will work on more terminals if there is an ASCII character
associated with each special key.

Character User Interface Programming

D-2

Fourth, theCTRL-L command illustrates a feature most programs usingcurses rou-
tines should have. Often some program beyond the control of the routines writes some-
thing to the screen (for instance, a broadcast message) or some line noise affects the screen
so much that the routines cannot keep track of it. A user invokingeditor can type
CTRL-L, causing the screen to be cleared and redrawn with a call towrefresh(cur-
scr) .

Finally, another important point is that the input command is terminated by CTRL-D, not
the escape key. It is very tempting to use escape as a command, since escape is one of the
few special keys available on every keyboard. (Return and break are the only others.)
However, using escape as a separate key introduces an ambiguity. Most terminals use
sequences of characters beginning with escape (that is, escape sequences) to control the
terminal and have special keys that send escape sequences to the computer. If a computer
receives an escape from a terminal, it cannot tell whether the user depressed the escape
key or whether a special key was pressed.

editor and othercurses programs handle the ambiguity by setting a timer. If another
character is received during this time, and if that character might be the beginning of a
special key, the program reads more input until either a full special key is read, the time
out is reached, or a character is received that could not have been generated by a special
key. While this strategy works most of the time, it is not foolproof. It is possible for the
user to press escape, then to type another key quickly, which causes thecurses program
to think a special key has been pressed. Also, a pause occurs until the escape can be passed
to the user program, resulting in a slower response to the escape key.

Many existing programs use escape as a fundamental command, which cannot be changed
without infuriating a large class of users. These programs cannot make use of special keys
without dealing with this ambiguity, and at best must resort to a time-out solution. The
moral is clear: when designing yourcurses programs, avoid the escape key.

 /* editor: A screen-oriented editor. The user
 * interface is similar to a subset of vi.
 * The buffer is kept in stdscr to simplify
 * the program.
 */

#include <stdio.h>
#include <curses.h>

#define CTRL(c) ((c) & 037)

main(argc, argv)
int argc;
char **argv;
{
 extern void perror(), exit();

int i, n, l;
int c;
int line = 0;
FILE *fd;

ETI Program Examples

D-3

if (argc != 2)
{

fprintf(stderr, “Usage: %s file\n”, argv[0]);
exit(1);

}
fd = fopen(argv[1], “r”);
if (fd == NULL)
{

perror(argv[1]);
exit(2);

}

initscr();
cbreak();
nonl();
noecho();
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

/* Read in the file */
while ((c = getc(fd)) != EOF)
{

if (c == '\n')
line++;

if (line > LINES - 2)
break;

addch(c);
}
fclose(fd);
move(0,0);
refresh();
edit();

/* Write out the file */
fd = fopen(argv[1], “w”);
for (l = 0; l < LINES - 1; l++)
{

n = len(l);
for (i = 0; i < n; i++)

putc(mvinch(l, i) & A_CHARTEXT, fd);
putc('\n', fd);

}
fclose(fd);

endwin();
exit(0);

}

len(lineno)
int lineno;
{

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) == ' ')
linelen--;

return linelen + 1;
}

/* Global value of current cursor position */
int row, col;

edit()
{

int c;

for (;;)
{

move(row, col);
refresh();
c = getch();

Character User Interface Programming

D-4

/* Editor commands */
switch (c)
{

/* hjkl and arrow keys: move cursor
 * in direction indicated */
case 'h':
case KEY_LEFT:

if (col > 0)
col--;

else
flash();

break;

case 'j':
case KEY_DOWN:

if (row < LINES - 1)
row++;

else
flash();

break;

case 'k':
case KEY_UP:

if (row > 0)
row--;

else
flash();

break;

case 'l':
case KEY_RIGHT:

if (col < COLS - 1)
col++;

else
flash();

break;
/* i: enter input mode */

case KEY_IC:
case 'i':

input();
break;

/* x: delete current character */
case KEY_DC:
case 'x':

delch();
break;

/* o: open up a new line and enter input mode */
case KEY_IL:
case 'o':

move(++row, col = 0);
insertln();
input();
break;

/* d: delete current line */
case KEY_DL:
case 'd':

deleteln();
break;

ETI Program Examples

D-5

The highlight Program 4

This program illustrates a use of the routineattrset . highlight reads a text file and
uses embedded escape sequences to control attributes.\U turns on underlining,\B turns
on bold, and\N restores the default output attributes.

Note the first call toscrollok , a routine that we have not previously discussed (see the
curses(3curses) manual pages). This routine allows the terminal to scroll if the file
is longer than one screen. When an attempt is made to draw past the bottom of the screen,
scrollok automatically scrolls the terminal up a line and callsrefresh .

/* ^L: redraw screen */
case KEY_CLEAR:
case CTRL('L'):

wrefresh(curscr);
break;

/* w: write and quit */
case 'w':

return;

/* q: quit without writing */
case 'q':

endwin();
exit(2);

default:
flash();
break;

}
}

}

/*
 * Insert mode: accept characters and insert them.
 * End with ^D or EIC
 */
input()
{

int c;

standout();
mvaddstr(LINES - 1, COLS - 20, “INPUT MODE”);
standend();
move(row, col);
refresh();
for (;;)
{

c = getch();
if (c == CTRL('D') || c == KEY_EIC)

break;
insch(c);
move(row, ++col);
refresh();

}
move(LINES - 1, COLS - 20);
clrtoeol();
move(row, col);
refresh();

}

Character User Interface Programming

D-6

The scatter Program 4

This program takes the firstLINES - 1 lines of characters from the standard input and
displays the characters on a terminal screen in a random order. For this program to work

/*
 * highlight: a program to turn \U, \B, and
 * \N sequences into highlighted
 * output, allowing words to be
 * displayed underlined or in bold.
 */

#include <stdio.h>
#include <curses.h>

main(argc, argv)
int argc;
char **argv;
{

FILE *fd;
int c, c2;
void exit(), perror();

if (argc != 2)
{

fprintf(stderr, “Usage: highlight file\n”);
exit(1);

}

fd = fopen(argv[1], “r”);

if (fd == NULL)
{

perror(argv[1]);
exit(2);

}

initscr();
scrollok(stdscr, TRUE);
nonl();
while ((c = getc(fd)) != EOF)
{

if (c == '\\')
{

c2 = getc(fd);
switch (c2)
{
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(0);
continue;

}

addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(0);

}

ETI Program Examples

D-7

properly, the input file should not contain tabs or non-printing characters.

/*
 * The scatter program.
 */

#include<curses.h>
#include<sys/types.h>

extern time_t time();

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];/* Screen Array */
int T[MAXLINES][MAXCOLS];/* Tag Array - Keeps track of *

 * the number of characters *
 * printed and their positions. */

main()
{

register int row = 0,col = 0;
register int c;
int char_count = 0;
time_t t;
void exit(), srand();

initscr();
for(row = 0;row < MAXLINES;row++)

for(col = 0;col < MAXCOLS;col++)
s[row][col]=' ';

col = row = 0;
/* Read screen in */
while ((c=getchar()) != EOF && row < LINES) {

if(c != '\n')
{

/* Place char in screen array */
s[row][col++] = c;
if(c != ' ')

char_count++;
}
else
{

col = 0;
row++;

}
}

time(&t);/* Seed the random number generator */
srand((unsigned)t);

while (char_count)
{

row = rand() % LINES;
col = (rand() >> 2) % COLS;
if (T[row][col] != 1 && s[row][col] != ' ')
{

move(row, col);
addch(s[row][col]);
T[row][col] = 1;
char_count--;
refresh();

}
}
endwin();
exit(0);

}

Character User Interface Programming

D-8

The show Program 4

This program pages through a file, showing one screen of its contents each time you
depress the space bar. The program callscbreak so that you can depress the space bar
without having to hit return; it callsnoecho to prevent the space from echoing on the
screen. Thenonl routine, which we have not previously discussed, is called to enable
more cursor optimization. Theidlok routine, which we also have not discussed, is called
to allow insert and delete line. (See the curses(3curses) pages for more informa-
tion about these routines). Also notice thatclrtoeol andclrtobot are called.

By creating an input file forshow made up of screen-sized (about 24 lines) pages, each
varying slightly from the previous page, nearly any exercise for acurses program can be
created. This type of input file is called a show script.

ETI Program Examples

D-9

The two Program 4

This program pages through a file, writing one page to the terminal from which the pro-
gram is invoked and the next page to the terminal named on the command line. It then
waits for a space to be typed on either terminal and writes the next page to the terminal at
which the space is typed.

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv[];
{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if (argc != 2)
{

fprintf(stderr, “usage: %s file\n”, argv[0]);
exit(1);

}

if ((fd=fopen(argv[1], “r”)) == NULL)
{

perror(argv[1]);
exit(2);

}
signal(SIGINT, done);

initscr();
noecho();
cbreak();
nonl();
idlok(stdscr, TRUE);

while(1)
{

move(0,0);
for (line = 0; line < LINES; line++)
{

if (!fgets(linebuf, sizeof linebuf, fd))
{

clrtobot();
done();

}
move(line, 0);
printw(“%s”, linebuf);

}
refresh();
if (getch() == 'q')

done();
}

}

void done()
{

move(LINES - 1, 0);
clrtoeol();
refresh();
endwin();
exit(0);

}

Character User Interface Programming

D-10

Thetwo program is just a simple example of a two-terminalcurses program. It does not
handle notification; instead, it requires the name and type of the second terminal on the
command line. As written, the command “sleep 100000 ” must be typed at the second
terminal to put it to sleep while the program runs, and the user of the first terminal must
have both read and write permission on the second terminal.

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)
int argc;
char **argv;
{

void done(), exit();
unsigned sleep();
char *getenv();
int c;

if (argc != 4)
{
 fprintf(stderr, “Usage: two othertty otherttytype inputfile\n”);
 exit(1);
}
fd = fopen(argv[3], “r”);
fdyou = fopen(argv[1], “w+”);
signal(SIGINT, done);/* die gracefully */

me = newterm(getenv(“TERM”), stdout, stdin); /* initialize my tty */
you = newterm(argv[2], fdyou, fdyou);/* Initialize the other terminal */

set_term(me);/* Set modes for my terminal */
noecho();/* turn off tty echo */
cbreak();/* enter cbreak mode */
nonl(); /* Allow linefeed */
nodelay(stdscr, TRUE);/* No hang on input */

set_term(you);/* Set modes for other terminal */
noecho();
cbreak();
nonl();
nodelay(stdscr,TRUE);

/* Dump first screen full on my terminal */
dump_page(me);

/* Dump second screen full on the other terminal */
dump_page(you);

for (;;)/* for each screen full */
{
 set_term(me);
 c = getch();

ETI Program Examples

D-11

The window Program 4

This example program demonstrates the use of multiple windows. The main display is
kept instdscr. When you want to put something other than what is instdscr on the
physical terminal screen temporarily, a new window is created covering part of the screen.
A call towrefresh for that window causes it to be written over thestdscr image on the
terminal screen. Callingrefresh on stdscr results in the original window being
redrawn on the screen. Note the calls to thetouchwin routine (which we have not dis-

 if (c == 'q')/* wait for user to read it */
done();

 if (c == ' ')
dump_page(me);

 set_term(you);
 c = getch();
 if (c == 'q')/* wait for user to read it */

done();
 if (c == ' ')

dump_page(you);
 sleep(1);
}

}

dump_page(term)
 SCREEN *term;
{

int line;

set_term(term);
move(0, 0);
for (line = 0; line < LINES - 1; line++) {
 if (fgets(linebuf, sizeof linebuf, fd) == NULL) {

clrtobot();
done();

 }
 mvaddstr(line, 0, linebuf);
}
standout();
mvprintw(LINES - 1, 0, “--More--”);
standend();
refresh();/* sync screen */

}
/*
 Clean up and exit.
 */
void done()
{

/* Clean up first terminal */
set_term(you);
move(LINES - 1,0);/* to lower left corner */

clrtoeol();/* clear bottom line */
refresh();/* flush out everything */
endwin();/* curses cleanup */
delscreen(); /* remove screen */

/* Clean up second terminal */
set_term(me);
move(LINES - 1,0);/* to lower left corner */
clrtoeol();/* clear bottom line */
refresh();/* flush out everything */
endwin();/* curses cleanup */
delscreen();/* remove screen */
exit(0);

}

Character User Interface Programming

D-12

cussed — see the curses(3curses) manual pages) that occur before writing out a
window over an existing window on the terminal screen. This routine prevents screen opti-
mization in acurses program. If you have trouble refreshing a new window that over-
laps an old window, it may be necessary to calltouchwin for the new window to get it
completely written out.

#include <curses.h>

WINDOW *cmdwin;

main()

{

int i, c;
char buf[120];
void exit();

initscr();
nonl();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)

mvprintw(i, 0, “This is line %d of stdscr”, i);

for (;;)

{
refresh();
c = getch();
switch (c)

{

case 'c':/* Enter command from keyboard */
werase(cmdwin);
wprintw(cmdwin, “Enter command:”);
wmove(cmdwin, 2, 0);
for (i = 0; i < COLS; i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf);
touchwin(stdscr);

/*
 * The command is now in buf.
 * It should be processed here.
 */

case 'q':
endwin();
exit(0);

}

}

}

ETI Program Examples

D-13

The colors Program 4

This program creates two windows. All characters displayed in the first window will be in
red, on a blue background. All characters displayed in the second window will be in yel-
low, on a magenta background.

#include <curses.h>

#define PAIR1 1
#define PAIR2 2

main()
{

WINDOW *win1, *win2;

initscr();
if ((start_color()) == OK)
{

/* create windows */

win1 = newwin (5, 40, 0, 0);
win2 = newwin (5, 40, 15, 40);

/* create two color pairs */

init_pair (PAIR1, COLOR_RED, COLOR_BLUE);
init_pair (PAIR2, COLOR_YELLOW, COLOR_MAGENTA);

/* turn on color attributes for each window */

wattron (win1, COLOR_PAIR (PAIR1));
wattron (win2, COLOR_PAIR (PAIR2));

/* print some text in each window and exit */

waddstr (win1, “This should be red on blue”);
waddstr (win2, “This should be yellow on magenta”);
wnoutrefresh (win1);
wnoutrefresh (win2);
doupdate();

/* wait for any key before terminating */

wgetch (win2);
}

endwin();
}

Character User Interface Programming

D-14

Index-1

Symbols

! (shell escape) 1-23
(pound sign) 2-2
& (background symbol) A-5
&& (conditional execution) 2-5
' (singlequote) 2-4
; (semicolon) 2-5
< (redirect input) 2-6
<< (here document) 4-15
> (redirect output) 2-6
\ (backslash) 2-4
` (backquote) 2-4
| (pipe) 2-5
| | (conditional execution) 2-5

A

action descriptor 2-20, 2-22, 2-27, 2-28, 3-6, 4-11, 4-13
active_border descriptor 2-26, 4-5
active_title_bar descriptor 2-26, 4-5
active_title_text descriptor 2-26, 4-5
addstr(3curses) 6-3, 7-3
Alias file (FMLI) 4-14, 4-15

defining pathname aliases 4-14
defining search paths 4-14
overview 1-8

Alternate character set 2-41, 2-42, 2-44
altslks descriptor 2-14, 2-21, 3-3, 3-28, 3-52
Application level files (FMLI)

lists of descriptors 2-23, 2-28
overview 1-8

ARGn variable 2-7
autoadvance descriptor 2-18, 3-31
autolayout descriptor 2-17, 2-18, 3-28, 3-32, 3-34, 3-45

application-level 4-6
autosort descriptor 2-14, 3-3

B

Backquoted expression (FMLI) 2-4, 2-5, 4-3, A-8
statement operators 2-5

Backslash (\) 2-4
Backup frame 1-20
bancol descriptor 2-24, 4-3
banner descriptor 2-24, 4-4
Banner line (FMLI) 1-3

descriptor definitions 4-3, 4-4
list of descriptors 2-24

banner_text descriptor 2-26, 4-5, 4-6
beep(3curses) 7-21
begcol descriptor 2-17, 2-21, 3-3, 3-28, 3-52
begrow descriptor 2-14, 2-17, 2-21, 3-3, 3-28, 3-52,

A-11
Blinking attribute 2-42
Bold attribute 2-42
Built-in utilities (FMLI) 2-34, 2-37
Built-in variables (FMLI) 2-7, 2-8
button descriptor 2-20, 2-22, 2-27, 4-11

C

can_change_colors(3curses) 7-18
cancel command

FMLI 2-29
captoinfo(1M) 13-14
Case sensitivity (FMLI) 2-2
Casts

FMLI 2-2, 2-3
cbreak(3curses) 7-23
Character sequences for terminal attributes

table of 2-42
checkworld command (FMLI) 2-29, A-9
choicemsg descriptor 2-18, 3-31, A-5
choices command (FMLI) 2-29
Choices menu 1-7, 1-19, 3-35
cleanup command

FMLI 2-29
clear(3curses) 7-6
close command (FMLI) 2-29

Index

Character User Interface Programming

Index-2

close descriptor 2-17, 2-21, 3-4, 3-29, 3-53
clrtobot(3curses) 7-6
clrtoeol(3curses) 7-6
cmd-menu command (FMLI) 2-30
cocheck(1F) 2-36
cocreate(1F) 2-36
codestroy(1F) 2-36
color_content(3curses) 7-18
COLOR_PAIR 7-16
Colors

(ETI) 7-14, 7-21
A_COLOR (ETI) 7-18
changing definitions (ETI) 7-17
COLOR_PAIR (ETI) 7-16
descriptor definitions (FMLI) 4-4, 4-6
examples of (FMLI) 4-6
list of descriptors (FMLI) 2-26
other macros and routines (ETI) 7-18
PAIR_NUMBER (ETI) 7-18
portability (ETI) 7-17
redefining defaults (ETI) 7-17
table (ETI) 7-14
table of defaults (ETI) 7-14

colors
attribute (ETI) 7-16

columns descriptor 2-14, 2-18, 2-21, 2-24, 3-4, 3-31,
3-36, 3-53, 4-3

Command execution (FMLI) 1-20, 1-23
Command line

CTRL-fc 1-4, 1-11, 1-21
CTRL-j 1-4, 1-11, 1-21
CTRL-z 1-22
execute commands from 2-33
FMLI 1-4, 1-21, 1-22

Command Menu
FMLI 1-8, 1-21, 2-30
FMLI table of defaults 2-33

Command Menu, FMLI
modifying 4-12

Commands (FMLI) 2-28, 2-34
syntax and use 2-29, 2-33
user access to 1-14, 2-33, 2-34

Commands file (FMLI) 4-12, 4-14, 4-15
descriptor definitions 4-13
examples of 4-13, 4-14
list of descriptors 2-27, 2-28
overview 1-8

Comments
FMLI 2-2

Conditional statements (FMLI) 2-37, 2-38
&& 2-5
| | 2-5

const cast 2-3, 2-11, A-3
Co-processing 3-65, A-3, A-12

coreceive(1F) 2-36
cosend(1F) 2-36
Current frame

definition 1-5
current_field(3curses) 11-58
current_item(3curses) 10-41
curs_addch(3curses) 7-1
curs_attr(3curses) 7-13
curses library 13-1
curses(3curses) 2-41, 4-4
curses.h 13-3
Cursor 1-14

D

data_ahead(3curses) 11-33
data_behind(3curses) 11-33
description descriptor 2-15, 3-7

example of 3-18
Descriptors

default values 1-11
definitions for form frames 3-26, 3-42
definitions for menu frames 3-1, 3-8
definitions for text frames 3-51, 3-55
evaluation order A-13
lists of 2-10, 2-28
statement syntax 2-10
types of 2-12

Disabling FMLI commands 4-12
DISPLAYH variable 2-7
DISPLAYW variable 2-7
DMD

5620 B-6
630 B-5

done command (FMLI) 2-30
done descriptor 2-17, 2-21, 3-4, 3-29, 3-53
doupdate(3curses) 8-2
dup_field(3curses) 11-6
Dynamic frame (FMLI)

example of 3-23
generation 2-5

dynamic_field_info(3curses) 11-10

E

echo(1F) 2-35
echo(3curses) 7-23
edit descriptor 2-21, 3-53
endwin(3curses) 6-2
erase(3curses) 7-6

Index

Index-3

ETI
basic programming 6-1, 6-8
colors (see colors) 7-14, 7-21
compile program 6-4
components 5-4, 5-6
connection with terminfo 5-3, 5-4
forms (see forms) 11-1, 11-73
header files 6-1, 6-2
input options 7-21, 7-24
input options settings 7-22
input routines 7-7, 7-11
libraries 5-1, 5-3
lines and columns 6-5
low-level interface (curses) 8-7, 8-8
menus (see menus) 10-1, 10-49
output attributes 7-11, 7-21
output routines 7-1, 7-7
panels (see panels) 9-1
program examples (see ETI examples) D-1, D-13
routines for drawing lines and other graphics 12-1,

12-2
routines for soft labels 12-2, 12-3
run program 6-4, 6-5
windows 6-5
windows (see windows) 8-1, 8-8
working with more than one terminal 12-3, 12-4

ETI examples D-1, D-13
colors program D-13
editor program D-1
highlight program D-5
scatter program D-6
show program D-8
two program D-9
window program D-11

Executable files
interrupting in FMLI 2-39

exit command
FMLI 1-11, 2-30, A-9

F

FACE-specific code A-3
fcol descriptor 2-18, 3-32
field_arg(3curses) 11-13
field_back(3curses) 11-20
field_buffer(3curses) 11-21
field_count(3curses) 11-32
field_fore(3curses) 11-20
field_index(3curses) 11-58
field_info(3curses) 11-8
field_init(3curses) 11-54
field_just(3curses) 11-18

field_opts(3curses) 11-26
field_opts_off(3curses) 11-28
field_opts_on(3curses) 11-28
field_pad(3curses) 11-20
field_status(3curses) 11-23
field_term(3curses) 11-54
field_type(3curses) 11-13
field_userptr(3curses) 11-24
fieldmsg descriptor 2-18, 3-32
flash(3curses) 7-21
fmlcut(1F) 2-35, A-13
fmlexpr(1F) 2-35
fmlgrep(1F) 2-35
FMLI

commands 2-28, 2-34
comments 2-2
disabling commands 4-14
file type casts 2-1, 2-31
filename conventions 2-1, 4-15
internationalized applications 1-12
overview 1-1, 1-11
redirection of input and output 2-6, 4-15, A-9
re-evaluation of descriptors 2-3
referencing variables 2-8, 2-10
screen layout 1-2, 1-5
special characters 2-3, 2-4
syntax 2-1, 2-6
use on asynchronous terminal 1-9
using an application 1-13, 1-23

fmli(1) 1-2, 1-11, 3-30
command syntax 4-15

fmlmax(1F) 2-35
Fn variable 2-7
form descriptor 2-17, 3-29
Form_Choice variable 2-7
form_driver(3curses) 11-40
form_fields(3curses) 11-31
form_init(3curses) 11-54
form_opts(3curses) 11-63
form_opts_off(3curses) 11-64
form_opts_on(3curses) 11-64
form_page(3curses) 11-59
form_sub(3curses) 11-35
form_term(3curses) 11-54
form_userptr(3curses) 11-61
form_win(3curses) 11-35
Forms (ETI) 11-1, 11-73

application-defined commands 11-48
associate windows and subwindows with a form

11-35
build field type 11-65
call form driver 11-48
change and fetch fields 11-31
change default attributes 11-33

Character User Interface Programming

Index-4

change default field attributes 11-12
change form page 11-59, 11-60
choice requests 11-48
compile and link form programs 11-1
count number of fields 11-32
create and free 11-29, 11-31
create and free fields 11-6, 11-8
create field type 11-66
dimensions 11-34
display 11-33, 11-40
driver processing 11-40, 11-61
dynamically growable fields 11-9
field buffers 11-21
field editing requests 11-45
field size 11-8
field status 11-22
field types argument support 11-69
field user pointer 11-24
field validation requests 11-47
form options 11-62, 11-64
form requests 11-43, 11-48
form user pointer 11-61, 11-62
free programmer-defined field types 11-68
helpful field features 11-21, 11-25
initialization routines 11-53, 11-57
inter-field navigation requests 11-43
intra-field navigation requests 11-44
justify data in field 11-18
location information 11-8
manipulate current field 11-57, 11-59
manipulate field attributes 11-8, 11-19
manipulate field options 11-26, 11-28
manipulate form attributes 11-31, 11-33
move a field 11-11
next and previous choice functions support 11-72
non-editable fields 11-18
page navigation requests 11-43
position form cursor 11-60, 11-61
posting 11-38
presence of offscreen data 11-33
programmer-defined field types 11-65, 11-73
sample program 11-3
scale 11-34
scrolling requests 11-46
set and fetch field user pointer 11-24
set and read field buffers 11-21
set and read field status 11-22
set field background 11-19, 11-21
set field foreground 11-19, 11-21
set field type 11-13
set pad character 11-19, 11-21
support programmer-defined field types 11-68,

11-73
termination routines 11-53, 11-57

terminology summary 11-2
unposting 11-38
validation functions 11-66
virtual key mapping 11-40
what a form program does 11-2
write form programs 11-1, 11-5

Forms (FMLI)
automatic layout of fields 3-40, 3-42
Choices menu 1-7, 3-35
definition 1-7
descriptor descriptions 3-26, 3-42
editing 1-18, 1-19
examples of 3-42, 3-51
graphic characters in 2-42
lists of descriptors 2-17, 2-20
multi-page 1-7, 3-35, A-11
navigation in 1-17, 1-18, B-1
order of descriptors 3-27
positioning 3-28
saving 1-18

Frame definition file
descriptors 2-12, 2-23
overview 1-6, 1-8

framemsg descriptor 2-14, 2-17, 2-21, 3-4, 3-29, 3-53
Frames (FMLI)

definition of 1-5
dynamically generated 2-5
ID number 1-6

Frame-to-frame navigation 1-19, 1-20
free_field(3curses) 11-6
free_fieldtype(3curses) 11-68
free_form(3curses) 11-29
free_item(3curses) 10-6
frm-mgmt command

FMLI 2-30
frow descriptor 2-18, 3-32
Function keys

FMLI (see screen-labeled function keys) 1-4, 1-22

G

getch(3curses) 7-8
getfrm(1F) 2-35
getitems(1F) 2-35
getstr(3curses) 7-9
Global variables 2-6
Glyphs

table of 2-42
goto command

FMLI 2-30
Graphic characters 2-41

Index

Index-5

H

Half bright attribute 2-42, 3-7
HAS_COLORS variable 2-8
has_colors(3curses) 7-18
header descriptor 3-53
help command

FMLI 1-22, 2-31, 3-4
help command, FMLI

example of 3-61, 3-65
help descriptor 2-14, 2-17, 2-21, 2-28, 3-4, 3-29, 3-53,

4-13
highlight_bar descriptor 2-26, 4-5
highlight_bar_text descriptor 2-26, 4-5
Highlighting 3-7

automatic mechanisms 1-16
terminal attribute 2-42

I

if-then-else statement (FMLI) 2-37, 2-38, A-13
inactive descriptor 2-15, 2-18, 3-7, 3-33, A-11
inactive_border descriptor 2-26, 4-6
inactive_title_bar descriptor 2-26, 4-6
inactive_title_text descriptor 2-26, 4-6
indicator(1F) 2-35, 4-4
infocmp(1M) 13-14
init descriptor 2-14, 2-17, 2-21, 3-4, 3-29, 3-53, A-13
init_color(3curses) 7-20
init_pair(3curses) 7-19
Initialization file (FMLI) 4-1, 4-4, 4-12, 4-15

graphic characters in 2-42
lists of descriptors 2-23, 2-27
order of descriptors 4-2
overview 1-8

initscr(3curses) 6-2, 6-5
Internationalization support (FMLI) 1-10, A-1
interrupt descriptor 4-7, 4-11, 4-13

description 3-5, 3-7, 3-29, 3-53
example of 3-16

Interrupt signal handling (FMLI) 2-39, 2-41, A-13
Introductory frame (FMLI)

descriptor definitions 4-2, 4-3
example of 4-3
list of descriptors 2-24

invalidmsg descriptor 2-18, 3-33
invalidOnDoneMsg descriptor 2-18, 3-33
item_count(3curses) 10-16
item_description(3curses) 10-8
item_index(3curses) 10-41
item_init(3curses) 10-39

item_name(3curses) 10-8
item_opts(3curses) 10-9
item_opts_off(3curses) 10-10
item_opts_on(3curses) 10-10
item_term(3curses) 10-39
item_userptr(3curses) 10-11
item_value(3curses) 10-7
item_visible(3curses) 10-10
itemmsg descriptor 3-7

example of 3-20

J

Job control 1-22, A-9, A-14

K

Keystrokes
alternate 1-5, 1-15, B-1

L

layers(1) A-14
lifetime descriptor 3-5, 3-30, 3-54
Line-drawing glyphs

table of 2-42
lininfo descriptor 2-15, 2-18, 3-7, 3-33
LININFO variable 2-8
link_field(3curses) 11-6
link_fieldtype(3curses) 11-65
LOADPFK variable 2-8
longline(1F) 2-35

M

MAILCHECK variable 2-8, A-9
mark command (FMLI) 2-31
menu descriptor 2-14, 3-5
menu_back(3curses) 10-26
menu_driver(3curses) 10-30
menu_fore(3curses) 10-26
menu_format(3curses) 10-18
menu_grey(3curses) 10-26
menu_init(3curses) 10-39
menu_items(3curses) 10-15
menu_mark(3curses) 10-21

Character User Interface Programming

Index-6

menu_opts(3curses) 10-47
menu_opts_off(3curses) 10-48
menu_opts_on(3curses) 10-48
menu_pad(3curses) 10-26
menu_pattern(3curses) 10-44
menu_sub(3curses) 10-23
menu_term(3curses) 10-39
menu_userptr(3curses) 10-45
menu_win(3curses) 10-23
menuonly descriptor 2-18, 3-33
Menus (ETI) 10-1, 10-49

application-defined commands 10-34
call menu driver 10-35
change and fetch pattern buffer 10-44
change default item attributes 10-11
change default menu attributes 10-16
check item visibility 10-10
compile and link programs 10-1
count menu items 10-16
create and free 10-13, 10-14
create and free items 10-5, 10-7
definition of kinds 10-7
dimensions 10-17, 10-22
directional item navigation requests 10-32
display 10-17, 10-29
driver processing 10-29, 10-45
ETI menu requests 10-32
fetch and change current item 10-41
fetch and change display attributes 10-25
fetch and change menu items 10-14
fetch and change top row 10-42
fetch names and descriptions 10-8
format 10-18
item and menu initialization 10-38
item and menu termination 10-38
item navigation requests 10-32
item select value 10-7
key virtualization correspondence 10-30
manipulate item attributes 10-8, 10-11
manipulate menu attributes 10-14, 10-17
manipulate menu user pointer 10-45, 10-46
mark string 10-20
multi-valued 10-7
multi-valued menu selection request 10-33
pattern buffer requests 10-33
position cursor 10-43
post and unpost 10-27
sample program 10-3
scrolling requests 10-33
set and fetch menu options 10-47, 10-49
set item options 10-9
set item user pointer 10-11
single-valued 10-7
terminology summary 10-2

what a menu program does 10-2
windows and subwindows 10-23
write programs using 10-2, 10-5

Menus (FMLI)
creating a dynamic 3-23
definition 1-6, 1-7
descriptor definitions 3-1, 3-8
examples of 3-8, 3-12, 3-26
lists of descriptors 2-14, 2-16
marking items 1-6
multi-column 3-4
multi-select 1-6, 3-4, 3-5, 3-7, 3-8
navigation in 1-15, 1-16
order of descriptors 3-2
passing parameters 3-23
positioning 3-3
scrollable 1-6, 1-16
selecting an item 1-16, 1-17
single-select 1-6, 3-6

Message line, FMLI 1-4
duration of display 3-4, 4-8

message(1F) 2-35
move(3curses) 6-3, 7-4
move_field(3curses) 11-12
multiselect descriptor 2-14, 3-5

N

name descriptor 2-15, 2-18, 2-20, 2-22, 2-27, 2-28, 3-7,
3-33, 4-11, 4-13

Named keys (FMLI) 1-15, B-1
problems A-8

Navigation
FMLI 1-15, 1-20, B-1

ncol descriptor 2-18, 3-34
new_field(3curses) 11-6
new_fieldtype(3curses) 11-66
new_form(3curses) 11-29
new_item(3curses) 10-5
new_menu(3curses) 10-13
new_page(3curses) 11-29
newwin(3curses) 8-6
next_choice(3curses) 11-72
next-frm command (FMLI) 2-31, A-10
nextpage command (FMLI) 2-31, A-10
nobang descriptor 2-25, 4-7
nocbreak(3curses) 7-23
noecho descriptor 2-18, 3-34
noecho(3curses) 7-23
nop command (FMLI) 2-31
NR variable 2-8
nrow descriptor 2-18, 3-34

Index

Index-7

O

oninterrupt descriptor 4-8, 4-11, 4-13
description 3-6, 3-8, 3-30, 3-54
example of 3-16
table entry 2-16, 2-20, 2-28

open command (FMLI) 2-31

P

Pads 6-7
page descriptor 2-18, 3-34
pair_content(3curses) 7-18
PAIR_NUMBER 7-18
Panels 9-1, 9-11

change 9-3
check if hidden 9-7
compiling and linking programs 9-1
create 9-1
delete 9-10
elementary operations 9-2, 9-4
fetch above or below 9-8
fetch pointers 9-2
hide 9-6, 9-7
make invisible 9-6, 9-7
move 9-3, 9-4
move to top or bottom 9-4
reinstate 9-7
setting and fetching pointer 9-8, 9-11
update 9-5, 9-6

pathconv(1F) 2-35
permanentmsg descriptor 2-25, 4-8, A-13
Pipes 2-5

FMLI input A-14
named 2-36

pos_form_cursor(3curses) 11-60
pos_menu_cursor(3curses) 10-43
post_form(3curses) 11-38
post_menu(3curses) 10-27
prev_choice(3curses) 11-72
prev-frm command (FMLI) 2-31, A-10
prevpage command (FMLI) 2-32, A-10
printw(3curses) 7-3

Q

Quoting mechanisms (FMLI) 2-4

R

readfile(1F) 2-35, 4-3, A-12
refresh command

FMLI 2-32
refresh(3curses) 6-2, 6-5
regex(1F) 2-36, A-11, A-12

example of 3-25
reinit(1F) 2-36
release command (FMLI) 2-32
reread descriptor 2-14, 2-21, 3-6, 3-31, 3-55, A-13

example of 3-14
reset command (FMLI) 2-32, A-12
RET variable 2-8
Reverse video attribute 2-42
rmenu descriptor 2-18, 3-33, 3-35, A-5, A-12
rows descriptor 2-14, 2-18, 2-21, 2-24, 3-6, 3-36, 3-55,

4-3, A-11
run(1F) 2-36

S

scale_form(3curses) 11-34
scale_menu(3curses) 10-22
scanw(3curses) 7-10
screen descriptor 2-26, 4-6
Screen-labeled function keys 1-4, 1-22, A-10

automatic downloading B-5
default assignments 1-14, 2-34, 4-10
defining color of 4-6
descriptor definitions 4-9, 4-12
display alternate set 3-3, 3-28, 3-52
examples of 4-12
how to disable 4-11
layout of 4-8
list of descriptors 2-27

Scroll box (FMLI) 1-5, 1-7
scroll descriptor 2-18, 3-36
Scroll symbol

FMLI 1-5, 1-7
Security (FMLI) A-1, A-4
selected descriptor 2-15, 3-8
SELECTED variable 2-8
set(1F) 2-6, 2-36, A-4
set_current_field(3curses) 11-58
set_current_item(3curses) 10-41
set_field_back(3curses) 11-20
set_field_buffer(3curses) 11-21
set_field_fore(3curses) 11-20
set_field_init(3curses) 11-54
set_field_just(3curses) 11-18

Character User Interface Programming

Index-8

set_field_opts(3curses) 11-26
set_field_pad(3curses) 11-20
set_field_status(3curses) 11-23
set_field_term(3curses) 11-55
set_field_type(3curses) 11-13, 11-14, 11-15, 11-16,

11-17, 11-18
set_field_userptr(3curses) 11-24
set_fieldtype_arg(3curses) 11-69
set_fieldtype_choice(3curses) 11-72
set_form_fields(3curses) 11-31
set_form_init(3curses) 11-54
set_form_opts(3curses) 11-63
set_form_page(3curses) 11-59
set_form_sub(3curses) 11-35
set_form_term(3curses) 11-55
set_form_userptr(3curses) 11-61
set_form_win(3curses) 11-35
set_item_init(3curses) 10-39
set_item_opts(3curses) 10-9
set_item_term(3curses) 10-39
set_item_userptr(3curses) 10-11
set_item_value(3curses) 10-7
set_max_field(3curses) 11-10
set_menu_back(3curses) 10-26
set_menu_fore(3curses) 10-26
set_menu_format(3curses) 10-18
set_menu_grey(3curses) 10-26
set_menu_init(3curses) 10-39
set_menu_items(3curses) 10-15
set_menu_mark(3curses) 10-21
set_menu_opts(3curses) 10-47
set_menu_pad(3curses) 10-26
set_menu_pattern(3curses) 10-44
set_menu_sub(3curses) 10-23
set_menu_term(3curses) 10-39
set_menu_userptr(3curses) 10-45
set_menu_win(3curses) 10-23
set_new_page(3curses) 11-29
set_top_row(3curses) 10-42
setcolor(1F) 2-36, 4-6
shell(1F) 2-36, A-5
show descriptor 2-15, 2-18, 3-8, 3-36, A-11

example of 3-21
SIGALRM alarm 2-8
SIGINT signal 2-39
slk_bar descriptor 2-26, 4-6
slk_clear(3curses) 12-2
slk_init(3curses) 12-2
slk_layout descriptor 2-25, 4-8
slk_noutrefresh(3curses) 12-2
slk_refresh(3curses) 12-2
slk_restore(3curses) 12-2
slk_set(3curses) 12-2
slk_text descriptor 2-26, 4-6

SLKs (see screen-labeled function keys) 1-4, 1-22
Special characters

FMLI 2-3, 2-4
standend(3curses) 7-13
standout(3curses) 7-13
start_color(3curses) 7-18
Statement operators (FMLI) 2-5
stty(1) 1-9, A-8
subwin(3curses) 8-6
Syntax

errors (FMLI) 2-6

T

TAM C-1, C-10
compiling and running C-1
how the library works C-2, C-10
library 6-4
tips for polishing programs C-2
transition keyboard subsystem C-6
translation of calls C-3

TERM environment variable 6-4
term.h 13-3
termcap 13-8, 13-14, 13-15
Terminal Access Method (see TAM) C-1, C-10
Terminal display attributes

reset 2-42
table of 2-42
using 2-41, 2-44

Terminal independence (FMLI) 1-9, 1-10
terminfo(4) 13-1, 13-15

basic capabilities 13-10
compare descriptions 13-14
compile and run a program 13-4
compile description 13-12
convert from termcap 13-14
database 1-9, 13-6, 13-15, B-6
example program 13-4
keyboard-entered capabilities 13-11
learn capabilities 13-7
name terminal 13-7
parameter string capabilities 13-11
print descriptions 13-14
routines 13-2, 13-6
screen-oriented capabilities 13-10
specify capabilities 13-8
terminal descriptions 13-6
test description 13-13

test(1F) 2-36
text descriptor 2-21, 2-24, 3-55, 4-3
Text frames (FMLI)

definition 1-8

Index

Index-9

descriptor definitions 3-51, 3-55
editing 1-19
examples of 3-57, 3-61
graphic characters in 2-41
header A-11
lists of descriptors 2-21, 2-23
navigation in 1-19
order of descriptors 3-51
positioning 3-52
scrollable 1-8

TEXT variable 2-8
textframe command (FMLI) 1-8, 1-22, 2-21, 2-32, 3-56,

3-57
example of 3-64
options 3-56

title descriptor 2-21, 2-24, 3-55, 4-3
toggle descriptor 2-25, 4-8
Toggling 2-32
togslk command (FMLI) 2-32, A-12
top_row(3curses) 10-42
tput(1) 1-9
Trusted applications (FMLI) A-1, A-4
Type casts (FMLI) 2-2, 2-3

descriptor evaluation time 2-3
file names 2-1, 2-2, 2-3

U

Underlining attribute 2-42
UNIX System

accessing from FMLI 1-23
interrupting commands A-4

unix-system command
FMLI 2-32

unpost_form(3curses) 11-38
unpost_menu(3curses) 10-27
unset(1F) 2-36
update command

FMLI 2-32, A-11
use_incorrect_pre4.0_behavior descriptor 2-9, 4-9, A-9
User-defined variables (FMLI) 2-6, 2-7
Utilities (FMLI)

built-in 2-34, 2-37

V

valid descriptor 2-18, 3-36, A-4
validOnDone descriptor 2-18, 3-38
value descriptor 2-18, 3-39, A-11
Variables (FMLI) 2-6, 2-10

built-in 2-7, 2-8
evaluation of 2-8, 2-10
notation 2-8, 2-9

vary cast 2-3, 2-11, A-3

W

window_text descriptor 2-26, 4-6
Windows 8-1, 8-8

create 8-6
output and input 8-1

wnoutrefresh(3curses) 8-2
Work area (FMLI) 1-3
Working descriptor 4-4
working descriptor 2-24, 4-4
Working icon 1-3, 4-4
wrap descriptor 2-20, 2-21, 3-39, 3-55, A-11
Wrapping (FMLI)

navigation keys B-1
word 3-39, 3-55, 3-59

X

xterm XWIN terminal emulator A-14

Character User Interface Programming

Index-10

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
 O

S

Character User’s
Interface

Programming

0890424

Programmer

