Character User Interface Programming

<€c g’?’gﬂ#gsnr 0890424-000
CORPORATION" February 1997

The operating system name has been changed to PowerMAX OS

Copyright 1997 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end—users. It may not be repro-
duced in any form without the written permission of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309-1892. Mark the en‘#ttgrgion: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission

of the publisher.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd..
PowerMAX OS is a trademark of Concurrent Computer Corporation.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the manufacturesairtheapkethrsts
with which the marks or names are associated..

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- July 1994 000 SecuréPower UNIX rl.1

Preface

Introduction

The Character User Interface Programming for application developers who want to
develop a menu- and form-based interface that operates on ASCII character terminals run-
ning on UNIX® System V Release 4.2 and later. Existing applications can be adapted to a
character user interface front-end, and new applications can be designed from the start to
take advantage of the screen management capabilities of FMLI and ETI.

FMLI is a high-level programmer interface for creating menus, forms, and text frames that
enforce a well-defined look and feel policy. An application developer, having defined
frames (menus, forms, and text) in files, is free from having to program their display and
user interactions. The shell-like language is processed by an interpreter and allows the
developer to specify menu and form placement. FMLI allows application developers to
customize specific applications easily and quickly without writing in C language code.

ETlis a set of screen management library subroutines (builirses) that promote fast
development of application programs that manipulate windows, panels, menus, and forms.
ETI also includes functions to define help, error and other types of messages, and to dis-
play, and change messages quickly and easily. It is a C language toolkit used to build user
interfaces for applications. ETI allows the developer to design a unique/customized user
interface.

This guide tells you how to use the Form and Menu Language Interpreter (FMLI) and the
Extended Terminal Interface (ETI) software development tools to write such user inter-
faces for your applications. It assumes the reader has a working knowledge of UNIX Sys-
tem V, shell programming, and/or C Language programming.

NOTE

This guide is not intended to be an introduction to UNIX System
V, UNIX System shell programming, or C Language program-
ming. For an introduction to shell programming and C Language
programming, see “Referenced Publications” on page -vi.

Who This Guide Is For

This guide is written for programmers developing UNIX System V applications with
interfaces that operate on display devices using only standard characters. A working
knowledge of the UNIX system and shell programming is assumed. (See the UNIX Sys-
tem V User's Guiddor detailed information on these topics.)

Character User Interface Programming

Scope of Manual

Syntax Notation

Chapter 1 through Chapter 4 describe the Form and Menu Language, and tell how to use it
to write descriptions of the forms, menus, and text frames that make up your user inter-
face. These chapters explain how you can make best use of the screen management capa-
bilities that FMLI provides for you, and how you can customize the default appearance
and functionality of a user interface written with FMLI.

Chapter 5 through Chapter 13 describe the Extended Terminal Interface, and tell how to
use it to write screen management programs on a UNIX system. These chapters explain
how to use the high-level library routines to build panels, menus and forms. They also

describe how these routines relate to low-lewetes routines and theerminfo data-

base.

The following typographical conventions are used in this guide:

* The logical values “true” and “false” are represented in the text by the
words TRUE and FALSE, shown in all capital letters. Boolean descriptors
must evaluate to either TRUE or FALSE, where

- FALSE means the literal word “false,” irrespective of case, or a non-
zero return code.

- TRUE means any value other than those defined for FALSE.

* Literal elements of computer input and output, including user input, pro-
gram code, UNIX system command names, FMLI command and built-in
utility names, and other elements of the Form and Menu Language are
shown inconstant-width typeface

* Substitutable elements of command lines and of elements of the Form and
Menu Language are shownitalic typeface

¢ Comments in a screen display—that is, text that is not computer output but
is an aside from the author to the reader—are shoitaimtypeface as in
the following example:

command interaction

Press ENTER to continue

* Named keys are shown in a representation of a hard key. This includes keys
such aESCAPE or DEL, and the function keys1 throughF8.

¢ Alternative keystroke sequences are also shown in a hard key representa-
tion. For example, the alternative keystroke sequence for the named key

Preface

DEL is CTRL-x. That means the user must hold down GeRL key
while pressing.

Longer alternative keystroke sequences are shown as a sequence of hard key repre-
sentations. For example, the alternative keystroke sequence for the nark@digey
CTRL-f 3. That means the user must hold d&®hRL while pressind, then press

3.

Screen labels for function keys are also shown as hard key representations.
For example, when a menu is the active frame on the screen, function key
F1 has the screen labdELP.

Depending on the keyboard being used, the carriage-return key may be
calledENTER, RETURN, or something else. Throughout this guide the
ENTER key is used to represent the carriage-return key. However, if a
keyboard only hasRETURN key, use it o€ TRL-m instead.

When command syntax is described, the following notation conventions
are used (especially in the FMLI manual pages in section 1F):

- Literal elements of a command (including command names them-
selves) are shown itonstant-width typeface

- Substitutable arguments to commands are shoutalimtypeface

- Square bracket$]() around an argument indicate that the argument
is optional.

- Ellipses (..) are used to show that the previous argument may
be repeated.

In program text, the major ETI data types appear in uppercase. They are
WINDOW A rectangular area of the screen treated as a unit

PANEL A window with relations of depth to other windows so that regions hid-
den behind other windows are invisible

ITEM A character string consisting of a name and an optional description

MENU A screen display that presents a set of items from which the user
chooses one or more, depending on the type of menu

FIELD An m x n block of form character positions that ETI functions can
manipulate as a unit

FORM A collection of one or more pages of fields

FIELDTYPE
A field attribute that determines what kind of data may occupy the field

Every ETI function is introduced with a SYNOPSIS. The first line of the
SYNOPSIS proper describes the routine, while the following lines describe
its arguments. On each line, the type of the return value or arguments pre-
cedes their names. As an example, consider

Character User Interface Programming

SYNOPSIS

int set_menu_win (meny window)
MENU * meny
WINDOW * window

This says that the functisset_menu_win returns a value of typat and that it
takes two argumentspenuandwindow The argumeninenuis of typeMENU *
(pointer to a menu), while the argumevihdowis of typeWINDOW *(pointer to a
window).

* The termswindow panel meny andform are often shorthand for the
phrases window pointer, panel pointer, menu pointer, and form pointer,
respectively. All ETI routines pass or return pointers to these objects, not
the objects themselves.

Referenced Publications

The following publications are referenced in this document:

0890428 User's Guide
0891019 Concurrent C Reference Manual

Vi

Contents

Chapter 1 Introduction to FMLI

INtrOdUCHION oo 1-1
What IS FMLI? . .o 1-1
Screen Layout. 1-2
Frames 1-5
Programming with FMLL. 1-5
Frame Definition Files 1-6
Menu Frames. 1-6
Single-column and Multi-columnMenus 1-6
Single-select and Multi-selectMenus 1-6
Form Frames 1-7
Multi-line and Scrollable Fields. 1-7
Multi-page FOrmS. 1-7
Validating Field Values 1-7
ChoiCeS MENU 1-7
TeXt Frames e 1-8
Application Level Definition Files. 1-8
Initialization File 1-8
Commands File 1-8
Alias File 1-8
Terminal Independence. 1-9
Recovering after Abnormal Termination. 1-9
Internationalization SUPPOIt. 1-10
An Example Application 1-10
Writing an Internationalized Application 1-12
Using an FMLI Application. 1-13
Named Keys and Alternative Keystroke Sequences. 1-15
Navigatingina Menu. e 1-15
Selecting Menu [tems. e 1-16
Navigating in a Form 1-17
Editingand Savinga Form. 1-18
Usinga Choices Menu e e 1-19
Navigating in and Editinga Text Frame. 1-19
Navigating between Frames 1-19
Executing Commands. 1-20
The Command MenU. 1-21
The Command Line. 1-21
Screen-labeled Function Keys. 1-22
On-line Helpo 1-22
Accessing the UNIX System. i 1-23
Chapter 2 The Form and Menu Language
INtrodUCHiONo 2-1
Syntax, Rules, and Conventions i 2-1
Naming Conventions for Frame Definition Files. 2-1
COMMENES. . . o 2-2

Vi

Character User Interface Programming

Case SeNnsitiVILY. 2-2
TYPE CaStS. . 2-2
File Type Casts. 2-2
Type Casts That Change the Time of Descriptor Evaluation. 2-3
Special Characters. 2-3
Quoting Mechanisms 2-4
Backquoted EXPressionS.o e 2-4
EXpression Operators.o e 2-5
File Redirection. 2-6
SYNMEAX ENTOrS . o e 2-6
Variables. 6. 2
User-defined Variables 2-6
Built-in Variables 2-7
Variable Evaluation 2-8
DSOS . . . ettt e Q. 2-1
Descriptor Evaluation e 2-10
DS CiPIOr TYPES . .« o oo 2-12
Frame Definition File Descriptors 2-12
Menu DeSCHPIOIS. . . . oo 2-14
FOrm DesSCriptorS oo 2-17
Text Frame DesCriptorsttt e 2-21
Application Level File Descriptors. 2-23
Initialization File DeSCriptors e 2-23
Application Descriptors for the Initialization File 2-23
Application SLK Descriptors e 2-26
Commands File DesCriptors 2-27
FMLE Commands. e 2-28
FMLI Commands: Syntax and Use. 2-29
User Access to FMLI Commands. 2-33
Built-in Utilities 2-34
Overview of the Built-in Utilities 2-34
Conditional Statements 2-37
Signal Handlingo 2-38
Interrupt Signal Handling 2-39
Terminal Display Attributes. 2-41
Using the Alternate Character Set. 2-42

Chapter 3 Frame Definition Files

INtrOdUCHION . . . oo 3-1
Menu Frame DeSCHiptOrS oot e e 3-1
Frame Descriptors for Menus oo 3-3
Item Descriptors for Menus e 3-6
Examples of Menu Definition Files. 3-8
Defininga Simple Menu. e 3-9
Creating Multi-column and Scrollable Menus 3-12
Using the reread DesCriptor e e e e 3-14
Using the interrupt and oninterrupt Descriptors. 3-16
Providing Supplementary Information for Menu ltems 3-18
Displayingan ltem Message.ot 3-20
Using the show Descriptor e e e e 3-21
Creatinga DynamiC MENU it e e e 3-23
Form Frame DesCriptOrsot e e e 3-26

viii

Contents

Frame Descriptors for Forms 3-27
Field DesCriptors e 3-31
Automatic Layout of Form Fields. 3-40
Example Form Definition Files 3-42
Saving User Inputtoa Form. 3-42
Validatinga Form Field 3-47
Example of Validating a Field Value with the valid Descriptor. 3-50
TeXt Frames 3-51
Text Frame DesCriptorst 3-52
The textframe Command 3-56
Options for the textframe Command. 3-56
Example Text Frame Definition Files i 3-57
Defining Attributes of Text Frames 3-58
Defining a Text Frame with readfile and longline 3-59
Using Text Frame Headers and Terminal Attributes 3-59
Other Useful Examples 3-61
Defining a Help Frame for Menu Items or Form Fields. 3-61
Using the textframe Command as an Alternative 3-64
Using Co-processing Utilities. 3-65
Chapter 4 Application Level Definition Files
INtrOdUCHION « . . oo 4-1
The Initialization File 4-1
Introductory Frame DescCriptorsttt e 4-2
Example Definition of an Introductory Frame 4-3
Banner Line DeSCIiptOrS.ttt 4-3
Example Definitions ofaBannerLine 4-4
Color Attribute DeSCriptorso e e 4-4
Examples of Defining Color Attributes. 4-6
Defining Color forthe BannerLine 4-6
General Application DesCriptorst 4-6
Screen-labeled Function Key Descriptors 4-9
Example Definitions of Screen-labeled Function Keys. 4-12
The Commands File. e 4-12
Command DeSCHIPtOrS . ..o v i e 4-13
Example of Adding an Application-specific Command 4-13
Example of Disabling an Existing FMLI Command 4-14
The Allas File 4-14
Examples of Adding Path Aliases 4-14
fmliCommand Syntax. e 4-15
Chapter 5 Introduction to ETI
OV IV B . . ottt 5-1
What IS ET1? ..o e 5-1
The ETILIbraries e 5-1
The ETl/terminfo Connection i 5-3
Other Components of the Screen Management System. 5-4
Chapter 6 Basic ETI Programming
6-1

INtrOdUCTION o

Character User Interface Programming

Chapter 8 Windows

What Every ETI Program Needs i e e 6-1
The Header Files. e 6-1
The Routines initscr, refresh, endwin. 6-2

Compiling an ETIProgram e 6-4
Using the TAM Transition Library 6-4

Running an ETI Program. e e 6-4

More about initscrand Linesand Columns.. e 6-5

More about refreshand WIindows e 6-5
Pads. . .. e 6-7

INtrOdUCHIONo e 7-1
OUIPUL. . . o 7-1
addeh. ... e 7-1
AdSEr. . . e 7-3
PIIN W L Lt e 7-3
0010 Y 7-4
Clear and erase. e e 7-6
clrtoeol and clIrtobot e 7-6
OBICN L o e 7-8
0= 5] 1 7-9
SCANW. &+ v v v e e e e e 7-10
Output Attributes e 7-11
attron, attrset, and attroff. 7-13
standoutand standend. 7-13
Color Manipulation. e 7-14
How the Color Feature Workso e 7-14
Using the COLOR_PAIRY) Attribute. 7-16
Changing the Definitionsof Colors., 7-17
Portability Guidelines 7-17
Other Macros and ROULINESttt e e 7-18
Start COlOr ... e 7-18
] TS 7= 7-19
INIE COlOr . . o e 7-20
Bells, Whistles, and Flashing Lights: beepandflash. 7-21
INPUL OPtiONS . . . e e 7-21
echoandnoecho i 7-23
cbreak and nocbreak 7-23
INtrOdUCHION . . . 8-1
Output and INPULo 8-1
The Routines wnoutrefresh and doupdate i, 8-2
NeW WINAOWS e 8-6
MWW . o e e 8-6
SUDWIN. .. 8-6
ETI Low-level Interface (curses) to High-level Functions. 8-7

Chapter 9 Panels

Chapter 10 Menus

Contents

INtrodUCHIONo 9-1
Compiling and Linking Panel Programs 9-1
Creating Panels e 9-1
Elementary Panel Window Operations, 9-2
Fetching Pointers to Panel Windows 9-2
Changing Panel WINndows. e e 9-3
Moving Panel Windows onthe Screen. 9-3
Moving Panels to the Top or Bottom ofthe Deck. 9-4
Updating Panelsonthe Screen i e 9-5
Making Panels Invisible. e 9-6
Hiding Panels 9-6
Checking If Panels Are Hidden. i, 9-7
Reinstating Panels i 9-7
Fetching Panels above or below GivenPanels 9-8
Setting and Fetching the Panel User Pointer. 9-8
Deleting Panels e e 9-10
INtrodUCtioN 1. 10-
Compiling and Linking Menu Programs.ttt 10-1
Overview: Writing Menu Programs in ETl. 10-2
Some Important Menu Terminologyt 10-2
What a Menu Application Program Does 10-2
A Sample Menu Program.ot 10-3
Creating and Freeing Menu ltems.. 10-5
Two Kinds of Menus: Single- or Multi-valued 10-7
Manipulating an Iltem's Select Value in a Multi-valued Menu. 10-7
Manipulating Item Attributes 10-8
Fetching Item Names and Descriptions 10-8
Setting Item OpPtioNS. 10-9
Checking an ltem's Visibility 10-10
Changing the Current Default Values for Item Attributes 10-11
Setting the Item User Pointer. 10-11
Creating and Freeing Menus 10-13
Manipulating Menu Attributes 10-14
Fetching and Changing Menu ltems. 10-14
Counting the Number of Menu ltems. i 10-16
Changing the Current Default Values for Menu Attributes 10-16
Displaying MENUS oot 10-17
Determining the Dimensions of Menus 10-17
Specifying the Menu Format. i 10-18
Changing Your Menu's Mark String o 10-20
Querying the Menu DIMeNSIONSottt e 10-22
Associating Windows and Subwindows with Menus. 10-23
Fetching and Changing a Menu's Display Attributes. 10-25
Posting and Unposting Menusttt 10-27
Menu Driver PrOCESSING vt ettt e et e e e 10-29
Defining the Key Virtualization Correspondence. 10-30
ETIMenu RequesES e 10-32
Item Navigation Requests 10-32
Directional ltem Navigation Requests 10-32

Xi

Character User Interface Programming

Chapter 11 Forms

xii

Menu Scrolling Requests. 10-33
Multi-valued Menu Selection Request 10-33
Pattern Buffer Requests. 10-33
Application-defined Commands. 10-34
Callingthe Menu Driver. e 10-35
Establishing Item and Menu Initialization and Termination Routines 10-38
Functionset_menu_init. 10-39
Functionset_item_init. 10-39
Function set_item_term. e 10-39
Function set_menu_term e 10-40
Fetching and Changing the Currentltem 10-41
Fetching and Changingthe TopRow 10-42
Positioning the Menu CUrsor i e e 10-43
Changing and Fetching the PatternBuffer 10-44
Manipulating the Menu User Pointer. e 10-45
Setting and Fetching Menu Options. i 10-47
INtrodUCHIONo 1. 11-
Compiling and Linking Form Programs i 11-1
Overview: Writing Form Programs in ETI 11-1
Some Important Form Terminology oo 11-2
What a Typical Form Application Program Does. 11-2
A Sample Form Application Program i, 11-3
Creating and Freeing Fields. e i 11-6
Manipulating Field Attributes 11-8
Obtaining Field Size and Location Information. 11-8
Dynamically Growable Fields i 11-9
Movinga Field e 11-11
Changing the Current Default Values for Field Attributes 11-12
Setting the Field Type to Ensure Validation. 11-13
TYPE _ALPHA . 11-14
TYPE_ALNUM. . . 11-15
TYPE_ENUM . .. 11-15
TYPE_INTEGER e e 11-16
TYPE_NUMERIC. e e 11-17
TYPE_REGEXP . .o 11-18
Justifying Dataina Field i 11-18
Setting the Field Foreground, Background, and Pad Character. 11-19
Some Helpful Features of Fields 11-21
Setting and Reading FieldBuffers 11-21
Setting and Readingthe Field Status 11-22
Setting and Fetching the Field User Pointer. 11-24
Manipulating Field Options 11-26
Creating and Freeing FOrmS. i e e e 11-29
Manipulating Form Attributes 11-31
Changing and Fetching the Fields on an Existing Form................... 11-31
Counting the Numberof Fields. 11-32
Querying the Presence of OffscreenData. 11-33
Changing ETI Form Default Attributes 11-33
Displaying FOrmsS. e 11-33
Determining the Dimensions of Forms. 11-34

Contents

Scalingthe Form 11-34
Associating Windows and Subwindows witha Form 11-35
Posting and Unposting Forms 11-38

Form Driver ProCesSiNgot e 11-40
Defining the Virtual Key Mapping.o 11-40
ETIForm Requests. 11-43

Page Navigation Requests. e 11-43

Inter-field Navigation Requests on the CurrentPage 11-43

Intra-field Navigation Requests. 11-44

Field Editing Requests 11-45

Scrolling Requests.o 11-46

Field Validation Requests e 11-47

Choice ReqUESLES 11-48
Application-defined Commands. 11-48
Callingthe Form Drivero 11-48
Establishing Field and Form Initialization and Termination Routines. 11-53

Function set form_init 11-54

Function set_field_init. 11-54

Function set_field_term. 11-55

Function set_form_term 11-55
Manipulating the Current Field 11-57
Changingthe Form Page i 11-59
Positioning the FOrm Cursor e 11-60

Setting and Fetching the Form User Pointer 11-61
Setting and Fetching Form Options. 11-62
Creating and Manipulating Programmer-defined Field Types 11-65
Building a Field Type from Two Other Field Types. 11-65
Creating a Field Type with Validation Functions. 11-66
Freeing Programmer-defined Field Types it 11-68
Supporting Programmer-defined Field Types. 11-68
Argument Support for Field Types 11-69
Supporting Next and Previous Choice Functions 11-72

Chapter 12 Other ETI Routines

INtrodUCHIONo 1. 12-
Routines for Drawing Lines and Other Graphics 12-1
Routines for Using SoftLabels 12-2
Working with More Than One Terminal 12-3
Chapter 13 terminfo

INtrodUCHiON 1. 13-
Organization of ThisChapter. e 13-1
What Isterminfo?. 13-1
Working with terminfo Routines 13-2
What Every terminfo Program Needs 13-3
Compiling and Running a terminfo Program. 13-4

An Example terminfo Program 13-4
Working with the terminfo Database. i 13-6
Writing Terminal Descriptions. 13-6
Namethe Terminal e 13-7

Learn About the Capabilities. 13-7

Xiii

Character User Interface Programming

Specify Capabilities. 13-8
Basic Capabilities. 13-10
Screen-oriented Capabilities. i 13-10
Keyboard-entered Capabilities. L. 13-11
Parameter String Capabilities. L. 13-11

Compile the Description 13-12

Testthe DesCription e 13-13

Comparing or Printing terminfo Descriptions 13-14
Converting a termcap Description to a terminfo Description. 13-14

Appendix A Programming Tips and Known Problems

Programming TIPS . . .o oo e e A-1
Internationalization SUPPOrtt e A-1
Building Trusted FMLI Applications i A-1

Access to External Executables. L A-1
Interruptible Commands A-2
Variables A-2
Frequency of Evaluation Type Casts. A-3
CO-PrOCESSING .« v v v vttt et e A-3
FACE-specific Code. i e e A-3
Validation of Form Fields A-4
SCENANO L .o e A-4
SCENANO 2 .ot e A-4
COMMaANAS e A-4
Co-processing FUNCLIONS. e A-5
FOIMS . A-5
MENUS . . . A-6
=2 A-8
Backquoted EXPresSioNS. . .. oottt e A-8
0] o A-8
MeSSage Line A-9
) 1] A-9
MisCellaneous e A-9

KNown Problems e e A-10
MBS S A0S . . . o vttt A-10
Screen Labels for Function Keys i A-10
FOIMS . A-11

Multi-page forms. e e A-11
Other Form Problems A-11
TeXt FramMeS. .« o oo A-11
COMMaANAS e A-12
Built-in Utilitieso A-12
170 = A-12
readfile e A-12
Co-processing Utilities e A-12
if-then-else. e A-13
UL, . . A-13
DS CIIPIONS . o o e e A-13
Interrupt Facilityo e e A-13
MisCellaneous e A-14

Xiv

Appendix B Keyboard Support

Named Keys and Alternative Keystroke Sequences
Automatic Function Key Downloading

Appendix C TAM Transition Library

Introduction
Compiling and Running TAM Applications under ETI
Tips for Polishing TAM Application Programs Running under ETI
M Transition Library Works.
Translations from TAM Calls to ETI Calls

The TAM Transition Keyboard Subsystem

How the TA

Appendix D ETI Program Examples

Illustrations

Program Examples
tor Program.
hlight Program
The scatter Program
The show Program
The two Program
The window Program
OIS Program

The edi
The hig

The col

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19

The FMLIScreent e
Menu.sample: A Simple Menu Frame Definition File
Text.welcome: A Text Frame Definition File

Menu.sample: A Simple International Menu Definition File

Menu.sample: Screen Output
Menu.sample: Screen Output after Selecting welcome

Default Assignments of FMLI Commands to Function Keys

Menu.items: An Example of Menu Item Descriptors
Menu.items: Screen Output,
Menu.frame: An Example of Menu Frame Descriptors
Menu.frame: ScreenQutput
Menu.rows: An Example of a Scrollable Menu
Menu.rows: Screen Output
Menu.columns: An Example of a Two-Column Menu
Menu.columns: ScreenQutput

Menu.reread: An Example of a Dynamically Updated Menu

Menu.reread: Screen Output.
Menu.reread: Screen Output after a SIGALRM Occurs. . . .
Menu.interrupt: An Example of Interrupt Signal Handling . .
Menu.oninterr: A Further Example of Interrupt Handling . .
Menu.descrip: An Example of the description Descriptor . .
Menu.descrip: ScreenQutput
Menu.itemmsg: An Example of the itemmsg Descriptor . ..
Menu.itemmsg: ScreenQutput.
Menu.show: An Example of the show Descriptor
Menu.show: Screen Output.cv....

Contents

XV

Character User Interface Programming

Screens

Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29

Figure 3-30
Figure 3-31
Figure 3-32
Menu
Figure 3-33
Figure 3-34
Figure 3-35
Figure 3-36
3-59

Figure 3-37
Figure 3-38
Figure 3-39
Figure 3-40
Figure 3-41
Figure 3-42
Figure 3-43
Figure 3-44
Figure 3-45
Figure 3-46
Figure 3-47
Figure 3-48
Figure 4-1
Figure 5-1
Figure 6-1
Figure 6-2
Figure 6-3
Figure 8-1
Figure 8-2
Figure 8-3
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 11-1
Figure 11-2

Screen 5-1
Screen 6-1
Screen 8-1

Menu.edit: An Example of a Dynamically Created Menu 3-24
Menu.edit: Screen Output 3-24
Menu.dynamic: An Example of a Dynamically Created Menu 3-25
Menu.edit: Screen Output when Menu Files Is Selected 3-26
Form.addr: Defaults NotUsed 3-43
Form.addr: Screen Output. e 3-44
Form.addr: Defaults Used 3-45
Form.addr: Screen Output after Being Filled Outby a User. 3-46
Addr.file: Contents after User Savesthe Form 3-46
Form.3choices: An Example of Field Validation Using the menuonly Descrip-
.. 3-47
Form.6choices: An Example of a ChoicesMenu 3-48
Form.6choices: Screen Output 3-49
Form.6choices: Screen Output after User Selects an Item from the Choices
... 50. 3
Form.valid: An Example of Field Validation Using the valid Descriptor 3-50
Text.USA: An Exampleofa TextFrame 3-58
Text.USA: Screen OUtput oo 3-58
Text.readfile: An Example of Using readfile and longline in a Text Frame
Text.header: An Example of Text Frame Headers 3-60
Text.header: Screen Qutput. it 3-60
Menu.lininfo: An Example of Defining Help with LININFO 3-61
Text.gen_help: An Example of a Help Text Frame 3-61
Text.item2: An Example of aHelp Text Frame 3-62
Text.item3: An Example of a Help Text Frame 3-62
Menu.lininfo: Screen Output. 3-62
Menu.lininfo: Screen Output after Requesting Helponltem 1 3-63
Menu.lininfo: Screen Output after Requesting Helponltem 2 3-64
Menu.talk: An Example of Co-processing 3-65
Form.talk: An Example of Co-processing 3-66
talk: An Example of a Co-process ... 3-66
Default Screen-labeled Keys. 4-10
Components of the Screen Management System 5-4

The Relationship between stdscr and a Terminal Screen (Sheet 1 of 2). 6-6
The Relationship between stdscr and a Terminal Screen (Sheet 2 of 2). 6-7

Multiple Windows and Pads Mapped to a Physical Screen 6-8
Relationship between a Window and Terminal Screen (Sheet 1 of 3) .. 8-3
Relationship between a Window and Terminal Screen (sheet2 of 3)... 8-4
Relationship between a Window and Terminal Screen (sheet30f3)... 8-5
Examples of Menu Format (2,2) i 10-19
Examples of Menu Format (3,2) 10-19
Examples of Menu Format (4, 3) i 10-20
Menu Functions Write to Subwindow, Application to Window 10-24
Integer Ranges for ETI Key Values and MENU Requests 10-35
Form Functions Write to Subwindow, Application to Window 11-36
Sweepstakes Form OQutput 11-49
ASimple ETIProgram. ... e e 5-3
The Purposes of initscr, refresh, and endwin in a Program 6-3
Using wnoutrefreshand doupdate 8-2

Tables

Contents

Screen 8-2 Sample Routines for Low-level ETI (curses) Interface 8-8
Screen 9-1 Example Using Panel User Pointer 9-10
Screen 10-1 ASample Menu 10-1
Screen 10-2 Sample Menu Program to Create a Menu in ETI. 10-4
Screen 10-3 Creatingan Array of ltems. 10-6
Screen 10-4 Using item_value in Menu Processing. 10-8
Screen 10-5 Using an ltem User Pointer 10-12
Screen 10-6 Changing the Items Associated withaMenu. 10-16
Screen 10-7 Creatinga MenuwithaBorder 10-25
Screen 10-8 Sample Routines Displaying and Erasing Menus 10-29
Screen 10-9 Sample Routine that Translates Keys into Menu Requests 10-31
Screen 10-10 Sample Menu Output (2) v e 10-35
Screen 10-11 Sample Program Calling the Menu Driver. 10-36
Screen 10-12 Using an Initialization Routine to Generate Item Prompts 10-40
Screen 10-13 Returning Cursor to Its Correct Position for Menu Driver Processing 10-44
Screen 10-14 Example Setting and Using a Menu User Pointer 10-46
Screen 11-1 Sample Form Display. 111
Screen 11-2 Code to Produce a Simple Form. 11-3
Screen 11-3 Example Shifting All Form Fields a Given Number of Rows 11-12
Screen 11-4 Setting a Fieldto TYPE_ENUM o ofColors 11-16
Screen 11-5 Using the Field Status to Update a Database 11-23
Screen 11-6 Using the Field User Pointer to Match ltems. 11-25
Screen 11-7 Creating a Form e 11-30
Screen 11-8 Creatinga Borderarounda Form. 11-37
Screen 11-9 Posting and UnpostingaForm.............. 11-39
Screen 11-10 A Sample Key Virtualization Routine 11-41
Screen 11-11 An Example of Form DriverUsage 11-50
Screen 11-12 Sample Termination Routine that Updates a Column Total. 11-56
Screen 11-13 Field Initialization and Termination to Highlight Current Field 11-57
Screen 11-14 Example Manipulating the CurrentField. 11-58
Screen 11-15 Example Changing and Checking the Form Page Number 11-60
Screen 11-16 Repositioning the Cursor after Printing Page Number. 11-61
Screen 11-17 Pattern Match Example Using Form User Pointer. 11-62
Screen 11-18 Creating a Programmer-defined Field Type 11-67
Screen 11-19 Creating TYPE_HEX with Padding and Range Arguments 11-70
Screen 11-20 Creating a Next Choice Function for a Field Type. 11-73
Screen 12-1 Sending a Message to Several Terminals. 12-4
Screen 13-1 A Shell Script Using terminfo Routines. 13-2
Screen 13-2 Typical Framework of a terminfo Program 13-3
Screen 13-3 Example of terminfo Program oL 13-4
Table 1-1 Default Screen-labeled Keys, 1-14
Table 2-1 Frame Descriptors for Menu Definition Files. 2-14
Table 2-2 Item Descriptors for Menu Definition Files. 2-15
Table 2-3 SLK Descriptors for Menu Definition Files. 2-16
Table 2-4 Frame Descriptors for Form Definition Files. 2-17
Table 2-5 Field Descriptors for Form Definition Files. 2-18
Table 2-6 SLK Descriptors for Form Definition Files 2-20
Table 2-7 Frame Descriptors for Text Frame Definition Files 2-21
Table 2-8 SLK Descriptors for Text Frame Definition Files 2-22
Table 2-9 Introductory Frame Descriptors for the Initialization File. 2-24

XVii

Character User Interface Programming

Index

Xviii

Table 2-10 Banner Line Descriptors for the Initialization File. 2-24
Table 2-11 General Descriptors for the Initialization File 2-25
Table 2-12 Color Descriptors for the Initialization File 2-26
Table 2-13 Application SLK Descriptors for the Initialization File 2-27
Table 2-14 Commands File Descriptors e 2-28
Table 2-15 Default Assignments of FMLI Commands to the Command Menu. ... 2-33
Table 2-16 Inheritance Hierarchies Used to Determine the Values of interrupt and oninter-
rupt When Interrupt Key IsPressed. i 2-41

Table 2-17 Table of FMLI Character Sequences for Display Attributes 2-42
Table 2-18 Alternate Character Set. 2-42
Table 7-1 The Default Colors Table i 7-14
Table 7-2 ExampleofaPairs Table. 7-16
Table 7-3 Input Option Settings for ETI Programs. 7-22
Table C-1 Translations from TAM to ETI Function Calls C-3
Table C-2 TAM High-level Functions. C-5
Table C-3 Translation Between TAM Escape Sequences and Virtual Key Values.. C-6

1
Introduction to FMLI

INtrOdUCHIONo 1-1
What IS FMLI? ..o e e 1-1
SCreen LayouUtl.o 1-2
Frames 1-5
Programming with FMLL. e e 1-5
Frame Definition Files 1-6
Menu Frames. e 1-6
Single-column and Multi-columnMenus 1-6
Single-select and Multi-selectMenus 1-6
Form Frames 1-7
Multi-line and Scrollable Fields. 1-7
Multi-page FOrmsS. o e e e 1-7
Validating Field Values i 1-7
ChoiCeS MENUo 1-7
TexXt Frames. 1-8
Application Level Definition Files. i i 1-8
Initialization File. 1-8
Commands File 1-8
Alias Fileo 1-8
Terminal Independence.t e e 1-9
Recovering after Abnormal Termination. 1-9
Internationalization SUPPOIt. i 1-10
An Example Application. 1-10
Writing an Internationalized Application 1-12
Using an FMLI Application. e 1-13
Named Keys and Alternative Keystroke Sequences. 1-15
Navigatingina Menu.t e e e e 1-15
Selecting Menu teMS. e 1-16
Navigating in a Form i e e e 1-17
Editingand Savinga Form. e 1-18
Usinga ChoiCes MenUttt e e e e e 1-19
Navigating in and Editinga Text Frame. 1-19
Navigating between Frames. i 1-19
Executing Commands.ot e 1-20
The Command MenuU. e 1-21
The Command Line.o e e 1-21
Screen-labeled Function Keys. i 1-22
On-line Help o 1-22

Accessingthe UNIX System. i, 1-23

Character User Interface Programming

Introduction to FMLL

1
Introduction to FMLI

Introduction

This chapter describes the Form and Menu Language Interpreter at a general level. There
are five major sections:

* “What Is FMLI?” on page 1-1 looks at how FMLI works, describes the
configuration of the screen when an FMLI application is running, and
explains the function of each screen area. The concept of a frame is
defined.

* “Programming with FMLI” on page 1-5 describes the three types of
frames—menus, forms, and text frames—in which your application is pre-
sented, and some of the ways you can customize their appearance in the
frame definition files you write. Application level files, in which you can
define characteristics of your application as a whole, are also described.

* “An Example Application” on page 1-10 presents a simple example of an
FMLI application and tells how to execute and exit from it.

* “Writing an Internationalized Application” on page 1-12 describes the
guidelines for writing applications whose language-dependent output is not
hard-coded in the frame definition files.

* “Using an FMLI Application” on page 1-13 describes how to work in
menu, form, and text frames, navigate between frames, and execute com-
mands.

What Is FMLI?

The Form and Menu Language Interpreter provides a framework for developers to write
applications and application interfaces that use menus and forms. It controls many aspects
of screen management for you. That means you do not have to be concerned with the low-
level details of creating or placing frames, providing users with a means of navigating
between or within frames, or processing the use of forms and menus. Nor do you need to
worry about what kind of terminal your application will run on. FMLI takes care of all
that for you.

FMLI is a high-level programming tool having two main parts:

* The Form and Menu Language is a programming language for writing
scripts that define how an application will be presented to users. The syn-

1-1

Character User Interface Programming

tax of the Form and Menu Language is similar to that of the UNIX system
shell programming language, and includes the following: variable setting
and evaluation, built-in commands and functions, use of and escape from
special characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes seties€riptorsthat are

used to define or customize attributes of frames and other features of your
application.

* The Form and Menu Language Interprefietj(1) , is a command inter-
preter that sets up and controls the video display screen on a terminal,
using instructions from your scripts to supplement FMLI's predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
executables, either in the background or in full screen mode. The Form and
Menu Language Interpreter operates similarly to the UNIX command
interpretersh(1). At run time it parses the scripts you have written, giv-
ing you the advantages of quick prototyping and easy maintenance.

Screen Layout

The following figure shows the configuration of the screen when an FMLI application is
running.

1-2

Introduction to FMLL

BANNER LINE
1 My Root Menu
Menu Item 1
Menu Item 2
> Sample Form 1 Title Bar
—| 2 A Multi-page Form EMLI
This is field two: Scroll Box
This is field three:
A
|V
Page 2 of 5 A
A\
Scroll Symbol
for Multi-line
Scrollable Form
Fields
WORK AREA
MESSAGE LINE
COMMAND LINE
F1 F2 F3 F4 F5 F6 F7 F8

Figure 1-1. The FMLI Screen

FMLI divides the screen into the following five regions:

Banner Line The banner line displays a one-line banner on the top line of the
screen. By default, it displaysvdorking icon when FMLI is
busy. You can redefine the banner line in the initialization file.

Work Area The work area is the section of the screen where frames are dis-
played. This area starts on the second line of the screen and stops
on the third line from the bottom of the screen.

1-3

Character User Interface Programming

1-4

NOTE

If a terminal supports hardware function keys, FMLI will use the
last line of the screen to display function key labels. The devel-
oper should be aware of this since the size of the work area will be
decreased by one line (that is, it will stop on the fourth line from
the bottom) to make room for these labels.

Message Line

Command Line

The message line is the second line from the bottom of the screen.
Messages generated by FMLI, or which you generate in your
scripts, are displayed here. By default, a message remains on the
message line until the next key is pressed; you can define mes-
sages that will remain on display permanently or until other user
actions occur, such as navigation to another frame.

The command line is the next to last line on the screen. Users
access it by pressif@TRL-j or CTRL-f ¢, at which time a -->
prompt appears on the line. Any FMLI command, application-
specific command, or UNIX system executable can be executed
from the command line.

Screen Labels for Function Keys (SLKS)

The last line of the screen displays screen labels that correspond
to the eight function keys found on many keyboards. Screen-
labeled keys, or SLKs, allow users to invoke FMLI or application-
specific commands easily by pressing one key. FMLI provides
two sets of screen labels for the function keys. Your scripts control
which set is displayed at any given time. FMLI predefines the
SLKs in the first set, assigning each a default screen label and
function depending on the type of frame current. (Figure 1-5 in
“Using an FMLI Application” on page 1-13 shows the functions
assigned by default to screen-labeled keys when a menu, form, or
text frame is current.) The second set is not predefined—you can
define this set specifically for your application. In the first set, you
can rename or disable function k&ys throughF7 (but they can-

not be redefined), and redefine function k8y In the second set,

you can define application-specific commands for function keys
F9 throughF16. Keep in mind, though, that if you redefine key
F8 or F16 to be something other th&@@HG-KEYS, your users

will lose the ability to access the alternative set of function keys.
A complete discussion of screen-labeled keys and how to define,
disable, or redefine them is contained in Chapter 4.

Since some keyboards do not have function keys, FMLI predefines alter-
native keystroke sequences whose use is equivalent to that of function
keysF1 throughF8. These sequences have the f@mRL-f n, where

n is the number of the corresponding function key. The alternative key-
stroke sequence 613, for example, iCTRL-f 3. That means the user
must hold dowrCTRL while pressind, then press.

Introduction to FMLL

NOTE

FMLI downloads alternative keystroke sequences into the func-
tion keys of some terminals at the user's request. For a discussion,
see Appendix B.

Frames

A frame is an independently scrollable portion of the work area surrounded by a border.
By default, the dimensions of a frame are determined by FMLI. Several frames may be
open simultaneously in the work area but only one frame can be current at a time. Frames
are positioned in the work area so that overlap of other frames is minimized.

The current frame is the frame a user is working in. It is distinguished from other frames
in the work area by its border and all features in its border being displayed in full-bright

video attribute; non-current frames are displayed in half-bright video. (On terminals that

do not have the half-bright video attribute, non-current frames are displayed some other
way, inverse video, for example.) The current frame may cover parts of other frames in the
work area.

All menu, form, and text frames can display the following features:

Title Bar Each frame displays a title bar in its top border. The title bar contains a frame
ID number assigned by FMLI, and the title of the frame—an FMLI default
title or one you define.

Scroll Box Each frame that contains three or more lines of information displays a scroll
box in its right border. A scroll box can house both an up symYadrfd a
down symbol ¥). These symbols indicate to the user that there is more infor-
mation beforeX) or after ¢) the information currently displayed in the frame;
only the up symbolY) will appear in the scroll box when a user is viewing
page two of a two-page form, for example. A scroll box will be blank when all
the information in the frame is currently visible.

The current item in a menu frame is indicated by a more-than:sjda its left. Depend-
ing on the terminal, the item may also be shown in inverse video.

Scroll symbols will appear in the lower right border of a form frame if a scrollable multi-
line field is current. Although not shown in the figure, scroll symbols will appear to the
right of a field if a scrollable single-line field is current. For a discussion of scrollable form
fields, see “Form Frames” on page 1-7.

Programming with FMLI

Typically, the scripts for an FMLI application include a set of frame definition files, each
defining a single menu, form, or text frame. These files define the frames users will see
when they execute your FMLI application, and the operations that can be done in frames.
In addition, most FMLI applications include three (optional) application level definition
files: an initialization file, a commands file, and an alias file. These files define global fea-

1-5

Character User Interface Programming

tures of your application, such as the colors of various screen elements, application-spe-
cific commands, and aliases for path names that can make your code easier to read and
maintain.

Frame Definition Files

Menu Frames

A frame definition file is a file made up of statements recognized bfrthhe command
interpreter. Three types of frames can be defined in FMLI: menu frames, form frames, and
text frames. FMLI recognizes the type of frame you are defining based on the contents of
the frame definition file and certain file naming conventions. The following sections
briefly describe these three types of frames. Detailed explanations of how to write frame
definition files can be found in Chapter 3.

A menu in FMLI is a method for displaying a list of selections in a frame, determining the
user's selection, and taking action based on the selection. The title bar of a menu frame
displays a default name for the memlienu) or one you define, and an identification
number assigned to the frame by FMLI.

Single-column and Multi-column Menus

By default, FMLI presents menus with 10 or fewer items in a single left-justified column;

if the number of items is greater than 10, FMLI attempts to create a multi-column menu
with a 3:1 aspect ratio of width to height. You can explicitly define the number of rows
and/or columns you want in a menu (see Appendix A for a table describing the way FMLI
calculates rows and columns in menus). Menu items are presented in a single scrollable
column if an entire menu cannot fit on the screen at once. Appropriate scroll symbols
appear in the scroll box in the right-hand border of the frame.

Single-select and Multi-select Menus

1-6

You can define a menu to be either single-select or multi-select. In a single-select menu,
the user can select only one item. When the user prESSEER (the key or SLK) while

the cursor is positioned on a menu item, the backquoted expression associated with the
item is evaluated, and any FMLI command associated with the item is executed.

NOTE

Depending on the keyboard being used, the carriage-return key
may be calledENTER, RETURN, or something else. Through-
out this guideENTER is used to represent the carriage-return
key.

In a multi-select menu, the user can select more than one item. When the user presses
MARK (the key or SLK) while the cursor is positioned on a menu item, the item is
marked with an asterisk) to its left, and the backquoted expression associated with the
item is evaluated. Any FMLI command associated with the item is ignored. When, after

Form Frames

Introduction to FMLL

having marked all desired items, the user preB&EER, thedone descriptor is evalu-
ated, and any FMLI commands defined by the descriptor are executed. Backquoted
expressions, descriptors, and FMLI commands are discussed in Chapter 2.

A form in FMLI is a method for displaying and prompting for information. To the user, a
form looks like a fill-in-the-blanks questionnaire. The title bar of a form frame displays a
default name for the fornFbrm) or one you define, and a frame ID number assigned to
the frame by FMLI. A form comprises fields, which have two parts: a field label (the
name of the field) and an area in which to enter a value for the field. You can define
default field values that are displayed in the input area whenever the form is opened or
updated.

Multi-line and Scrollable Fields

Multi-page Forms

Validating Field Values

Choices Menu

You can define the field input area to be multi-line and/or scrollable. A scrollable form
field allows users to enter more input in the field than its display area is sized for. If a
scrollable multi-line field is current, appropriate vertical scroll symbols appear in the bot-
tom right border of the framé:, v, or both. For a scrollable single-line field, appropriate
horizontal scroll symbols appear to the right of the display &rea; or = if there is more
information before and after the information currently displayed.

A form can be more than one page long, in which case it can scroll a page at a time. The
up and down symbols in the scroll box inform users that they are positioned on the first
page, the last page, or one of the middle pages of a form. If you want to indicate the page
more precisely, you can include a label sucRage 2 of 5 in a form, as described under
thename entry in the “Form Frame Descriptors” on page 3-26.

In forms, you can use the field descriptatid to validate the value a user enters in a
field, or the descriptovalidOnDone to validate the relationship between values of dif-
ferent fields (as when the validity of the value entered in fietttpends on the value
entered in field/), or both. In all cases, the user will not be able to save the form until the
values pass the validation test.

A choices menu is a way to show users the valid choices for a field in a form. When you
define a choices menu for a field, you can choose whether the user will toggle through the
choices in the field itself, or whether the choices will be displayed in a pop-up menu.
When a user selects a value from a pop-up choices menu, it is automatically entered in the
field to which the menu applies.

Character User Interface Programming

Text Frames

Text frames are primarily used to display read-only information, such as on-line help for
the user. The title bar of a text frame displays a default name for the ffartg ¢r one

you define, and a frame ID number assigned to the frame by FMLI. The frame will be
scrollable if all of its text will not fit in the display at one time; appropriate scroll symbols
will appear in the scroll box in the right-hand border of the frame. If the text frame
descriptoredit evaluates to TRUE, users will be able to change the text in the frame.

Text frames may be defined with text frame definition files, just as menus and forms are.
Simple text frames may also be specified using a shorter notation, without a frame defini-
tion file, using theextframe command.

Application Level Definition Files

Initialization File

Commands File

Alias File

1-8

Application level definition files define attributes of the application as a whole. There are
three optional application level files. The initialization file and the commands file allow
you to customize the appearance and functionality of your entire application; the alias file
allows you to streamline references to source files in your code. The following sections
briefly describe these three types of application level definition files. Detailed explana-
tions of how to write them can be found in Chapter 4.

An initialization file defines attributes of the application as a whole. You can define an
introductory frame (such as a copyright notice), changes to the default banner line, the col-
ors of various elements of the FMLI screen, whether users will be able to access the UNIX
system directly from your application, and the names of and commands assigned to
screen-labeled keys, among other things.

A commands file allows you to define new commands for users of your application, and
redefine or disable existing FMLI commands. The new commands can be executed from
the FMLI command line or the FMICommand Menu, as described in the next sec-
tion.

An alias file contains lines of the foraias=pathnameAn alias can be assigned a single

path to a file or device, or it can be assigned a series of paths to be searched (similar to the
way $PATHis searched in the UNIX shell). Using aliases will make the code in your other
definition files more readable.

Introduction to FMLL

Terminal Independence

FMLI uses the UNIX System Yerminfo database to determine the values of terminal-
dependent capabilities. The default path to this database is
Jusr/share/lib/terminfo if the environment variablEERMINFOis not set. New
terminals not described in this database can be added to the terminfo database under a sub-
directory named by the first character in the terminal's name. For example, the 5425 termi-
nal description would be TERMINFO/5/5425 .

To ensure that the terminal is initialized properly for your FMLI application, include the
command

tput init

in the executable or script that invokes your application. If you choose not to do that, the
documentation for your application should remind users to place this command in their
.profile file after theTERMvariable is set and exported.

NOTE

Terminal attribute settings can be lost when a user returns to an
FMLI application after having used a full-screen application exe-
cuted via the FMLkun built-in utility. To prevent this from hap-
pening, the full-screen application can execypiat init

before returning to FMLI.

FMLI will work on any asynchronous terminal that

¢ displays 80 characters across
* has at least 22 simultaneously visible lines

* has a propeterminfo entry in the host computer.

It may be possible to run FMLI on smaller screens if you define the size and position of
frames to fit within the screen's limits. However, some elements of screen layout, such as
the screen labels for the function keys, may be truncated.

FMLI downloads alternative keystroke sequences into the function keys of some terminals
at the user's request. For a discussion, see Appendix B.

Recovering after Abnormal Termination

In the case of an abnormal termination of an FMLI application, users can execute
CTRL-j stty sane CTRL-j

to restore the screen. Until this is done, user input might not be displayed on the screen,
giving the appearance that the computer is hung or down. If the user executes this com-
mand to recover, it will also be necessary to execute

stty tab3

1-9

Character User Interface Programming

to ensure a sane screen. Borders of frames may be distorted otherwise.

Internationalization Support

FMLI accepts as input any character from a standard 7- or 8-bit character set. This means
that descriptor and variable values and application-specific command names may be coded
in a language other than English, provided the language implementation employs a stan-
dard 8-bit code set. It also means that users may enter input in a form, or edit the text in a
text frame, in any such language. Note, however, that the built-in utilities
fmlexpr(1F) , fmigrep(1F) , andregex(1F) do not support regular expression
matching for non-ASCII character sets, and that FMLI error messages are always dis-
played in English.

FMLI uses thesetlocale(3C) function to examine the user's environment for a cur-
rentlocale—a collection of information that describes conventions appropriate to some
nationality, culture, and language. This information is stored in databases that describe
how to sort or classify characters, for instance, according to these conventions. If such
databases exist on a user's system, they are accessed through@wariable in the

user's environment. An application coded for a German locale, then, should instruct users
to set thL ANGenvironment variable tde[utsche]; character classification, sorting, and

so on will be done in the appropriate way. For details on this mechanism, see the
setlocale(3C) manual page.

An Example Application

1-10

Here is an example FMLI application consisting of a menu frame definition file named
Menu.sample and a text frame definition file nam&dxt.welcome

menu=TOP MENU

name=date
action="date | message 'nop

name=welcome
action=open Text.welcome

name=exit
action=exit

Figure 1-2. Menu.sample: A Simple Menu Frame Definition File

The file Menu.sample is named according to the conventions defined for FMLI frame
definition files (Chapter 2 contains a complete discussion of file naming conventions), and
defines the initial frame to be opened when this example application is run.

The first line of code uses the FMLI descripteenu to define the title that will appear in
the title bar of the menu frame. Many FMLI descriptors have a default value that will be

Introduction to FMLL

used if you do not explicitly define the descriptor in the frame definition file. Hhére
descriptor were not defined in this file, the title of the menu would defalé tou.

The next two lines of code define the first menu item. idmme descriptor defines the
name of the item to béate. Theaction descriptor defines what will happen when the
user selects thdate menu item: the UNIX systemtate(1) command will be run and
the output will be piped to the FMLI built-in utilithessage(1F), which displays the
output ofdate on the FMLI message line. The FMLI commamup does nothing (no
operation), but must be present because FMLI expectctiom descriptor ultimately
to evaluate to an FMLI command. If it doesn't, the terminal will beep.

The fourth and fifth lines of code define the menu itgelcome and the action to exe-
cute wherwelcome is selected: open another frame in the work area, in this case the text
frameText.welcome, which displays a welcome message. Figure 1-2 shows the con-
tents of the text frame definition fileext.welcome

The last two lines of code define the menu i&xit and its action: run the FMLI com-
mandexit , which terminates the FMLI session and returns the user to the UNIX shell.

tite="WELCOME"

rows=3

text="Welcome to my application.
| hope you enjoy yourself

while you are using it."

Figure 1-3. Text.welcome: A Text Frame Definition File

The fileText.welcome defines a text frame and is named according to the conventions
for text frame definition files. Thatle descriptor defines the title that will appear in
the title bar of the text frame, in this cA8&LCOMETherows descriptor defines the ver-
tical size of the text frame in lines of text. The width of the frame in this example is deter-
mined by FMLI. Theext descriptor defines the words that will be printed in the body
of the text frame.

To execute this application, invokali as follows:
fmli Menu.sample

In this exampleMenu.sample is specified as the initial frame to open. An initial frame

is a frame that is opened as an argumefmto when it is invoked. There can be more
than one initial frame. All initial frames remain displayed in the work area as long as the
application is running; that is, a user cannot close or cancel an initial frame.

Users can exit from any FMLI application by pressBigRL-j or CTRL-f ¢ to access the
FMLI command line and enteringxit. Users of the example application could also
selectexit from TOP MENU.

In the next section, this example application will serve to illustrate how an FMLI applica-
tion appears to users. If you want to supplement the discussion with a hands-on example,
you can create copies bfenu.sample andText.welcome in your file system and
invokefmli as shown above.

1-11

Character User Interface Programming

Writing an Internationalized Application

1-12

Internationalized FMLI applications are applications whose language dependent output is
not hard-coded in the frame definition files. The output (messages, menu items, frame
titles, and so on) are encoded in a language-independent way in the definition file. At run-
time, that is, when interpreting the respective file, FMLI retrieves the language-dependent
output from a message catalogue which contains the output of the application in the lan-
guage to which the system locale is set. If no message catalogue exists, FMLI tries to out-
put a default message encoded in the frame definition file. If a default message does not
exist either, you get the following message:

Message not found!

Writing an internationalized application requires that all strings that are to be presented on
the screen must be described using the special syntax:

"$$< catalogue_name< message_nv:< default_messagé

catalogue_name denotes the name of the catalogue in which the messages for a
certain locale are stored. It can be stored in
/usrllib/locale/<locale>/LC_MESSAGES using the
UNIX utility mkmsgs.

message_no is the index to the respective message in the message catalogue.

default_message is the message that is displayed if the locale is seZ’tor'if no

message catalogue exists in the current locale.
The menu frame definition file shown in Figure would then look like this:

menu="$$uxmyapp:1: TOP MENU"

name="$$uxmyapp:2:date"
action="date | message " nop

name="$Suxmyapp:3:welcome"
action=open Text.welcome

name="$$uxmyapp:4:exit"
action=exit

Figure 1-4. Menu.sample: A Simple International Menu Definition File

If you want your menu to be sorted automatically in any locale, you must indicate this by
using the descriptautosort . If it is set toautosort=true , the menu items will be
presented in alphabetical order in any language. This would be independent from the order
in the actual frame definition file.

The second menu item in Figure 1-3 would invoke an opening action on the file
Text.welcome . Itis stored in the current directory. If the application is to open a textfile
that is translated to another language than the default, this textfile must be stored in the
directory ./$LANG/<file> . If the file Text.welcome was translated to German and

if the application was to open that file, it would have to be stored in the directory

Introduction to FMLL

./De_DE.88591 carrying the same name. FMLI automatically checks the locale before
opening a textfile.

Using an FMLI Application

This section discusses tlmok and feebf an FMLI application. It covers the way menus,
forms, and text frames and other visual elements of the FMLI screen environment are pre-
sented to users (theok), the basics of navigation, the ways commands can be executed,
the functions assigned by default to named keyboard keys, and how to use alternative key-
stroke sequences in the event named keys do not work, or exist, on a keybdes) (the

This information is important for two reasons. First, it describes the features that “come
for free” with an FMLI application and around which you can design your own applica-
tion. Second, you will need to include at least some of this information in your user docu-
ments. We can't help you describe what's in your menus, forms, and text frames, but we
can help you describe the tasks that should be common to any FMLI application: working
in menus, forms, and text frames, navigating between frames, executing commands, and
getting help.

When you execute the commainai Menu.sample , given the FMLI scripts just dis-
cussed, the terminal screen will look like this:

7 =

1 TOP MENU

> date
welcome
exit

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

Figure 1-5. Menu.sample: Screen Output

This application illustrates most of the aspects of screen and frame style enforced by
FMLI. (Screen and frame style refers to the way these elements are presented to users
when an FMLI application is running.)

Since the frame opened initially in this example is a menu frame, the frame itself and the
screen labels on the last line of the screen show the default appearance when a menu frame
is current. The banner line (top line of the screen) is currently blank, but while this appli-

1-13

Character User Interface Programming

1-14

cation was being loaded you may have noticed that the Woreting appeared at the
right on the banner line. The banner line is blank by default, except fovdheng
indicator. But you can define the banner line to display more information, and you can
change th&Vorking indicator. (See Chapter 4 and thdicator(1F) manual page

for more information.)

The menu frame defined Menu.sample and named on tHenli invocation line as the

initial frame to open is displayed in the work area. The title bar of the frame displays the
menu title and a frame ID number assigned automatically by FMLI. Each item defined in
Menu.sample s listed in the order in which it was defined; theymbol shows where

the cursor is currently positioned. A scroll bar appears in the right-hand frame border
because there are three items in this menu, although no scrolling symbols are shown
because the entire menu can fit in the frame at one time.

The two lines immediately above the function-key screen labels are the message line and
the command line, although nothing is displayed on them at this point. You can press
CTRL-j or CTRL-f c to navigate to the command line. PrE®&TER or CTRL-j again

to leave the command line without executing a command.

The last line of the screen displays the default set of screen labels for function keys when

the current frame is a menu. The defaults are different when a form frame or text frame is

current. Figure 1-5 shows the functions assigned by default to screen-labeled keys when a
menu, form, or text frame is current. A complete discussion of screen-labeled keys and

how to define, disable, or redefine them is contained in Chapter 4.

The features discussed in the following sections can be used in any FMLI application.
Where appropriate, they will be explained in the context of the example application just
discussed.

Table 1-1. Default Screen-labeled Keys

Function Menu Form Text Choices Command

Key Frame Frame Frame Menu Menu

F1 help help help help

F2 mark* choices prevpage

F3 enter save nextpage enter

F4 prev-frm prev-frm prev-frm

F5 next-frm next-frm next-frm

F6 cancel cancel cancel cancel cancel

F7 cmd-menu | cmd-menu | cmd-menu

F8 chg-keys** | chg-keys** | chg-keys** | chg-keys** | chg-keys**

F16 chg-keys** | chg-keys** | chg-keys** | chg-keys** | chg-keys**
* Function keyF2 is assigned thmark command only in multi-select menus.

In single select menus2 has no default assigned.

** Function keysF8 andF16 will default tochg-keys only if any of keyd=9

throughF15 are defined by the developer.

Introduction to FMLL

Named Keys and Alternative Keystroke Sequences

Named keys are the keys on terminal keyboards that do something other than print an
alphanumeric or special character. Named keys indiMiEER, TAB, DEL, the func-

tion keysF1 throughF8, and although not strictly named, the arrow keyown-
Arrow>, <Up-Arrow>, <Right-Arrow>, and<Left-Arrow>. Since many terminal
keyboards will not have a complete set of named keys, FMLI predefines alternative key-
stroke sequences whose use is equivalent to named keys. The alternative keystroke
sequence foxDown-Arrow> for example, iCTRL-d. That means the user must hold
downCTRL while pressingl.

Some of the named keys are reserved for navigation and/or editing during an FMLI ses-
sion. Navigation keys are named keys that, when pressed, cause the cursor to move. The
default action assigned to a navigation key changes depending on whether you are in a
menu, form, or text frame. For example, the nameddBeg or the alternative keystroke
sequenc€TRL-b work as follows in the three types of frames:

menu moves the cursor to the first item in the menu, whether it is currently visible or
not

form moves the cursor to the first field of the current page of the form

text causes the first frame full of text to be displayed

The default action assignedBd&G in these three cases has a common element—moving

to the beginning—hbut the meaning varies according to what kinds of things users need to
do in each type of frame. A complete table of named keys recognized by FMLI (using
terminfo) is provided in Appendix B and summarizes the action that will occur when
these keys or their alternative keystroke sequences are pressed in menus, forms, and text
frames.

Navigating in a Menu

There are two methods of navigating in a menu frame. One is to use a navigation key. As
an example of how navigation keys work, you can try the menu navigation keys in the
example menTOP MENU. The following list shows some of the keys you can use to
navigate in a menu:

* <Right-Arrow> or the alternative keystroke seque@ERL-r moves
the cursor right one item in a multi-column menu, or down one item in a
single-column menu. In a multi-column menu, it does not wrap. In a sin-
gle-column menu, it wraps to the top of the column.

¢ <L eft-Arrow> or the alternative keystroke seque@ERL-| moves the
cursor left one item in a multi-column menu, or up one item in a single-col-
umn menu. In a multi-column menu, it does not wrap. In a single-column
menu, it wraps to the bottom of the column.

* <Down-Arrow> or the alternative keystroke seque@ERL-d moves
the cursor down one item, wrapping to the top of the column in a single-
column menu, and the top of the next column in a multi-column menu. On

1-15

Character User Interface Programming

the last item in the last column of a multi-column menu, it wraps to the top
of the first column.

* <Up-Arrow> or the alternative keystroke seque@ERL-u moves the
cursor up one item, wrapping to the bottom of the column in a single-col-
umn menu, and the bottom of the previous column in a multi-column
menu. On the first item in the first column of a multi-column menu, it
wraps to the bottom of the last column.

As you navigate in the menu, thesymbol shows which menu item is current. In a scrol-
lable (by definition, single-column) menu, presskBight-Arrow> or <Down-
Arrow> when the cursor is on the last item of the display will roll the contents of the
menu up one line; pressird.eft-Arrow> and <Up-Arrow> when the cursor is on the
first line of the display will roll the contents of the menu down one line. Note that pressing
the named keySCROLL-UP or SCROLL-DOWN will roll the contents of a scrolla-

ble menu up or down one line, respectively, without moving the cursor.

The other method of navigating in a menu frame is to type the name of the item to which
you want to move. You don't have to type the full name, or worry about upper and lower
case. When you type a character, the cursor moves to the first item in the menu that
matches the string typed so far. If you type the lettdor example, the cursor moves to

the first menu item that starts withor W If you then type , the cursor moves to the first

item that starts with the lettever. When a string cannot be matched, the terminal bell
sounds, or the screen flashes, depending on the terminal, and an error message is displayed
on the message line. The cursor wraps around when it reaches either end of the menu. In a
scrollable menu the display scrolls as necessary.

NOTE

If you start to type the name of a menu item and the cursor moves,
and you then decide to select something else, you must use
BACKSPACE to erase the characters already typed, or press one
of the navigation keys before character matching can be used
again.

Selecting Menu Items

1-16

As noted, you can define a menu to be either single-select or multi-select. In a single-

select menu you can select only one item; in a multi-select menu you can select more than
one item. To select an item in a single-select menu, ENE3ER (the key or SLK) while

the cursor is positioned on the item. To select items in a multi-select menu, first mark each
of the desired items by pressikbARK (the key or SLK) while the cursor is positioned on

the item; an asterisk { will appear to the left of the item. Now présBITER to select

the marked items.

If you are running the example application, you can see how a single-select menu works
by navigating to the iterwelcome and pressinENTER. The screen will look like this:

Introduction to FMLL

= B

1 TOP MENU 2 WELCOME
date Welcome to my application.
> welcome | hope you enjoy yourself
exit while you are using it.
HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

N /

Figure 1-6. Menu.sample: Screen Output after Selecting welcome

Notice that the text frame defined Text.welcome is displayed in the work area, its
frame ID number i, and the screen labels shown on the last line of the screen now dis-
play the default labels for text frames.

Navigating in a Form

When a form is opened, the cursor is placed in the first character position in the first field
of the form. The following list shows some of the keys you can use to navigate in a form:

* In a single-line fieldENTER or the alternative keystroke sequence
CTRL-m moves the cursor to the next field, whether it is below the current
field or to the right, wrapping from the last field of the form to the first. In
a multi-line field, it moves the cursor to the next line, scrolling on the last
line if the field is scrollable, stopping and beeping if it is not. That is, you
cannot use this key to navigate from a multi-line field.

* In a single- or multi-line fieldTAB or the alternative keystroke sequence
CTRL-i moves the cursor to the next field, whether it is below the current
field or to the right, wrapping from the last field of the form to the first.

* In a single- or multi-line fieldBACKTAB or the alternative keystroke
sequenc&TRL-t moves the cursor to the previous field, whether it is
above the current field or to the left, wrapping from the first field of the
form to the last.

* In a single-line field<Down-Arrow> or the alternative keystroke
sequencé€CTRL-d moves the cursor to the next field below the current
field, wrapping from the last field of the column to the first. In a multi-line
field, it moves the cursor to the next line; on the last line of the field, it
moves the cursor to the next field below the current one.

1-17

Character User Interface Programming

* In a single-line field<Up-Arrow> or the alternative keystroke sequence
CTRL-u moves the cursor to the previous field above the current field,
wrapping from the first field of the column to the last. In a multi-line field,
it moves the cursor to the previous line; on the first line of the field, it
moves the cursor to the previous field above the current one.

* <Right-Arrow> or the alternative keystroke seque@ERL-r moves
the cursor non-destructively one character to the right in a field. It does not
wrap to the next field, or the next line in a multi-line field.

¢ <L eft-Arrow> or the alternative keystroke seque@ERL-| moves the
cursor non-destructively one character to the left in a field. It does not wrap
to the previous field, or the previous line in a multi-line field.

Multi-page forms and scrollable single- and multi-line fields scroll as necessary.

NOTE

Generally speaking, if a user enters invalid data in a field that has
an associated validation test, navigation away from the field is not
permitted. With this release, however, if no data have been
entered or modified in the field since it became current, validation
only occurs if the user attempts to use EN¢TER key to leave

the field. A user can leave the field with some other navigation
key (such as one of the arrow keys). In such cases, validation of
the field is delayed until th8 AVE key is pressed. Thus, a user
can use a key other th&NTER to navigate in a form when, say,
leaving the current field blank would cause it to fail a validation
test. You may want to point out this change in behavior to users
who are familiar with the old behavior.

Editing and Saving a Form

When a field is current, you are automatically in overtype mode: the character you type
replaces the character under the cursor. If, immediately after navigating to a field, or
attempting to navigate from a field with an invalid value, you type over the first character
in the field, the rest of the line is automatically cleared. You then enter characters as you
would if the field were blank. You save the values you have entered in fields and close the
form by pressing th8 AVE SLK.

Here are some of the named keys you can use to edit a form field:

* DEL, DELETE-CHAR, or the alternative keystroke seque@ERL-x
deletes the character under the cursor and closes the gap.

* INSERT-CHAR or the alternative keystroke sequefiCERL-a inserts to
the left of the character under the cursor the next single character entered.

* CLEAR, CLEAR-LINE, or the alternative keystroke sequeQCERL-y
clears the current line.

* RESET or the alternative keystroke seque@E€RL-f r restores the
default value of a field.

1-18

Introduction to FMLL

Using a Choices Menu

You access a choices menu and toggle through choices in the field itself by pressing the
CHOICES SLK. You can use named keys to navigate and select items in a pop-up
choices menu as you would in any other menu. As noted, when you select a value from a
pop-up choices menu, it is automatically entered in the field to which the menu applies.
Note that if you navigate away from a pop-up choices menu it disappears immediately.

Navigating in and Editing a Text Frame

Here are some of the navigation keys you can use in a text frame:

* <Right-Arrow> or the alternative keystroke seque@ERL-r moves
the cursor non-destructively one character to the right.

* <Left-Arrow> or the alternative keystroke seque@ERL-I moves the
cursor non-destructively one character to the left.

* <Down-Arrow> or the alternative keystroke seque®@ERL-d moves
the cursor down one line.

* <Up-Arrow> or the alternative keystroke seque@ERL-u moves the
cursor up one line.

The cursor does not wrap when you use these keys in text frames. Scrollable text frames
scroll as necessary. Pressing the named 8 8ROLL-UP or SCROLL-DOWN will

roll the contents of a scrollable text frame up or down one line, respectively, without mov-
ing the cursor. Pressing the screen-labeled RIYEVPAGE or NEXTPAGE will

move the cursor to the first character of the previous page or the first character of the next
page, respectively, in scrollable text frames.

Except forRESET, the keys described in “Editing and Saving a Form” on page 1-18
work the same way in editable text frames.

Navigating between Frames

Navigation between frames comprises simple moves and command actions that change
which frame is current. The following list describes all the ways to move between frames:

* ThePREV-FRM andNEXT-FRM SLKs are assigned theev-frm
andnext-frm FMLI commands, respectively. Pressing either of these
SLKs will cause you to navigate from frame to frame. The frame navigated
to becomes the current frame on the screen, and the frame navigated from
becomes non-current. FMLI keeps a list of each frame that has been the
current frame. For example, if franfeis current, pressinBREV-FRM
will cause you to navigate to the frame that was current when fxanves
opened. PressinrdEXT-FRM while in frameN will cause you to navigate
to the last frame opened while framNewas current. Since tHeREV-

FRM andNEXT-FRM commands are always relative to the current
frame, the order in which they cause navigation through the frames dis-

1-19

Character User Interface Programming

played in the work area does not always follow frame ID order, and wrap-
ping occurs in the order described above.

* Selectingfrm-mgmt from theCommand Menu will bring up a choices
menu that includes the item ST. SelectingLIST brings up another
choices menu listing all opened frames. When you select a listed frame, the
choices menu disappears and the selected frame becomes current. If you do
not want to select a listed frame, you can presCWBICEL SLK. The
choices menu will disappear and you will be put back in the frame you
started out in.

* You can enter a frame ID number on the command line andprEER.
The frame with that ID nhumber will become current. This is equivalent to
executing thgoto command on the command line with a frame ID num-
ber as an argument, or selectiggto from the COMMAND MENU,
entering a frame ID number after the prompt on the command line, and
pressingENTER. For a discussion, see the next section.

* Opening (selecting) a frame will always cause navigation to that frame.

* Closing (canceling) a frame will cause navigation tobtekup frameThe
concept of a backup frame allows FMLI to maintain a linked list of frames
so that users always have a frame to which they will automatically be
returned when a frame is canceled. The logic behind what frame is backup
frame for another is not always immediately apparent to users, but its pur-
pose is to maintain a linked list in which every frame is the backup frame
for only one other frame. Usually, the backup frame is the frame that was
current when the frame being closed was opened. However, if a user has
been doing rather convoluted navigation, a frame's backup frame can
change dynamically. For example if frame A is current and frame B is
opened, A becomes B's backup. If A was already C's backup, B becomes
C's backup.

* Thecleanup command will close all frames wholfetime descrip-
tor evaluates tghortterm orlongterm. If the lifetime descriptor
evaluates tommortal, it means the frame cannot be closed except by
exiting from the FMLI application. Note that thfetime descriptor for
initial frames, that is, frames opened as argumentsiio when it is
invoked, evaluates tionmortal by default and cannot be redefined.

Executing Commands

This section describes how users execute FMLI commands. A complete discussion of
FMLI commands can be found in Chapter 2.

The Command Menu

TheCommand Menu is an FMLI-supplied menu that lists a subset of FMLI com-
mands. By default, function kefy7 is labeledcmd-menu when a menu (except the

1-20

Introduction to FMLL

Command Menu itself), form, or text frame is current. Pressing ¢ned-menu SLK
causes th€ommand Menu to appear in the work area:

Command Menu
> cancel next-frm
cleanup prev-frm
exit refresh
frm-mgmt unix-system
goto update
help

TheCommand Menu will reflect the contents of the commands file. That is, if you
rename, redefine, or disable an existing FMLI command in the commands file, or if you
define a new command for your application, it will be added to or removed from the
Command Menu as appropriate. You execute a command fronCtwamand Menu

by selecting it just as you would select an item in any other menu.

The Command Line

You access the FMLI command line by press@igRL-j or CTRL-f c. At the-->

prompt, you enter the name and arguments, if any, of the FMLI command you want to exe-
cute and presENTER. All FMLI commands can be executed from the command line
except those you have disabled in the commands file.

If a message catalogue for a certain language exists in your system, the commands in the
command menu will be presented in the respective language. Commands in the command
line must always be entered in English even though they might be output in another lan-
guage in the command menu.

If what you enter on the command line is not a known FMLI command, it is interpreted
according to the following default behavior. If what you enter is an integer, the command
that will be executed defaults ¢mto integer if you enter2, navigation to frame 2 will
occur. If what you enter is anything other than an integer or a known FMLI command, the
command that will be executed default®pen what-is-entered

You can try using the command line now if you are running the example application. Press
CTRL-j, enter the commancklease, and pres€ENTER. This FMLI command
returns the release number of the version of FMLI you are currently running. The words
FMLI Release 4.2 P n, wheren is the version number, should be displayed on the
message line.

If the Command Menu is the current frame when you pré3§RL-j or CTRL-f c, the
Command Menu will disappear and the command the cursor is currently positioned on
will appear on the command line after the prompt.

1-21

Character User Interface Programming

NOTE

In releases previous to FMLI 40, TRL-z was used to access the
command line. In UNIX System V Release 40,RL-z is used
for job control injsh orksh. For that reason, usingTRL-z

will suspend an FMLI application. To resume the FMLI applica-
tion, use thdg command. (See th€h(1) manual page for
detailed information on job control.)

Screen-labeled Function Keys

On-line Help

1-22

Pressing a screen-labeled function key (SLK) results in the execution of the command
defined for that function key. Many of the default FMLI commands shown on the SLKs
can also be selected from t@®@mmand Menu or executed from the command line.
(Not all FMLI commands shown by default on the SLKs appear irCthemmmand

Menu, and vice versa, but all FMLI commands can be executed from the command line.)
If you have defined a SLK (either in an initialization file or in a frame definition file) to
execute an application-specific command or a different FMLI command from the default,
then pressing that SLK will execute the command you have defined for that key.

FMLI provides for international SLKs. User-defined SLKs in initialization or frame defi-
nition files can be internationalized with the following syntax:

$$< catalogue_name< message_no< default_message

See “Writing an Internationalized Application” on page 1-12 for more details.

When a menu, form, or text frame is current, function kéyis labeledHELP and
assigned the FMLhelp command by default. Pressing tHELP SLK or selecting the

help command in th&€ommand Menu results in the FMLhelp descriptor being
evaluated. Typically, you use thelp descriptor to open a text frame that presents infor-
mation on the use of the frame or command. This can be done using a text frame defini-
tion file, or more simply with theextrame command. But you can defihelp to be
anything, such as a message to be printed on the message line or a UNIX system execut-
able.

On-line help is available for each FMLI command. You can request help on a command
by pressingCMD-MENU to access th€Eommand Menu, navigating to the command

for which you want help, and pressibRdELP. You can do the same thing by entering a
command of the form

help command_name

on the command line, wheoemmand_namis the name of the command for which you
want help.

The on-line help information can be output in languages other than English. To do this,
the FMLI message catalogue must be translated.

There are other ways you can provide users with help on the use of your application. You
can define a short descriptive tag to be displayed alongside an item in a menu as a “mem-

Introduction to FMLL

ory jogger” on the use of that item. The choices menu that you can define for a field in a
form frame can be considered a kind of help. Chapter 3 presents examples of these and
other ways to provide users with on-line help. Help can also be provided via any of the
FMLI descriptors that display a message on the message line, sabbiesmsg,

itemmsg, orfieldmsg. The built-in utility message(1F) can also be used to dis-

play information on the message line.

The on-line help can be encoded with $#$syntax so that output in different languages

is possible. If a text file needs to be read (when using the help descriptor aeadhe

file command), its different language versions should be stored under
<dirname>/LANG/< file>. The default version should be storeddirname>/< file>.

Accessing the UNIX System

You can access the UNIX system by selecting the Flufix-system command from
theCommand Menu or by entering theommand_nameon the command line. When

you invokeunix-system, the FMLI screen clears and you are put in a full-screen
UNIX shell. When you exit from the UNIX system, a prompt message appears requesting
that you presENTER to continue. The FMLI screen returns in the same condition it was
in before theunix-system command was issued. You can control user access to the
UNIX shell by disabling theinix-system command in the commands file (see “The
Commands File” on page 4-12 for a discussion of how to disable FMLI commands).

By default, you can run UNIX system commands from the FMLI command line by prefix-
ing an exclamation mark } to the command. (Whitespace is ignored beforéhen it is

used as a UNIX system escape on the command linerumfig=) built-in function can

also be used to execute UNIX system commands from the FMLI command line (see the
run(lF) manual page for details). You can usenbbang descriptor to disable these
features, as described in “The Initialization File” on page 4-1.

1-23

Character User Interface Programming

1-24

2
The Form and Menu Language

INtrOdUCHIONo 2-1
Syntax, Rules, and Conventions i 2-1
Naming Conventions for Frame Definition Files. 2-1
COMMEBNES. . . . 2-2
Case SeNSItIVILY e 2-2
TYPE CaStS. . oot e 2-2
File Type Castst e e e e 2-2
Type Casts That Change the Time of Descriptor Evaluation 2-3
Special Characters 2-3
Quoting MeChanisms e 2-4
Backquoted EXPresSions.ttt 2-4
EXPression OpEeratorsvui it 2-5
File Redirection e e 2-6
SYNMEAX ENTOrS . oo 2-6
Variables 6. 2-
User-defined Variables 2-6
Built-in Variables 2-7
Variable Evaluation. 2-8
DSOS, .« . vttt et e 0. 2-1
Descriptor Evaluation. i e 2-10
DESCIIPIOr TYPES. . o i it e e 2-12
Frame Definition File DeSCriptorst 2-12
MeNU DEeSCIIPLOrS . .. e 2-14
FOrm DesCriptOrs.o 2-17
Text Frame DesCriptorsot e e 2-21
Application Level File DescCriptors.t 2-23
Initialization File DESCIPtOrsttt e 2-23
Application Descriptors for the Initialization File. 2-23
Application SLK DesCriptors 2-26
Commands File DesCriptorst e 2-27
FMLE Commands.ttt e 2-28
FMLI Commands: Syntaxand Use 2-29
User Accessto FMLICommands 2-33
Built-in Utilities.o e 2-34
Overview of the Built-in Utilities. i 2-34
Conditional Statements 2-37
SignalHandling 2-38
Interrupt Signal Handling. 2-39
Terminal Display Attributes. e 2-41

Using the Alternate Character Set i, 2-42

Character User Interface Programming

Introduction

Syntax, Rules,

2
The Form and Menu Language

The Form and Menu Language is a high-level “shell-like” language for defining menus,
forms, and text frames for your application. A menu, form, or text frame definition is
stored in d&rame definition filemade up of statements recognized by the Form and Menu
Language Interpreter—thenli command. Frame definition files can contain fixed
descriptions of the contents of the frame and/or code that will dynamically generate the
contents. Whefmli is invoked for the scripts you have written, the frame definition files
are parsed, and the frames that will be displayed on the screen are generated.

This chapter summarizes the syntax of the various elements of the Form and Menu Lan-
guage.

and Conventions

The following sections discuss the general rules and the conventions which apply to the
Form and Menu Language. Specifics of syntax for particular elements of the language are
covered in the appropriate sections.

Naming Conventions for Frame Definition Files

On thefmli command line, frame definition files are recognized as arguments only when
they are named in accordance with the following conventions:

* Menu. nameis the format for names of menu definition files
* Form. nameis the format for names of form definition files
* Text. nameis the format for names of text definition files
wherenamecan be any string that conforms to the UNIX system file naming conventions.

In a frame definition file, however, file name arguments topiem command can follow

the above conventions, or they can have any valid UNIX system file name as long as one
of the type castSIENUFORMor TEXT is used to identify the kind of frame definition file
being opened (see “Type Casts” on page 2-2 below for more information).

2-1

Character User Interface Programming

Comments

Comments can be included by beginning a line with the pound sign character. A pound
sign,#, when it is the first non-whitespace character on a line, causes all following text up
to a newline to be ignored by FMLI. (Inside single quotes){double quotes'(”), and
backquotes™(), the pound sign has no special meaning. Thus, comments cannot be
included in backquoted expressions.)

Case Sensitivity

Some elements of the Form and Menu Language are case-insensitive, and some are case-
sensitive.

The case-insensitive elements are

* descriptor names

* FMLI command names

* type casts

¢ descriptor values of type Boolean
The case-sensitive elements are

* arguments to commands

* names of frame definition files

¢ descriptor values of type string

¢ variable names

* FMLI built-in utility names and UNIX executable names, within back-
guoted expressions

Type Casts

File Type Casts

A file type cast is an identifier that indicates to FMLI the type of frame definition file being
opened when the file's name does not follow the naming conventions for frame definition
files. There are three type casts for frame definition flMSNUFORMandTEXT Each

can be used as the first argument toojpen command. For example,

action=open form user.address

identifiesuser.address as a form definition file. A frame definition file can be identi-
fied by using both the file naming convention and a type cast, although only one or the
other is required.

2-2

The Form and Menu Language

Note that file type casts cannot be used to identify the initial frame(s) to operfiraihen
is invoked.

Type Casts That Change the Time of Descriptor Evaluation

By default, FMLI determines how often descriptors are evaluated. You can usmshe

type cast to make sure that a descriptor is evaluated only once, no matter how many times
it is referenced, or theary type cast to make sure that a descriptor is evaluated whenever

it is referenced. In either case, the cast must appear immediately after the eqelaign (

the descriptor line, as in the following:

show=const “set -| DAY=date +%a; test “SDAY” = “Friday™

We'll explain what this example does, and more generally, why you might want to use
const andvary in “Descriptor Evaluation” on page 2-10.

Special Characters

Special characters in FMLI scripts are:

double quote “ right-angle bracket >
single quote ' left-angle bracket <
backslash \ <newline>

backquote X <space>

dollar sign $ <tab>

vertical bar | left brace {
ampersand & right brace }

(in thermenu
descriptor only)

semicolon ; integer 2 2
(when followed by >)

pound sign #
(in the first non-
whitespace column of .
line)

dollar dollar $$

Some FMLI built-in utilities, such aggex andfmigrep , have other special characters.
These are discussed with the appropriate utilities in the section 1F manual pages.

2-3

Character User Interface Programming

Quoting Mechanisms

FMLI supports quoting mechanisms, similar to those used in the UNIX system shell, for
disabling the meaning of special characters in a string. Each quoting mechanism has a dif-
ferent function, as defined below.

* Backslash\(): A backslash causes the next single character to be taken lit-
erally. That is, any special meaning of the character following a backslash
is turned off. (In some cases, multiple backslashes may be required to
escape the special meaning of a character.)

* Single quotes'(): Any string inside of single quotes is taken literally
and as a unit. Inside single quotes, only the backsigdiaé special mean-
ing.

* Double quotes’(”): Double quotes group the text between them as a unit,
but still allow variable expansion and the use of backquotes. Inside double
guotes, only backslash), backquote (), and dollar sign$) retain their
special meanings. Carriage returns inside double quotes are enforced.

* Backquotes™("): (Backquoted expressions are discussed in detail in the
next section.) Any statement or series of statements may be enclosed in
backquotes with the result that such a backquoted expression evaluates to
the output of the last statement. Statements may be UNIX system executa-
bles or FMLI built-in utilities. Backquotes cannot be nested, except as pro-
vided for inregex . (See theegex(1F) manual page.)

NOTE

If a statement run in a backquoted expression changes the
stty(1) setting, the FMLI session may be corrupted. Frames
may not display correctly and the FMLI command line may not
function (the latter occurs RETURN is mapped ta.INE-
FEED or toLINEFEED RETURN).

Backquoted Expressions

Backquoted expressions may be coded as the value of a descriptor. They are evaluated at
the time the descriptor is evaluated. When a backquoted expression produces output, it is
considered part of the descriptor. This output must not produce an illegal value on the
descriptor line. For instance, if the variaM&VARs set tahello , then

action="echo $MYVAR open menu Mymenu
will be equivalent to
action=helloopen menu Mymenu
This produces an illegal descriptor value siheoopen is not a known FMLI com-

mand, and descriptors of type command must evaluate to a known FMLI command. As a
result, the terminal will beep.

2-4

The Form and Menu Language

In addition to using backquoted expressions on descriptor lines, you can code them as
“stand-alone” lines anywhere in menu, form, or text frame definition files. A stand-alone
backquoted expression is one that starts a line, and it is evaluated when the frame defini-
tion file is opened, reread, or updated; befang descriptors are evaluated. Thus, if a
stand-alone backquoted expression produces output to the message line, the output will
appear before the frame being parsed is posted.

It is important to note that information can be passed to or from UNIX system executables
and FMLI built-in commands using backquoted expressions. For example a menu item
with the following definition of thection descriptor

action="date | message’ nop

passes the output of the UNIX systdate command to the FMLI built-in utilitynes-
sage , which displays it on the message line.

Using this feature of the Form and Menu Language, you can generate the entire contents
of a frame dynamically at run time. For an example of a menu generated this way, see the
regex(1lF) manual page and “Creating a Dynamic Menu” on page 3-23.

NOTE

In backquoted expressions, executables that expect standard input
must be run via theun built-in utility. For example, if a user
selects a menu item which hasdigtion descriptor coded as
action="vi myfile'nop , the FMLI session will appear to
hang. The same action, coded astion="run vi

myfile'nop , executes properly.

Expression Operators

Several statements, utilizing FMLI built-in utilities or UNIX system executables, may
appear inside a single backquoted expression, separated by one of the following operators:

* Semicolon [): Statements separated by a semicolon are executed sequen-
tially.

* Pipe (]): When statements are separated by a pipe symbol, the output of
the first statement becomes the input to the second.

* AND (&&): The meaning oftatementX.& statement2s runstatementiand
if it succeeds, then rustatement2

* OR (]|): The meaning oftatement]| statementds runstatementl
and if it fails, runstatement2

NOTE
FMLI does not allow statement grouping by using parentheses,

such as can be done in the UNIX shell, nam&tgtementi&&
(statement? statementB

2-5

Character User Interface Programming

File Redirection

Syntax Errors

Variables

The input of a statement may be redirected from a file by wsifig. Similarly, the out-
put of a statement may be sent to a file by usirfge, or by using>> file to append out-
put to the end of a file.

The output from standard error may be redirected by &sinfle to send it to a file, or by
using2>> file to append it to the end of a file.

As in the UNIX shell, whitespace betweeror < andfile is optional.

In general, FMLI does not generate messages on syntax errors. Anything it doesn't under-
stand is ignored. However, some of the built-in utilities sudimiggep , and the FMLI
conditional statement, generate their own syntax error messages. For example, a mis-
spelled descriptor will be ignored, but a syntax error in a ufmigfep may cause an

error message. In addition, correctly coded descriptors will be ignored if they are used in
the wrong context. For example, tbelected descriptor will be ignored in a single-
select menu (becauselected has no meaning in that context).

When creating a new form, menu, or text frame, all quotes and backquotes must match.
Quoting mismatches may cause the frame not to appear or appear incorrectly, or cause an
fmli session to terminate (exit). Quoting mismatches are not reported.

The Form and Menu Language Interpreter recognizes user-defined variables, and a set of
read-only special FMLI variables (known as built-in variables), as well as UNIX shell
variables such a4dOMBr MAIL.

Variables in FMLI are global. That is, variables defined in one frame or application level
definition file are exported to all other frame definition files or application level files after
theset command has been executed. If a frame is not opened during the execution of an
FMLI session, variables defined in it are not available.

User-defined Variables

2-6

User-defined variables are names to which you may assign string values using the FMLI
built-in utility set (see theset(lF) manual page for complete details on its use). You
can assign values to variables in the local environment, available to the current FMLI ses-
sion only:

set -| namevalue

The Form and Menu Language

NOTE

Local variables are available to all frames of your application, not
just the frame in which they are set.

Or a variable can be made available to any application/process by placing the variable in a
file, thus allowing another application (for example, another FMLI application) to retrieve
the information:

set-f filename nanwvalue

wherenameis a sequence of letters, digits, and underscores that begins with a letter or an
underscoreyalueis a string, andilenameis the path name to a file that contains lines of
the formnamervalue If it does not already exisfilenamewill be created. Note that no
spaces surround the equal sigh (

The built-in utility set can also be used to set variables in the UNIX shell environment
and export them to the current session and to its child processes:

set -e namevalue

The built-in utility unset can be used to remove a variable assignment (see the
set(lF) manual page for complete details on its use).

Built-in Variables

The built-in variables are a set of special, read-only variables that are predefined in the
Form and Menu Language. These built-in variables can only be referenced, but never set,
in frame definition files. The built-in variables are as follows:

ARG This variable evaluates to timeéh argument passed to the corre-
sponding form, menu, or text frame.

DISPLAYH This variable evaluates to the height of the available frame display
area, minus the three lines reserved for the message line, the com-
mand line, and the screen labels for function kBYSPLAYH is
placed in the UNIX shell environment.

DISPLAYW This variable evaluates to the width of the available frame display
area of the screeRISPLAYWis placed in the UNIX shell envi-
ronment.

Form_Choice This variable evaluates to the last choice made from a choices
menu.

Fn This variable evaluates to the current value ofnthdield.

NOTE

Field n cannot reference fieldh, wherem is greater thamn, and
field m does not havewalue descriptor defined.

Character User Interface Programming

HAS_COLORS This variable evaluates to TRUEfifli is invoked from a color
terminal, otherwise it evaluates to FALSHAS COLORS
placed in the UNIX shell environment.

LININFO This variable evaluates to null if the current menu item or form
field doesn't have laninfo descriptor defined. Otherwise it evalu-
ates to the value of tHninfo descriptor. (See Chapter 3, for an
example of how to use this variable to output a help message for
form fields or menu items.)

LOADPFK When this variable is set tes, true , or the null string, it
directs FMLI to download alternative keystroke sequences into
the function keys of a terminal that does not have fixed, preset val-
ues for themLOADPFKs read from the UNIX shell environment.
(See Appendix B for more information on automatic function key
downloading.)

MAILCHECK This variable determines the amount of time befoBGALRM
alarm automatically occurs. The minimum valueNGkILCHECK
is 120 seconds. MAILCHECKI s not defined, or defined &s
(zero), it defaults t800 secondsMAILCHECKIs read from the
UNIX shell environment.

NR This variable evaluates to the number of items in the menu frame.

RET This variable evaluates to the exit value of the last executable run,
whether in a backquoted expression or as the executable argument
to the built-in utilityrun . If such arexec orfork system call
fails, RETwill be set to the sum of the return code ofelxec or
fork plus the integer 1000.

SELECTED This variable evaluates to TRUE if the current item in a multi-
select menu has been marked. It evaluates to FALSE if the item is
not marked.

TEXT This variable evaluates to the value of tket descriptor in a
text frame.

Variable Evaluation

In frame definition files and application level files, variables are referenced by prefixing
either$ or$! to the variable name.

When you use th&namenotation, the variable is evaluated only once. This implies that
special characters lose their special meaning when they are coded in the values of strings.
For example, if you assigned a value to the variglRas follows

‘set -l VAR=""date” $HOME™
and then requested FMLI to display the valu&WAR the value displayed would be
“date” $HOME

When you use th§! namenotation, the variable will be evaluated multiple times—as long
as special characters remain in the expression. For example, if the vei&thad the

2-8

The Form and Menu Language

same value assigned as shown above, but you requested FMLI to display the value of
$WVAR, the value displayed would be, for instance,

Thu Sep 29 14:43:41 EDT 1989 /home/loginID

The$! notation should never be used when referencing the built-in variables (especially
F1, F2, and so on), because it is impossible to guard against users entering special charac-
ters in form fields.

NOTE

Prior to FMLI Release 4.0, only ti§enotation existed for variable
evaluation, and that notation exhibited the behavior now defined
for $! .

For previously written FMLI applications now being run under
FMLI Release 4.0 or later, a Boolean descriptor,
use_incorrect_pre4.0_behavior , can be set in the ini-
tialization file if needed. This will cause FMLI to ignore the
notation and interprek in the old way. The default value (if not
defined in the initialization file) for
use_incorrect_pre4.0_behavior is FALSE.

This descriptor, and consequently the ability to make$theta-
tion behave like th&! notation, will be removed in the next
release of FMLI.

When a variable is evaluated that does not specifically reference a file, two environments
are searched:

local environment This environment is specific to the current FMLI process
(variables set witlset -I). This is similar to an unex-
ported shell variable.

UNIX system environment The UNIX system environment is the standard UNIX
environment.

Whenevernvironmenis referred to in this text, these environments are searched in the
order listed.

Variable names must be referenced using one of the following formats:
$variable or ${ variable Look for variable in the environment and evaluate to the
value of that variable.
NOTE

The built-in variablé=n must be used with the formgi n} for
fields greater than the ninth, that{is10} ,{F11} , and so on.

2-9

Character User Interface Programming

Descriptors

${variable-defaul} Look for variablein the environment and if it is found
evaluate to its value. If it is not found, evaluateléfault

${(filenam@variable} Look for a line of the formavariable=valuein the filefile-
name If such a line is found, evaluateutalue

${(filenam@variable-defaul} Same as above, exceptvériableis not found anywhere,
evaluate talefault

Note thaffilenameanddefaultmay themselves be variables, such as

${(SHOME/.variables)NAME:-$LOGNAME}

Descriptors are the basic building blocks of the Form and Menu Language. Each descrip-
tor defines a particular attribute that you can customize for the type of frame you are defin-
ing. The three types of frames that you can define—menus, forms, and text frames—each
have their own set of descriptors, as do the initialization file, the commands file, and the

alias file.

The general syntax of descriptor statements in the Form and Menu Language is
descriptorvalue

wheredescriptoris any valid descriptor for the frame definition file or application level
definition file you are writing, anslalueis a value of the type expected by the descriptor.
The value may include backquoted expressions that evaluate to part, or all, of the descrip-
tor value, as well as FMLI commands and their arguments. Some descriptors have default
values.

To take a simple example, if the variableGNAMEvaluates tahris , then
name=hello there $LOGNAME --today is "date’

results in the value of theame descriptor being

hello there chris --today is Sun Aug 27 16:07:23 EDT 1989.

Note that there are no spaces around the equal-=sigm & descriptor statement.

Descriptor Evaluation

2-10

To obtain a descriptor value for the first time, FMLI must either use the default value of
the descriptor, if any, or evaluate the expression coded for the descriptor. Expression eval-
uation resolves references to variables, removes quotes, and causes any backquoted
expressions to be executed. Backquoted expressions may be used for their side effects
only or may generate standard output that is used as part of the descriptor value.

The Form and Menu Language

By default, FMLI determines how often descriptors are evaluated. Most are evaluated only
once, the first time the descriptor value is needed; the value of the descriptor remains the
same throughout the life of the frame. This does not mean that the value cannot be used, or
“referenced,” again, only that it will not be recomputed each time it is referenced.

Other descriptors are evaluated multiple times in the life of a frame. In these cases, all
backquoted expressions coded as part of the descriptor are executed, for output and side
effects, each time the descriptor is evaluated. Some of these descriptors are evaluated
whenever they are referenced, others are evaluated only when referenced in certain condi-
tions. Theshow descriptor, for instance, is typically used to make fields in a form appear

or disappear based on values the user has entered in othesfieldss referenced when

the form is opened and thereafter each time the user navigates between fields in the form.
show is evaluated, however, only the first time it is referenced and thereafter only when
the user has changed the value of a field before navigating away.

For performance reasons, then, FMLI evaluates descriptors only as necessary in the typi-
cal case. That may still be too often, or not often enough, for your application. In these sit-
uations, you can use tleenst type cast to make sure that a descriptor is evaluated only
once, no matter how many times it is referenced, ovdhe type cast to make sure that a
descriptor is evaluated whenever it is referenced.

As an example of how you might usenst , consider a form that contains a field that
should only be completed on Friday. You can definestimav descriptor for the field so
that it will appear only when theate +%a command evaluates to Friday:

show="set -| DAY=date +%a; test “$DAY” = “Friday”™

In the example, the FMLI built-in utilitget - sets the local variabl2AYto the output
of thedate +%a command.

The problem with this is that, by default, FMLI will evaluasteow more times than is
necessary for your application: not only when the form is opened, but whenever the user
changes a value in a field and navigates to another field. To prevent that, you can use
const as follows:

show=const “set -| DAY=date +%a; test “SDAY” = “Friday™
show will be evaluated only when the form is opened.

vary is used to force a descriptor that is evaluated once by default, or only when it is ref-
erenced in certain conditions, to be re-evaluated each time it is referenced. Suppose you
have defined a form that allows users to administer machines in a network. One field in the
form displays a choices menu from which users can select the machine they want to act
on. The field references a directory that contains files corresponding to each machine in
the network. You can use themenu descriptor to define the choices for the field:

rmenu={ "Is $NetMachines }

Suppose further, though, that machines will be added or removed from the directory list as
necessary throughout the life of the form. That means your choices menu will have to
change dynamically to reflect the changing contents of the directory. Bacaerse is
evaluated only once by default, the code shown above will produce a choices menu that
reflects the state of affairs when the form was opened, and not as it has changed since then.
To produce a choices menu that changes dynamically, yotanseas follows:

rmenu=vary { 'Is $NetMachines }

2-11

Character User Interface Programming

Descriptor Types

rmenu will be evaluated whenever it is referenced.

The types of descriptors are the following:

Boolean

color

A descriptor of type Boolean must evaluate to either TRUE or FALSE.

* FALSE is defined as the word “false,” irrespective of case, or a
non-zero return code.

* TRUE is defined as all values other than FALSE, as defined
above. For examplérue , TRUE yes, 0.

A descriptor of type color must evaluate to one of the following strings:
black , blue , green , cyan, red , magenta , yellow , orwhite , or one
you define usingetcolor(1F).

command A descriptor of type command must evaluate to an FMLI command, such as

integer

layout

null

position

string

open, nop, exit
A descriptor of type integer must evaluate to an integer value.

A descriptor of type layout (there is only oslk, layout) must evaluate to
one of only two values: eith&2-3 or4-4 .

A descriptor of type null exists only to get the side effect of a backquoted
expression. Its value is ignored.

A descriptor of type position must evaluate to an integer value or one of the
stringsany, center , current , ordistinct

A descriptor of type string must evaluate to a sequence of characters.

NOTE

If the integer value assigned to a descriptor that determines the
offset of a frameor_ary of its components is greater than the
boundaries of the screen work area, the frame will not be posted.
Thebegrow andbegcol descriptors are the exceptions to this.
They default taany.

Frame Definition File Descriptors

2-12

Menu, form, and text frame definition files have similar rules governing the order in which
descriptors are defined.

frame descriptors Descriptors that apply to the frame as a whole must be

defined first. There can be only one set of frame descrip-
tors in a frame definition file. Each frame descriptor

The Form and Menu Language

should be defined only once. If defined more than once,
then the last instance of the descriptor in the set is used.
Frame descriptors that are out of order, that is, any that fol-
low item, field, or SLK descriptors in the frame definition
file, are ignored.

item or field descriptors Descriptors that apply to an item in a menu or a field in a
form must be defined next. There can be multiple sets of
item descriptors in a menu definition file, and multiple sets
of field descriptors in a form definition file—as many sets
as there are items or fields. In each set, however, each item
or field descriptor should be defined only once. If defined
more than once, then the last instance of the descriptor in
the set is used.

Text frame definition files do not have an equivalent to
item or field descriptors.

screen-labeled function key (SLK) descriptors

Descriptors that apply to screen-labeled function keys (the
name that appears on the screen label as well as the func-
tion assigned to the function key) must be defined last.
There can be multiple sets of SLK descriptors—as many
sets as there are SLKs you are defining. In each set, how-
ever, a descriptor should be defined only once. If defined
more than once, then the last instance of the descriptor in
the set is used.

The following tables summarize the available descriptors for each type of frame. They
also show the default value of each descriptor, the type of string expected as a value, when
the descriptor is referenced, and when it is evaluated by default. (See Chapter 3 and
Chapter 4 for discussions of what these descriptors do and how to use them.)

NOTE

The “When Referenced” listing for each descriptor in the follow-
ing tables should be considered a statement of the minimum num-
ber of times the descriptor is referenced. Many of the descriptors
are referenced more times than is stated in the tables.

2-13

Character User Interface Programming

Menu Descriptors

Table 2-1 lists the frame descriptors that can be used in a menu definition file. None of
these descriptors is required in a menu definition file. If any are used they can be in any
order, but they must precede the item descriptors.

Table 2-1. Frame Descriptors for Menu Definition Files

Descriptor Default if Type When Ereefalljletnc of
P not Defined yp Referenced quency
Evaluation

altslks FALSE Boolean =~ When menu is When menu is opened/
opened/updated updated

autosort FALSE Boolean =~ When menu is When menu is opened/
opened/updated updated

begcol any position When menu is When menu is opened/
opened/updated updated

begrow any position When menu is When menu is opened/
opened/updated updated

close no default null When menu is When menu is closed
closed for any rea- for any reason
son

columns calculated value** integer When menu is When menu is opened/
opened/updated updated

done no default command When items are Whenever referenced
selected (not
marked) in a multi-
select menu;
ignored in a single-
select menu

framemsg no default string When menu is When menu is opened/
opened/updated updated

help no default command When user asks for Whenever referenced
help

init TRUE Boolean ~ When menu is When menu is opened/
opened/updated updated

interrupt inherited value* Boolean When an interrupt- Whenever referenced
ible descriptor is
evaluated

lifetime longterm string When menu is Whenever referenced
opened, closed,
made current, or
made non-current

oninterrupt inherited value* command After descriptor Whenever referenced
evaluation is inter-
rupted

2-14

The Form and Menu Language

Table 2-1. Frame Descriptors for Menu Definition Files (Cont.)

Descriptor Default if Type When Ereefalljgnc of
P not Defined yp Referenced quency
Evaluation
menu Menu string When menu is When menu is opened
opened
multiselect FALSE Boolean =~ When menu is When menu is opened/
opened/updated updated
reread FALSE Boolean When a Whenever referenced
checkworld
occurs
rows calculated value** integer When menu is When menu is opened/

opened/updated

updated

Table 2-2 lists the item descriptors that can be used in a menu definition file. In each set of
item descriptorspame is required and must be the first descriptor.

Table 2-2. Item Descriptors for Menu Definition Files

Descriptor Default i Type When Efefaltjgnc of
P not Defined yp Referenced guency
Evaluation
action no default command When item is Whenever referenced
selected
description no default string When menu is When menu is opened/
opened/updated updated
inactive FALSE Boolean =~ When menu is When menu is opened/
opened/updated updated
interrupt inherited value* Boolean = Whenaction Whenever referenced
descriptor is evalu-
ated
itemmsg no default string When item is navi- Whenever referenced
gated to
lininfo no default string When item is navi- Whenever referenced
gated to
name no default string When menu is When menu is opened/

opened/updated

updated

2-15

Character User Interface Programming

Table 2-2. Item Descriptors for Menu Definition Files (Cont.)

Descriptor Default if Type When Ereefalljletnc of
P not Defined yp Referenced quency
Evaluation
oninterrupt inherited value* command After action Whenever referenced
descriptor evalua-
tion is interrupted
selected FALSE Boolean =~ When menu is When menu is opened/
opened/updated updated
show TRUE Boolean =~ When menu is When menu is opened/

opened/updated updated

Table 2-3 lists the descriptors that can be used to define screen-labeled function keys in a
menu definition file. Theame andbutton descriptors must be defined, araime must
be first in each set of SLK descriptors.

Table 2-3. SLK Descriptors for Menu Definition Files

Descriptor Default if Type When Default
not Defined Referenced Frequency of
Evaluation

action no default command When SLK is Whenever referenced
pressed

button no default integer When menu is Whenever referenced
opened/updated

interrupt inherited value* Boolean = When SLK Whenever referenced
action descriptor
is evaluated

name no default string When menu is Whenever referenced
opened/updated

oninterrupt inherited value* command After SLK action Whenever referenced

descriptor evalua-
tion is interrupted

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your applicatienupt
defaults to FALSE andninterrupt defaults tomessage Operation
interrupted! nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

* The default value forcolumns androws is determined by FMLI and

depends in part on the number of items defined in the menu. (See Appendix A
for a table describing the method of calculation.)

2-16

The Form and Menu Language

Form Descriptors

Table 2-4 lists the frame descriptors that can be used in a form definition file. None of
these descriptors is required in a form definition file. If any are used they can be in any
order, but they must precede the field descriptors.

Table 2-4. Frame Descriptors for Form Definition Files

Descriptor Default if Type When Ereefalljletnc of
P not Defined yp Referenced quency
Evaluation

altslks FALSE Boolean When form is When form is opened/
opened/updated updated

autolayout FALSE Boolean When form is When form is opened/
opened/updated updated

begcol any position When form is When form is opened/
opened/updated updated

begrow any position When form is When form is opened/
opened/updated updated

close no default null When form is When form is closed
closed

done close command When form is saved Whenever referenced

form Form string When form is When form is opened
opened

framemsg no default string When form is When form is opened/
opened/updated updated

help no default command When user asks for Whenever referenced
help

init TRUE Boolean When form is Whenever referenced
opened/updated

interrupt inherited value* Boolean When an interrupt- Whenever referenced
ible descriptor is
evaluated

lifetime longterm string When form is Whenever referenced
opened, closed,
made current,
made non-current

oninterrupt inherited value* command After descriptor Whenever referenced
evaluation is inter-
rupted

reread FALSE Boolean When Whenever referenced
checkworld
occurs

2-17

Character User Interface Programming

Table 2-5 lists the field descriptors that can be used in a form definition file. In each set of
field descriptors theame descriptor is required and must be first.

Table 2-5. Field Descriptors for Form Definition Files

Descriptor Default i Type When Esafaﬁgnc of
P not Defined yp Referenced guency
Evaluation
autoadvance FALSE Boolean = When form is When form is opened/
opened/updated updated
choicemsg no default string When choices When choices menu is
menu is selected selected
columns If autolayout is integer When form is When form is opened/
FALSE, -1. If opened/updated updated
autolayout is
TRUE: 4 for first
field, else previous
field's value ***
fieldmsg no default string When field is navi- Whenever referenced
gated to
fcol If autolayout is integer When form is When form is opened/
FALSE, -1. If opened/updated updated
autolayout is
TRUE:
1+current_ncot
lengthOfLabelf
first field, or max of
that and its value in
previous field **
frow If autolayout is integer When form is When form is opened/
FALSE, -1. If opened/updated updated
autolayout is
TRUE:
current_nrow**
inactive FALSE Boolean = When form is First time referenced
opened, made cur- and when referenced
rent, updated, saver after an earlier field
value has been changed
invalidmsg Input is not valid string Whenvalid eval- First time referenced
uates to false
invalidOn- Relationship of val- string WhenvalidOn- First time referenced
DoneMsg ues in 2 or more Done evaluates to
fields is not valid false
lininfo no default string When this field is Whenever referenced
navigated to
menuonly FALSE Boolean When form is When form is opened/

opened/updated updated

2-18

The Form and Menu Language

Table 2-5. Field Descriptors for Form Definition Files (Cont.)

Descriptor Default if Type When Ereefalljgnc of
P not Defined yp Referenced quency
Evaluation
name no default string When form is When form is opened/
opened/updated updated
ncol If autolayout is integer When form is When form is opened/
FALSE, -1. If opened/updated updated
autolayout is
TRUE: O for first
field, else previous
field's value **
noecho FALSE Boolean When form is When form is opened/
opened/updated updated
nrow If autolayout is integer When form is When form is opened/
FALSE, -1. If opened/updated updated
autolayout is
TRUE: O if first
field of page or
previous_nrow
previous_rowsg*
page 1w integer When form is When form is opened/
opened/updated updated
rmenu no default command When form is When form is opened/
opened/updated updated
rows 1 e integer When form is When form is opened/
opened/updated updated
scroll FALSE Boolean When form is When form is opened/
opened/updated updated
show TRUE Boolean When form is First time referenced
opened/updated and when referenced
and when any inter. after an earlier field
field navigation value has been changed
occurs
valid TRUE Boolean = When interfield Whenever referenced

navigation is
attempted from a
changed field, or

from any field with
ENTER, and when

form is saved

2-19

Character User Interface Programming

Table 2-5. Field Descriptors for Form Definition Files (Cont.)

Descriptor Default if Type When Ereefalljletnc of
P not Defined yp Referenced quency
Evaluation
validOnDone TRUE Boolean = When formis saved Whenever referenced
value no default string When form is When form is opened/
opened/updated updated
wrap FALSE Boolean When form is When form is opened/

opened/updated updated

Table 2-6 lists the SLK descriptors that can be used in a form definition file. When they
appear in a form definition file, they must be the last descriptors in the fileamfeand
button descriptors must be defined, amine must be the first descriptor in each set of
SLK descriptors.

Table 2-6. SLK Descriptors for Form Definition Files

Descriptor Default i Type When Efefaltj:atnc of
P not Defined yp Referenced guency
Evaluation
action no default command When SLK is Whenever referenced
pressed
button no default integer When form is Whenever referenced
opened/updated
interrupt inherited value* Boolean = When SLK Whenever referenced
action descriptor
is evaluated
name no default string When form is Whenever referenced
opened/updated
oninterrupt inherited value* command After SLK action Whenever referenced
descriptor evalua-
tion is interrupted
* The value ofinterrupt andoninterrupt in any given set of descriptors

is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your applicatienupt

defaults to FALSE andninterrupt defaults tomessage Operation
interrupted! nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

** A negative value for this descriptor will cause the label or input area being
described to not appear in the form.

*hk A zero or negative value for this descriptor will cause the field being described
to not appear in the form.

2-20

The Form and Menu Language

Text Frame Descriptors

Table 2-7 lists the frame descriptors that can be used in a text frame definition file. None of
these descriptors is required in a text frame definition file. If any are used they can be in
any order, but they must precede the SLK descriptors. Note that the only kinds of descrip-
tors in text frame definition files are frame descriptors and SLK descriptors. (Text frames

do not have an equivalent to item or field descriptors.)

Note that text frames may also be defined, at least for simple needs, usiagtthe

frame command. This command can be used to reduce the number of text frame defini-
tion files needed in an application. See “The textframe Command” on page 3-56 for more
information on using this short-cut.

Table 2-7. Frame Descriptors for Text Frame Definition Files

Descriptor Default i Type When Esafaﬁgnc of
P not Defined yp Referenced quency
Evaluation

altslks FALSE Boolean = When frame is When frame is opened/
opened/updated updated

begrow any position When frame is When frame is opened/
opened/updated updated

begcol any position When frame is When frame is opened/
opened/updated updated

close no default null When frame is When frame is closed
closed

columns 30 integer When frame is When frame is opened/
opened/updated updated

done close command When frame is Whenever referenced
closed

edit FALSE Boolean When frame is When frame is opened/
opened/updated updated

framemsg no default string When frame is When frame is opened/
opened/updated updated

header no default string When frame is When frame is opened/
opened/updated updated

help no default command When user asks for Whenever referenced
help

init TRUE Boolean When frame is Whenever referenced
opened/updated

interrupt inherited value* Boolean = When an interrupt- Whenever referenced

ible descriptor is
evaluated

2-21

Character User Interface Programming

Table 2-7. Frame Descriptors for Text Frame Definition Files (Cont.)

Descriptor Default if Type When Ereefalljgnc of
P not Defined yp Referenced quency
Evaluation
lifetime longterm string When frame is Whenever referenced
opened, closed,
made current, or
made non-current
oninterrupt inherited value* command After descriptor Whenever referenced
evaluation is inter-
rupted
reread FALSE Boolean When frame is Whenever referenced
opened/updated
rows min(10, linesOfText integer When frame is When frame is opened
opened/updated
text no default string When frame is When frame is opened/
opened/updated updated
title Text string When frame is When frame is opened
opened
wrap TRUE Boolean When frame is When frame is opened/

opened/updated

updated

2-22

Table 2-8 lists the SLK descriptors that can be used in a text frame definition file. When
they are used in a text frame definition file, they must be the last descriptors in the file. The
name andbutton descriptors must be defined, amaime must be the first descriptor in

each set of SLK descriptors.

Table 2-8. SLK Descriptors for Text Frame Definition Files

Descriptor Default if Type When Default
not Defined Referenced Frequency of
Evaluation

action no default command When SLK is Whenever referenced
pressed

button no default integer When frame is Whenever referenced
opened/updated

interrupt inherited value* Boolean = When SLK Whenever referenced
action descriptor
is evaluated

name no default string When frame is Whenever referenced
opened/updated

oninterrupt inherited value* command After SLK action Whenever referenced

descriptor evalua-

tion is interrupted

The Form and Menu Language

* The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your applicatienupt
defaults to FALSE andninterrupt defaults tomessage operation
interrupted! nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

Application Level File Descriptors

There are three kinds of application level files: the initialization file, the commands file,
and the alias file. The rules which govern the order of descriptors are different for each and
are covered in the appropriate section.

The following tables summarize the available descriptors for application level files. They
also show the default value of each descriptor, the type of string expected as a value, when
the descriptor is referenced, and when it is evaluated by default. (See Chapter 4 for discus-
sions of what these descriptors do and how to use them.) Most descriptors for application
level files are evaluated at initialization tirieitialization timecan be either when the

FMLI application session is started via tindi command, or when the FMLI built-in

utility reinit(1F) is executed. (Theeinit utility parses and evaluates the descrip-

tors in the file named as its argument and continues running the current application.)

Initialization File Descriptors

The rules governing the order in which descriptors are defined in an initialization file are
the following:

application descriptors
Descriptors that apply to the application as a whole must be defined first.
There can be only one set of application descriptors in an initialization file. In
that set, each application descriptor should be defined once. If defined more
than once, then the last instance of the descriptor in the set is used. Applica-
tion descriptors fall into four functional groups:

* introductory frame descriptors
* banner line descriptors
¢ general application descriptors

* color descriptors

application SLK descriptors
Descriptors that apply to application SLKs (the name that appears on the
screen label as well as the function assigned to the function key) must be
defined last in the initialization file. There can be multiple sets of application
SLK descriptors—as many sets as there are SLKs you are defining. In each
set, however, a descriptor should be defined only once.

Application Descriptors for the Initialization File

The following tables summarize the four functional groups of application descriptors.

2-23

Character User Interface Programming

2-24

Table 2-9 lists the descriptors that can be used to define an introductory frame in an initial-

ization file.

Table 2-9. Introductory Frame Descriptors for the Initialization File

Default Default
. : When
Descriptor if not Type Frequency of
. Referenced :
Defined Evaluation
columns 50 position At initialization At initialization time
time
rows 10 position At initialization At initialization time
time
text no default string At initialization At initialization time
time
title no default string At initialization At initialization time

time

Table 2-10 lists the descriptors that can be used to define the banner line in an initialization

file.

Table 2-10. Banner Line Descriptors for the Initialization File

Default Default
. . When
Descriptor if not Type Frequency of
. Referenced :
Defined Evaluation
bancol center position At initialization At initialization time
time
banner no default string At initialization At initialization time
time
working Working string At initialization At initialization time

time

Table 2-11. General Descriptors for the Initialization File

The Form and Menu Language

Table 2-11 lists the descriptors that can be used to define features of the application as a

whole.

Descriptor Default i Type When Esafaﬁgnc of
P not Defined yp Referenced quency
Evaluation
interrupt FALSE Boolean When an interrupt- When an interruptible
ible descriptoris descriptor is evaluated
evaluated
nobang FALSE Boolean At initialization At initialization time
time
oninterrupt ‘message command After descriptor After descriptor evalua-
Operation evaluation is tion is interrupted
Interrupted!" nop interrupted
permanentmsg no default string At initialization At initialization time
time
slk_layout 3-2-3 layout At initialization At initialization time
time
toggle 3 integer At initialization At initialization time

time

NOTE

Prior to FMLI Release 4.0, only tl¥enotation existed for variable

evaluation, and that notation exhibited the behavior now defined
for $! .

For previously written FMLI applications now being run under
FMLI Release 4.0 or later, a Boolean descriptor,
use_incorrect_pre4.0_behavior , can be set in the gen-
eral descriptors section of an initialization file if needed. This will
causefmli to ignore the! notation and interpred in the way
defined for$! . The default-if-not-defined value for
use_incorrect_pre4.0_behavior is FALSE.

This descriptor, and consequently the ability to make$theta-
tion behave like th&! notation, will be removed in the next
release of FMLI.

2-25

Table 2-12 lists the descriptors that can be used to define the colors of various elements of

Character User Interface Programming

the FMLI screen display in an initialization file.

Table 2-12. Color Descriptors for the Initialization File

Descriptor Default if Type When Esafaﬁgnc of
P not Defined yp Referenced quency
Evaluation
active_border white color At initialization At initialization
time time
active_title_bar black color At initialization At initialization
time time
active_title_text white color At initialization At initialization
time time
banner_text white color At initialization At initialization
time time
highlight_bar black color At initialization At initialization
time time
highlight_bar_text white color At initialization At initialization
time time
inactive_border white color At initialization At initialization
time time
inactive_title_text white color At initialization At initialization
time time
inactive_title_bar black color At initialization At initialization
time time
screen black color At initialization At initialization
time time
slk_text white color At initialization At initialization
time time
slk_bar black color At initialization At initialization
time time
window_text white color At initialization At initialization

time

time

Application SLK Descriptors

Table 2-13 lists the descriptors used to define SLKs in the initialization file. When used in
an initialization file, they must be the last descriptors in the file.rnEmee andbutton

2-26

The Form and Menu Language

descriptors must be defined, anadme must be the first descriptor in each set of SLK
descriptors.

Table 2-13. Application SLK Descriptors for the Initialization File

Descriptor Default i Type When Esafaﬁgnc of
P not Defined yp Referenced quency
Evaluation
action no default command When SLK is Whenever referenced
pressed
button no default integer At initialization Whenever referenced
time
interrupt inherited value* Boolean When a SLK Whenever referenced
action descriptor
is evaluated
name no default string At initialization Whenever referenced
time
oninterrupt inherited value* command After SLKaction Whenever referenced
descriptor evalua-
tion is interrupted
* The value ofinterrupt andoninterrupt in any given set of descriptors

is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your applicatierupt

defaults to FALSE andninterrupt defaults tomessage Operation
interrupted! nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

Commands File Descriptors

The commands file has only one set of descriptors, and that set can be defined multiple
times. The maximum sets of descriptors that can be defined in a commands file is 64. The
name descriptor must be first in each set and is required. Each descriptor should be

defined only once in each set. If defined more than once, only the last instance is used.

2-27

Character User Interface Programming

Table 2-14 lists the descriptors that can be used in a commands file to redefine or disable
FMLI commands, and define new commands.

Table 2-14. Commands File Descriptors

Descriptor Default i Type When Esafaﬁgnc of
P not Defined yp Referenced guency
Evaluation
action no default* command At initialization Whenever referenced
time
help no default command When user asks for Whenever referenced
help
interrupt inherited value** Boolean When araction Whenever referenced
descriptor is
evaluated
name no default string At initialization Whenever referenced
time
oninterrupt inherited value** command After action Whenever referenced
descriptor
evaluation is
interrupted
* The action descriptor has no default unlesame evaluates to a predefined

command. In that case, it defaults to the predefined command.

** The value ofinterrupt andoninterrupt in any given set of descriptors
is inherited from the next higher level in a precedence hierarchy. If these
descriptors have not been defined anywhere in your applicatienupt
defaults to FALSE andninterrupt defaults tomessage Operation
interrupted! nop . (See “Interrupt Signal Handling” on page 2-39 for
more information.)

FMLI Commands

An FMLI command is a command that is part of the Form and Menu Language and which
forces a screen related operation to occur. FMLI commands cannot be executed in back-
guoted expressions; however, a backquoted expression can generate an FMLI command.
Only descriptors of type command can evaluate to an FMLI comnaatidn , done,

help , oninterrupt , andrmenu. A command descriptor must evaluate to a single
FMLI command. If it does not, the terminal bell will sound. The FMLI commands that
take arguments are noted (see “Syntax Notation” on page -iv for an explanation of syntax
notation).

2-28

The Form and Menu Language

NOTE

The maximum number of arguments that may be given in an
FMLI command is 25. Remember, however, that a frame can only
reference the first 10 argumentdRG0-ARG).

FMLI Commands: Syntax and Use

The following list briefly describes all the FMLI commands.

cancel [framelD. .]

checkworld

choices

cleanup

close [framelD. .]

Thecancel command evaluates tlvdose descriptor of the
specified frame and attempts to close the frame. When selected
from theCommand Menu it closes the previously current
frame.cancel closes a frame without executing ttdene
descriptor.

TheframelDargument can be an integer identifying a frame or the
path name of a frame definition file.ffamelDis a path name, it

can be relative or full, but it must match the path name used when
the frame was opened.fiftmelDis not givencancel closes the
current frame.

Thecheckworld command evaluates tmeread descriptor

for all open frames: any frame whosgead descriptor evalu-
ates to TRUE is updated (sepdate command). This command

is initiated by theSIGALRMsignal everyMAILCHECKseconds. It

is also initiated by many other events, such as executing the
open, close, goto, run, andunix-system commands,

and frame-to-frame navigation. When ttieeckworld com-
mand is executed, the message line clears. (This side effect may
confuse users, especially when they are not aware that a
SIGALRMhas occurred. A warning in your user documents may
be warranted.)

Thechoices command evaluates thenenu andchoicemsg
descriptors (if defined) in the set of field descriptors defining the
current field. If neither is defined, a message informs the user that
no choices are available.

Thecleanup command evaluates thigetime descriptor of
all open frames and closes those for whifgtime evaluates
to shortterm orlongterm

Theclose command evaluates thidetime , done, and
close descriptors of all frames named in fr@melD argument
list and closes them. Frames named as argumentsfwitienis
invoked, and those frames in which tifetime descriptor
evaluates tammortal (which means they close only when the
user exits from the FMLI application) will remain open.

Theclose command has essentially the same functionality as

2-29

Character User Interface Programming

2-30

cmd-menu

done

exit

thecancel command, and is a useful alternative whenctre

cel command has been disabled in the commands file. (Recall
that disabling a command in the commands file makes it unavail-
able to developers as well as to users.)

The argumenframelD must be an integer identifying the frame,
or the path name of the frame to closdrdielDis a pathname, it

can be relative or full, but it must match the path name used when
the frame was opened.flamelDis not givenclose removes

the current frame.

Thecmd-menu command opens tHetommand Menu frame,
displaying it in the center of the work area.

Thedone command evaluates tldene descriptor (if it has been
defined) in a frame. In menu, text and form frandeme is a
descriptor of type command. If tlene descriptor is not defined,
it defaults to thelose command.

Theexit command evaluates tlotose descriptor for all open
frames, and terminates the FMLI session.

frm-mgmt [cmd[framelD]

goto [framelQ)

Thefrm-mgmt command allows you to move, reshape, or list
currently open frames. It takes a maximum of two arguments,
wherecmdcan be one of the sub-commaridé , move, or
reshape , andframelDis an integer or a path name identifying
the frame (menu or text frames only) to act ooniidis move or
reshape . If framelDis a path name, it can be relative or full, but

it must match the path name used when the frame was opened. If
framelDis not given, a menu is displayed in the work area, from
which a user can selelist , move, orreshape . If the argu-
mentlist is supplied, a frame will display a list of currently
open frames. Selecting a frame from this list causes navigation to
that frame. The argumelidt does not acceptfeamelD option.

The argumenimove allows a frame to be moved to a different
location in the work area. The argumesgghape will not work

on a form frame, but menu frames or text frames can be reshaped
and/or moved to a different location in the work area. If the
framelDargument is not supplied to the sub-commandse and
reshape , the operation occurs for the current frame wien
mgmtis used on a descriptor line, or for the most recently current
frame when a user seledsn-mgmt from theCommand

Menu or command line. IframelDis supplied, the operation
occurs for the open frame with tHeamelD.

Thegoto command makes another frame curréamelDis the
number of a frame or the path name of the frame definition file.
The path name can be relative or full, but it must match the path
name used to open the frame. Users should only be told about the
frame number argument.

Thegoto command is run when the command line is current and

help

mark

nextpage

next-frm

nop

The Form and Menu Language

an integer is entered. For examplE[RL-j 2 equates tgoto
2.

Thehelp command evaluates thelp descriptor if one has
been defined for the current frame. If one hasn't been defined the
indicator flashes.

Themark command marks or unmarks the current item in menus
for which themultiselect descriptor evaluates to TRUE.

Thenextpage command pages forward one page in the current
frame, if that frame understands paging, and if the user is not on
the last page of the frame. If the user is on the last page of the
frame the terminal bell sounds. In forms, a page comprises all
fields defined to be on a given page of the form (viaphge
descriptor). In menus and text frames, a page is a frame full of
information.

Thenext-frm command makes the next frame the current
frame. FMLI keeps a list of each frame that has been the current
frame: thenext framein the list is the last frame opened from the
current frame. Since the next frame is always relative to the cur-
rent frame the order of the list does not always follow frame ID
order.

Thenop command does nothing. Because descriptors of type
command must eventually evaluate to an FMLI commaaog, is
useful in those cases where you want to specify a backquoted
expression to evaluate, but you do not want to execute an FMLI
command. The terminal will beep when a descriptor of type com-
mand does not evaluate to an FMLI command. Includiog in

the descriptor definition will prevent the terminal from beeping,
while invoking no other operation.

open [typd filename[arg . . .]

prev-frm

Theopen command opens a frame. The arguntgpegcan be one

of the file type castsIENUFORMor TEXT, and indicates the type

of frame to be opened. The argumfilerhameis the path name of
the frame definition file to be opened. The argumangtis a
parameter that will be passed to the frame. In the following exam-
ple

OPEN FORM $MYFRAMES/myform ARG1 ARG2

open opens a frame definition fitMYFRAMES/myform, iden-
tified as a form frame definition file by the file type c&&RM

and passes the parametaR®GlandARG2to it. An example of
passing parameters can be found in “Creating a Dynamic Menu”
on page 3-23.

Theprev-frm command makes the previous frame the current
frame. FMLI keeps a list of each frame that has been the current
frame: theprevious framen the list is the frame from which the
current frame was opened. Since the previous frame is always rel-

2-31

Character User Interface Programming

ative to the current frame the order of the list does not always fol-
low frame ID order.

prevpage Theprevpage command pages backward one page in the cur-
rent frame, if that frame understands paging, and if the user is not
in the first page of the frame. In forms, a page comprises all fields
defined to be on a given page of the form (viapgghge descrip-
tor). In menus and text frames, a page is a screen full of informa-
tion. If the user is in the first page of the frame the terminal bell
sounds.

refresh Therefresh command redraws the terminal screen. For exam-
ple,refresh can be used if a broadcast message from the oper-
ating system corrupts the FMLI screen.

release Therelease command displays on the message line the release
number of the version of FMLI you are currently running. The
release command is meant to be used from the command line.
Partial matching cannot be used widiease (the command
name must be typed in full).

reset Thereset command causes talue descriptor of the current
field to be re-evaluated, restoring the default value of the field if
the current value is different. The descriptor is re-evaluated even if
it has been modified lgonst .

textframe [option§ The textframe command opens a simple text frame. It is a
short-cut to using a full text frame definition file and can be coded
in menu, form, and text frame definition files. The options corre-
spond to the most commonly used text frame descriptors. The
argumentextis the text to be displayed in the text frame and may
contain embedded newlines and tabs (including\theand \t
notations). See “The textframe Command” on page 3-56 for
details on the options.

togslk Thetogslk command causes FMLI to display the set of SLKs
that is not currently being displayed. It is a toggle between the two
sets.

unix-system Theunix-system command brings up the UNIX system shell

in full screen mode.

update [framelD [mkcuri]
Theupdate command forces a frame definition file to be reread
regardless of the absence or value ofrread descriptor. If
there are differences between what is read and what is on the
screen, the frame will be redrawupdate will not reread the
menu, form , ortitle descriptors. It takes two optional argu-
ments, wheréramelDis an integer or a path name identifying the
frame to update. lframelDis a path name, it can be relative or
full, but it must match the path name used when the frame was
opened. The argumentkcurr determines if the frame will be
made current once the update is done. The argumianirr must
be a Boolean value; if it is not given, it defaults to FALSE. If no
arguments are givenpdate updates the current frame.

2-32

The Form and Menu Language

After update is executed in a menu frame, the cursor is positioned on
the first menu item. In a form frame, the cursor is positioned on the first
field of the first page of the form. In a text frame, the cursor is positioned
on the first line of text.

User Access to FMLI Commands

Users can execute some FMLI commands by selecting them frd@dothenand Menu.

Table 2-15. Default Assignments of FMLI Commands
to the Command Menu

Command Menu
cancel next-frm
cleanup prev-frm
exit refresh
frm-mgmt unix-system
goto update
help

In addition, all FMLI commands can be executed from the command line. (Users can
access the command line in an FMLI application by presSifiBL-j or CTRL-f c.)

FMLI commands that appear in tl®mmand Menu or that are assigned to screen-
labeled function keys should be explained in your user documentation. However, you
should not document commands you do not want your users to use.

See Chapter 4 for information about how you can add commands to and disable com-
mands in theCommand Menu and how you can redefine the action assigned to a
screen-labeled function key.

NOTE

When you disable an FMLI command in the commands file, the
command becomes unavailable not only to users, but to develop-
ers. That is, you cannot use that command in frame definition files
or application level files. In particular, do not disable ¢
command.

2-33

Character User Interface Programming

Some FMLI commands also map, directly or indirectly, to default screen-labeled function
keys.

Figure 2-1. Default Assignments of FMLI Commands to Function Keys

Function Menu Form Text Choices Command
Key Frame Frame Frame Menu Menu
F1 help help help help
F2 mark* choices prevpage
F3 enter save nextpage enter
F4 prev-frm prev-frm prev-frm
F5 next-frm next-frm next-frm
F6 cancel cancel cancel cancel cancel
F7 cmd-menu cmd-menu cmd-menu
F8 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

F16 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

* Function keyF2 is assigned thmark command only in multi-select menus.
In single-select menus2 has no default assigned.

** Function keysF8 andF16 will default tochg-keys only if any of keys=9
throughF15 are defined by the developer.

Built-in Utilities

Built-in utilities provide often-needed programming functionality. By building them into
FMLI they are more efficient to use than similar utilities provided in the UNIX system
(that is, there is no need to fork a process to run them). FMLI recognizes built-in utilities
in stand-alone backquoted expressions, and in backquoted expressions on descriptor lines.

FMLI built-in utilities return a Boolean value. It is FALSE if either the stfilge or a
non-zero integer is returned, TRUE if 0 or any other string is returned. However, Boolean
argumentgo a utility follow standard format.

Overview of the Built-in Utilities

Below is a brief summary of the FMLI built-in utilities. There are manual pages in section
1F for each.

2-34

echo

fmlcut

fmigrep

fmlexpr

fmlmax

getitems

getfrm

indicator

message

pathconv

readfile

, longline

The Form and Menu Language

Theecho utility outputs its operands.

Thefmlcut utility is used to cut out selected fields of each line
of afile. It has essentially the same functionality as the UNIX util-
ity cut . It has been included as an FMLI built-in utility for per-
formance reasons.

Thefmigrep utility is used to search for a certain pattern in a
file. It has essentially the same functionality as the UNIX utility
grep . It has been included as an FMLI built-in utility for perfor-

mance reasons.

Thefmlexpr utility evaluates its arguments as an expression,
thus providing arithmetic and logical operations on integers, logi-
cal operations on strings, and some pattern matching facilities. It
evaluates a single expression and writes the result to standard out-
put. It has essentially the same functionality as the UNIX utility
expr . It has been included as an FMLI built-in utility for perfor-
mance reasons.

Thefmlmax utility is used to either determine the position of the
field in a form or to determine the longest out of a number of
strings. It is useful for the redesign of forms layout when the
autolayout descriptor has been set to TRUE.

Thegetitems utility takes as its only argument a delimiter
string. It returns a list of the currently selected items, separated by
the delimiter supplied.

Thegetfrm utility returns the current frame number. It takes no
arguments.

Theindicator utility allows you to control th&orking indi-
cator and bell, and allows you to define your own indicators on the
banner line.

Themessage utility outputs its operands to the FMLI message
line. The-t option outputs d@ransientmessage (lasts until
another key is pressed), tHe option outputs &rame permanent
message (lasts as long as the frame is current), and tbption
outputs gpermanenmessage (lasts until another message is dis-
played, and reappears after that message clears). The terminal bell
can also be made to sound.

Thepathconv utility converts an alias to a full path name. It can
also produce a shortened version of a path name suitable for use as
a frame title.

Thereadfile utility reads the file passed as its argument and
writes it to standard output. If the system's locale is other@an
readfile tries to readkdirname>/$LANG/ <file> if the
$LANGsubdirectory exists ordirname>/<file> otherwise. After

a call toreadfile , a call tolongline will return the length
(including carriage return) of the longest line in the previously

2-35

Character User Interface Programming

read file. Thdongline utility can also take a file name argu-
ment, in which case it will return the length of the longest line in
that file.

regex Theregex utility performs regular expression matching on its
string input (utilizingregex . Theregex utility is useful to
dynamically generate the contents of a frame (see examples in
Chapter 3). It can be used to approximate many of the capabilities
of cut(l), paste(1), andgrep(l), and some of the
capabilities oked(1).

reinit Thereinit utility takes as an argument the name of an initial-
ization file. It is used to make global changes to the FMLI session
while staying in the current application.

run Therun utility is used to invoke an executable in full-screen
mode.
set, unset These utilities set and unset variables either in the FMLI process,

the UNIX system environment, or in files.

setcolor Thesetcolor utility allows you to redefine an existing color, or
define new colors if your terminal allows more than the eight col-
ors already defined in FMLI.

shell Theshell utility is used to run a command using the UNIX sys-
tem shell. Although it is not often needed in an FMLI application,
it is useful when an application has an executable with the same
name as an FMLI built-in or to run a UNIX system shell built-in.

test Thetest utility checks to see if a condition is truest is use-
ful in conditional statements. It has essentially the same format as
test inthe UNIX system shell.

Five other built-ins allow a frame or several frames (that is, form frames, menu frames, or
text frames) to communicate to an external process through a pipe. The Form and Menu
Language Interpreter will send strings to the external process and interpret the process's
output accordingly. This capability is referred tacasprocessingand the built-in co-pro-
cessing utilities are as follows:

cocreate Thecocreate utility initializes communication to an indepen-
dent co-process using named pipes.

cosend Thecosend utility sends strings from FMLI to the co-process.
The-n option performs &o waitcondition that sends text, but
doesn't block for a response.

cocheck Thecocheck utility checks the incoming pipe for information. It
returns TRUE or FALSE.

coreceive Thecoreceive utility performs a “no wait” read on the pipe. It
takes a process ID as an argument.

codestroy Thecodestroy utility terminates the communication.

2-36

The Form and Menu Language

For more information about how these co-processing utilities are used, see the
coproc(1F) manual page.

Conditional Statements

The Form and Menu Language provides a conditional statement for use within backquoted
expressions that has the following syntax:

if listthen list[elif listthen list]...[else list] fi

wherelist is an optional newline, followed by a sequence of one or more FMLI statements,
each of which must end with a semicolon.

Like conditional statements in the UNIX system shell languagdisthfellowing if is

executed, and if the last command in the list has a zero exit status, thstiliae follows
then is executed. However, if tHist following if has a non-zero exit status, ttse fol-

lowing else will be executed. Multiple tests can be executed by usinglifhe clause.
Conditional statements may be nested.

Output of a statement executed within an FMLI conditional construct can be redirected to
a file specified after the statement.

The exit status of the conditional statement is the exit status of the last command executed
in anythen clause oelse clause. If no such command was executed, the conditional
statement returns a zero exit status.

NOTE

The FMLI conditional statement differs from the UNIX shell lan-
guage conditional statement in some respects.

The UNIX shell language allows either a newline, a semicolon, or
both, to end a statement, whereas FMLI only allows a semicolon.

Output of statements executed within an FMLI conditional con-
struct cannot be piped to a statement followingdfithef the con-
struct. Similarly, output redirection to a file specified afterfthe

of the construct does not work.

An FMLI conditional statement cannot occur following @& or
|| operators in a given backquoted expression.

(See “Built-in Utilities” on page 2-34 and the manual pages in section 1F for information
ontest andfmlexpr .)

2-37

Character User Interface Programming

Conditional statements are useful when only one of several actions is appropriate, based
on user input. For example, assume that you have defined a form in which a user must
enter eithed or 2 in the first field to display one of two appropriate text frames. A condi-
tional statement can be used to display an appropriate error message via the use of the
descriptorinvalidmsg , when the user enters an invalid response:

invalidmsg="if [$F1 -gt 2];
then
echo “APPLID:nnn: Selection code has to be less than 37;
else
echo “APPLID:nnn: Selection code has to be more than 0;
fi'

where$F1 (an FMLI built-in variable) evaluates to the current value of the first field,
APPLID is the name of your application, amdn is the message sequence number.

Another conditional statement can be used to open the text frame requested by the user.
The descriptodone in the same form definition file would be defined as follows:

done="if [$F1=1];
then echo “open text dir.explain”;
else echo “open text file.explain”;
fi

Signal Handling

2-38

The following signals are caught by FMLI:;

SIGABRT * SIGIOT * SIGTSTP
SIGALRM SIGINT * SIGTTIN

SIGBUS SIGPIPE * SIGTTOU
SIGEMT SIGQUIT * SIGUSR1
SIGFPE SIGSEGV SIGUSR2
SIGHUP * SIGSYS SIGXCPU
SIGILL SIGTERM * SIGXFSZ

Those signals marked by an asterisk4re caught only if the application that invokes
FMLI has not caused them to be ignored. If an FMLI application is terminated by a signal,
the terminalstty(1) settings will be reset and the messag®gnameerminated

by signal: descriptiori will be printed, whergprognameis the basename of the exe-
cutable invoked to run the application asebcriptionis the string provided bgsig-

nal(3C). Not all of the signals listed above cause an application to terminate. These
normally won't—SIGALRM, SIGINT, SIGTSTP, SIGTTIN, SIGTTOU,

SIGUSR1, andSIGUSR2—although they can indirectly cause an FMLI application to
terminate. For exampl&§IGUSR2, which is generated by thesig command, could

The Form and Menu Language

cause the application to execute ¢x@ command. See thietro(2) manual page for
a complete discussion of signals.

Interrupt Signal Handling

Prior to Release 4.0 of FMLI, the only way an executable invoked from within an FMLI
application could be interrupted was if it was invoked as an argument to the built-in utility
run (except when thes option is specified).

In FMLI Release 4.0 or later, executables initiated in a backquoted expression that is the
value of either thaction ordone descriptors—wherever they occur in your applica-
tion—can also be designated as interruptible through the use iofetrapt descrip-

tor. No other descriptors of type commarmelp , rmenu, andoninterrupt) are
affected by thénterrupt descriptor.

The Boolean descriptanterrupt defines whether or not an executable can be inter-
rupted by the user. It always defaults to FALSE. A companioméoupt , the com-
mand descriptooninterrupt , defines what will be done when the interrupt signal
(SIGINT) is received. It always defaults tmessage Operation inter-

rupted! nop. The value obninterrupt can be any action normally permitted for a
command descriptor (both backquoted expressions and FMLI command®nifihe
terrupt descriptor is ignored ihterrupt has not been defined anywhere in your
application or ifinterrupt evaluates to FALSE.

Depending on the kind of frame definition file or application level file they are used in,
these two descriptors are independently subject to one of several inheritance hierarchies
(see Figure 2-16, a table of inheritance hierarchiemferupt andoninterrupt).

NOTE

The status of thaterrupt descriptor only affects executables

in backquoted expressions. Its status does not affect FMLI com-
mands (such asancel), built-in utilities other thamun (such
asshell), or any of their child processes. Nor does it affect pro-
cesses run from FMLI that “take over the screen,” such as the shell
obtained by using thenix-system command from the com-
mand menu. (In these cases, interrupt handling is done by the full-
screen application.)

The interrupt status in effect for antion ordone descriptor applies to all executables

in the descriptor. However, if the executable that is being executed when the interrupt sig-
nal is received has itself been coded to ignore interrupts, it will complete its normal execu-
tion, but remaining commands in the descriptor will not be executed. (FMLI built-in utili-
ties behave the same as executable utilities that have been coded to ignore interrupts.)
When an executable is interrupted, any commands (built-in utilities and FMLI commands,
as well as other executables) remaining in the descriptor are ignored by the interpreter.
Instead, whatever you have defined to be the value afrtilerrupt descriptor will

be executed.

2-39

Character User Interface Programming

2-40

The scope ointerrupt is independent from the scopeafinterrupt , and each
depends on where it is coded. The highest level in the inheritance hierarchy is the one in
effect for the currenaction or done descriptor. For example, codingter-

rupt=true once, in the general descriptors section of an initialization file, means that all
executables in angction ordone descriptor anywhere in your application (including

any in the commands file or defined for SLKs) can be interrupted by the user.

Continuing this example, ifterrupt=false is then coded with the frame descriptors

in a menu definition file, then the status of FALSE is inherited by all items defined for that
menu, while all executables in all other frames remain interruptible. Going one step fur-
ther, ifinterrupt=true is coded with the item descriptors for one item in that menu,
then executables coded in that iteat8on descriptor will be interruptible by users, and

all other items will remain uninterruptible. Inheritance of the value obtirerrupt

descriptor is handled the same way, but is completely distinct fronmtereupt
descriptor.

These descriptors can also be defined in the commands file (see Chapter 4 for a discussion
of the commands file). ihterrupt or oninterrupt are not defined for a command

in the commands file, that command will inherit the valuantafrrupt and/oronin-

terrupt defined with the general descriptors in the initialization file. If not defined
there, the FMLI default value is inherited.

Inheritance of these two descriptors is handled slightly differently for screen-labeled func-
tion keys. Redefining a SLK in a frame definition file completely overrides a definition of
it you may have coded in the initialization file. For example, if you défteerupt for

a particular SLK in the initialization file, but do not includgerrupt in a redefinition

of that SLK in a frame definition file, the SLK will inherit the value of thierrupt

descriptor defined at the next lower inheritance level (from the frame descriptors if defined
there, then from the general descriptors in the initialization file if defined there, then from
the FMLI defaults).

The Form and Menu Language

The table in Table 2-16 summarizes the inheritance hierarchies for both descriptors wher-
ever they can be used:

Table 2-16. Inheritance Hierarchies Used to Determine the Values of interrupt and oninterrupt
When Interrupt Key Is Pressed

Inheritance Executable Code
Level
action Descriptor in: done Descriptor in:
. " Command
menu items SLK definitions o any frame
definitions

1 FMLI defaults FMLI defaults FMLI defaults FMLI defaults

(lowest)

2 values coded with the values coded with the values coded with thg values coded with the
general descriptors ir general descriptors ir general descriptors i general descriptors in
an initialization file an initialization file an initialization file an initialization file

3 values coded with the values coded with the values coded in the | values coded with the
frame descriptors in ¢ frame descriptors in ¢ commands file frame descriptors in a
menu definition file frame definition file frame definition file

4 values coded with the values coded with the n/a n/a
item descriptors in a SLK descriptors in an
menu definition file initialization file*

5 n/a values coded with the n/a n/a

(highest) SLK descriptors in a

frame definition file*

* SLK-specific descriptors in a frame definition file completely override SLK
descriptors defined in the initialization file. If either timeerrupt or
oninterrupt descriptor, or any other SLK-specific descriptor, is coded at
level 5 (highest inheritance level), then all SLK-specific descriptors coded at
level 4 are ignored.

Terminal Display Attributes

The terminal display attributes and the alternate character set defined in
curses(3curses) are supported in FMLI. If the terminal your application is being

run on does not have these capabilities then they are approximated as best as possible by
curses . If the terminal is capable of outputting graphic characters, inverse video, bold/
dim, and so on, then these attributes will be available in FMLI, in the following places:

* in text frame definition files, in text defined in thext andheader
descriptors

2-41

Character User Interface Programming

* in form definition files, in the value assigned to the field-level descriptor
name

* in the initialization file, in the value assigned to tla@ner descriptor
¢ in arguments to thmessage built-in utility

* in the argument to thiedicator built-in utility

The character sequence to turn a terminal attribute on in FMLI applications is of the form
\+ xx. To turn the attribute off, the forkm xxis used. I&xxis not a valid FMLI character
sequence for a terminal attribute, the entire character sequence, as coded, is output.

Table 2-17 lists the FMLI character sequence names and maps them to the applicable
curses defined constant.

Table 2-17. Table of FMLI Character Sequences for Display Attributes

FMLI

gzg;aeﬁi defi(rzll;:r('js-ecsonstant Description
S0 A STANDOUT terminal's best highlighting mode
ul A _UNDERLINE underlining
rv A REVERSE reverse video
bk A BLINK blinking
dm A DIM half-bright
bd A BOLD extra bright or bold
ac A ALTCHARSET alternate character set
nm A NORMAL reset all attributes to off

Using the Alternate Character Set

2-42

If the alternate character set attribute has been turned on in the text to be displayed (using
\+ac), the alternate character set for line drawing (glyphs) will be displayed. This char-
acter set is shown in Table 2-18.

Table 2-18. Alternate Character Set

Character Default* Glyph Description
a + upper right corner**
b + lower right corner**
c + lower left corner**

d + upper left corner**

%

The Form and Menu Language

Table 2-18. Alternate Character Set (Cont.)

Character Default* Glyph Description
1 + top tee**
2 + right tee**
3 + bottom tee**
4 + left tee**
- - horizontal line**
vertical line**
+ + plus**
< < arrow pointing left**
> > arrow pointing right**
% % arrow pointing down**
A A arrow pointing up**
checkerboard (stipple)**
@] # solid square blockt
I # lantern symbolt
' + diamondt
f ' degree symbol T
g plus/minust
h board of squarest
0 - scan line 1t
s _ scan line 9t
~ 0 bullett

The defaults listed in this column are the ASCII characters that will be dis-
played if the terminal does not support an alternate character set, or if that par-
ticular character is not implemented in that set.

The character used to obtain this glyph is different in FMLI from the default

character used iterminfo(4)

because we feel these are easier to remem-

ber. The following diagram illustrates the first eight glyphs:

2-43

Character User Interface Programming

t This glyph is not supported by all terminals.

An example of the use of terminal display attributes is given in “Example Text Frame Def-
inition Files” on page 3-57.

2-44

3
Frame Definition Files

INtrOdUCHIONo 3-1
Menu Frame DeSCHiptOrSo i e 3-1
Frame Descriptors for MeNUS. e 3-3
Item Descriptors for MENUS e e 3-6
Examples of Menu Definition Files. i 3-8
Defininga Simple Menu. e 3-9
Creating Multi-column and Scrollable Menus 3-12
Using the reread DesCriptor it e e e 3-14
Using the interrupt and oninterrupt Descriptors., .. 3-16
Providing Supplementary Information for Menu ltems................... 3-18
Displaying an tem MeSSagettt e 3-20
Using the show DesCriptor o e e e 3-21
Creatinga DynamiC MENU it e e e e 3-23
Form Frame DesSCriptOrsot e e e e 3-26
Frame Descriptors for FOrms i e 3-27
Field DeSCriptorso e e e 3-31
Automatic Layoutof Form Fields. 3-40
Example Form Definition Files e 3-42
SavingUserInputtoa Form. i e 3-42
Validatinga Form Field 3-47
Example of Validating a Field Value with the valid Descriptor. 3-50
TeXt Frames . . . 3-51
Text Frame DesCriptors oo e e 3-52
The textframe Command e 3-56
Options for the textirame Command. 3-56
Example Text Frame Definition Files 3-57
Defining Attributes of Text Frames i 3-58
Defining a Text Frame with readfile and longline 3-59
Using Text Frame Headers and Terminal Attributes 3-59
Other Useful Examples e e e e 3-61
Defining a Help Frame for Menu ltems or Form Fields. 3-61
Using the textframe Command as an Alternative 3-64

Using Co-processing Utilities. i e 3-65

Character User Interface Programming

3
Frame Definition Files

Introduction

This chapter explains each of the descriptors that you can define for menu frames, form
frames, and text frames.

* “Menu Frame Descriptors” on page 3-1 describes the functionality of the
frame and item descriptors for menus.

¢ “Examples of Menu Definition Files” on page 3-8 presents some of the dif-
ferent ways you can create menu contents, and customize their appearance.

* “Form Frame Descriptors” on page 3-26 covers the frame and field descrip-
tors for forms.

* “Example Form Definition Files” on page 3-42 gives examples of their use.

* “Text Frames” on page 3-51 describes the frame descriptors for text frames
(text frames have only frame descriptors and SLK descriptors).

¢ “Example Text Frame Definition Files” on page 3-57 gives examples of
their use.

* “Other Useful Examples” on page 3-61 covers some aspects of frame defi-
nition files that can be equally useful in all three types of frame definition
files.

NOTE

Although SLK descriptors can be used in menu, form, and text
frame definition files, they are discussed in Chapter 4. Their use as
described there applies to frame definition files as well.

Menu Frame Descriptors

A menu frame definition file can begin with an optional set of frame descriptors (one set
per menu), followed by at least one set of item descriptors (one set per item in the menu),
and it can end with one or more optional sets of SLK descriptors defining SLKs to be dis-
played when the menu is current (one set per screen-labeled function key).

Some of the attributes of a menu that you can define are the following:

3-1

Character User Interface Programming

3-2

* the action to take when the menu is opened
* whether the user may select more than one item (multi-select)

¢ whether to open a multi-select menu with specific items already selected
(marked)

* where to place the menu on the screen
* the longevity of the menu

¢ whether or not to show a specific item
* the action to take for each item

* the action to take when the menu is closed
The descriptors in a menu definition file must follow this order:

[frame_descriptor_1

frame_descriptor_h

item-one_descriptor_1

item-one_descriptor_n

[item-n_descriptor_1

item-n_descriptor_h

[SLK-n_descriptor_1

SLK-n_descriptor_n

]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
items, then SLKs—is not followed.

Frame Definition Files

Frame Descriptors for Menus

The optional set of frame descriptors can include any valid frame descriptor, in any order.
Each of these descriptors should be used only once in a menu definition file. If defined
more than once in the set, the last one is used. In the following explanations, FALSE is
defined as the word “false,” irrespective of case, or a hon-zero return code. The notation
TRUE is defined as all values other than FALSE as defined above (for examele,

TRUE yes, 0).

altslks Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially openedaltslks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed. The default,
if this descriptor is not defined, is FALSE, which causes SLKs 1
through 8 to be displayed.

autosort The boolean descripta@utosort defines whether the items in a
menu should be sorted. This might be sensible in international
applications when menu items should appear in alphabetical order
irrespective of the current locale.

begrow , begcol Thebegrow andbegcol descriptors define the original position
of the top left corner of the menu frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) These descriptors accept values of type position:

center the menu frame will be centered in the work
area
current the menu frame overlaps the current frame's

position (valid forbegrow only)

distinct the menu frame will not overlap the current
frame if possible (valid fobegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the menu frame will be positioned in an abso-
lute position, defined bynteger Defining
begrow andbegcol to be integer values
causes the frame to appear in the given position.

If eitherbegrow orbegcol evaluates taenter , then the other
can only be an integer value oenter . Any other value is
ignored and the descriptor defaultscemter .

If neither iscenter , then the value dbegrow determines the
value ofbegcol ; if begrow iscurrent ,distinct ,any, or
an invalid value, thebegcol defaults toany. If begrow is a
valid integer,begcol can be a valid integer; degcol is an
invalid integer in this case, it defaultsaoy. If integer values are
supplied and eithdsegrow or begcol are outside the screen
boundary, a default value afy will be used.

3-3

Character User Interface Programming

close Theclose descriptor is evaluated when the menu is closed and/
or when the user exits from the FMLI application. These
descriptor is of type null, which means its only purpose is to
obtain the side effects of backquoted expressions coded in its defi-
nition.

columns Thecolumns descriptor defines the number of items displayed in
a row of a menu frame. It must evaluate to a positive integer; if it
doesn't,columns will be ignored. It will also be ignored if
description is defined for any menu item. If neitheol-
umns norrows is defined, menu dimensions will be determined
by the interpreter. Givecolumns , the number of rows needed to
display the items in the menu is calculated. If there is a conflict
between the value provided by tteevs descriptor and the calcu-
lated value, the calculated value takes precedence. Menu item
names will be truncated, if required, to fit in the specifietd
umns. (See Appendix A for a complete discussion of the method
used by FMLI to calculate rows and columns.)

NOTE

This descriptor should not be specified for dynamically generated
menus if there is no way to guarantee that menu items will not be

truncated.
done Thedone descriptor defines the action to be executed when the
user presseENTER in a multi-select menu. This descriptor is
ignored in a single-select menu.
framemsg Theframemsg descriptor displays its value on the message line

as long as the menu is current. It can be temporarily replaced by

* a message displayed when tteenmsg descrip-
tor is defined for a specific item in the menu frame

* a message generated by thessage built-in util-
ity with the-t (default) option

* an FMLI error message

It can be replaced for as long as the frame is current by a message
generated by thmessage built-in utility with the-f option.
(See themessage(1F) manual page.)

help Thehelp descriptor specifies what will happen when a user asks
for help while in the menu. Since this descriptor is evaluated when
the user requests help, the specification of what help is displayed
can be determined through parameters that are set interactively.

init Theinit descriptor defines whether the menu frame will be
opened. If this descriptor is not defined, it defaults to TRUE,
which means the menu frame will be openeditf evaluates to
FALSE, the menu frame will not be opened, but these

3-4

interrupt

lifetime

menu

multiselect

Frame Definition Files

descriptor will be evaluated. ifiit evaluates to FALSE on an
update, the frame is closed, unless it is an initial frame.

The Boolean descriptanterrupt defines whether an execut-
able that is coded iaction or done descriptors can be inter-
rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables iaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

If defined among the frame descriptors in a menu definition file,
that value ofnterrupt is inherited by all sets of item descrip-
tors and all sets of SLK descriptors in the menu, unless it is rede-
fined for a specific item or SLK.

Thelifetime descriptor defines when the menu frame will be
closed (that is, removed from the work area). It is evaluated when-
ever the menu is opened, closed, made current, or made non-cur-
rent. The acceptable values are:

shortterm the menu closes whenever the user navigates to
another frame or when the command line is
accessed (the user pres€asRL-j or CTRL-f
c)

longterm the menu closes when the user issues a
cleanup orclose command

permanent the menu closes whenever the user issues a
close command

immortal the menu closes only when the user exits from
the application

The lifetime descriptor is ignored in menu definition files
given as arguments whémli is invoked. Such menus have a
lifetime ofimmortal . See “Other Useful Examples” on page
3-61 for an example of how this descriptor may be used to close a
frame when another is updated.

Themenu descriptor defines the title of the menu that appears in
the frame's title bar. If not defined in the frame definition file, it
defaults toMenu. It will be truncated if it is longer thablIS-
PLAYW-6

The multiselect descriptor defines whether the menu is a
multi-select menu. A multi-select menu allows the user to select
more than one menu item. When this descriptor evaluates to
TRUE, the SLKF2 will map to themark command, and the
nature of theaction descriptor changes for all items (see the
description ofaction in “Iltem Descriptors for Menus” on page
3-6).

3-5

Character User Interface Programming

oninterrupt

reread

rows

Item Descriptors for Menus

The command descriptoninterrupt defines what will hap-
pen when an interrupt signal is receivedinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default valaes-

sage Operation interrupted!” nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

For example, if defined among the frame descriptors in a menu
definition file, the value obninterrupt is inherited by all sets

of item descriptors and all sets of SLK descriptors in the menu,
unless it is redefined for a specific item or SLK.

If reread is not defined, it defaults to FALSE.réread evalu-
ates to TRUE, the menu will be periodically updated by rereading
its description file when theheckworld command is executed.
checkworld is executed when 3IGALRMalarm occurs (every
$MAILCHECKseconds). Other timeheckworld is executed
include when a frame is opened, closed, or navigated to. (See
checkworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whoseread descriptor eval-
uates to TRUE will be updated. (However, thenu descriptor is

not reread.) Execution @heckworld may cause the message
line to clear.

Therows descriptor defines the desired number of rows long a
menu frame will be. It must evaluate to an integer value greater
than 0 and less thaDISPLAYH-2; if it doesn't,rows will be
ignored. If neither this descriptor noolumns is defined, menu
dimensions will be determined by FMLI. Giveolumns , the
number of rows needed to display the items in the menu is calcu-
lated. If there is a conflict between the value provided by the
rows descriptor and the calculated value, the calculated value
takes precedence. (A table summarizing these calculations can be
found in Appendix A.)

In each set of item descriptors, theme descriptor must be first; but others may be in any
order. If a descriptor appears more than once in a set, the last one is used.

action

3-6

Theaction descriptor defines an action to be executed when the
user selects this item in a single-select menu. Multiple backquoted
expressions are allowed, as they are with any descriptor, but the
final value of this descriptor must be a single FMLI command.

description

inactive

interrupt

itemmsg

lininfo

name

Frame Definition Files

If the menu is multi-select{ultiselect=true), the nature of

this descriptor changes: FMLI commands are ignored if defined in
this descriptor; however, backquoted expressions are executed
when the item is marked.

Thedescription descriptor defines a string which is displayed
to the right of the item name but which is not highlighted when
the cursor is on the item. When this descriptor is defined for any
item in a menu, that menu will automatically display a single col-
umn of items, even folumns is defined.

Theinactive descriptor defines an item as inactive when the
menu is displayed. An item that is inactive cannot be navigated to,
and consequently cannot be selected or un-selected. If not defined,
inactive defaults to FALSE. If this descriptor evaluates to
TRUE, the item is displayed with half-bright attribute (on most
terminals). In multi-select menus, an inactive item can be selected
only if the selected descriptor evaluates to TRUE for the item.

The Boolean descriptanterrupt defines whether an execut-
able that is coded iaction or done descriptors can be inter-
rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables iaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

If defined in a set of item descriptors in a menu definition file, that
value ofinterrupt is inherited only by that menu item.

Theitemmsg descriptor defines information that will be dis-
played on the message line when the item is navigated to. The
itemmsg descriptor displays a message with transient duration.
That is, it remains on the message line only until the user presses
another key or aheckworld occurs. Transient messages take
precedence over frame duration messages and permanent duration
messages (see theessage(lF) manual page for more infor-
mation).

Thelininfo descriptor defines a string that will be assigned to
the local environment variabldNINFO when the user selects
this menu item. [fininfo is not defined.ININFO evaluates to
null. In multi-select menus, when tgetitems built-in utility is
executed, ifininfo is defined and this item is marked, its value
is output.

Thename descriptor defines a string that will appear in the menu,
identifying the menu item. This string is highlighted when the
item is navigated to. For multi-select menus, whergéigems
built-in utility is executed, and theinfo descriptor has not
been defined for this marked item, the value ofnidime descrip-

tor is output.

Character User Interface Programming

oninterrupt

selected

show

The command descriptoninterrupt defines what will hap-
pen when an interrupt signal is receivedinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.

oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default valaes-

sage Operation interrupted!” nop applies through-
out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

If defined in a set of item descriptors in a menu definition file, that
value ofoninterrupt is inherited only by that menu item.

Theselected descriptor defines whether a menu item in a
multi-select menu should default to selected (TRUE) or not
selected (FALSE) when the menu is openedelécted evalu-

ates to TRUE, the item is marked with the selected icon (an aster-
isk) when the menu is opened. If this descriptor is not defined, it
defaults to FALSE. This descriptor is ignored whmeultise-

lect evaluates to FALSE (that is, in single-select menus).

The show descriptor defines whether this menu item will be dis-
played. If this descriptor is not defined, it defaults to TRUE, and
the menu item will be displayed. If it evaluates to FALSE, the
menu item will not be displayed.

NOTE

Screen labels and actions for function keys can be defined in a
menu description file as well as in the initialization file. Each set
of screen-labeled function key descriptors must includedhee,

button

, andaction descriptors, andame must be first. If a

descriptor appears more than once in a set, the last one is used.

See Chapter 4 for a discussion of how to use the screen-labeled
function key descriptors.

Examples of Menu Definition Files

The following examples show you how to write menu definition files. Refer to “Writing an
Internationalized Application” on page 1-12 when writing internationalized applications.

3-8

Frame Definition Files

Defining a Simple Menu

A menu definition file usually starts with a set of descriptors that pertain to the entire
menu, known as frame descriptors. Frame descriptors are optional in menu definition files.
If you choose not to define any explicitly, their default values apply to the menu.

The following menu definition file has no frame descriptors, and defines four simple menu
items. (Blank lines between logical sections of frame definition files are recommended for
readability.)

name="Run UNIX System V"
action=unix-system

name="Find Modified Files”
action="find $HOME -mtime -7 -print > modfiles'nop

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop

name="Exit My Application”
action=exit

Figure 3-1. Menu.items: An Example of Menu Item Descriptors

The first item definition permits the user to access a full-screen UNIX system shell. The
second item definition rurf;d(1) to locate files whose contents have been modified
within the past seven days and saves the list of filen ames in a file mandfdlds. The

third item rundind to locate files that are executable by the owner and also saves the
output in a file namedxecfiles . The fourth menu item permits the user to exit from
the application.

Because no frame or SLK descriptors were defined, their default values apply: for exam-
ple,menuis a frame descriptor used to define a title for a menu. $moeu.items did

not explicitly define it, the default valudenu is displayed in the title bar. This menu
would appear as follows:

3-9

Character User Interface Programming

e A

— 1 Menu

> Run UNIX System V
Find Modified Files
Find Executable Files
Exit My Application

\HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU /

Figure 3-2. Menu.items: Screen Output

The next example illustrates the use of several frame descriptors in the same menu defini-
tion file to change the appearance and add to the functionality of this menu:

3-10

Frame Definition Files

menu="My First Menu”

begrow=center

begcol=30

framemsg="The message from my first menu”
help="message “A help message™

name="Run UNIX System V"
action=unix-system

name="Find Modified Files”
action="find $HOME -mtime -7 -print > modfiles 'nop

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop

name="Exit My Application”
action=exit

Figure 3-3. Menu.frame: An Example of Menu Frame Descriptors

The first group of descriptors are the frame descriptors. The frame descnipiar
defines a title for the menijy First Menu. Thebegrow andbegcol descriptors
define the position of the top left corner of the frame in the work area. In this example, the
top left corner of the frame will be located at the vertical center of the work area, and col-
umn 30 horizontally.

Theframemsg descriptor defines a string that will appear on the message line when the

frame is opened. It will remain on the message line until the frame is closed or made non-
current (although it can be temporarily replaced by other, shorter-term messages). The
help descriptor defines what will happen when a user requests help while the menu is
active. In this example, the stridghelp message will be displayed on the message

line.

Figure 3-4 shows howenu.frame will be displayed after these frame descriptors have
been defined.

3-11

Character User Interface Programming

7

N

1 My First Menu

> Run UNIX System V
Find Modified Files
Find Executable Files
Exit My Application

The message from my first menu

&HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU j

Figure 3-4. Menu.frame: Screen Output

Creating Multi-column and Scrollable Menus

Thecolumns androws descriptors are used to change the display of a menu. When the
frame descriptorows is defined in the menu definition file as follows:

menu=“My First Menu”

begrow=center

begcol=30

rows=1

framemsg="The message from my first menu”
help="message “A help message™

Figure 3-5. Menu.rows: An Example of a Scrollable Menu

Menu.rows will create the following menu:

3-12

Frame Definition Files

The message from my first menu

1 My First Menu N

> Run UNIX System V

HELP

ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

\§

»

Figure 3-6. Menu.rows: Screen Output

Because theows descriptor defines this menu to have only one row, only one menu item
can be displayed at a time: as the user navigates to any of the other defined menu items,
the menu will scroll to display it.

The same menu is displayed differently when, instead of definirrgwise descriptor, the
columns descriptor is defined as follows:

menu="My First Menu”

begrow=center

begcol=30

columns=2

framemsg="The message from my first menu”
help="message “A help message™

Figure 3-7. Menu.columns: An Example of a Two-Column Menu

The display of the menu changes as follows:

3-13

Character User Interface Programming

7

N

1 My First Menu
> Run UNIX System V Find Executable Files
Find Modified Files Exit My Application
The message from my first menu
ELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

\N

=/

Figure 3-8. Menu.columns: Screen Output

Using the reread

3-14

Thecolumns descriptor takes precedence overrthes descriptor if there is a conflict.

For example, defining bottows=1 andcolumns=2 in this menu definition file results

in the same display of the menu as shown in Figure 3-8. That is, the menu items are dis-
played in two columns but not one row.

Descriptor

Thereread descriptor in a frame definition file is used to request that a frame be reread
when acheckworld is executed. One time thelteckworld is executed is when a
SIGALRMsignal occurs (8IGALRMoccurs everMAILCHECKseconds). The frame is
rebuilt if this descriptor evaluates to any value other than FALSE.

This example uses the output of the UNIX systiate(1) command in the title of the
menu and in the name of the first item. Recall thatrtbiBu descriptor is not re-evaluated
whenreread evaluates to TRUE, but timame descriptor is:

menu="Menu “date

begrow=center
begcol=30
reread=true

name="Run UNIX System V “date™
action=unix-system

name="Find Modified Files”
action="find $HOME -mtime -7 -print > modfiles 'nop

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop

name="Exit My Application”
action=exit

Figure 3-9. Menu.reread: An Example of a Dynamically Updated Menu

This menu definition file creates the following menu:

Frame Definition Files

1 Menu Fri Mar 24 11:48:51 EST 1989

N

> Run UNIX System V Fri Mar 24 11:48:51 EST 1989
Find Modified Files
Find Executable Files
Exit My Application

ENTER

PREV-FRM NEXT-FRM CANCEL

CMD-MENU

=/

Figure 3-10. Menu.reread: Screen Output

3-15

Character User Interface Programming

After aSIGALRMoccurs (for example, MAILCHECK=180and 3 minutes have elapsed),
the date in the name of the first item changes but the date in the menu's title does not
change. The menu now looks like this:

- N

1 Menu Fri Mar 24 11:48:51 EST 1989

> Run UNIX System V Fri Mar 24 12:02:15 EST 1989
Find Modified Files
Find Executable Files |:|

Exit My Application

&HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU j

Figure 3-11. Menu.reread: Screen Output after a SIGALRM Occurs

Using the interrupt and oninterrupt Descriptors

To illustrate the concepts of inheritance and scope ahtheupt andoninter-
rupt descriptors, the following menu definition files define them with frame descriptors
and item descriptors in a menu definition file:

3-16

Frame Definition Files

menu="My First Menu”
begrow=center
begcol=30
interrupt=true

name=Run UNIX System V
action=unix-system

name="Find Modified Files”
action="find $HOME -mtime -7 -print > modfiles 'nop

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop

name="Exit My Application”
action=exit

Figure 3-12. Menu.interrupt: An Example of Interrupt Signal Handling

When defined among the frame descriptors, the valugerfupt is inherited by all
processes initiated @ction descriptors anywhere in the menu definition file, unless it is
redefined for a particular item or SLK. Thus, if the user selects eithEirideModified

Files or Find Executable Files item from this menu, the named process will run till
its normal completion. However, the user can interrupt either process béatause
rupt=true is defined among the frame descriptors for this menu. (Note that output from
Find Modified Files is saved in a file namedodfiles , and that output frorfind
Executable Files is saved in a file namezkecfiles .)

When a user presses the interrupt key, the medSageation interrupted!

appears at the bottom of the screen and the process is terminated. This is the default
behavior when no other messages or actions have been defined emntieerupt

descriptor, as is the case in this menu.

You can be more specific about what processes you want users to be able to interrupt and
about what you want done when a process is interrupted. For example, you can block the
interrupt mechanism for any item on the menu by settingnteerupt descriptor to

FALSE for the item. A process initiated from that item cannot be interrupted, even if the
frame descriptointerrupt is set to true:

3-17

Character User Interface Programming

menu="My First Menu”
begrow=center
begcol=30
interrupt=true

name="Run UNIX System V"
action=unix-system

name="Find Modified Files”
action="find $HOME -mtime -7 -print > modfiles ’nop
interrupt=false

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop
oninterrupt="message Partial output is in execfiles nop

name="Exit My Application”
action=exit

Figure 3-13. Menu.oninterr: A Further Example of Interrupt Handling

If a user selectBind Modified Files from this menu definition file, the process it ini-
tiates cannot be interrupted. If a user seleatsl Executable Files from this menu, it
can be interrupted, and when it is, the processing defined for this item dyirie-

rupt descriptor will occur.

Providing Supplementary Information for Menu Iltems

The item descriptodescription defines supplementary information to be displayed
on the same line as the menu item. You might want to use it to give your users a brief
explanation of what an item does. This example shows how it is used.

3-18

Frame Definition Files

menu="My First Menu”
begrow=center
begcol=30

name="Run UNIX System V"
action=unix-system

name="Find Modified Files”

action="find $HOME -mtime -7 -print > modfiles 'nop
description="contents changed in past 7 days”
interrupt=false

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles'nop
oninterrupt="message Partial output is in execfiles nop

name="Exit My Application”
action=exit

Figure 3-14. Menu.descrip: An Example of the description Descriptor

This menu definition file creates the following menu:

7

N\

My First Menu

> Run UNIX System V
Find Modified Files - contents changed in past 7 days
Find Executable Files -
Exit My Application

ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

=/

Figure 3-15. Menu.descrip: Screen Output

3-19

Character User Interface Programming

This is a single-column menu. It will be a single-column menu even ibthe or col-
umns descriptors are defined in an attempt to make it multi-column, because when the
description descriptor is explicitly defined, tlmmlumns descriptor is ignored.

Displaying an ltem Message

3-20

This example shows how to use ttegnmsg descriptor to display a message specific to a
single menu item:

menu="My First Menu”
begrow=center
begcol=30
interrupt=true

name=“Run UNIX System V"
action=unix-system

name="Find Modified Files”

action="find $HOME -mtime -7 -print > modfiles nop
description="contents changed in past 7 days”
itemmsg="Once begun, this activity cannot be interrupted”
interrupt=false

name="Find Executable Files”
action="find $HOME -perm -100 -print > execfiles nop
oninterrupt="message Partial output is in execfiles’nop

name="Exit My Application”
action=exit

Figure 3-16. Menu.itemmsg: An Example of the itemmsg Descriptor

Whenever the user navigates to the second menu item, the message defined in the
itemmsg descriptor is displayed as shown in Figure 3-17. It will temporarily replace a
frame message if one was created byfidmmemsg descriptor.

Frame Definition Files

7

N

1 My First Menu

Run UNIX System V
> Find Modified Files - contents changed in past 7 days

Find Executable Files -

Exit My Application

Once begun, this activity cannot be interrupted

ELP

ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

\N

=/

Figure 3-17. Menu.itemmsg: Screen Output

Using the show Descriptor

When theshow descriptor is defined and evaluates to FALSE, the item in which it is
defined does not appear on the menu. Definingskiosv descriptor as a variable allows
you to decide dynamically whether or not to display a menu item.

In this example, the third item will not appear on the menu created by the following menu
definition file if the login ID of the user running your application ismoot :

3-21

Character User Interface Programming

menu="My First Menu”
begrow=center
begcol=30

name="Run UNIX System V"
action=unix-system

name="Where am 1?”
description="print working directory
action="pwd | message 'nop

name="System Administration”
action="run sysadm'nop
show="if [SLOGNAME != root];
then echo FALSE;
else echo TRUE;
fi

name="Exit My Application”
action=exit

Figure 3-18. Menu.show: An Example of the show Descriptor

This is howMenu.show is displayed for a user logged injas :

3-22

Frame Definition Files

7 N

1 My First Menu

> Run UNIX System V
Where am 1? - print working directory
Exit My Application

&HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU J

Figure 3-19. Menu.show: Screen Output

Creating a Dynamic Menu

Now let us take a look at some more complex menus. This example shows how to pass
parameters from one frame to another and how to create a menu dynamically. The exam-
ple application will allow users to edit menu, form, and text frame definition files stored in
the same directory. The application displays@menurom which the user can select the

type of frame definition file to edit:

3-23

Character User Interface Programming

menu="Edit Files”

name="Menu Files”
action=open Menu.dynamic Menu

name="Form Files”
action=open Menu.dynamic Form

name="Text Files”
action=open Menu.dynamic Text

name="Exit”
action=exit

Figure 3-20. Menu.edit: An Example of a Dynamically Created Menu

This menu definition file creates the following menu:

7 N

1 EditFiles

> Menu Flles

Form Files
Text Files
Exit

&HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU J

Figure 3-21. Menu.edit: Screen Output

From this menu a user can choose to see a menu of menu frame definition files, form defi-
nition files, or text frame definition files. The action defined for all three menu items
results in the same frame definition file being opeméenu.dynamic. The last argu-

3-24

Frame Definition Files

ment to theopen command is a parameter that is passetMému.dynamic.
Figure 3-22 shows the contentshénu.dynamic :

menu="$ARG1 Files”
‘Is | regex "M($ARGL'.*)$0$"

name="$m0”
action="run '$EDITOR' “$m0™" nop"

Figure 3-22. Menu.dynamic: An Example of a Dynamically Created Menu

Menu.dynamic is a dynamically built menu that useegex . The parameter passed to
Menu.dynamic by theopen command is used to build a unique title for the new menu.
The items on this menu are created by a stand-alone backquoted expression. Recall that
stand-alone backquoted expressions are evaluated when the frame definition file is opened,
reread, or updated. That means that wkiemu.dynamic is opened in this case, ttse
command is run in the current directory, and its output is piped to the FMLI built-in utility
regex .

Theregex utility is used for pattern matching. Since this simgigex pattern matches

only files that begin witbARG1 only files in the directory that have the name defined by

the parameter, followed by a literal dot (.), then by any other characters, are included in the
list of menu items. The menu definition fildenu.dynamic will create one of the three
menus, based on the parameter that is passed to it. The items in the menu it creates are
based on the files whose names match the pattern being searched foeggitheitility.

The menu item template defined in this menu definition file provides thataine
descriptor has the valimO, which evaluates to the pattern enclosed in parentheses (a
file name) in theegex expression. The template provides thatabon descriptor

will invoke the defined editor on the file. All file names matched byagex utility are

passed to this menu item template, FMLI determines the size and shape of the menu frame
based on the total number of items produced, and the menu frame is posted.

For example, wheMenu Files is selected from the menu titldgdit Files,
Menu.dynamic receives the parametbtenu, regex searches for file names begin-
ning with Menu. (“menu dot”), and displays the following second menu:

3-25

Character User Interface Programming

7

N

1 Edit Files 2 Menu Files
> Menu Flles > Menu.01 Menu.33 Menu.a
Form Files Menu.03 Menu.34 Menu.abc
Text Files Menu.l Menu.35 Menu.abd
Exit Menu.31 Menu.36 Menu.abe
Menu.32 Menu.37
ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

=/

Figure 3-23. Menu.edit: Screen Output when Menu Files Is Selected

By selecting the appropriate item from fienu Files menu, the user is able to edit any
of the menu, form, or text frame definition files in the directory. If one of these types of
frame definition files is not present in the directory, the corresponding menu is not cre-

ated.

Form Frame Descriptors

A form definition file can begin with an optional set of frame descriptors, followed by one
or more sets of field descriptors (one set per field), and it can end with one or more
optional sets of descriptors that define the screen-labeled function keys that will be dis-
played when the form is the active frame in the user's work area (one set per SLK).

Some of the attributes of a form that you can define are the following:

¢ the title of the form
¢ the screen position of the form

* alabel and input area for each field

3-26

Frame Definition Files

* any initial value to display for each field
* a set of choices for the value of a field
¢ the starting position and length of each field and label

* the validation to be done for each field, and the error message to display if
validation fails

* whether the form is multi-page or not

* labels and functions for the SLKs of the form
The descriptors in a form definition file must be in the following order:

[frame_descriptor_1

frame_descriptor_h

field-one_descriptor_1

field-one_descriptor_n

[field-two_descriptor_1
field-two_descriptor_h
[SLK-n_descriptor_1

SLK-n_descriptor_n

]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
fields, then SLKs—is not followed.

Frame Descriptors for Forms

The optional set of frame descriptors can be any valid frame descriptors for forms, in any
order. If a descriptor appears more than once in the set, the last one is used.

3-27

Character User Interface Programming

3-28

NOTE

Although technically none of the frame descriptors is required in a
form definition file, a form that does not define tleme descrip-

tor is virtually useless, since no user input will be recorded when
the SAVE key is pressed.

altslks

autolayout

begrow , begcol

Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially openedalislks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed.

The default, if this descriptor is not defined, is FALSE, which
causes SLKs 1 through 8 to be displayed.

Theautolayout descriptor specifies whether FMLI should use
reasonable defaults for tffieol , frow , ncol , nrow, andcol-

umns field descriptors in this form. Hutolayout evaluates to
TRUE, the reasonable defaults will be used; if it evaluates to
FALSE, the defaults for these 5 field descriptors will be -1. The
default, if this descriptor is not defined, is FALSE.

Using this descriptor and default field descriptor values allows
forms to be created more easily, since when it evaluates to TRUE,
the only required descriptor to define a field is tiaene descrip-

tor, specifying the field label. Without this descriptor, all fields
require 6 descriptors to be defined. More information may be
found in “Automatic Layout of Form Fields” on page 3-40.

Thebegrow andbegcol descriptors define the original position

of the top left corner of the form frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) When writing international applications,
autosort should always be set to TRUE, because the fields used
in a form will have different lengths in different languages. These
descriptors accept values of type position:

center the form frame will be centered in the work area

current the form frame overlaps the current frame's
position (valid forbegrow only)

distinct the form frame will not overlap the current
frame if possible (valid fobegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the form frame will be positioned in an absolute
position, defined bynteger Defining begrow
andbegcol to be integer values causes the
frame to appear in the given position.

If eitherbegrow orbegcol evaluates teenter |, then the other
can only be an integer value ocenter . Any other value is

close

done

framemsg

form

help

init

interrupt

Frame Definition Files

ignored and the descriptor defaultcemter .

If neither iscenter , then the value dbegrow determines the
value ofbegcol : if begrow iscurrent | distinct , any, or
an invalid value, thebegcol defaults taany. If begrow is a
valid integer,begcol can be a valid integer; Begcol is an
invalid integer in this case, it defaultsaoy. If integer values are
supplied and eithdsegrow or begcol are outside the screen
boundary, a default value afhy will be used.

Theclose descriptor is evaluated when the form is closed and
when the user exits from the FMLI application. T¢lese
descriptor is of type null, which means its only purpose is to
obtain the side effects of backquoted expressions coded in its defi-
nition.

Thedone descriptor defines the command to be executed when
the user selectSAVE. If done is not defined, it defaults to the
FMLI commandclose . Note that user input is not saved auto-
matically; user input to the form should be recorded by back-
guoted expressions in thdene descriptor.

Theframemsg descriptor displays its value on the message line
for as long as the frame is current. It can be temporarily replaced
by a message displayed when:

¢ thefieldmsg descriptor is defined for a specific
field in the form frame

* a message is generated by thessage built-in
utility with the -t (default) option

¢ an FMLI error message is generated

It can be replaced for as long as the frame is current by a message
generated bynessage with the-f option. (See thenes-
sage(1lF) manual page.)

Theform descriptor defines the title of the form frame. It will be
truncated if it is longer thaDISPLAYW-6.

The help descriptor specifies what will happen when the user
requests help while in the form. Since this descriptor is evaluated
at the time the user requests help, the specification of what help is
displayed can be determined through parameters that are set inter-
actively.

Theinit descriptor defines whether the form frame will be
opened. If this descriptor is not defined, it defaults to TRUE,
which means the form frame will be openednif evaluates to
FALSE, the form frame will not be openedinit evaluates to
FALSE on an update, the frame is closed, unless it is an initial
frame.

The Boolean descriptanterrupt defines whether an execut-
able that is coded iaction or done descriptors can be inter-

3-29

Character User Interface Programming

rupted by users (FALSE means not interruptible, TRUE means
interruptible). It is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default value FALSE
applies throughout. If explicitly defined at any inheritance level,
then executables iaction anddone descriptors at or above
that inheritance level will inherit that defined value. (See “Inter-
rupt Signal Handling” on page 2-39 for complete information.)

For example, if defined among the frame descriptors in a form
definition file, the value ointerrupt is inherited by the frame
descriptordone, and theaction descriptor in all sets of SLK
descriptors in the form, unless it is redefined for a specific SLK.

lifetime Thelifetime descriptor defines when the form will be closed
(that is, removed from the work area). It is evaluated whenever the
form is opened, closed, made current, or made non-current. The
acceptable values are:

shortterm the form closes whenever the user navigates to
another frame or when the command line is
accessed (the user pres€8sRL-j or CTRL-f

c)

longterm the form closes when the user issues a
cleanup orclose command

permanent the form closes whenever the user issues a
close command

immortal the form closes only when the user exits from
the application

Thelifetime descriptor is ignored in form definition files that
are given as arguments whienli is invoked: such forms have a
lifetime of immortal . See “Other Useful Examples” on page
3-61 for an example of how this descriptor may be used to close a
form when another frame is opened or updated.

oninterrupt The command descriptoninterrupt defines what will hap-
pen when an interrupt signal is receivedinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.
oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default vahaes-
sage Operation interrupted!” nop applies through-

out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

For example, if defined with the frame descriptors in a form defi-
nition file, the value obninterrupt is inherited by the frame
descriptordone, and by thection descriptor in all sets of SLK
descriptors, unless redefined for a specific SLK.

3-30

reread

Field Descriptors

Frame Definition Files

If reread is not defined, it defaults to FALSE.rdread evalu-
ates to TRUE, the form will be periodically updated by rereading
its description file when theheckworld command is executed.
checkworld is executed when @aIGALRMalarm occurs (every
$MAILCHECKseconds). Other timeheckworld is executed
include when a frame is opened, closed, or navigated to. (See
checkworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whoseread descriptor eval-
uates to TRUE will be updated. (However, then descriptor is
not reread.) Execution @heckworld may cause the message
line to clear.

The following descriptors can be defined once for each field in a form. In each set of field
descriptorsname must be first. If a descriptor appears more than once in a set, the last one

is used.

NOTE

There must be at least one active, visible (thaghew=true)
field in a form. If you open a form and none of the fields can be
posted becaugews orcolumns is negative o0, or if frow or

fcol

is negative, FMLI will display an empty frame with the cur-

sor positioned in the title bar. If the form definition file contains
properly defined field labels, they will be displayed.

autoadvance

choicemsg

columns

Theautoadvance descriptor defines whetherRETURN is
automatically performed when a user fills in the last character of a
field. It defaults to FALSE (an automatRETURN is not per-
formed).

If autoadvance is defined and evaluates to TRUE, when the
user types irtolumns characters, the field will be automatically
validated, and if valid, the cursor will be automatically advanced
to the next field. This descriptor is ignored in vertically or hori-
zontally scrollable fields.

Thechoicemsg descriptor defines information to be displayed

on the message line when the user pre€34®ICES. The
choicemsg descriptor displays a message with transient dura-
tion. That is, it remains on the message line only until the user
presses another key orcheckworld occurs. Transient mes-
sages take precedence over frame duration messages and perma-
nent duration messages (seerttessage(1F) manual page for

more information). Ithoicemsg is not defined, the default is
There are no choices available

See the entry failows , columns later in this section.

3-31

Character User Interface Programming

fieldmsg Thefieldmsg descriptor defines information that will appear on
the message line when this field is navigated to. fighdmsg
descriptor displays a message with transient duration. That is, it
remains on the message line only until the user presses another
key or acheckworld occurs. Transient messages take prece-
dence over frame duration messages and permanent duration mes-
sages (see thmessage(1lF) manual page for more informa-
tion).

frow , fcol Thefrow andfcol descriptors define the position of the field
input area in the frame. The valuefodw can be an integer
greater than or equal thand less thaDISPLAYH-2 ; the value
of fcol can be an integer greater than or equél &md less than
DISPLAYW-2. (frow=0 andfcol=0 evaluate to the upper left
corner of the frame, that is, to the first available row and column,
respectively.) If either value is negative or if either value is too
large (the position is off the screen), then the field input area will
not be displayed. If no field input areas are displayed on a page of
a form, the cursor is positioned in the title bar.

Whenautolayout evaluates to FALSE, these descriptors
default to -1.

Whenautolayout evaluates to TRUHrow defaults to the
valuecurrent_nrow wherecurrent_nrowis the value ofirow for

the field being defined. That is, by default the row in which the
field input area appears will be the same as the row in which the
label of the field appears.

Whenautolayout evaluates to TRUHEgol defaults to the
greater of

¢ the valueprevious_fcalwhereprevious_fcols the
value offcol for the previous field in the form; or

* the valuel+current_ncoktlengthOfLabel where
lengthOfLabelis the number of characters con-
tained in the label specified wittame for the field
andcurrent_ncolis the value of thecol descrip-
tor for the field.

If the field is the first field in the formfcol defaults to
1+current_ncotlengthOfLabel By default, then, the input area of
any field whose label is as long or longer than that of a previous
field will be separated from the field label by one space. (Recall
that position 0 is the first available column.) You can code the
name descriptor for the first field with padded blanks to cause the
value oflengthOfLabelo be longer than the actual word length of
the label. The name and padded blanks must be surrounded by
matching single or double quotes. Thatriame="Field1'

would have a length of 9, not 6, for the purpose of default posi-
tioning of the field. Assumingcol has a value for O for the field,
the value offcol would be 10. Since the field will start at posi-
tion O, that will leave four spaces between the label and the input
area.

3-32

inactive

invalidmsg

lininfo

menuonly

name

Frame Definition Files

Theinactive descriptor defines a form field that is displayed in
the form, but cannot be navigated to. If this descriptor is not
defined, it defaults to FALSE (the field will be active). If this
descriptor evaluates to TRUE, the field is displayed in the form,
without an underline, and cannot be navigated to. By default, the
inactive descriptor is evaluated when the form is opened and
thereafter whenever navigation occurs from a field whose value
has been changed. There must be at least one active field for a
form to be displayed.

, invalidOnDoneMsg

Theinvalidmsg descriptor is used with thalid or men-
uonly descriptors and defines a string that will be printed on the
message line when the input for the field is invalid. The default is
Input is not valid

The invalidOnDoneMsg descriptor is used with the
validOnDone descriptor and defines a string that will be printed
on the message line whealidOnDone evaluates to FALSE.
The default iRRelationship of values in 2 or more

fields is not valid . If you use a different message, make
sure it indicates to the user that more than one field is involved.

These descriptors display a message with transient duration. That
is, it remains on the message line only until the user presses
another key or aheckworld occurs. Transient messages take
precedence over frame duration messages and permanent duration
messages (see theessage(lF) manual page for more infor-
mation).

Thelininfo descriptor defines a string that will be assigned to
the built-in variableLININFO when the user navigates to the
field. If lininfo is not definedLININFO evaluates to the null
string.

The menuonly descriptor defines the choices listed in the
rmenu descriptor to be the only valid input for the field. If this
descriptor evaluates to TRUE, then the user must input one of the
choices inrmenu for the field.menuonly must only be used
when themenu descriptor has been defined using the curly brace
format; otherwise no input will be valid.

NOTE

If you definemenuonly for a field, do not define thealid

The name descriptor defines the label of the field. The value you
define forname should tell the user what piece of information is
wanted in the field.

3-33

Character User Interface Programming

3-34

noecho

nrow, ncol

page

It can also be used to display a label, sucRage 2 of 5, if it
and these other descriptors for the field are defined as follows:

* the name descriptor is defined as the desired
label—in this cas®age 2 of 5

* the page descriptor is set to the appropriate
value—in this cas@

* theinactive descriptor evaluates to TRUE

* thecolumns descriptor evaluates @, so the
input area does not display

Thenoecho descriptor defines whether what the user enters in
the field input area will be displayed. This descriptor defaults to
FALSE (input will be displayed). Ihoecho does not evaluate to
FALSE, then what the user enters in the field will not be echoed in
the display (this descriptor is often used when the requested input
is a password)noecho should not be defined for multi-line
fields.

Thenrow andncol descriptors define the position of the first
character ohamein the form. These descriptors accept an integer
value: the value afrow can be greater than or equaltand less
thanDISPLAYH-2; the value oihcol can be greater than or
equal to0 and less thaDISPLAYW-4. (nrow=0 andncol=0
evaluate to the upper left corner of the frame, that is, to the first
available row and column, respectively.) If either value is nega-
tive, name will not be displayed. If either integer is too large (the
position is off the screen), the entire form will not be displayed.

Whenautolayout evaluates to FALSE, these descriptors
default to -1.

Whenautolayout evaluates to TRUEyrow defaults to the
value previous_nrowprevious_rowswhereprevious_nrowand
previous_rowsre the values, respectively,robw androws for

the previous field in the form. If the field is the first field in the
form, or the first field on the page of a multi-page form, the
default is 0. By default, then, unless the field is the first one on a
page, its label will appear one row below the last row of the previ-
ous field.

Whenautolayout evaluates to TRUE)col defaults to its
value in the previous field, or O if the field is the first field of the
form.

The page descriptor allows you to define the page of a form on
which the field will appear. It accepts integer values greater than
0. A value of 0 or a negative value will cause the field not to
appear in the form.

page defaults to 1 (the field will appear on the first page of the
form). A value greater than 1 creates a multi-page form. That is, if

rmenu

Frame Definition Files

page is defined for a field and evaluatesZpfor example, the
field will appear on the second page of the form.

Thermenu descriptor defines a list of choices for a field. Two for-
mats are acceptable when defining this descriptor:

* The first format is a list of choices, separated by
white space, enclosed in braces. The white space
after the opening brace and before the closing one
is mandatory:

rmenu={ item1 item2 item3 ... itemn }

NOTE

If your definition ofrmenu degenerates to an empty list,
rmenu={} , the value othoicemsg will be displayed: your
definition, if any, or the FMLI default messa@here are no
choices available . If you definechoicemsg , be sure it is
appropriate to the “empty list” case.

By default, if this list has three or fewer items, the choices are dis-
played in the field itself. The first item appears when the user
presses thEHOICES SLK; the user toggles through the choices
by pressing the same key. If the list has more items, the choices
will appear in a pop-up choices menu. (See Chapter 4 for a discus-
sion of thetoggle descriptor, which can be used to change this
default behavior.) When the user selects an item in a pop-up
choices menu, the selection is automatically placed in the built-in
variableForm_Choice , the value of which is entered in the field
when the choices menu closes.

* The second format is aspen command. When
you use this format, thenenu descriptor evalu-
ates to opening a menu, and the user selects from
that menu. For example:

rmenu=open Menu.mtgdates

The action associated with each choice in the menu must set the
built-in variableForm_Choice and close the menu. When the
user selects an item in the menu, the selection is placed in
Form_Choice , the value of which is entered in the field when
the choices menu closes. Tioggle descriptor is ignored when

this format is used—a pop-up choices menu is always displayed.

NOTE

Do not usamenuonly with this format. To validate the choices in
the menu, use thelid descriptor.

3-35

Character User Interface Programming

3-36

rows , columns

scroll

show

valid

Therows andcolumns descriptors define the size of the input
area, the length and width, respectively, of the region in which the
user can enter input. These descriptors accept an integer value: the
value ofrows must be greater thahand less thaDISPLAYH-

2; the value oftolumns must be greater thahand less than
DISPLAYW-A. If either is less than or equalQ@othe field will not

be displayed. If either value is too large (the position is off the
screen), the entire form will not be displayed.

rows defaults to 1 (the field will be one row long). A value
greater thard creates a multi-line field.

If autolayout evaluates to FALSEK,olumns defaults to -1. If
autolayout evaluates to TRUEK,olumns defaults to its value

in the previous field, or 4 (the field will be four columns wide) if
the field is the first field of the form. Although a default value can-
not be picked that will be useful for real applications, a default
value can be useful for learning purposes and for writing test
scripts; hence the default 4.

Thescroll descriptor defines whether the field input area can
scroll. There are two types of scrolling: vertical, for multi-line
fields; and horizontal, for single-line fields. If not defined, this
descriptor defaults to FALSE (field input area cannot scroll).

If scroll evaluates to TRUE, then the field input area can be
scrolled. This means that the field input area can be as long as the
entry the user types, and tt@umns descriptor is not a limit for

the length of user input. For single-line fields, the last space in
columns is reserved for scroll symbols:means the field can be
scrolled to the rights means the field can be scrolled to the left,
and= means the field can be scrolled either left or right. For
example, after the user typescmlumns-1 valid characters, the
field will scroll, and the< symbol will appear in the last space,
indicating that the input in the field has scrolled to the left. For
multi-line fields, scroll indicators for ug‘j and down ¥) appear

in the bottom right border of the frame when the user has entered
data up to the last character in the last displayed line of the field.
For example, after the user typesaws lines of information, the
scroll indicator for up%) appears in the lower right border.

The show descriptor defines whether a field will be displayed in
the form. Ifshow evaluates to FALSE, then the label and input
area will not be shown. There must be at least one field for which
show evaluates to TRUE, or the form will not open. By default,
the show descriptor is evaluated when the form is opened and
thereafter whenever navigation occurs from a field whose value
has been changed. Note that even if the field is not shown, it still
counts as a field for the purpose of evaluating the built-in variable
Fn. (See “Variables” on page 2-6 for more information about the
built-in variableFn.)

Thevalid descriptor defines whether the input to a field is valid.
If valid evaluates to FALSE, the current input is considered

Frame Definition Files

invalid and FMLI will not process the field or evaluate thwme
descriptor. Checking the validity of the field is often done by eval-
uating a backquoted expression. The backquoted expression must
be coded to evaluate to TRUE when the value is valid, FALSE
otherwise.

NOTE

The built-in utilityregex is often used in walid descriptor for
field validation. For example, it can be used to require that part of
a field be non-numeric.

The FMLI conditional statement has essentially the same func-
tionality as the UNIX system shell conditional statement, and can
be used to do more complicated validations.

Before a user leaves a form, each field that definevdhe
descriptor is validated at least once, at one of the following times.
Note that the critical factors are whether the field was modified,
and which key was used to navigate away from it.

1. If the field has been visited and modified, valida-
tion occurs upon any navigation key being pressed.

2. If the field has been visited but not modified, vali-
dation occurs upon thENTER key being
pressed. The use of other navigation keys will not
initiate validation.

(Note that this behavior is new in FMLI 4.0+.
Thus, users can now navigate to other fields when,
for example, leaving the current field blank would
cause it to fail a validation test.)

3. If the field has not been visited, or if it was visited
but not modified and some key other tiEeNMTER
was used to navigate away from it, validation
occurs upon th8 AVE key being pressed.

So, if a user opens a form frame with five fields that define the
valid descriptor, but only modifies the first two fields, the two
modified fields are validated before the use can leave them. The
remaining three fields will be validated when the user saves the
form.

If any field (including fields on other pages in a multi-page form)
does not pass its validation test, FMLI will not process the field,
the cursor will jump to the invalid field if not already on it, the
message defined in the descriptoralidmsg (if defined, oth-
erwise the default message) will be displayed on the message line,
and thedone descriptor will not be evaluated. In the case of more

3-37

Character User Interface Programming

validOnDone

than one invalid field, this behavior will be repeated in field order,
each time th&AVE SLK is pressed.

For the reasons given in tvalidOnDone entry below, you
should usevalid only to validate the value of a single field,
without reference to other fields. UgalidOnDone to validate
the relationship between the values of different fields.

You should be cautious using thalid descriptor for a field that
could become inactive. Unexpected behavior can occur.

ThevalidOnDone descriptor does the same thing asvilel
descriptor but is evaluated only when the user attempts to save the
form, and is used with thimvalidOnDoneMsg descriptor
rather than thénvalidmsg descriptor. You should use it to val-
idate the relationship between the values of different fields, as in
the following scenario.

Suppose you have defindtiajor, Degree, andCollege fields
in a form, in that order. For tHeegree field you have defined a
validation test that will disallow the valuBs or MSwhenMajor
has the valuélistory . If you usevalid to perform the test

valid="test (“$F1" = “History” -a
(“$F2" = “BA” -0 “$F2’ = “MA")

)-0
(“$F1" = “Electrical Engineering” -a
(“$F2" = “BS” -0 "$F2" = “MS")

invalidmsg=vary The “$F2” degree is not offered in “$F1”

FMLI will correctly disallow an entry oBS in Degree whenMajor is History

Suppose now, though, that the user has entdestrical Engineering in Major
andBS, a valid value, irDegree. This user has a change of mind and, after navigating
back toMajor, changes its value tdistory . Becausevalid has already been evalu-
ated forDegree, FMLI will not check its value against the new valueMdjor unless
Degree is revisited. It will check it, however, if thalidOnDone descriptor is coded

for Degree

3-38

Frame Definition Files

validOnDone="test (“$F1” = “History” -a
(“$F2" = “BA” -0 “$F2" = “MA")
)
(

-0
“$F1” = “Electrical Engineering” -a
(“$F2" = “BS" -0 “$F2" = “MS")

invalidOnDoneMsg=vary The “$F2” degree is not offered in “$F1”

becausealidOnDone is evaluated when the user attempts to save the form. You would
usevalidOnDone in a similar way if, say, you wanted to disallow the vaBuesiness
for College whenMajor had the valuélistory andDegree had the valu8A

WhenvalidOnDone evaluates to FALSE for a field, the cursor is positioned in the input
area of that field. Because the descriptor is evaluated only when the user attempts to save
the form, the user can navigate away from the field to any other field. In other words, the
user of the example application above could navigate awayegree to Major and

change its value t&lectrical Engineering . As this implies, alivalidOnDone
descriptors for a form will be re-evaluated each time the user attempts to save the form
(because the new value Mfajor, although valid in relation to the value@g&gree, may

now be invalid in relation to the value Gbllege).

NOTE

ThevalidOnDone descriptor can be coded aalidOn-
Done=validonentry to request that any validation done with
thevalid descriptor be repeated when the user attempts to save
the form. This allows you to code one validation in two places,
eliminating a possible maintenance problem.

value Thevalue descriptor defines the default value for the input field.
If this descriptor is defined, its value will be displayed in the field
when the form is opened or updated. The default is not changed
by the user entering data into the field. That is, the default value is
restored when the form is opened or updated, or if the built-in util-
ity reset is run while the field is current. Note thadlid or
validOnDone can be used to validate the input to fields defined
to have default values.

wrap Thewrap descriptor defines whether word wrap will occur if a
word will not fit on the current line of a multi-line field. If this
descriptor is not defined, it defaults to FALSEwtap evaluates
to FALSE, then the cursor will not automatically wrap to the next
input line. Ifwrap evaluates to TRUE, amdord will not fit on the
current line but will fit on the next line, theword will automati-
cally be moved to the next line. Theap descriptor is ignored in
a single-line field.

3-39

Character User Interface Programming

NOTE

Screen labels and actions for function keys can be defined in a
form description file as well as at the initialization file level. Each
set of screen-labeled function key descriptors must include the
name andbutton descriptors; theame descriptor must be first.

If a descriptor appears more than once in a set, the last one is used.
See Chapter 4 for a discussion of how to use the screen-labeled
function key descriptors.

Automatic Layout of Form Fields

3-40

In previous versions of FMLI the descriptors that define the position and size of fields and
their labels frow , fcol , nrow, ncol , andcolumns), defaulted to -1. In effect, this
meant that those five descriptors had to be defined for each field in the form.

With FMLI Release 4.0+, new, more reasonable defaults are available for these descrip-
tors. However, to preserve compatibility with older applications, the new defaults are only
available if theautolayout ~ frame descriptor for the form evaluates to TRUE, or if the
application descriptoautolayout evaluates to TRUE and the same descriptor for the
form is not coded. When tlautolayout descriptor is defined, the new defaults provide
automatic layout of the fields and labels of a form; the only required field descriptor is
name. The new defaults are described in detail in “Field Descriptors” on page 3-31.

The defaults enabled utolayout allow easier coding for simple forms and test
scripts, rapid prototyping, and provide a reasonable default form appearance, although
nrow, ncol , frow , fcol , andcolumns can still be used to obtain precisely formatted
forms. In addition, it is still possible, using the previous defaults of -1 for these descrip-
tors, to obtain the following refinements:

* labels without corresponding fields (for precisely formatted descriptive text
within a form)

¢ fields without any labels
Some applications have made use of these capabilities and will not be broken.

A few simple examples will help. A 5-field form can be defined with only 5 field descrip-
tors, instead of the 30 previously required:

autolayout=true
name=fieldl
name=field2
name=field3
name=field4
name=field5

These fields would appear in the form as:

Frame Definition Files

d N

— 1 Form

fieldl
field2
field3
field4
field5

ELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

i~ =

A simple form with 2 columns and some other variations could be defined with:

autolayout=true
name=field1l
name=field2
name=field3
name=field4
name=field5
name=fieldA
nrow=0
ncol=14
columns=2
name=fieldB
name=fieldC
name=fieldD
fcol=25
name=fielde

These fields would appear in the form as:

3-41

Character User Interface Programming

7

N\

— 1 Form
fieldl _ fieldA
field2 fieldB___
field3___ fieldC___
fieldd __ fieldD
fields _ fieldE
HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

\\.

7

Figure 3-26 in the next section shows how defaults would work for a less rigid arrange-
ment of fields and labels.

Example Form Definition Files

Many of the frame descriptors for forms and menus have the same names and do the same
things. Since they were discussed in the examples of menu definition files, they won't be
covered again here. Some frame descriptors in forms are different from those in menus,
however.

Saving User Input to a Form

3-42

You can use the frame descriptlane to take information entered in a form by a user and
save it in a file. The address entered by the user in the following form is to be written in a
file namedAddr.file . Figure 3-24 shows how the form definition file would look if you
coded the field descriptors explicitly with values; Figure 3-25 shows the form itself;
Figure 3-26 shows how the definition file would look if you took advantage of the defaults.

Frame Definition Files

form=Address Entry Form
done="echo Name=$F1 >> Addr.file;\
echo Address=$F2 >> Addr file;\
echo City=$F3 >> Addr file;\

echo State=$F4 >> Addr file;\

echo Zip=$F5 >> Addr file'update

name=Name
nrow=0
ncol=0
frow=0
fcol=5
rows=1
columns=34

name=Address
nrow=1

ncol=0

frow=1

fcol=7

rows=1
columns=31

name=City
nrow=2
ncol=0
frow=2
fcol=5
rows=1
columns=15

name=State
nrow=2
ncol=21
frow=2
fcol=27
rows=1
columns=2

name=Zip
nrow=2
ncol=30
frow=2
fcol=34
rows=1
columns=5

Figure 3-24. Form.addr: Defaults Not Used

This frame definition file creates the following form:

3-43

Character User Interface Programming

f 1 Address Entry Form N

Name
Address
City State __ Zip
HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

N\ J

Figure 3-25. Form.addr: Screen Output

So does the next form definition file, which takes advantage of the default values for field
descriptors:

3-44

Frame Definition Files

form=Address Entry Form
autolayout=true

done="echo Name=$F1 >> Addr.file;\
echo Address=$F2 >> Addr file;\
echo City=$F3 >> Addr file;\

echo State=$F4 >> Addr file;\

echo Zip=$F5 >> Addr file'update

name=Name
columns=34

name=Address
columns=31

name=City
fcol=5
columns=15

name=State
nrow=2
ncol=21
columns=2

name=Zip
nrow=2
ncol=30
columns=5

Figure 3-26. Form.addr: Defaults Used

As the example suggests, you can save yourself considerable effort by using the default
values for field descriptors, if you have coded dluéolayout descriptor as TRUE.
Note thatfcol must be coded fd€ity because, by default, FMLI takes the greater of
fcol for the previous field (7) ot+current_ncotlengthOf Label5). That is, you want

the input area fo€ity to be separated from its label by one space, not thres. must

be coded foState because, by default, FMLI increments its value in the previous field
(2) by the number of rows in the previous field (1). That is, you Baate to appear in

the same row &Sity, not the fourth row. The same thing holds forrih@wv descriptor in

the Zip field. Finally,ncol must be coded for th&tate andZip fields because, by
default, FMLI uses its value in the previous field. That is, you do not want different fields
in the same row to start in the same column.

This form can be used in an application where addresses have to be entered into the sys-
tem. If a user fills in this form as follows:

3-45

Character User Interface Programming

f 1 Address Entry Form \

Name Smith, Albert
Address 1234 High Street
City Best State AA Zip 12345
HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

s J

Figure 3-27. Form.addr: Screen Output after Being Filled Out by a User

when the user press8fVE (or CTRL-f 3), thedone descriptor is evaluated and the
following information is written into thé&ddr file file:

Name=Smith, Albert
Address=1234 High Street
City=Best

State=AA

Zip=12345

Figure 3-28. Addr.file: Contents after User Saves the Form

If Addr.file does not exist it is created. If it already exists, the information above is
appended to it.

Note that thalone descriptor in forms is of type command, and thus must evaluate to an
FMLI command. In this examplepne evaluates to the FMLI commangdate. After

the user input is saved in the fAddr.file, theupdate command causes the form to

be updated to its default values (a blank form), the cursor is positioned on the first field,
and the user can begin to enter a new address recordAx¢liess Entry Form.

3-46

Frame Definition Files

Validating a Form Field

Let us add some more functionality to the form. Assume that in this form it is valid to
enter addresses of only three states: New York, New Jersey, and Connecticut. To do this,
three more field descriptors are added tdStage field in the frame definition file:

name=State

nrow=2

ncol=21

columns=2

rmenu={ CT NJ NY }

menuonly=true

invalidmsg=Valid state codes are: CT, NJ, NY

Figure 3-29. Form.3choices: An Example of Field Validation Using the menuonly Descriptor

This form definition file will create the same form as above. Howevemtbeu descrip-

tor is used to create a choices menu, andhtbeuonly descriptor defines only the
choices in the choices menu to be valid field values. If the user enters an invalid state code
in the State field and presseRETURN or SAVE, the message defined by the
invalidmsg descriptor appears on the message line andaihe descriptor will not be
evaluated.

When the user press€HOICES the first valid state cod€&€T, will be displayed in the
State field (see the description odggle in Chapter 4 for a discussion of how to
change this default behavior). Each presSOICES displays the next valid state code
(wrapping to the first choice after the last one is displayed).

Now we will add some more state codes to the list of states immmmu descriptor and
we will change thénvalidmsg descriptor to reflect the changes:

3-47

Character User Interface Programming

3-48

name=State

nrow=2

ncol=21

columns=2

rmenu={ CT IL NJ NY PAFL}

menuonly=true

invalidmsg=(Press CHOICES to see valid state codes)

Figure 3-30. Form.6choices: An Example of a Choices Menu

This frame definition file creates the same form as before. But now if the user enters a
wrong state code, the following message will be displayed at the bottom of the screen:

(Press CHOICES to see valid state codes)

To find the valid state codes, the user can again @eK3ICES. This time the valid
choices are displayed in a pop-up choices menu. This behavior occurs by default when
there are more than three choices inrthenu list:

Frame Definition Files

7 N

1 Address Entry Form — 2 CHOICES I

Name > CT

Address FL

City ~~ State_ Zip___ IL
NJ
NY
PA

ENTER CANCEL

S J

Figure 3-31. Form.6choices: Screen Output

When the user selects a code from the choices menu, the code is plac&tatethéeld
and the choices menu is closed, as shown in Figure 3-32:

3-49

Character User Interface Programming

4 N

1 Address Entry Form
Name
Address
City State __ Zip
HELP CHOICES SAVE PREV-FRM NEXT-FRM CANCEL CMD-MENU

_/

Figure 3-32. Form.6choices: Screen Output after User Selects an Item from the Choices Menu

Example of Validating a Field Value with the valid Descriptor

Let us add two more descriptovglid andinvalidmsg , to theZip field definition, as
follows:

name=Zip

nrow=2

ncol=30

columns=5

valid="regex -v “$F5" '[0-9{5}"

invalidmsg=Zip code is numeric. Five digits only.

Figure 3-33. Form.valid: An Example of Field Validation Using the valid Descriptor

3-50

Text Frames

Frame Definition Files

Thevalid descriptor is defined to executegex to validate the field. If a pattern is
matched byregex , regex will write the corresponding template stdout . The
regex utility will also return the value TRUE which, for FMLI built-in utilities, is analo-
gous to a UNIX system command that exits with status 0. If no pattern is mataieed,

will not write tostdout and will return FALSE. For FMLI built-in utilities, FALSE is
equivalent to a UNIX system command that exits with a non-zero exit status. For example,
the field validation shown in Figure 3-33 (that is, ttedid descriptor definition) uses the

-v option toregex to specify that the argument that follows (rather tstdin) should

be used as input. Note that thégex statement contains a single pattern without a tem-
plate. Inregex , a template is optional if only one pattern exists. The last pattern in a
series of pattern/template pairs is also optional.

This use ofregex will return TRUE if the current value of field 5 consists entirely of
integers and will return FALSE otherwise. Since no template erégtsx will not write

to stdout . If the field is not numeric and not all five digits are entered, the following
message defined by thevalidmsg descriptor is displayed:

Zip code is numeric. Five digits only.

A text frame definition file begins with a single set of frame descriptors (ones that define

attributes of the whole text frame), and it can end with one or more optional sets of SLK
descriptors that define the screen-labeled function keys (one set per SLK) that will be dis-
played when the text frame is the current frame in the user's work area.

Some of the attributes of a text frame that you can define are the following:
* the title of the text frame
* a non-scrolling header for the text frame
¢ the text to be displayed
¢ whether users can modify the text
* the position of the text frame in the work area
¢ the longevity of the text frame
* new labels and functions for the SLKs
The descriptors in a text frame definition file must follow this order:

frame_descriptor_1

frame_descriptor_n
[SLK-n_descriptor_1

3-51

Character User Interface Programming

SLK-n_descriptor_n
]

NOTE

Out-of-order descriptors will be ignored if this order—frame, then
SLKs—is not followed.

Text Frame Descriptors

The set of frame descriptors can be any valid frame descriptors for text frames, in any
order. (However, a text frame usually starts with theftittes= title. The default value
fortitle , if you do not define it, iJext .) If a descriptor is defined more than once in

the set, the last one is used.

altslks Thealtslks descriptor defines whether SLKs 9 through 16 are
displayed when the frame is initially openedaltslks evalu-
ates to TRUE, SLKs 9 through 16 will be displayed. The default,
if this descriptor is not defined, is FALSE, which causes SLKs 1
through 8 to be displayed.

begrow , begcol Thebegrow andbegcol descriptors define the original position
of the top left corner of the text frame in the user's work area.
(begrow=0 andbegcol=0 evaluates to the upper left corner of
the work area.) These descriptors accept values of type position:

center the text frame will be centered in the work area

current the text frame overlaps the current frame's posi-
tion (valid forbegrow only)

distinct the text frame will not overlap the current frame
(if possible) (valid folbegrow only)

any FMLI chooses a position with least amount of
total overlap

integer the text frame will be positioned in an absolute
position, defined bynteger Defining begrow
andbegcol to be integer values causes the
frame to appear in the given position.

If eitherbegrow orbegcol evaluates taenter , then the other
can only be an integer value oenter . Any other value is
ignored and the descriptor defaultcemter .

If neither iscenter , then the value dbegrow determines the
legal values obegcol : if begrow iscurrent , distinct
any, or an invalid value, thebegcol defaults toany. If
begrow is a valid integerbegcol can be a valid integer; if
begcol is an invalid integer in this case, it defaultaiy .

3-52

close

columns

done

edit

framemsg

header

help

init

interrupt

Frame Definition Files

Theclose descriptor is evaluated when the text frame is closed
and when the user exits from the FMLI application. Tlhse
descriptor is of type null, which means its only purpose is to
obtain the side effects of a backquoted expressions coded in its
definition.

Thecolumns descriptor defines the width of a text frame. It must
evaluate to an integer value greater tBaand less thabDIS-
PLAYW-4 Thecolumns descriptor defaults t80.

Thedone descriptor is evaluated when the user executes the
cancel command. Ifdone is not defined, it defaults to the
FMLI commandclose .

If this descriptor evaluates to TRUE, then the user can modify the
text. Otherwise, the text is read-only. The default for this descrip-
tor is FALSE.

If the user modifies the text in the displayed text frame, this does
not modify the frame definition file.

Theframemsg descriptor displays its value on the message line
for as long as the frame is current. It can be temporarily replaced
by a message displayed when:

* a message is generated by thessage built-in
utility with the-t option

* an FMLI error message is generated

It can be replaced for as long as the frame is current by a message
generated by thmessage built-in utility with the-f option.
(See thenessage(1F) manual page.)

Theheader descriptor defines information that will remain per-
manently displayed at the top of a text frame. For example, if a
text frame contains a long table of informatitbeader can be
used to define column headings that will remain displayed below
the title of the text frame while the user pages or scrolls through
the rest of the table. The text definedh@ader can include
embedded newline characters, and will be left justified in the
frame. The header text will not occupy all rows of the text frame:
at least two lines will remain available for display of the text.

Thehelp descriptor specifies what will happen when the user
requests help while in this text frame. Since this descriptor is eval-
uated when the user requests help, the specification of what help is
displayed can be determined through parameters that are set inter-
actively.

If theinit descriptor evaluates to FALSE, the frame will not be
displayed. Ifinit evaluates to FALSE on an update, the frame is
closed, unless it is an initial frame.

The Boolean descriptanterrupt defines whether an execut-
able that is coded in thdpne descriptor can be interrupted by

3-53

Character User Interface Programming

users (FALSE means not interruptible, TRUE means interrupt-
ible). It is subject to an inheritance hierarchy: if not defined any-
where in your application, the default value FALSE applies
throughout. If explicitly defined at any inheritance level, then exe-
cutables imction anddone descriptors at or above that inherit-
ance level will inherit that defined value. (See “Interrupt Signal
Handling” on page 2-39 for complete information.)

If defined among the frame descriptors in a text frame definition
file, that value ofinterrupt is inherited by thection
descriptor in all sets of SLK descriptors in the text frame, unless it
is redefined for a specific SLK.

lifetime Thelifetime descriptor defines when the text frame will be
closed (that is, removed from the work area). It is evaluated when-
ever the text frame is opened, closed, made current, or made non-
current. The acceptable values are:

shortterm the text frame closes whenever the user navi-
gates to another frame or when the command
line is accessed (the user pres€dRL-j or
CTRL-fc)

longterm the text frame closes when the user issues a
cleanup orclose command

permanent the text frame closes whenever the user issues a
close command

immortal the text frame closes only when the user exits
from the application

Thelifetime descriptor is ignored in text frame definition files
that are given as arguments whemli is invoked: such text
frames have a lifetime ammortal . See “Other Useful Exam-
ples” on page 3-61 for an example of how to use this descriptor to
close a frame when another frame is opened or updated.

oninterrupt The command descriptoninterrupt defines what will hap-
pen when an interrupt signal is receivedinterrupt is not
coded anywhere in your application, or if it evaluates to FALSE,
oninterrupt is ignored.
oninterrupt is subject to an inheritance hierarchy: if not
defined anywhere in your application, the default vahaes-
sage Operation interrupted!” nop applies through-

out. If explicitly defined at any inheritance level, then executables
in action anddone descriptors at or above that inheritance
level will inherit that defined value. (See “Interrupt Signal Han-
dling” on page 2-39 for complete information.)

If defined with the frame descriptors in a text frame definition file,

that value obninterrupt is inherited by thection descrip-
tor in all sets of SLK descriptors, unless redefined for a specific
SLK.

3-54

reread

rows

text

title

wrap

Frame Definition Files

If reread is not defined, it defaults to FALSE.rdread evalu-
ates to TRUE, the text frame will be periodically updated by
rereading its description file when tbleeckworld command is
executedcheckworld is executed when 8IGALRMalarm
occurs (evensMAILCHECKseconds). Other timeheckworld

is executed include when a frame is opened, closed, or navigated
to. (Seecheckworld in “Built-in Variables” on page 2-7.) When
checkworld occurs, all frames whoseread descriptor eval-
uates to TRUE will be updated. (However, title descriptor

is not reread.) Execution oheckworld may cause the message
line to clear.

Therows descriptor defines the desired number of rows long a
text frame will be. It must evaluate to an integer value greater than
0 and less thaDISPLAYH-2 . It defaults to the lesser of 10 or the
number of rows needed to display the complete text.

Thetext descriptor defines the text you want to display. It may
contain embedded newlines, as long as the value of the entire
descriptor is enclosed in quotes. Two special characters are also
available for requesting tabs and newlines in the displayed text:

\n insert a newline in this position
\t insert a tab in this position

The alternate character set characters can be coded as well; see
“Using the Alternate Character Set” on page 2-42.

Thetitle descriptor defines the title of the text frame that will
appear in the title bar. It will be truncated if it is longer tBb48-
PLAYW-6 If not defined, it defaults to the strifigxt .

If this descriptor is set to anything except FALSE, the text will be
wrapped to fit the available space when it is read inrdp eval-
uates to TRUE, word boundaries are respected at newlines. If not
definedwrap defaults to TRUE. Newlines in your text are always
preserved.

NOTE

Screen labels and actions for function keys can be defined in a text
description file as well as in an initialization file. Each set of
screen-labeled function-key descriptors must includentimee
andbutton descriptors, and theame descriptor must be first in
each set. If a descriptor appears more than once in a set, the last
one is used.

See Chapter 4 for a discussion of how to use SLK descriptors.

3-55

Character User Interface Programming

The textframe Command

The two mechanisms available to present information to the user are the message line and
text frames. Messages are limited to 1 line in length; thus, longer information must be put
into a text frame. However, writing a separate text frame definition file can be inconve-
nient if the text frame is very short and needs none of the special capabilities of text frame
definition files. Some applications may need hundreds of such short text frames. A short-
cut mechanism, thiextframe command, allows applications to be more compact.

There are several advantages totéxéframe command:

* separate text frame definition files do not have to be defined or read-in by
your application.

* messages are easier to maintain, since they are coded in the same file as the
associated action

¢ application developers may be more inclined to write useful information
more frequently if it can be done in the same file in which it is used

Thetextframe command is not a built-in utility; it cannot be used in back-quoted
expressions. If it is coded incorrectly, brief error messages will be issued on the message
line and the portion coded incorrectly will be ignored. FMLI will also ignore options and
arguments it cannot recognize and will use appropriate defaults in those cases. The syntax
of this command is

textframe [optiong “ text

Thetextargument, corresponding to ttext descriptor in text frames, is the only argu-
ment to this command. For example,amtion descriptor could be coded as

action=textframe “This is text for a 1-line text frame”

If no textargument is coded, an empty text frame will appear, just as would a text frame
from a definition file whoséext descriptor is not coded. Thextargument may contain
embedded newlines as well as the notationto request newlines in the text. Ttext
argument must be enclosed in quotes if it includes embedded whitespace or special char-
acters. Thus

action=textframe “linel
line2
line3”

as well as
action=textframe “linel\nline2\nline3”

are both allowed (and are equivalent).
Options for the textframe Command

A text frame opened with thextframe command is a text frame in all respects, just
like one defined in a frame definition file. However, only a subset of the text frame

3-56

Frame Definition Files

descriptors can be specified via options to this command. The optiondéwtitzane
command, and the text frame descriptors to which they correspond, are:

Option Descriptor
-t title title

-l lifetime lifetime
-f text framemsg
-r integer rows

-C integer columns
-p position begrow
-a altslks

The defaults and valid arguments for these options are the same as for the corresponding
descriptors in the text frame, except:

¢ the-l lifetimeoption defaults tghortterm because the expected use of
textirame frames is for short-term information

* the only valid arguments to the option arecenter andcurrent

These options can take arguments, and the arguments must be enclosed in quotes if they
contain whitespace. For example:

action=textframe -t “Frame Title” “line1\nline2\nline3”
Other notes on the behavior of these options and arguments:

* A null string argument to thé option (f “") can be used to temporarily
turn off a message of permanent duration.

* Use of the-a option corresponds to codiradtslks=TRUE in a text
frame definition file; this assumes that you have defined at least one of
SLKs 9-16 in the FMLI initialization file.

* The alternate character set feature of text frames will work with the text
given as an argument to ttextrame command.

Example Text Frame Definition Files

The following examples will show you how to write a text frame definition file. We'll
begin by looking at a simple use of the frame descriptors for text frames, and build from
there.

3-57

Character User Interface Programming

Defining Attributes of Text Frames

Here is a simple description file for a text frame:

title="Words to Live By”

columns=40

lifetime=longterm

wrap=true

text="We the people, in order to form a more perfect
union, establish justice, insure domestic tranquillity,
provide for the common defense, promote the general
welfare and secure the blessings of liberty, to
ourselves and our posterity, do ordain and establish
this constitution for the United States of America.”

Figure 3-34. Text.USA: An Example of a Text Frame

Thelifetime descriptor defines this text frame to remain on display until the user
issues aleanup orclose command. Thevrap descriptor defines word-wrapping to
occur: that is, a word that will not fit entirely on the current line will be displayed in full on
the next line. The frame will look like this:

N

1 Words to Live By

We the people, in order to form a more
perfect
union, establish justice, insure

domestic tranquillity,

provide for the common defense, promote

the general

welfare and secure the blessings of

liberty, to

ourselves and our posterity, do ordain
and establish

ELP PREVPAGE NEXTPAGE | | PREV-FRM NEXT-FRM CANCEL CMD-MENU

\N

Figure 3-35. Text.USA: Screen Output

=/

3-58

Frame Definition Files

Notice that even though the text is wrapped at 40 columns, the original newline characters
are preserved.

Defining a Text Frame with readfile and longline

A more interesting way to define a text frame is to use the built-in utiiggeile and
longline

title="This is a Text Frame”
lifetime=longterm
text=""readfile SARG1"™
columns="longline’

Figure 3-36. Text.readfile: An Example of Using readfile and longline in a
Text Frame

Text.readfile illustrates the use of arguments that may be passed to menu, text, or
form frames. You don't have to define a separate text frame definition file for each file that
is to be displayed. Instead, p&sRG1to the text frame when you open it.

For example, iffext.readfile were opened by a line in a menu that looked like this:
action=open $DEF_FILES/Text.readfile helpl

$ARG1would evaluate thelpl , that file would be read by the built-in utilitgad-

file , and all of the text ihelpl would become the value of ttext descriptor, which
would then be displayed in a text frame as wide as the longest line of text in the file
helpl . For more on how this happens, see “Variables” on page 2-6, arshtlfde

(1F) manual page.

Using Text Frame Headers and Terminal Attributes

Text frame headers, defined by tieader descriptor, are useful when you want to per-
manently display some information, perhaps a warning, or headings for columns of infor-
mation, while the text of the text frame can be scrolled through by the user. The example
below in Figure 3-37 also illustrates the use of the terminal display attribute for underlin-

ing.

3-59

Character User Interface Programming

titte="Department Directory”
columns=30

rows=5

lifetime=longterm

wrap=true

header="\+ul Name Phone Number \-ul”
text="Adams, Jane 663-1234
Brown, Tom 687-3443
Deering, Julia 779-6801
Fitzworth, Leslie 299-7775
Flemming, Eric ~ 344-2289
Shultz, Michael 794-1100
Walinsky, Richard 555-8827
Younger, Helen 865-0023”

Figure 3-37. Text.header: An Example of Text Frame Headers

This frame definition file results in the following display:

— 1 Department Directory ~ |——
Name Phone Number
Adams, Jane 663-1234
Brown, Tom 687-3443
Deering, Julia 779-6801
Fitzworth, Leslie 299-7775

\HELP PREVPAGE NEXTPAGE | | PREV-FRM NEXT-FRM CANCEL CMD-MENU /

Figure 3-38. Text.header: Screen Output

The terminal attribute of underlining has been turned on for the text header to set it apart
from the list of department members. Since the frame is defined to be five rows long, and

3-60

Frame Definition Files

the header uses one of those rows, the text is displayed in four rows, and the scroll bar
indicates that there is more text that follows.

Other Useful Examples

Defining a Help Frame for Menu Items or Form Fields

In this example let us take a look how the item descrljptiofo and the built-in vari-
ableLININFO can be used in conjunction with the frame descripédp to define help
that is specific to the current menu item.

This example defines a menu titlE®@P MENU that has three items. The first item does

not have any help information. When help is requested while the cursor is on this item, the
help text frame for the menu is displayed. The second and third item have help text frames
associated with each item. The menu definition file for this menu is:

menu=TOP MENU

help="if [SLININFO =“"];
then echo open Text.gen_help;
else echo open '$LININFO';
fi

name=ltem 1
action=nop

name=date
action="date | message 'nop
lininfo=Text.item2

name=exit
action=exit
lininfo=Text.item3

Figure 3-39. Menu.lininfo: An Example of Defining Help with LININFO

The text frame definition fil@ext.gen_help displays information appropriate to the
menu as a whole. (Presumably this information is also sufficient for a user to understand
how to use the first menu itembem 1.)

columns=20

lifetime=shortterm

titte="Help on TOP MENU"

text="This menu demonstrates the lininfo descriptor.
The first item does not use the lininfo descriptor.”

Figure 3-40. Text.gen_help: An Example of a Help Text Frame

3-61

Character User Interface Programming

The text frame definition fileSext.item2 andTextitem3 display appropriate help
information for the second and third items on the menu.

columns=20

lifetime=shortterm

titte="Help on date”

text="The selection of this item will display the
current date and time on the message line”

Figure 3-41. Text.item2: An Example of a Help Text Frame

columns=20

lifetime=shortterm

titte="Help on exit”

text="This item will let you get out of the application”

Figure 3-42. Text.item3: An Example of a Help Text Frame

When this application is run, the user sees the following menu:

7 N

1 TOP MENU

> |tem 1

date
exit

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

Figure 3-43. Menu.lininfo: Screen Output

3-62

Frame Definition Files

If the user asks for help, either by the appropriate function key, or thelhe command

(from the command line or ttommand Menu), the appropriate text frame will be
displayed. Thdifetime descriptor, defined in each of the help text frames to be
shortterm , ensures that whenever the user navigates away from the help text frame, it
will be removed from the work area, thus reducing screen clutter:

- N

1 TOP MENU — 2 Helpon TOP MENU | —
> ltem 1 This menu

da_te demonstrates the

exit lininfo descriptor.
The first item does
not use the lininfo
descriptor.

HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

N\)

Figure 3-44. Menu.lininfo: Screen Output after Requesting Help on Item 1

If the user navigates to the second menu item and again asks for help, the following text
frame will be displayed:

3-63

Character User Interface Programming

7

N

1 TOP MENU — 2 Help on date —
Item 1 The selection of
> de_lte this item will
exit display the
current date and
time on the message
HELP ENTER PREV-FRM NEXT-FRM CANCEL CMD-MENU

o

)

Figure 3-45. Menu.lininfo: Screen Output after Requesting Help on Item 2

Using the textframe

3-64

The text defined iffext.item3 is displayed in the same manner whHELP is pressed
while the cursor is positioned on menu itenegit. The display of these help frames is
controlled by thdininfo descriptor and theININFO variable.

Command as an Alternative

The previous example of defining help text frames usind- lRENFO variable could be
coded instead using thextframe command. This would eliminate the need for 3 text
frames.

To do so, you would change the lineMienu.lininfo that is coded as
else echo open 'SLININFO';

to something like
else echo textframe -c20 '$LININFO';

Then the corresponding values EBNINFO later in that file would be coded with the text
values from théext descriptors in the respective text frame definition files in the exam-
ple. If the different titles for each frame were to be kept as well, thedtRFO vari-

able for each item would have to include it:

Frame Definition Files

lininfo="-t “frame title” “Text contents™

Using Co-processing Utilities

Co-processing allows an external process to communicate with the user via a menu, form,
or text frame. A co-process does not have direct access to the terminal's screen. It commu-
nicates with the FMLI application, which can then post the messages in the frame that
contains the co-processing descriptors or take other appropriate actions.

The co-processing feature in FMLI consists of five built-in utilittegreate , cosend ,
cocheck , coreceive , andcodestroy , which support inter-process communication.

Thecocreate utility is responsible for initializing the co-process and setting up pipes
between it and FMLI. Theodestroy utility is responsible for cleaning up when the
communication has been completed. The utiitgend is used to send information to
the co-process via the pipe and block (wait) for some response by the co-process. The
option tocosend performs ano waitwrite. This means thabsend will send informa-

tion to the co-process but will not block for a response.ctivheck utility checks the
incoming pipe for information. Theoreceive utility performs a “no-wait” read on the
pipe. The purpose of these built-in utilities is to provide a flexible means of interaction
between FMLI and a co-process; to be responsive to asynchronous activity.

It is important to note that information passed to FMLI from a co-process is treated as text
only. FMLI commands (for examplepen, close, update) will not be recognized
by FMLI unless they become the value of a descriptor of type command.

To illustrate the use of co-processing, consider a UNIX system program that wishes to
“talk” to the user as it executes (an interactive program). The following sample menu dis-
plays the itemalk. Whentalk is selected, the backquoted expression creates the co-pro-

cess and then opens an “interactive” fofarm.talk.

menu="My Menu”
name="talk”
action="cocreate -i MYPROC talk™ open Form.talk

Figure 3-46. Menu.talk: An Example of Co-processing

In the form frame definition filé&~orm.talk, shown in Figure 3-47, the following
occurs:

* Theclose descriptor is responsible for destroying the communication.

* Thereread descriptor checks the pipe and rereads the frame definition
file if there is information pending.

* Field 1 is an inactive field, used simply to display text received from the co-
process.

* Field 2 is an active field which will get information from the user and send
it to the co-processcosend). This is done via thealid descriptor
which is evaluated when a field value changes.

3-65

Character User Interface Programming

3-66

* A SLK, F8, is defined to abort the co-process at any time. This is done by
forcing a close operation (as usual, the descrigtse is evaluated when
a frame is closed).

form="Talking ...”
close="codestroy MYPROC"
reread="cocheck MYPROC"
name=""

fcol=0
rows=5

columns=20

inactive

value=""coreceive MYPROC™
name=""

fcol=0
columns=20

valid="cosend -n MYPROC “$F2" TRUE

name=abort
button=8
action="message “Communication stopped ...” close

Figure 3-47. Form.talk: An Example of Co-processing

The following code segment illustrates how an interactive co-process (in thislgase
may be structured:

response="nothing”
while :
do
echo “I received $response.”
vsig
read response
if [“$response” = “goodbye” |
then
break
fi
done
echo “goodbye”
vsig

Figure 3-48. talk: An Example of a Co-process

The executablegsig(1lF) is used to send a signal telling the interpreter that information
is pending. This interrupt causesead to be evaluated. For more information about co-

processing, see tlwdproc(1lF) manual page.

Application Level Definition Files

INtrOdUCHIONo 4-1
The Initialization File e 4-1
Introductory Frame DesCriptorsttt e 4-2
Example Definition of an Introductory Frame 4-3
Banner Line DeSCIiptOrS.ttt e 4-3
Example Definitions ofaBannerLine 4-4
Color Attribute DeSCIIPtOrso e 4-4
Examples of Defining Color Attributes. 4-6
Defining Color forthe BannerLine 4-6
General Application DeSCriptorst 4-6
Screen-labeled Function Key Descriptors 4-9
Example Definitions of Screen-labeled FunctionKeys. 4-12
The Commands File. e e e 4-12
Command DeSCHIPtOrSot e e 4-13
Example of Adding an Application-specific Command 4-13
Example of Disabling an Existing FMLI Command 4-14
The Allas File 4-14
Examples of Adding Path Aliases 4-14
4-15

fmliCommand Syntax.

Character User Interface Programming

Application Level Definition Files

Introduction

This chapter describes the optional application level files that you can define for your
application. The application level definition files define attributes of the application as a
whole.

* “The Initialization File” on page 4-1 describes, among other things, how to
define an introductory frame (say, a copyright notice), and how to redefine
the banner line, the colors to be displayed on color terminals, and the
default functions and labels assigned to screen-labeled keys. Examples are
given.

* “The Commands File” on page 4-12 describes how to disable or redefine
existing FMLI commands, and define new ones. Examples are given.

* “The Alias File” on page 4-14 describes how to define aliases for lengthy
path names to files or devices, and how to define search pattP#Rded
in the UNIX system shell). Examples are given.

* “fmli Command Syntax” on page 4-15 discusses the syntax dfithe
command, and explains how to supply names of the initialization file, the
commands file, and the alias file as arguments virhkn is invoked.

The Initialization File

The initialization file is a file containing descriptors that apply to your application as a
whole. If you want to use an initialization file for your application, its name can be sup-
plied as an argumen, initialization_file, when themli command is invoked. As its
name implies, its contents are read when your application is invoked. (It can also be reread
using thereinit ~ command.) In the initialization file you can define the following facets

of your application:

* atransient introductory frame, displaying the application name
* a banner, its position, and other elements of the banner line
¢ the colors of various elements of the FMLI screen

* the behavior of some aspects of your application, such as choices menus,
and user access to the UNIX system

* screen-labeled function keys (SLKs) and their layout

4-1

Character User Interface Programming

A suggested order for initialization file descriptors is the following, although the only
order that is enforced is that any sets of screen-labeled function key descriptors must be
last in the initialization file.

[introductory_frame_descriptor_1

introductory_frame_descriptor]n

[banner_line_descriptor_1

banner_line_descriptor n

[color_attribute_descriptor_1

color_attribute_descriptor]n

[general_application_descriptor_1

general_application_descriptor] n

[SLK-n_descriptor_1

SLK-n_descriptor_n
]

Note that all sets of descriptors in an initialization file are optional, as is the initialization
file itself.

Introductory Frame Descriptors

4-2

An introductory frame is a frame that is displayed briefly when your application starts, and
is then cleared from the screen and replaced by the frame(s) you specify as arguments
whenfmli is invoked as the initial frame(s) to open. The introductory frame will be dis-
played again briefly when the user exits from your application.

The introductory frame is defined with four descriptors normally used to define a text
frame. Note, however, that the defaults are different when they are used in an initialization
file.

The introductory frame descriptors are described below. Eithetitthe or text
descriptor must be included in the set of introductory frame descriptors.

columns

rows

text

title

Application Level Definition Files

Thecolumns descriptor defines how many columns wide you want the intro-
ductory frame to be. It defaults to the integer valQef not defined for an
introductory frame.

Therows descriptor defines how many rows high you want the introductory
frame to be. It defaults to the integer valieif not defined for an introduc-
tory frame.

Thetext descriptor defines the text you want to display in the introductory
frame. It defaults to NULL if not defined. If neither ttide descriptor or
thetext descriptor is defined in the initialization file, the introductory frame
will not be displayed.

Thetitle descriptor defines the title that will appear at the top of the intro-
ductory frame. It defaults to NULL if not defined. It will be truncated if it is
longer thanDISPLAYW-6. If neither thetitte descriptor or theext
descriptor is defined, the introductory frame will not be displayed.

Example Definition of an Introductory Frame

A definition for an introductory frame is simple, as the following example shows:

title="WELCOME TO”
text="My Application
Copyright (c) 1989
My Software, Inc.

All rights reserved.”
rows=5

columns=25

Backquoted expressions, containing calls to built-in utilities, may also be used, as in this

line:

text=""readfile DEF_FILES/myintrotext™

which will cause the text frame definition filgyintrotext to be read from the direc-
tory whose alias is defined to IBEF_FILES, and passed to thext descriptor as the
argument. (See “The Alias File” on page 4-14 for more information about how to define

aliases.)

Banner Line Descriptors

Your application can display a different banner on the banner linéhartmeer descriptor
must be included in the set of banner line descriptors.

bancol

Thebancol descriptor defines the position of the banner in the banner line. If
not defined, this descriptor defaultsaenter . It accepts the following val-
ues of type position:

center centers the value danner in the banner line

integer the banner will begin in the column specifiedittgger

4-3

Character User Interface Programming

banner Thebanner descriptor defines information that will appear in the banner line
on the user's screen while your FMLI application is running. If not defined, it
defaults to NULL.

working Theworking descriptor defines a string used to notify users that they must
wait until FMLI completes an activity. It always appears flush-right on the
banner line. If this descriptor is not defined, it defaults to the stvimdsing .

NOTE

Taking care that other items on the banner do not run into this area
is the responsibility of the developer.

Example Definitions of a Banner Line

The following lines in an initialization file will give you a banner with the program name,
the date, and the time the FMLI application was started on the banner line (top line of the
screen), starting in the 30th column:

banner="“MYPROGRAM - “date™
bancol=30

Theworking icon appears right-justified on the banner line. You can change the working
icon, toBUSYfor example, by defining therorking descriptor in your initialization file
as follows:

working="BUSY”

You may also put an application-specific indicator on the banner line by using the built-in

utility indicator (see thendicator(1F) manual page for complete details on its
use).

Color Attribute Descriptors

4-4

The color attribute descriptors allow you to define the colors of various elements of the
FMLI screen. The color descriptors can only be defined in the initialization file. They will
be ignored in other files.

curses(3curses) requires that the colors be set in pairs. This means you must set
both the foreground and background for a specific element of the screen; otherwise it will
default to monochrome. The pair for each color descriptor is indicated in the descriptions
that follow.

NOTE

If you set the foreground and background to the same color, you
will not be able to see the text.

Application Level Definition Files

The colors that can be used as values for the color attribute descriptors, for either fore-
ground or background, are the following:

* black

* Dblue

* green

* cyan

* red

®* magenta
¢ yellow

* white

You may redefine these colors, or add new ones, witedtoelor built-in utility (see
thesetcolor(1F) manual page for complete details on its use). Of course, if the termi-
nal your application is being run on cannot display color, FMLI automatically defaults to
monochrome.

The following descriptors can be used in the initialization file to specify color attributes
for the various screen elements. All of these descriptors are of type string and accept the
color values listed previously.

If the terminal your application is running on does not support color, these descriptors are
ignored. (You can use the built-in variabldS_COLORS® test for color support.)

active_border Theactive_border descriptor defines the color of the
frame border when a frame is current (border foreground).
This will enforce the “solid line” look of the screen border.
The background for the active border is defined by

screen .

active_title_bar Theactive_title_bar descriptor defines the color of
the title background when a frame is current (background
for active_title text).

active_title_text Theactive_title_text descriptor defines the color
of the title text when a frame is current (foreground for
active_title_bar).

banner_text Thebanner_text descriptor defines the color of all text

on the banner line. If this descriptor is not defined in the
initialization file, the banner text defaults to white. The
background for this text is defined bgreen .

highlight_bar The highlight_bar descriptor defines the color of the
menu selector bar (background for
highlight_bar_text).

highlight_bar_text Thehighlight_bar_text descriptor defines the color
of the menu selector bar text (foreground for
highlight_bar).

4-5

Character User Interface Programming

inactive_border Theinactive_border descriptor defines the color of
the frame border when a frame is non-current (border fore-
ground). The background for the inactive border is defined

by screen .

inactive_title_bar Theinactive_title_bar descriptor defines the color
of the title background when a frame is non-current (back-
ground forinactive_title_text).

inactive_title_text Theinactive_title_text descriptor defines the
color of the title text when a frame is non-current (fore-
ground forinactive_title_bar).

screen Thescreen descriptor defines the color of the screen

(screen background)

slk_bar Theslk_bar descriptor defines the color of the screen-
labeled function keys (background &k _text).

slk_text Theslk _text descriptor defines the color of the screen-
labeled function key text (foreground felk_bar).

window_text Thewindow_text descriptor defines the color of the
text in a frame (text foreground). If this descriptor is not
defined in the initialization file, it defaults to white. The
background for this text is defined bgreen .

Examples of Defining Color Attributes

The examples below show how to define the color of an area of the screen, and how to use
the built-in utility setcolor ~ example to redefine one of the default color definitions and
assign it to a portion of the screen.

Defining Color for the Banner Line

The color for text on the banner line is controlled by the desciiptarer_text . If this
descriptor is not set, the default is white text on a background that is the same color as the
background for the rest of the screen.

banner_text=yellow

would make all text on the banner line yellow, and the background would be whatever you
set it to for the rest of the screen.

General Application Descriptors

The following descriptors can be used in the initialization file to define some display and
functional characteristics globally for your application.

autolayout The autolayout descriptor in an initialization file defines
whether the reasonable defaults for form field and label position-

4-6

interrupt

nobang

Application Level Definition Files

ing available in this release of FMLI will be used. If not coded, it
defaults to FALSE. If it evaluates to TRUE, then the reasonable
defaults will be used in all forms of the application whas®-

layout descriptor is not coded. See “Automatic Layout of Form
Fields” on page 3-40 for full information.

This application-level descriptor may be coded TRUE to get the
defaults for an entire application, while a particular formt®-

layout descriptor may be coded FALSE to be explicitly pro-
tected from these defaults. This explicit enabling of the new
defaults is necessary to preserve compatibility with older applica-
tions; it was possible using the previous defaults of -1 for an appli-
cation to obtain labels without corresponding fields (to achieve
precisely formatted descriptive text) or fields without any labels.
Some applications have made use of this capability and will thus
not be broken.

Theinterrupt descriptor in an initialization file defines
whether any executable codedaiction ordone descriptors in
your application can be interrupted by the user. If not coded, it
defaults to FALSE. If it evaluates to TRUE, then executables will
be interruptible.

If defined in an initialization file, the value ioterrupt affects
executables in aliction anddone descriptors—in the SLK
section of the initialization file, in all frame definition files, and in
the commands file—unless otherwise defined at one of those lev-
els. (See “Interrupt Signal Handling” on page 2-39 for more infor-
mation.)

Thenobang descriptor allows you to control user access to the
UNIX system shell and UNIX system commands from the com-
mand line. If not definedhobang defaults to FALSE (users can
access the UNIX system shell).

FMLI allows users to escape to the UNIX system shell from the
command line (accessed wilTRL-j or CTRL-f ¢) by prefix-

ing an exclamation point § to the command to be executed in the
UNIX system. For example,

-->lpwd

But if nobang evaluates to TRUE, use of theprefix to com-
mands entered on the command line will be disabled, and a mes-
sage to that effect is displayed on the message line. In addition,
whennobang evaluates to TRUEpen is also disabled from the
command line.

Character User Interface Programming

NOTE

Thenobang descriptor does not disable thaix-system
command. See “The Commands File” on page 4-12 later in this
chapter for information on disabling access to the UNIX system
via theunix-system command.

oninterrupt The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received.olfinterrupt is not
defined anywhere in your application, it defaultsriessage
Operation interrupted!” nop . If interrupt is not
coded anywhere in your applicatiaminterrupt is ignored.

If defined in an initialization file, the value @hinterrupt

affects executables in akttion anddone descriptors—in the
SLK section of the initialization file, in all frame definition files,
and in the commands file—unless otherwise defined at one of
those lower levels.

(See “Interrupt Signal Handling” on page 2-39 for more informa-
tion.)

permanentmsg The permanentmsg descriptor defines information that will be
displayed on the message line until explicitly replaced or removed
by another message of permanent duration. (Messages of perma-
nent duration are those defined wigrmanentmsg or with
message -p .)

A message of permanent duration can be temporarily displaced by
messages of frame duration or transient duration. When the frame
duration or transient duration message expires, the value of the
most recent use gfermanentmsg or message -p will again

be displayed on the message line. (Seerthssage(1F) man-

ual page for complete information on message durations.)

slk_layout The slk_layout descriptor defines the layout of the screen
labels for function keys. Two layouts are supported: and3-
2-3 . The value4-4 causes screen labels to be displayed in two
groups of four, as follows:

F1 F2 F3 F4 F5 F6 F7 F8

The value3-2-3 causes screen labels to be displayed in three
groups of three, two, and three, in that order, as follows:

F1 F2 F3 F4 F5 F6 F7 F8
The default, if this descriptor is not defined3i8-3 .

toggle Thetoggle descriptor defines the way you want valid choices to
be displayed when a user pres€¢$OICES in a form field for
which you have defined thenenu descriptor. By default, the
available choices are shown in the field itself if there are three or
fewer choices. If there are more than three choices, a pop-up menu

4-8

Application Level Definition Files

displays the available choices.

You can change this default behavior by defining tihggle
descriptor in the initialization file. It accepts any of the following
values:

always When theCHOICES function key is pressed, users
will always be toggled through the choices in the field
itself.

integer When the number of choices is greater timdeger a
pop-up menu will be displayed. When the number of
choices is less than or equalinteger toggling will
occur.

never When theCHOICES function key is pressed, the
user will never be toggled through choices in the field
itself; a pop-up choices menu will always appear.

NOTE

If toggle evaluates to less than 1, it defaults to 3.

use_incorrect_pre4.0_behavior
Theuse_incorrect_pre4.0_behavior descriptor causes
FMLI to re-evaluate variables referenced with $haotation until
no special characters remain in the expression. If this descriptor is
not defined, it defaults to FALSE.

If this descriptor evaluates to TRUE, then $haotation behaves

in the manner defined for ti§ notation, and thg! notation has

no special meaning. (See “Variable Evaluation” on page 2-8 for a
complete discussion of tigand$! notation for variable evalua-
tion.)

NOTE

This descriptor, and consequently the ability to makebtheta-
tion behave like th&'! notation, will be removed in the next
release of FMLI.

Screen-labeled Function Key Descriptors

Eight labels appear on the last line of the user's screen to indicate the functions currently
assigned to the corresponding keyboard function kdythroughF8. The screen labels

are analogous to a set of menu items that are always displayed and from which the user
can make a selection at any time by pressing the corresponding function key. If a keyboard
does not have function keys, the user can select the function by using one of the alternative
keystroke sequenc€&TRL-f 1 throughCTRL-f 8.

4-9

Character User Interface Programming

NOTE

FMLI downloads alternative keystroke sequences into the func-
tion keys of some terminals at the user's request. For a discussion,

see Appendix B.

FMLI provides two sets of screen labels for function keys. There are eight screen labels in
each set. FMLI has preassigned functions to only the first set of eight for each frame type.

Figure 4-1. Default Screen-labeled Keys

Function Menu Form Text Choices Command
Key Frame Frame Frame Menu Menu
F1 help help help help
F2 mark* choices prevpage
F3 enter save nextpage enter
F4 prev-frm prev-frm prev-frm
F5 next-frm next-frm next-frm
F6 cancel cancel cancel cancel cancel
F7 cmd-menu cmd-menu cmd-menu
F8 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**
F16 chg-keys** chg-keys** chg-keys** chg-keys** chg-keys**

**

Function keyF2 is assigned thmark command only in multi-select menus.
In single-select menus2 has no default assigned.

throughF15 are defined by the developer.

Function keysF8 andF16 will default tochg-keys only if any of keys=9

Function keyd-1 throughF7 in the first set can be disabled but not redefined. Function
keysF8 throughF16 may be defined. However, if you defig® or F16, the user loses
the ability to alternate between the two sets of SLKs. If you want to deRfe/-FRM,
NEXT-FRM, PREVPAGE, orNEXTPAGE, on the second set of function keys, the
labels must be spelled exactly as they are on the first set (case is irrelevant).

4-10

NOTE

When you redefine screen-labeled function keys in the initializa-
tion file, your definitions become the defaults. Screen-labeled
function keys may also be defined in individual form, menu, and
text frame definition files. When they are defined in frame defini-

tion files, those definitions override the defaults (either the FMLI-

defined defaults, or the defaults you may have defined in the ini-
tialization file) while that frame is active.

Application Level Definition Files

You can define which set of screen-labeled function keys first appears when a frame is
opened by defining the frame level descriptitslks in menu, text, and form definition

files. Ifaltslks evaluates to TRUE, the screen labels for function keys 9 through 16 will
be displayed when the frame is first opened.

The following is a list of the descriptors used to define screen-labeled function keys. The
name andbutton descriptors must be included in each set of SLK descriptors, and
name must be first.

NOTE

Keep in mind that the screen-labeled function keys must be the
last things defined in the initialization file, or in any frame defini-
tion file.

action Theaction descriptor defines the command to execute when the
particular screen-labeled function key is selected.

button Thebutton descriptor specifies the screen-labeled function key
you are defining or disabling. The valuelnftton is an integer
corresponding to the number of the function key (1 through 16) to
which the screen label corresponds.

interrupt Theinterrupt descriptor defines whether an executable that is
coded in theaction descriptor can be interrupted by the user. If
not codedijnterrupt defaults to FALSE. If this descriptor
evaluates to TRUE, then executables will be interruptible.

If the interrupt descriptor is defined for a SLK in the initial-
ization file, that value is inherited by the SLK unless the SLK is
redefined in a frame definition file. Redefining a SLK in a frame
definition file completely overrides a definition of it you may have
coded in the initialization file. For example, if you defimter-

rupt for a particular SLK in the initialization file, but do not
includeinterrupt in a redefinition of that SLK in a frame defi-
nition file, the SLK will inherit the value of thmterrupt
descriptor defined at the next higher inheritance level (from the
frame descriptors if defined there, then from the general descrip-
tors in the initialization file if defined there, then from the FMLI
defaults).

name The name descriptor defines the name that is displayed on the
screen label. The value nhme must be 8 or fewer characters.
Defining name as a null stringrfame=""") will disable the func-
tion key.

oninterrupt The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received. If it is not defined anywhere
in your application, it defaults tanessage Operation

interrupted!"nop . Itis ignored ifinterrupt is not coded
anywhere in your application or ifiterrupt evaluates to
FALSE.

4-11

Character User Interface Programming

If the oninterrupt descriptor is defined for a SLK in the ini-
tialization file, that value is current for the SLK, unless the SLK is
redefined in a frame definition file. If a SLK is redefined in a
frame definition file, all descriptors for that SLK in the initializa-
tion file, including theoninterrupt descriptor, are ignored. If a
SLK definition does not defineninterrupt , the SLK inherits
the value set fooninterrupt from the frame level descriptors,
then from the application level section of the initialization file.

Example Definitions of Screen-labeled Function Keys

The following example shows how to

¢ disableF7 (labeledCMD-MENU and assigned the FMLI command
cmd-menu by default)

* defineF9 (the first SLK in set 2) to execute tegit command and dis-
play the screen lab&8XIT

in the initialization file:

name=
button=7

name="EXIT”
button=9
action=exit

The Commands File

FMLI commands can be added to themmand Menu or disabled. You can also define
new, application-specific commands to appear ilCthmmmand Menu. This is done in a
commands file. If you create a commands file for your application, its name must be sup-
plied as an argument; commands_filewhenfmli is invoked. Each set of descriptors is
ordered as follows:

[command_descriptor_1

command_descriptor_n

]

NOTE

There is an absolute maximum of 64 sets of command descriptors
in a commands file.

4-12

Command Descriptors

Thename andaction

Application Level Definition Files

descriptors must be included in each set of command descriptors,

andname must be first in each set.

action

help

interrupt

name

oninterrupt

Theaction descriptor defines the operation to perform when the
commandhame is selected.

Thehelp descriptor defines a command to be executed when the
user asks for help omame. Since this descriptor is evaluated
when the user requests help, the specification of what help is dis-
played can be determined through parameters that are set interac-
tively.

Theinterrupt descriptor defines whether an executable that is
coded in theaction descriptor in a command definition can be
interrupted by the user. If not coded, it defaults to FALSE. If this
descriptor evaluates to TRUE, then executables defined for this
command'action descriptor will be interruptible.

If defined among the general descriptors in an initialization file,
that value ofinterrupt affects all user-defined commands
which do not redefinmterrupt . Note that built-in FMLI com-
mands (such asheckworld) cannot be interrupted.

The name descriptor defines a string (the name of the command)
that will appear in th€ommand Menu and that users can enter
on the command line.

The oninterrupt descriptor specifies the action to be taken
when an interrupt signal is received. If it is not defined anywhere
in your application, it defaults tanessage Operation
interrupted! nop . Theoninterrupt descriptor is
ignored ifinterrupt is not coded or iinterrupt evaluates

to FALSE.

If defined among the general application descriptors in the initial-
ization file, that value obninterrupt affects all user-defined
commands which do not redefiorinterrupt

Example of Adding an Application-specific Command

You might add a new, application-specific command as follows:

name="date”

action="date | message 'nop
help=open $MYFRAMES/Text.datehelp

That will give the user date command that puts the current date and time on the mes-

sage line.

4-13

Character User Interface Programming

Example of Disabling an Existing FMLI Command

You can disable an existing FMLI commandijx-system , for instance, by specifying

name="unix-system”
action=nop

When an FMLI command that appears in@@mmand Menu by default is disabled in
this way, its name no longer appears inGlemmand Menu.

NOTE

When you disable an FMLI command in the commands file, the
command becomes unavailable not only to users, but to develop-
ers. That is, you cannot use that command in frame definition files
or application level files. In particular, do not disable ¢xé
command.

The contents of the commands file will be reflected iltbenmand Menu. You should
avoid giving a command a name that is a partial match of another commamdisas
partial match of botiprev-frm andprevpage , because this makes it more difficult for
users to navigate to (select) that command using character matching.

The Alias File

The alias file is a file that contains lines of the form
alias=value

wherealiasis a name to which you have assigned a path name to a file or a device. There
are two reasons for having an alias file:

¢ to simplify references to files or devices with lengthy path names

* to define search paths (similar@BATHin the UNIX system shell)

The name of the alias file must be given as an argument dmlihecommand line with
the-a alias_fileoption when it is invoked.

Examples of Adding Path Aliases
Whenever you reference a path name that does not begin witr a$, FMLI will
check the alias file. For example:

MYTEXT=$HOME/myfiles/mytext

4-14

Application Level Definition Files

would allow the developer to refer to the text filext.file in the directory
$HOME/myfiles/mytext asMYTEXT/Text file

The alias may also contain the name of the file or device, for example,
MYTEXT1=$HOME/myfiles/mytext/Text.file

but frame definition file names assigned to an alias must conform to the same naming con-
vention as file names on the invocation line.

More than one possible path may be assigned to a single alias by separating each path with
a colon (:). For example:

MYFILES=$HOME/myfiles:$HOME/test/myfiles

would searchHOME/myfiles first, and if the file is not found search
$HOME/test/myfiles whenever the alia83MYFILES is used. This is similar to the
way $PATHis searched in the UNIX system.

fmli Command Syntax

The executable filémli invokes the Form and Menu Language Interpreter and opens the
file(s) you have named as the initial frame definition file(s) to open. It requires at least one
argument: an initial frame to open. Subsequent interactions are driven by this initial frame.

The syntax of thémli command is as follows:
fmli[-i initialization_file][-c commands_fild -a alias_filg file ...

wherefile is the path name of a frame definition file describing the frame(s) to be opened
initially. The argumentile must follow the file naming conventidvenu. xxxfor a menu
definition file,Form. xxxfor a form definition file, andext. xxxfor a text frame defini-

tion file, wherexxxis any string that conforms to UNIX system file naming conventions.
The descriptofifetime will be ignored for all frames opened by argumenfimb

Such frames have a lifetime inimortal by default.

Optionally, you may provide the namesifialization_file, commands_fileandalias_file
Theinitialization_file provides specific global instructions that allow for customization of
the application, such as redefining screen colors or the default labels and functions
assigned to SLKs. Theommands_filallows the definition of commands specific to your
application. Thaalias_file provides access to files via a shell-ligATH notation, and
allows you to define short, easy-to-use aliases for long path names to files.

NOTE

FMLI does not use the end-of-file marker to determine when to
exit an application; it uses the FMEkit command. For this
reason, it is strongly advised that input to FMLI or FMLI applica-
tions not be from a pipé J, a redirected file €), or a here docu-
ment (<<).

4-15

Character User Interface Programming

4-16

5

Introduction to ETI

OVEIVIBW . . ot et e e e e e e
What ISETI? ...

The ETl Libraries.
The ETl/terminfo Connection
Other Components of the Screen Management System

5-1

5-1

5-3
5-4

Character User Interface Programming

Overview

What Is ETI?

The ETI Libraries

5
Introduction to ETI

Screen management programs are a common component of many commercial computer
applications. These programs handle input and output at a video display terminal. A
screen program might move a cursor, print a display, or divide a terminal screen into win-
dows. Many screen management programs build end-user terminal interfaces to help users
enter and retrieve information from a database — interfaces such as forms, menus, and
help and error message displays.

This document explains how to use the Extended Terminal Interface (ETI) package to
write screen management programs on a UNIX system. (It also tells you what you need to
know about théerminfo database to use ETI.) To start you writing screen management
programs as soon as possible, the document does not attempt to cover every routine in the
libraries. Although it covers all routines in the high-level libraries (those that build panels,
menus, and forms), it covers only the most frequently used routines in the low-level library
(curses). For more information, this document points you todimeses(3curses) ,
terminfo(4) , and other manual pages in this guide. Keep these documents close at
hand; you'll find them invaluable when you want to know more about these and other rou-
tines.

Because the routines are compiled C functions, you should be familiar with the C pro-
gramming language before using ETI. You should also be familiar with the UNIX system/
C language standard 1/O package (seestti®(3S) manual page) With that knowl-
edge and an appreciation for the philosophy of building on the work of others, you can
design screen management programs for many purposes.

ETI is a set of C library routines that promote the development of application programs
that display and manipulate windows, panels, menus, and forms and run under the UNIX
system. The rest of this chapter explains the nature of these libraries and the connection
between ETI and thierminfo library and database.

ETI consists of

5-1

Character User Interface Programming

5-2

¢ the low-level ¢curses) library
* thepanel library

¢ themenulibrary

¢ theform library

¢ the TAM transition library

The routines are C functions and macros; many of them resemble routines in the standard
C library. For example, there's a routprintw that behaves much likgrintf(3S)

and another routingetch that behaves likgetc(3S). The automatic teller program

at your bank might usgrintw to print its menus angetch to accept your requests for
withdrawals (or, better yet, deposits). A visual screen editor like the UNIX system screen
editorvi(1) might also use these and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes the amount
a cursor has to move around a screen to update it. For example, if you designed a screen
editor program with ETI routines and edited the sentence

ETl is a great package for creating forms and menus.
to read
ETl is the best package for creating forms and menus.

the program would change ortlye best in place ofa great . The other characters
would be preserved. Because the amount of data transmitted—the output—is minimized,
cursor optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for the ter-
minal on which an ETI program is run. This means that ETI can do whatever is required to
update many different terminal types. It searcheddahmainfo database (described
below) to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs? First, it saves
you time in describing in a program how you want to update screens. Second, it saves a
user's time when the screen is updated. Third, it reduces the load on your UNIX system's
communication lines when the updating takes place. Fourth, you don't have to worry about
the myriad of terminals on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to move a cursor to
the middle of a terminal screen and print the character dduiilgEye . Each of these
routines is described later in this chapter. For now, just look at their names and you will get
an idea of what each of them does:

Introduction to ET

a4)

include <curses.h>
main()
initscr();

move(LINES/2 - 1, COLS/2 - 4);
addstr(“Bulls”);

refresh();

addstr(“Eye”);

refresh();

endwin();

}

_)

Screen 5-1. A Simple ETI Program

The ETl/terminfo Connection

terminfo is both a set of routines that make use of the capabilities of a wide range of
terminals and a database that contains descriptions of the terminals that can be used with
ETI. Its use as a database is our concern here. See Chapter 13 for details on its use as a set
of routines.

A screen management program with ETI routines refers tietiminfo ~ database at run
time to obtain the information it needs about the terminal being used—what we'll call the
current terminal from here on.

Suppose, for instance, that you are using a Teletype 5425 terminal to run the simple ETI
program shown in Figure 5-1. To execute properly, the program needs to know how many
lines and columns the terminal screen has to prinBtlisEye in the middle of it. The
description of the Teletype 5425 in the terminfo database has this information, as well as
other information about the terminal's capabilities and how it performs various operations
— for example, how its control characters are interpreted. All ETI needs to know before it
goes looking for the information is the name of your terminal.

You tell the program the name by putting it in the environment var§aiE&RMwhen you
log in or by setting and exportifRf ERMin your .profile file (seeprofile(4)).
Knowing $TERM an ETI program run on the current terminal can searctetinnfo
database to find the correct terminal description.

For example, assume that the following lines are.prcfile

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports ipr(Sits(4))

The third line of the example tells the UNIX system to initialize the current terminal. That
is, it makes sure that the terminal is set up according to its descriptiontenrttiefo
database. (The order of these lines is imporgarERMmust be defined and exported first,
so that whenput(1) is called the proper initialization for the current terminal takes

5-3

Character User Interface Programming

place.) If you had these lines in yaprofile and you ran an ETI program, the pro-
gram would get the information that it needs about your terminal from thedile
share/lib/terminfo/5/5425 in the database, which provides a match$fBERM
For more information about therminfo database, see Chapter 13 in this guide.

Other Components of the Screen Management System

5-4

You have been given a brief look at the main components of screen management. This sec-
tion will complete the overview by making you familiar with the other components of this
system.

Figure 5-1. Components of the Screen Management System

Component Brief Description

terminfo Files found undefusr/share/lib/terminfo/?/* ;

database these files contain compiled terminal descriptiéhs. the
first letter of the terminal name, ands the terminal name.

tic(1M) terminfo(4) defines terminal description source files.
tic compiles them intterminfo database files.

infocmp(1M) A routine that prints and compares compileaninfo
description files.

captoinfo(1M) A routine that converts olgermcap files toterminfo
database files.

terminfo(4) Defines both théerminfo database files and the routines
used to manipulate and instantiate the strings of data in those
files.

tput(1) A terminfo routine that causes a string from the

minfo database to be sent to the terminal, thus setting one
or more parameters.

curses(3curses) A library of C routines that uses information in tee
minfo database. The routines are terminal independent.
They optimize cursor movement and allow for the easy pro-
gramming of screen handling code.

Other manual pages to layers(1), stdio(3S), profile(4),
read scr_dump(4), term(4), term(5)

Theterminfo database has already been described as one of the main components of
the screen management system. The rules for creating a terminal description source file
are in the manual paderminfo(4) . The source file is then compiled usitig .

Unless you have created a shell environment variable CEHBMINFOthat indicates a
different pathtic will place the compiled description file into the proper directory under
usr/share/lib/terminfo (provided that you have permission to create or over-
write files in that directory). To usie simply type:

tic filename

Introduction to ET

You may use thev option to get a running commentary. An integer from 1 to 10 may fol-
low the option (no space) to set the level of verbosity. The default
is 1.

The system uses the shell environment variaBIBMINFOto find the terminal descrip-
tion files. Initializing a terminal will causEERMINFOto be set to null and then be con-
verted to/usr/share/lib/terminfo unless you have already set it to some other
path §HOME/bin , for example). The system will look for the definition of a specific ter-
minal undei$TERMINFO/?/* , where? is the first letter of the terminal name, ands

the terminal name.

Once a terminal description file has been compiled, it is no longer human readable. The
routineinfocmp translates a compiled description file back to source statements. Invok-
ing the command without arguments will print out the description of the terminal defined
by the shell environment variabl&RM A single argument is taken as the name of a ter-
minal you want to see the source description for. With no options declardd)(grou

will see descriptions as defined terminfo(4) . There are options for seeing the C
variable namesl(), the oldtermcap names-{C), and all output inermcap format

(-r).

If two arguments are givemfocmp assumes they identify two descriptions you want to
compare. If no options are given (dr), the differences are printed. You may also ask for
a list of capabilities that the two have in comman)(or a list of capabilities that neither
describes). In all of the above cases, the output lists the Boolean fields first, the
numeric fields second, and the strings third.

infocmp also has options to print, trace, sort, compare files in two different directories,
and output a source file derived from the union of two or more compiled description files.
For more information consult thefocmp manual page.

Early versions of the UNIX system used a different method of describing terminals, called
termcap . You can convert termcap file to aterminfo file by usingcaptoinfo . If

the command is invoked with no arguments, the shell environment varfiaBIKICARS

used to get the path and the shell environment varid@iRMo get the terminal. FTERM-

CAPis null, the routine tries to convéusr/share/lib/termcap . If a file name is

given as an option, that is the file that will be converted. The output is to standard out, and
may be piped. Options include a trace mode)(one field to a line outputl(), and
changing the output widthw).

One of the definitions given earlier fierminfo was that it is a group of routines within
curses that allow you to manipulate the data in a terminal description file. This small
library of routines is documented in this guide and indineses(3curses) manual
pages. The commangut(1) will allow you to perform many of these manipulations
from the command line or in a shell script.

tput can always be given th& terminaltypeoption, but doesn't need it if the shell envi-
ronment variablefERMis set. It can be giveinit , reset , orlongname as special
arguments. These initialize, reset, and print out the name of the terminal, respectively.
Finally, you can use the name dfeaminfo(4) terminal attribute or capability (called

a (capnamg as an argument. These capabilities can fall into three categories; Boolean,
numeric, and strings. If thedpnameyou specify is a string, you may include, as an argu-
ment, a list of parameters to insert into coded places in the string (instantiation).

5-5

Character User Interface Programming

This completes the overview of the screen management system. More detailed information
starts in the next chapter. If you elect to skip this and go directly to the manual pages,
remember that the examples at the end of the guide might still prove useful.

5-6

6
Basic ETI Programming

INErOdUCHION . . . e
What Every ETI Program Needs. i e e
The Header Files. e e
The Routines initscr, refresh, endwin.
Compiling an ETI Programttt e e e e e e
Using the TAM Transition Library.
Running an ETI Program. e e
More about initscr and Linesand Columns.

6-1
6-1

6-4
6-4
6-4
6-5
6-5
6-7

Character User Interface Programming

6
Basic ETI Programming

Introduction

This chapter describes the low-level routines and other components that every ETI pro-
gram needs to work properly. It tells you how to compile and run ETI applications using
the low-level libraries and introduces important concepts (such as refreshing) that recur
throughout this document.

What Every ETI Program Needs

All ETI programs need to include the header @ileses.h and call the routines
initscr , refresh , or similar routines, andndwin . Some of the other header files,
however, includeurses.h

The Header Files

The header filesnenu.h , form.h , andpanel.h define several global variables and
data structures and defines several ETI routines as macros.

To begin, let's consider the variables and data structures defimges.h , among other
things, defines the integer variabldlES andCOLS when an ETI program is run on a
particular terminal, these variables are assigned the vertical and horizontal dimensions of
the terminal screen, respectively, by the rouiitscr described below.

NOTE

LINES andCOLSare external (global) variables that represent the
size of a terminal screen. Two similar variabl$sINES and
$COLUMNSMay be set in a user's shell environment; an ETI pro-
gram uses the environment variables to determine the size of a
screen. Whenever we refer to the environment variables in this
chapter, we will use thgto distinguish them from the C declara-
tions in thecurses.h header file.

6-1

Character User Interface Programming

For more information about these variables, see “The Routines
initscr, refresh, endwin” on page 6-2 and “More about initscr and
Lines and Columns” on page 6-5.

The integer variable€OLOR&NACOLOR_PAIRSare also defined icurses.h . These

will be assigned, respectively, the maximum number of colors and color-pairs the terminal
can support. These variables are initialized bysthet_color routine. (See “Color
Manipulation” on page 7-14.)

The header files define the integer constaE OK ERR(E_OKis ineti.h), and oth-
ers listed in the following chapters. ETI routines that retotrn values return these con-
stants under the following conditions:

OK returned if a low-level or panel function completes properly
E _OK returned if a menu or form function does so
ERR returned if a low-level function encounters an error

The other error values returned by the high-level functions are described in the appropriate
chapters below.

Now let's consider the macro definitionarses.h defines many ETI routines as macros
that call other macros or ETI routines. For instance, the simple raefiesh is a
macro. The line

#define refresh() wrefresh(stdscr)

shows that wherefresh s called, it is expanded to call the ETI routimefresh . In
turn,wrefresh (although it is not a macro) calls the two ETI routine®utrefresh
anddoupdate . Many other routines also group two or three routines together to achieve
a particular result.

CAUTION

Macro expansion in ETI programs may cause problems with cer-
tain sophisticated C features, such as the use of automatic incre-
menting variables.

One final point abouturses.h : it automatically includestdio.h and thegermio.h
tty driver interface file. Including either file again in a program is harmless but wasteful.

The Routines initscr, refresh, endwin

6-2

The routinesnitscr , refresh , andendwin initialize a terminal screen to an “in ETI
state,” update the contents of the screen, and restore the terminal to an “out of ETI state,”
respectively. Consider the simple program introduced earlier and reproduced in
Screen 6-1.

Basic ETI Programming

a4)

include <curses.h>
main()

initscr(); /* initialize terminal settings and curses.h
data structures and variables */

move(LINES/2 - 1, COLS/2 - 4);

addstr(“Bulls”);

refresh(); /* send output to (update) terminal screen */
addstr(“Eye”);

refresh(); /* send more output to terminal screen */
endwin(); /* restore all terminal settings */

_)

Screen 6-1. The Purposes of initscr, refresh, and endwin in a Program

An ETI program usually starts by callimgjtscr ~ ; your program should caithitscr

only once. This routine uses the environment vari$bERMto determine what terminal

is being used. (See “The ETl/terminfo Connection” on page 5-3 for details.) It then initial-
izes all the declared data structures and other variablescfias.h . For example,
initscr would initializeLINES andCOLSfor the sample program on whatever termi-
nal it was run. If the Teletype 5425 were used, this routine would initialNES to 24
andCOLSto 80. Finally, this routine writes error messagestderr and exits if errors
occur.

During the execution of the program, output and input is handled by routineadile
andaddstr in the sample program. For example,

move(LINES/2 - 1, COLS/2 - 4);
says to move the cursor to the left of the middle of the screen. The line
addstr(“Bulls™);

says to write the character striBglls . For example, if the Teletype 5425 were used,
these routines would position the cursor and write the character string at (11,36).

NOTE

All ETI routines that move the cursor move it from its home posi-
tion in the upper left corner of a screen. ThENES,COLS)
coordinate at this position is (0,0) not (1,1). Notice that the verti-
cal coordinate is given first and the horizontal second, which is the
opposite of the common 'x,y' order of screen (or graph) coordi-
nates. Thel in the sample program takes the (0,0) position into
account to place the cursor on the center line of the terminal
screen.

Routines likemove andaddstr do not actually change a physical terminal screen when
they are called. The screen is updated only wkéesh is called after one or more

6-3

Character User Interface Programming

windows (internal representations of the screen) are updated. This is a very important con-
cept, which we discuss under “More about refresh and Windows” on page 6-5.

Finally, an ETI program ends by calliegdwin . This routine restores all terminal set-
tings and positions the cursor at the lower left corner of the screen.

Compiling an ETI Program

You compile programs that include ETI routines as C language programs. This means that
you use thec(l) command to invoke the C compiler. (See the ConcuZeReference
Manualfor details).

The routines are usually stored in the libraust/ccs/lib/lib X.a, whereX signifies
eithercurses , panel , menu, orform , depending on which library your program needs.
To direct the link editor to search this library, you must useltheption with thecc
command.

The general command line for compiling an ETI program follows:
cc file.c[-IX] -lcurses -0 file

whereX is eitherpanel , menu, orform ; file.c is the name of the source program; and
file is the executable object module. See the appropriate chapter below for more informa-
tion.

Using the TAM Transition Library

Some users may have applications using the TAM library routines that originally ran on
the UNIX PC. Appendix C of this document, explains how to compile and run these appli-
cations on any machine of the 3B2 computer family.

Running an ETI Program

6-4

ETI programs count on certain information being in a user's environment to run properly.
Specifically, users of a ETI program should usually include the following three lines in
their .profile files:

TERM=urrent terminal type
export TERM
tput init

For an explanation of these lines, turn again to the section “The ETl/terminfo Connection”
on page 5-3. Users of an ETI program could also define the environment variables
$LINES, $COLUMNSand$TERMINFOIn their .profile files. However, unlike
$TERM these variables do not have to be defined.

Basic ETI Programming

If an ETI program does not run as expected, you might want to debug sdini¢h)

When usingsdb, you have to keep a few points in mind. First, an ETI program is interac-
tive and always has knowledge of where the cursor is located. An interactive debugger like
sdb, however, may cause changes to the contents of the screen of which the ETI program
is not aware.

Second, an ETI program doesn't output to a window reftésh or a similar routine is
called. Because output from the program may be delayed, debugging the output for con-
sistency may be difficult.

Third, setting break points on ETI routines that are macros, suefresh , does not

work. You have to use the routines defined for these macros, instead; for example, you
have to usevrefresh instead ofrefresh . See “The Header Files” on page 6-1 for
more information about macros.

More about initscr and Lines and Columns

After determining a terminal's screen dimensidmitscr sets the variablddNES and
COLS These variables are set from tieeminfo variableslines andcolumns .
These, in turn, are set from the values intémminfo database, unless these values are
overridden by the values of the environm®niNES and$COLUMNS

More about refresh and Windows

As mentioned above, ETI routines do not update a terminal nefitdsh s called.
Instead, they write to an internal representation of the screen called a window. When
refresh is called, all the accumulated output is sent from the window to the current ter-
minal screen.

A window acts a lot like a buffer does when you use a UNIX system editor. When you
invokevi(1l) , for instance, to edit a file, the changes you make to the contents of the file
are reflected in the buffer. The changes become part of the permanent file only when you
use thew or ZZ command. Similarly, when you invoke a screen program made up of ETI
routines, they change the contents of a window. The changes become part of the current
terminal screen only whaefresh is called.

curses.h supplies a default window namsettiscr (standard screen), which is the size

of the current terminal's screen, for all programs using ETI routines. The header file
definesstdscr to be of the typ&/INDOW*a pointer to a C structure which you might
think of as a two-dimensional array of characters representing a terminal screen. The pro-
gram always keeps track of what is on the physical screen, as well as whsiidisdn
Whenrefresh is called, it compares the two screen images and sends a stream of char-
acters to the terminal that make the physical screen loolstd®cr. An ETI program
considers many different ways to do this, taking into account the various capabilities of the
terminal and similarities between what is on the screen and what is on the wirtdew (
scr). It optimizes output by printing as few characters as is possible. Figure 6-1 and
Figure 6-2 illustrate what happens when you execute the sample ETI program that prints

6-5

Character User Interface Programming

Figure 6-1.

6-6

BullsEye at the center of a terminal screen. Notice in the figure that the terminal screen
retains whatever garbage is on it until the fieftesh is called. Thigefresh clears
the screen and updates it with the current contergdsftr.

stdscr physical screen
initscr()
O (garbage)
stdscr physical screen
move(LINES/2-1,)
COLS/1-4) (garbage)
[2.3] U
stdscr physical screen
addstr(“Bulls”)
(garbage)
Bulls O
stdscr physical screen

refresh()

Bulls] Bulls []

The Relationship between stdscr and a Terminal Screen (Sheet 1 of 2)

Basic ETI Programming

stdscr physical screen
addstr(“Eye”)
BullskEye [] Bulls []
stdscr physical screen
refresh()
BullsEye [] BullsEye []
stdscr physical screen
endwin()
BullsEye [] BullsEye
O

Figure 6-2. The Relationship between stdscr and a Terminal Screen (Sheet 2 of 2)

Pads

You can create other windows and use them insteatidsfcr. Windows are useful for
maintaining several different screen images. For example, many data entry and retrieval
applications use two windows: one to control input and output and one to print error mes-
sages that don't mess up the other window. It's possible to subdivide a screen into many
windows, refreshing each one of them as desired. And it's possible to create a window
within a window; the smaller window is called a subwindow. See Chapter 8 for more
information.

Some ETI routines are designed to work with a special type of window called a pad. A pad
is a window whose size is not restricted by the size of a screen or associated with a partic-
ular part of a screen. You can use a pad when you have a particularly large window or only
need part of the window on the screen at any one time. For example, you might use a pad
for an application with a spread sheet.

Figure 6-3 represents what a pad, a subwindow, and some other windows could look like
in comparison to a physical screen.

Character User Interface Programming

terminal screen

window window

pad

subpad

pad

P

subwindow

window

Figure 6-3. Multiple Windows and Pads Mapped to a Physical Screen
Chapter 8 describes the routines you use to create and use windows and pads. If you'd like

to see an ETI program with windows now, turn touliedow program in Appendix D of
this document.

6-8

7
Simple Input and Output

INErOdUCHION . . . e 7-1
addeh. . .. e 7-1
AASIr .. e 7-3
PII W L Lttt e 7-3
OV . . . ittt e e e e e e e 7-4
Clear and Eraseot e 7-6
clrtoeoland clrtobot o e 7-6

INPUL. .« . 7-7
OBICN . e 7-8
0] 51 7-9
SCANW & ottt et e e e e e 7-10

Output Attributes 7-11
attron, attrset, and attroff 7-13
standoutand standend. 7-13
Color Manipulation e e 7-14

How the Color Feature WOrks. i 7-14
Using the COLOR_PAIRY) Attribute 7-16
Changing the Definitionsof Colors. 7-17
Portability Guidelines e 7-17
Other Macros and ROULINES. e 7-18
Start COlOr . .. 7-18
] 7L = 7-19
] TS 0] o 7-20

Bells, Whistles, and Flashing Lights: beepandflash 7-21

INPUE OPtIONS . .« . e 7-21
echo and NOBCNO. oot e 7-23

cbreak and nochreak. 7-23

Character User Interface Programming

7
Simple Input and Output

Introduction

This chapter explains the numerous functions that enable you to do I/O under the ETI
environment. It also covers the set of video attributes and options which can enhance ETI
output with striking visual effects.

Output

The routines that low-level {VS} provides for writing sadscr are similar to those pro-
vided by thestdio(3S) library for writing to a file. They let you

* write a character at a time addch
* write a string —addstr
* format a string from a variety of input argumentgp#atw

* move a cursor or move a cursor and print character(sjove, mvaddch,
mvaddstr , mvprintw

¢ clear a screen or a part of it elear , erase , clrtoeol |, clrtobot

Following are descriptions and examples of these routines.

CAUTION
The ETI library provides its own set of output and input functions.
You should not use other I/O routines or system calls, like

printf(3S) andscanf(3S) , in an ETI program. They may
cause undesirable results when you run the program.

addch

SYNOPSIS
#include <curses.h>

int addch(ch)
chtype ch;

7-1

Character User Interface Programming

7-2

NOTES

addch writes a single character sddscr and advances the cursor to the
next character position.

The character is of the tymhtype , which is defined ircurses.h
chtype contains data and attributes (see “Output Attributes” on page 7-11
for information about attributes).

When working with variables of this type, make sure you declare them as
chtype and not as the basic type (for example, unsigoad) that
chtype is declared to be iourses.h . This will ensure future compati-
bility.

addch does some translations. For example, it converts

- the<NL> character to a clear to end of line and a move to the next
line

- the tab character to an appropriate number of blanks
- other control characters to théiX notation

addch normally return®OK The only timeaddch returnsERRIis after

adding a character to the lower right-hand corner of a window that does not
scroll.

addch is a macro.

EXAMPLE

#include <curses.h>

main()

{
initscr();
addch(a’);
refresh();
endwin();

}

The output from this program will appear as follows, witim position 0, O:

See also thehow program in Appendix D of this document.

Simple Input and Outpu

addstr
SYNOPSIS
#include <curses.h>
int addstr(str)
char* str;
NOTES
* addstr writes a string of charactersdedscr.
e addstr callsaddch to write each character.
e addstr follows the same translation rulesaaiich .
* addstr returnsOKon success arfeRRon error.
* addstr is a macro.
EXAMPLE
Recall the sample program that prints the character sBirlgEye . See
Screen 6-1, Figure 6-1, and Figure 6-2.
printw

SYNOPSIS

#include <curses.h>
int printw(fmt[, arg...])
char* fmt

NOTES

* printw handles formatted printing @idscr.

* Like printf , printw takes a format string and a variable number of
arguments.

¢ Like addstr , printw callsaddch to write the string.

* printw returnsOKon success ar@RRon error.

EXAMPLE

#include <curses.h>

main()

{
char* title = “Not specified”;
int no =0;

7-3

Character User Interface Programming

/* Missing code. */
initscr();
/* Missing code. */
printw(“%s is not in stock.\n”, title);
printw(
“Please ask the cashier to order %d for you.\n”,

no);

refresh();
endwin();

}

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order O for you.

move

SYNOPSIS

#include <curses.h>
intmove(vy, X
int y, X

NOTES

* move positions the cursor fatdscr at the given rovwy and the given col-
umnx.

* Notice thatmove takes they coordinate before thecoordinate. The upper
left-hand coordinates fatdscr are (0,0), the lower right-hantdINES -
1, COLS -1). See the section “The Routines initscr, refresh, endwin
on page 6-2 for more information.

* move may be combined with the write functions to form

- mvaddch(vy, X, ch), which moves to a given position and prints a
character

- mvaddstr(vy, x str), which moves to a given position and prints
a string of characters

7-4

Simple Input and Outpu

- mvprintw(Yy, X fmt[,arg...]) , which moves to a given position
and prints a formatted string.

* move returnsOKon success ardRRon error. Trying to move to a screen
position of less than (0,0) or more th&afiNES - 1, COLS -1) causes
an error.

®* move is a macro.

EXAMPLE

#include <curses.h>

main()

{
initscr();
addstr(“Cursor should be here --> if move() works.”);
printw(“\n\n\nPress RETURN to end test.”);
move(0,25);
refresh();
getch(); /* Gets RETURN; discussed below. */
endwin();

}

Here's the output generated by running this program:

Cursor should be here --> if move() works.

Press RETURN to end test.

After you presRETURN, the screen looks like this:

Cursor should be here --> if move() works.

Press RETURN to end test.
$

See thescatter program in Appendix D of this document for another example using
move.

7-5

Character User Interface Programming

clear and erase

SYNOPSIS

#include <curses.h>
int clear()
int erase()

NOTES

* Both routines changstdscr to all blanks.

* clear assumes that the screen may have garbage that it doesn't know
about; this routine first callsrase and therclearok which clears the
physical screen completely on the next calledivpesh for stdscr. See
the low-level {VS} orcurses(3curses) manual pages for more infor-
mation aboutlearok

¢ initscr automatically callglear .

* In ETI UNIX System V Release 3.1 and later releaslesy anderase
always returrOK

* Both routines are macros.

clrtoeol and clrtobot

SYNOPSIS

#include <curses.h>
int clrtoeol()
int clrtobot()

NOTES

¢ clrtoeol changes the remainder of a line to all blanks.
¢ clrtobot changes the remainder of a screen to all blanks.
* Both begin at the current cursor position inclusive.

* Neither returns any useful value.

EXAMPLE

#include <curses.h>
main()
{
initscr();
addstr(“Press RETURN to delete from here to the end
of the line and on.”);
addstr(“\nDelete this too.\nAnd this.”);

7-6

Input

Simple Input and Outpu

move(0,30);
refresh();
getch();
clrtobot();
refresh();
endwin();

}

Here's the output generated by running this program:

Press RETURN to delete from here to the end of the line and on.
Delete this too.
And this.

Notice the two calls toefresh : one to send the full screen of text to a terminal, the
other to clear from the position indicated to the bottom of a screen. Here's what the screen
looks like when you preRETURN:

Press RETURN to delete from here

$

See theshow andtwo programs in Appendix D of this document for other usedrof
toeol

Low-level ETI routines for reading from the current terminal are similar to those provided
by thestdio(3S) library for reading from a file. They let you

* read a character at a time getch
¢ read a<NL>-terminated string —getstr

* parse input, converting and assigning selected data to an argument list —
scanw

The primary routine igetch , which processes a single input character and then returns
that character. This routine is like the C library routgeéchar , described on the
getc(3S) manual page, except that it makes several terminal- or system-dependent
options available that are not possible vgtichar . For example, you can ugetch

with the ETI routinekeypad , which allows a low-level {VS} program to interpret extra

keys on a user's terminal, such as arrow keys, function keys, and other special keys that

Character User Interface Programming

transmit escape sequences, and treat them as just another key. See the
curs_inopts(3curses) manual page for more information ab&aypad .

The following pages describe and give examples of the basic routines for getting input in a
screen program.

getch

SYNOPSIS

#include <curses.h>
int getch()

NOTES

¢ getch reads a single character from the current terminal.

* getch returns the value of the charactefsftRon end of file, receipt of
signals, or non-blocking read with no input.

* getch is a macro.

¢ See the discussions @tho, noecho, cbreak, nocbreak, raw,
noraw, halfdelay, nodelay, andkeypad below and in
curses(3curses)

EXAMPLE

#include <curses.h>
main()

{

int ch;

initscr();
cbreak();
[* Explained later in the section “Input Options” */
addstr(“Press any character: ");
refresh();
ch = getch();
printw(“\n\n\nThe character entered was a '%c'.\n”,
ch);
refresh();
endwin();

}

The output from this program follows. The firefresh sends theddstr character
string fromstdscr to the terminal:

7-8

Simple Input and Outpu

Press any character:

Now assume thatw is typed at the keyboardetch accepts the character and assigns it
toch. Finally, the secontefresh is called and the screen appears as follows:

Press any character: w

The character entered was a 'w'.

For another example getch , see theshow program in Appendix D of this document.

getstr

SYNOPSIS

#include <curses.h>
int getstr(str)
char* str;

NOTES

* getstr reads characters and stores them in a buffer UREAURN,
<NL>, or<ENTER> is received fronstdscr. getstr does not check
for buffer overflow.

* The characters read and stored are in a character string.
* getstr is a macro; it callgetch to read each character.
* getstr returnsERRIf getch returnsERRto it. Otherwise it return®K

¢ See the discussions @tho, noecho, cbreak, nocbreak, raw,
noraw, halfdelay, nodelay, andkeypad below and in ETI
curses(3curses)

EXAMPLE

#include <curses.h>
main()

{

7-9

Character User Interface Programming

char str[256];

initscr();
cbreak();
[* Explained later in the section “Input Options” */
addstr(“Enter a character string terminated by
RETURN:\n\n");
refresh();
getstr(str);
printw(*\n\n\nThe string entered was \n'%s"\n", str);
refresh();
endwin();

}

Assume you entered the strih@njoy learning about the UNIX system'
The final screen (after enteriRETURNwould appear as follows:

Enter a character string terminated by RETURN:
| enjoy learning about the UNIX system.

The string entered was

‘I enjoy learning about the UNIX system."

$

_)

scanw

SYNOPSIS

#include <curses.h>
intscanw(fmt[, arg...])
char* fmt

NOTES

* scanw callsgetstr and parses an input line.

* Like scanf(3S) , scanw uses a format string to convert and assign to a
variable number of arguments.

* scanw returns the same valuesszsainf .

* Seescanf(3S) for more information.

EXAMPLE

#include <curses.h>

7-10

Simple Input and Outpu

main()

char string[100];
float number;

initscr();

cbreak(); /* Explained later in the */

echo(); * section “Input Options” */

addstr(“Enter a number and a string separated by a

comma:”);

refresh();

scanw(“%f,%s”,&number,string);

clear();

printw(“The string was "%s” and the number was %f. ”,
string,number);

refresh();

endwin();

}

Notice the two calls toefresh . The first call updates the screen with the character
string passed taddstr , the second with the string returned frecanw. Also notice the
call toclear . Assume you entered the following when promptgtvin . After run-
ning this program, your terminal screen would appear as follows:

The string was “twin” and the number was 2.000000.

$

Output Attributes

When we talked abowtddch , we said that it writes a single character of the type
chtype tostdscr. chtype has two parts: a part with information about the character
itself and another part with information about a set of attributes associated with the char-
acter. The attributes allow a character to be printed in reverse video, bold, underlined, in
colors and so on.

stdscr always has a set of current attributes that it associates with each character as it is
written. However, using the routirsétrset and related ETI routines described below,
you can change the current attributes. Below is a list of the attributes and what they mean:

e A_BLINK — blinking

* A _BOLD— extra bright or bold
¢ A DIM— half bright

* A REVERSE-— reverse video

7-11

Character User Interface Programming

7-12

* A STANDOUT- a terminal's best highlighting mode
* A_UNDERLINE— underlining

* A ALTCHARSET— alternate character set (see “Routines for Drawing
Lines and Other Graphics” on page 12-1)

(See “Color Manipulation” on page 7-14 for information on using colors.)

To use these attributes, you must pass them as argumerttiséd and related rou-
tines; they can also @Red with the bitwis@®R(|) to addch .

NOTE

Not all terminals are capable of displaying all attributes. If a par-

ticular terminal cannot display a requested attribute, an ETI pro-
gram attempts to find a substitute attribute. If none is possible, the
attribute is ignored.

Let's consider a use of one of these attributes. To display a word in bold, you would use the
following code:

printw(“A word in “);
attrset(A_BOLD);
printw(“boldface”);

attrset(0);

printw(“ really stands out.\n");

refresh();

Attributes can be turned on singly, suchattsset(A BOLD) in the example, or in
combination. To turn on blinking bold text, for example, you would use
attrset(A_BLINK|A_BOLD) . Individual attributes can be turned on and off with the
ETI routinesattron andattroff without affecting other attributeattrset(0)

turns all attributes off.

Notice the attribute called_STANDOUTYou might use it to make text attract the atten-
tion of a user. The particular hardware attribute used for standout is the most visually
pleasing attribute a terminal has. Standout is typically implemented as reverse video or
bold. Many programs don't really need a specific attribute, such as bold or reverse video,
but instead just need to highlight some text. For such applications, SiEANDOUT
attribute is recommended. Two convenient functisteydout andstandend can be

used to turn on and off this attribugtandend , in fact, turns off all attributes.

In addition to the attributes listed above, there are two bit masks gdall@dARTEXE&nd
A_ATTRIBUTES You can use these bit masks with the ETI fundtiech and the C log-

ical AND(&) operator to extract the character or attributes of a position on a terminal
screen. See the discussiorirath on thecurses(3curses) manual pages.

Following are descriptions dlttrset and the other ETI routines that you can use to
manipulate attributes.

Simple Input and Outpu

attron, attrset, and attroff

SYNOPSIS

#include <curses.h>
int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

* attron turns on the requested attribattrs in addition to any that are
currently onattrs is of the typechtype and is defined iourses.h

* attrset turns on the requested attributgss instead of any that are
currently turned on.

¢ attroff turns off the requested attributtsrs if they are on.
* The attributes may be combined using the bitwise QR. (

* Allreturn 1 (notOK).

EXAMPLE

See théhighlight program in Appendix D of this document.

standout and standend

SYNOPSIS

#include <curses.h>
int standout()
int standend()

NOTES

* standout turns on the preferred highlighting attribufe,STANDOUT
for the current terminal. This routine is equivalent to
attron (A_STANDOUII

¢ standend turns off all attributes. This routine is equivalentttr-
set (0), whereattrset takes the argumeft

* Both always return 1 (n@K).

EXAMPLE

Again, see thaighlight program in Appendix D of this document.

7-13

Character User Interface Programming

Color Manipulation

Thecurses color manipulation routines allow you to use colors on an alphanumeric ter-
minal as you would use any other video attribute. You can find out dutses library

on your system supports the color routines by checking théuiginclude/

curses.h to see if it defines the mac@DLOR_PAIR().

This section begins with a description of the color feature at a general level. Then the use
of color as an attribute is explained. Next, the ways to define color-pairs and change the
definitions of colors is explained. Finally, there are guidelines for ensuring the portability
of your program, and a section describing the color manipulation routines and macros,
with examples.

How the Color Feature Works

7-14

Colors are always used in pairs, consisting of a foreground color (used for the character)
and a background color (used for the field the character is displayecusgs uses

this concept of color-pairs to manipulate colors. In order to use colocursas pro-

gram, you must first define (initialize) the individual colors, then create color-pairs using
those colors, and finally, use the color-pairs as attributes.

Actually, the process is even simpler, sicoeses maintains a table of initialized colors

for you. This table has as many entries as the number of colors your terminal can display
at one time. Each entry in the table has three fields: one each for the intensity of the red,
green, and blue components in that color.

NOTE

curses uses RGB (Red, Green, Blue) color notation. This nota-
tion allows you to specify directly the intensity of red, green, and
blue light to be generated in an additive system. Some terminals
use an alternative notation, known as HSL (Hue, Saturation,
Luminosity) color notation. Terminals that use HSL can be identi-
fied in theterminfo database, anclrses will make conver-
sions to RGB notation automatically.

At the beginning of angurses program that uses color, all entries in the colors table are
initialized with eight basic colors, as follows:

Table 7-1. The Default Colors Table

Intensity of Component

(R)ed (G)reen (B)lue

/* black: 0 */ 0 0 0
[*red: 1%/ 1000 0 0
[* green: 2 */ 0 1000 0

Simple Input and Outpu

Table 7-1. The Default Colors Table

Intensity of Component

(R)ed (G)reen (B)lue

[* yellow: 3 */ 1000 1000 0

* blue: 4 */ 0 0 1000
/* magenta: 5 */ 1000 0 1000
[* cyan: 6 */ 0 1000 1000
* white: 7 */ 1000 1000 1000

Most color alphanumeric terminals can display eight colors at the same time, but if your
terminal can display more than eight, then the table will have more than eight entries. The
same eight colors will be used to initialize additional entries. If your terminal can display
only N colors, whereN is less than eight, then only the fistolors shown in the colors

table will be used.

You can change these color definitions with the rodutiitecolor , if your terminal is
capable of redefining colors. (See “Changing the Definitions of Colors” on page 7-17 for
more information.)

The following color macros are defineddarses.h and have numeric values corre-
sponding to their position in the colors table.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

N o o~ WN BB O

curses also maintains a table of color-pairs, which has space allocated for as many
entries as the number of color-pairs that can be displayed on your terminal screen at the
same time. Unlike the colors table, however, there are no default entries in the pairs table:
it is your responsibility to initialize any color-pair you want to use, with pair ,

before you use it as an attribute.

Each entry in the pairs table has two fields: the foreground color, and the background
color. For each color-pair that you initialize, these two fields will each contain a number
representing a color in the colors table. (Note that color-pairs can only be made from pre-
viously initialized colors.)

7-15

Character User Interface Programming

The following example pairs table shows that a programmer hasnits@dir to ini-

tialize color-pair 1 as a red foreground (entry 1 in the default color table) on cyan back-
ground (entry 6 in the default color table). Similarly, the programmer has initialized color-
pair 2 as a yellow foreground on a magenta background. Not-initialized entries in the pairs
table would actually contain zeros, which corresponds to black on black.

Note that color-pair O is reserved for usechyses and should not be changed or used in
application programs.

Table 7-2. Example of a Pairs Table

Color-Pair Number Foreground Background

0 (reserved) 0 0
1 1 6
2 3 5
3 0 0
4 0 0
5 0 0

Two global variables used by the color routines are definearges.h . They areCOL-

ORS which contains the maximum number of colors the terminal supports, and
COLOR_PAIRSwhich contains the maximum number of color-pairs the terminal sup-
ports. Both are initialized by thstart color routine to values it gets from ther-

minfo database.

Upon termination of youcurses program, all colors and/or color-pairs will be restored
to the values they had when the terminal was just turned on.

Using the COLOR_PAIR(n) Attribute

7-16

If you choose to use the default color definitions, there are only two things you need to do
before you can use the attribulB®©LOR_PAIR{). First, you must call the routine
start_color . Once you've done that, you can initialize color-pairs with the routine
init_pair(pair, f, b). The first argumenpair, is the number of the color-pair to be ini-
tialized (or changed), and must be betweemdCOLOR_PAIRS-1 The argumentkand

b are the foreground color number and the background color number. The value of these
arguments must be betwe@rand COLORS-1 For example, the two color-pairs in the
pairs table described earlier can be initialized in the following way:

init_pair (1, COLOR_RED, COLOR_CYAN);
init_pair (2, COLOR_YELLOW, COLOR_MAGENTA);

Once you've initialized a color-pair, the attrib@®LOR_PAIR{) can be used as you
would use any other attribut€EOLOR_PAIR() is a macro, defined iourses.h . The

Simple Input and Outpu

argumentn, is the number of a previously initialized color-pair. For example, you can use
the routineattron to turn on a color-pair in addition to any other attributes you may cur-
rently have turned on:

attron (COLOR_PAIR(1));

If you had initialized color-pair 1 in the way shown in the example pairs table, then char-
acters displayed after you turned on color-pair 1 witfon would be displayed as blue
characters on a yellow background.

You can also combinEOLOR_PAIR) with other attributes, for example:
attrset(A_BLINK|COLOR_PAIR(1));

would turn on blinking and whatever you have initialized color-pair 1 toaltteorf and
attrset are described earlier in this chapter and also oouts=s(3curses) man-
ual pages in this guide.

Changing the Definitions of Colors

If your terminal is capable of redefining colors, you can change the predefined colors with
the routinanit_color(color, r, g, . The first argumentolor, is the numeric value of

the color you want to change, and the last threg,andb, are the intensities of the red,
green, and blue components, respectively, that the new color will contain. Once you
change the definition of a color, all occurrences of that color on your screen change imme-
diately.

So, for example, you could change the definition of col@@LOR_BLUBy default), to
be light blue, in the following way.

init_color (COLOR_BLUE, 0, 700, 1000);

If your terminal is not able to change the definition of a color, useibfcolor
returnsERR

Portability Guidelines

Like the rest ofturses , the color manipulation routines have been designed to be termi-
nal independent. But it must be remembered that the capabilities of terminals vary. For
example, if you write a program for a terminal that can support 64 color-pairs, that pro-
gram would not be able to produce the same color effects on a terminal that supports at
most eight color-pairs.

When you are writing a program that may be used on different terminals, you should fol-
low these guidelines:

* Use at most seven color-pairs made from at most eight colors.

Programs that follow this guideline will run on most color terminals. Only seven,
not eight, color-pairs should be used, even though many terminals support eight
color-pairs, becausairses reserves color-pair O for its own use.

* Do not use color 0 as a background color.

7-17

Character User Interface Programming

This is recommended because on some terminals, no matter what color you have
defined it to be, color 0 will always be converted to black when used for a back-
ground.

* Combine color and other video attributes.

Programs that follow this guideline will provide some sort of highlighting, even if
the terminal is monochrome. On color terminals, as many of the listed attributes as
possible would be used. On monochrome terminals, only the video attributes would
be used, and the color attribute would be ignored.

Use the global variabl€ SOLOR&NdCOLOR-PAIRSrather than constants when
deciding how many colors or color-pairs your program should use.

Other Macros and Routines

start_color

7-18

There are two other macros definecimses.h that you can use to obtain information
from the color-pair field in characters of tyggtype .

* A COLORs a bhit mask to extract color-pair information. It can be used to
clear the color-pair field, and to determine if any color-pair is being used.

* PAIR_NUMBERA&ttrs) is the reverse oEOLOR_PAIRnN). It returns the
color-pair number associated with the named attrilautes,

There are two color routines that give you information about the terminal your program is
running on. The routinkas_colors returns a Boolean valu€RUEif the terminal sup-

ports colorsFALSE otherwise. The routinean_change_colors also returns a Bool-

ean valueTRUEIf the terminal supports coloemd can change their definitiofSALSE
otherwise.

There are two color routines that give you information about the colors and color-pairs
that are currently defined on your terminal. The routiolr_content gives you a

way to find the intensity of the RGB components in an initialized color. It reERR&f

the color does not exist or if the terminal cannot change color definittstherwise.

The routinepair_content allows you to find out what colors a given color-pair con-
sists of. It return&RRis the color-pair has not been initializ&aKotherwise.

These routines are explained in more detail orctinges(3curses) manual pages in
this guide.

The routinesstart_color , init_color , andinit_pair are described on the fol-
lowing pages, with examples of their use. You can also refer to the progtars in
Appendix D for an example of using the attribute of color in windows.

SYNOPSIS

#include <curses.h>
int start_color()

init_pair

Simple Input and Outpu

NOTES

* This routine must be called if you want to use colors, and before any other
color manipulation routine is called. It is good practice to call it right after
initscr

¢ |t initializes eight default colors (black, red, green, yellow, blue, magenta,
cyan, and white), and the global variabBSLORZNdCOLOR_PAIRSIf
the value corresponding OLOR_PAIRSN the terminfo database is
greater than 64;0OLOR_PAIRSwill be set to 64.

* |t restores the terminal's colors to the values they had when the terminal
was just turned on.

¢ |t returnsERRIf the terminal does not support colo@Kotherwise.

EXAMPLE

See the example undieit_pair

SYNOPSIS

#include <curses.h>
int init_pair (pair, f, b)
short pair, f, b;

NOTES

* init_pair changes the definition of a color-pair.

* Color-pairs must be initialized witinit_pair before they can be used
as the argument to the attribute ma€@LOR_PAIR().

* The value of the first argumergair, is the number of a color-pair, and
must be betweeh andCOLOR_PAIRS-1

* The value of thd (foreground) andb (background) arguments must be
betweer0 andCOLORS-1

* If the color-pair was previously initialized, the screen will be refreshed and
all occurrences of that color-pair will change to the new definition.

* |t returnsOKif it was able to change the definition of the color-paRR
otherwise.

EXAMPLE

#include <curses.h>
main()
{
initscr ();
if (start_color () == OK)

7-19

Character User Interface Programming

init_color

7-20

{
init_pair (1, COLOR_RED, COLOR_GREEN);
attron (COLOR_PAIR (1));
addstr (“Red on Green”);
getch();
}
endwin();

}

Also see the progracolors in Appendix D of this document.

SYNOPSIS

#include <curses.h>
int init_color(color, r, g, b)
short color, r, g, b;

NOTES

* init_color changes the definition of a color.

* The first argumentgolor, is the number of the color to be changed. The
value ofcolor must be betwee® andCOLORS-1

* The last three arguments,g, andb, are the amounts of red, green, and
blue (RGB) components in the new color. The values of these three argu-
ments must be betwe@and1000 .

* Wheninit_color is used to change the definition of an entry in the col-
ors table, all places where the old color was used on the screen immediately
change to the new color.

* |t returnsOK:if it was able to change the definition of the coltiRRother-

wise.
EXAMPLE
#include <curses.h>
main()
{
initscr();
if (start_color() == OK)
{
init_pair (1, COLOR_RED, COLOR_GREEN);
attron (COLOR_PAIR (1));
if (init_color (COLOR_RED, 0, 0, 1000) == OK)
addstr (‘BLUE ON GREEN™);
else
addstr (‘RED ON GREEN™);
getch ();
}

Simple Input and Outpu

endwin();

Bells, Whistles, and Flashing Lights: beep and flash

Input Options

Occasionally, you may want to get a user's attention. Two low-level {VS} routines are
designed to help you do this—they let you ring the terminal's chimes and flash its screen.

flash flashes the screen if possible, and otherwise rings the bell. Flashing the screen is
intended as a bell replacement, and is particularly useful if the bell bothers someone
within ear shot of the user. The routimeep can be called when a real beep is desired. (If

for some reason the terminal is unable to beep, but able to flash, alesptavill flash

the screen.)

SYNOPSIS

#include <curses.h>
int flash()
int beep()

NOTES

* flash tries to flash the terminals screen, if possible, and, if not, tries to
ring the terminal bell.

* beep tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen.

¢ beep will not work if you redefindf RUEto something other than 1.

* Neither returns any useful value.

The UNIX system does a considerable amount of processing on input before an applica-
tion ever sees a character. For example, it does the following:

* echoes (prints back) characters to a terminal as they are typed

* interprets an erase character (typic&lyand a line kill character (typically

Q
* interprets &€TRL-d (control d) as end of fileEOP

* interprets interrupt and quit characters
¢ strips the character's parity bit

¢ translatelRETURN to<NL>

7-21

Character User Interface Programming

7-22

Because an ETI program maintains total control over the screen, low-level ETI turns off
echoing on the UNIX system and does echoing itself. At times, you may not want the
UNIX system to process other characters in the standard way in an interactive screen man-
agement program. Some ETI routinesecho andcbreak , for example, have been
designed so that you can change the standard character processing. Using these routines in
an application controls how input is interpreted. Table 7-3 shows some of the major rou-
tines for controlling input.

Every low-level {VS} program accepting input should set some input options. This is
because when the program starts running, the terminal on which it runs may be in
cbreak , raw, nocbreak , ornoraw mode. Although the low-level {VS} program starts

up inecho mode, none of the other modes are guaranteed.

The combination ofioecho andcbreak is most common in interactive screen manage-
ment programs. Suppose, for instance, that you don't want the characters sent to your
application program to be echoed wherever the cursor currently happens to be; instead,
you want them echoed at the bottom of the screen. The ETI rowutgoho is designed

for this purpose. However, wheoecho turns off echoing, normal erase and kill process-

ing is still on. Using the routinebreak causes these characters to be uninterpreted.

Table 7-3. Input Option Settings for ETI Programs

Characters
Input

Options Interpreted Uninterpreted
Normal interrupt, quit stripping
‘out of ETI RETURN to<NL>
state' echoing erase, kill EOF
Normal echoing (simulated) All else undefined.
ETI 'start up
state'
cbreak () interrupt, quit stripping erase, kill EOF
andecho () echoing
cbreak () interrupt, quit stripping echoing erase, kill EOF

andnoecho ()

nocbreak ()
andnoecho ()

nocbreak ()
andecho ()

nl-()

nonl ()

raw ()
(instead of
cbreak ())

break, quit stripping echoing
erase, kill EOF

See caution below.

RETURN to<NL>
RETURN to<NL>
break, quit stripping

Simple Input and Outpu

CAUTION

Do not use the combinatiotocbreak andecho . If you use itin

a program and also ugetch , the program will go in and out of
cbreak mode to get each character. Depending on the state of
the tty driver when each character is typed, the program may pro-
duce undesirable output.

In addition to the routines noted in Table 7-3, you can use the ETI routoraw ,
halfdelay , andnodelay to control input. See theurses(3curses) manual
pages for discussions of these routines.

The next few pages describeecho , cbreak , and the related routinesho and
nocbreak in more detail.

echo and noecho

SYNOPSIS

#include <curses.h>
int echo()
int noecho()

NOTES

¢ echo turns on echoing of characters by ETI as they are read in. This is the
initial setting.

* noecho turns off the echoing.
* Neither returns any useful value.

e ETI programs may not run properly if you turn on echoing with
nocbreak . See Table 7-3 and accompanying caution. After you turn
echoing off, you can still echo characters veitiuch .

EXAMPLE

See theeditor andshow programs in Appendix D of this document.

cbreak and nocbreak

SYNOPSIS

#include <curses.h>
int cbreak()
int nocbreak()

7-23

Character User Interface Programming

7-24

NOTES

cbreak turns on “break for each character” processing. A program gets
each character as soon as it is typed, but the erase, line ki, TédrRd-D
characters are not interpreted.

nocbreak returns to normal “line at a time” processing. This is typically
the initial setting.

Neither returns any useful value.

ETI programs may not run properlydbreak is turned on and off within
the same program or if the combinatimrcbreak andecho is used.

See Table 7-3 and accompanying caution.

EXAMPLE

See theeditor andshow programs in Appendix D of this document.

8

Windows
INtrOdUCHION 8-1
Output and INPUL e e 8-1
The Routines wnoutrefreshand doupdate iun. 8-2
NEeW WINAOWS e e e 8-6
DB WIN . L e e 8-6
SUDWIN. . . e e 8-6

Character User Interface Programming

8
Windows

Introduction

“More about refresh and Windows” on page 6-5 explained what windows and pads are and
why you might want to use them. This section describes the ETI routines you use to
manipulate and create windows and pads.

Output and Input

The routines that you use to send output to and get input from windows and pads are simi-
lar to those you use witltdscr . The only difference is that you have to give the name of
the window to receive the action. Generally, these functions have names formed by putting
the letterw at the beginning of the name oftscr routine and adding the window
name as the first parameter. For examg@édch('c') would becomewad-
dch(mywin,’c’) if you wanted to write the characteito the windowmywin. Here's

a list of the window (ow) versions of the output routines.

¢ waddch(win, ch

* mvwaddch(win, y, X, ch

e waddstr(win, stp)

* mvwaddstr(win,y, X, sty

e wprintw(win, fmt[, arg..])

* mvwprintw(win, y, x, fm{ , arg..])

* wmove(win,y, 3

¢ wclear(win) andwerase(win)

* wclrtoeol(win) andwclrtobot(win)

* wrefresh(win)

You can see from their declarations that these routines differ from the versions that manip-
ulatestdscr only in their names and the addition ofvm argument. Notice that the rou-
tines whose names begin withvwtake thewin argument before thg x coordinates,

which is contrary to what the names imply. $aeses(3curses) for more informa-

tion about these routines or the versions of the input rougietel , getstr , and so on

that you should use with windows.

8-1

Character User Interface Programming

All wroutines can be used with pads excepwimfresh andwnoutrefresh (see
below). In place of these two routines, you have topustesh andpnoutrefresh
with pads.

The Routines wnoutrefresh and doupdate

8-2

If you recall from the earlier discussion aboefresh , we said that it sends the output
from stdscr to the terminal screen. We also said that it was a macro that expawds to
fresh(stdscr) (see “What Every ETI Program Needs” on page 6-1 and “More about
refresh and Windows” on page 6-5).

Thewrefresh routine is used to send the contents of a windsdascr or one that you
create) to a screen; it calls the routime®utrefresh anddoupdate . Similarly, pre-
fresh sends the contents of a pad to a screen by calhngtrefresh anddoup-
date .

Usingwnoutrefresh ~ —or pnoutrefresh (this discussion will be limited to the
former routine for simplicity)—andoupdate , you can update terminal screens more
efficiently than usingvrefresh by itself.wrefresh works by first callingvnoutre-

fresh , which copies the named window to a data structure referred to as the virtual
screen. The virtual screen contains what a program intends to display at a terminal. After
callingwnoutrefresh |, wrefresh then callsddoupdate , which compares the virtual
screen to the physical screen and does the actual update. If you want to output several win-
dows at once, callingrrefresh will result in alternating calls tavnoutrefresh and
doupdate , causing several bursts of output to a screen. However, by catimgre-

fresh for each window and thedoupdate only once, you can minimize the total num-

ber of characters transmitted and the processor time used. Screen 8-1 shows a sample pro-
gram that uses only om®update .

~

#include <curses.h>
main()
WINDOW *w1, *w2;

initscr();

w1l = newwin(2,6,0,3);
w2 = newwin(1,4,5,4);
waddstr(w1, “Bulls”);
wnoutrefresh(w1);
waddstr(w2, “Eye”);
wnoutrefresh(w2);
doupdate();

endwin();

_)

Screen 8-1. Using wnoutrefresh and doupdate

Notice from the sample that you declare a new window at the beginning of an ETI pro-
gram. The lines

Windows

wl = newwin(2,6,0,3);
w2 = newwin(1,4,5,4);

declare two windows namedl andw2 with the routinenewwin according to certain
specificationshewwin is discussed in more detail below.

Figure 8-1, Figure 8-2, and Figure 8-3 illustrate the effeetrajutrefresh ~ anddoup-
date on these two windows, the virtual screen, and the physical screen.

stdscr@ (0,0)

virtual screen

physical screen

initscr()
O O (garbage)
stdscr@ (0,0) virtual screen physical screen
wl=newwin
(2,6,0,3) O O (garbage)
wi@ (0,3)
a
stdscr@ (0,0) virtual screen physical screen
w2=newwin
(1,4,5,4) O O (garbage)
wl@ (0,3) w2@ (5,4)
O O

Figure 8-1. Relationship between a Window and Terminal Screen (Sheet 1 of 3)

8-3

Character User Interface Programming

waddstr(w1,Bulls)

wnoutrefresh(w1l)

waddstr(w2,Eye)

Figure 8-2. Relationship between a Window and Terminal Screen (sheet 2 of 3)

stdscr@ (0,0)

virtual screen

physical screen

0 O (garbage)
wil@ (0,3) w2@ (5,4)
O
Bulls 0

stdscr@ (0,0)

virtual screen

physical screen

O Bulls [] (garbage)
wi@ (0,3) w2@ (5,4)
Bulls [] u

stdscr@ (0,0)

virtual screen

physical screen

O Bulls [] (garbage)
wil@ (0,3) w2@ (5,4)
Bulls []J Eye [

wnoutrefresh(w2)

doupdate()

endwin()

Figure 8-3. Relationship between a Window and Terminal Screen (sheet 3 of 3)

stdscr@ (0,0)

virtual screen

Windows

physical screen

0 Bulls (garbage)
Eye [
wil@ (0,3) w2@ (5,4)
Eye []
Bulls O

stdscr@ (0,0)

virtual screen

physical screen

stdscr@ (0,0)

a Bulls Bulls
Eye O Eye []
wil@ (0,3) w2@ (5,4)
Bulls []J Eve O

virtual screen

physical screen

O Bulls Bulls
Eye [] O Eye
wl@ (0,3) w2@ (5,4)
Bulls [] Eye [

8-5

Character User Interface Programming

New Windows

Following are descriptions of the routineswwin andsubwin , which you use to create
new windows. For information about creating new pads méthppad andsubpad , see

thecurses(3curses) manual pages.
newwin
SYNOPSIS
#include <curses.h>
WINDOW *newwin(nlines ncols begin_y begin_3j
int nlines ncols begin_y begin_x
NOTES
* newwin returns a pointer to a new window with a new data area.
* The variableslinesandncolsgive the size of the new window.
* begin_yandbegin_xgive the screen coordinates from (0,0) of the upper left
corner of the window as it is refreshed to the current screen.
EXAMPLE
Recall the sample program using two windows; see Screen 8-1. Also seie-the
dow program in Appendix D of this document.
subwin

SYNOPSIS

#include <curses.h>

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x
WINDOW rig;

int nlines, ncols, begin_y, begin_x;

NOTES

¢ subwin returns a new window that points to a section of another window,
orig.

¢ nlinesandncolsgive the size of the new window.

* begin_yandbegin_xgive the screen coordinates of the upper left corner of
the window as it is refreshed to the current screen.

* Subwindows and original windows can accidentally overwrite one another.

8-6

Windows

CAUTION

Subwindows of subwindows do not work (as of the copyright date
of this guide).

EXAMPLE

#include <curses.h>

main()

{
WINDOW *sub;

initscr();
box(stdscr,'w','w");

[* See the curses(3curses) manual page for box */
mvwaddstr(stdscr,7,10,"------- this is 10,10");
mvwaddch(stdscr,8,10,'[);
mvwaddch(stdscr,9,10,'V");
sub = subwin(stdscr,10,20,10,10);
box(sub,'s','s";
wnoutrefresh(stdscr);
wrefresh(sub);
endwin();

}

This program prints a border wfs aroundstdscr (the sides of your terminal screen) and
a border of's around the subwindosub when it is run. For another example, see the
window program in Appendix D of this document.

ETI Low-level Interface (curses) to High-level Functions

In the following chapters, we will consider the ETI high-level functions, which create and
manipulate panels, menus, and forms. All application programs that use these high-level
functions require a set of low-level ETdufses) calls that properly initialize and termi-

nate the programs. For convenience, you may want to isolate these calls in appropriate
routines. Screen 8-2 shows one way you might do this. It lists routines to start low-level
ETI, terminate it, and handle fatal errors.

Character User Interface Programming

8-8

static char *PGM= (char *) 0;/* program name*/
static INtCURSES= FALSE;/* is curses initialized ?*/

static void start_curses ()/* curses initialization */
{

CURSES = TRUE;

initscr ();

nonl ();

raw ();

noecho ();

wclear (stdscr);

}

static void end_curses ()/* curses termination */
if (CURSES)

CURSES = FALSE;
endwin ();

}

static void error (f, s)/* fatal error handler */
char * f;
char *s;
{
end_curses ();
printf (“%s: ", PGM);
printf (f, s);
printf (“\n”);
exit (1);

_)

Screen 8-2. Sample Routines for Low-level ETI (curses) Interface

These house-keeping routines use two global varia®@esandCURSES. PGNE initial-
ized with the program's name, while the Bool€WRSESs initialized with FALSE
becauseurses itself has not yet been invoked.

Functionstart_curses calls the low-level routines previously mentioned and sets
CURSESo TRUE to indicate that it has initializedirses . Functionend_curses
checks ifcurses s initialized and, if so, sets the variall&lRSESo FALSE and termi-
natescurses . The check is necessary becaasdwin returns an error if called when
curses is not initialized.

Functionerror is a universal fatal error handler—called wheth@ses is initialized

or not. It first callsend_curses to terminate it if it is on, and then prints the program's
name (PGM) and message passed to it. Finally, it terminates the program itself using
exit

9
Panels

INtrOdUCHIONo
Compiling and Linking Panel Programs i
Creating Panels e
Elementary Panel Window Operationst ..
Fetching Pointers to Panel Windows
Changing Panel WIindows. e e
Moving Panel Windows onthe Screen.
Moving Panels to the Top or Bottom ofthe Deck.
Updating Panelsonthe Screen i e
Making Panels Invisible. e
Hiding Panels e
Checking If Panels Are Hidden. i,
Reinstating Panels i
Fetching Panels above or below GivenPanels
Setting and Fetching the Panel User Pointer.,
Deleting Panels e

Character User Interface Programming

Introduction

Compiling and

9
Panels

Recall that a window is a rectangular area of the terminal screen on which you can write
using the low-level ETIdurses) routines. You can create many windows on a screen,
but if they overlap, portions of some windows intended to be hidden may nonetheless be
visible when you use the low-level routines alone. To solve this problem, ETI uses the
notion of a panel—a rectangle of text with depth.

Panels have depth only in relation to other panelsstahsicr, which lies beneath all pan-
els. The set of non-hidden panels comprisesigakof panels.

Linking Panel Programs

To use the panel routines, you specify
#include <panel.h>
in your C program files and compile and link with the command line

cc[flags] files -Ipanel -lcurses [libraries |

Creating Panels

This function creates a new panel on top of all existing panels in the deck. Its argument is
a pointer to a window.

SYNOPSIS

PANEL *new_panel (window)
WINDOW *vindow [* curses window to be associated
with new panel */

A pointer to the panel is returned if the panel is created; otherwise, the function returns
NULL. The new_panel operation fails if there is insufficient memory or if the window
pointer argument is NULL. The window whose address is passed as an argument becomes

9-1

Character User Interface Programming

associated with the panel. The size and location of the panel are the same as that of the
low-level ETI (curses) window.

To create a panel, you create a window, save the pointer to it, and use the pointer as an
argument toew_panel .

WINDOW *win;
PANEL *pptr;

win = newwin(2,6,0,3);
pptr = new_panel(win); /* after execution, pptr stores
pointer to new panel */

Note that the newly created panel does not automatically have any adornments such as
tittes or borders. If you want your panel to have them, you must call appropriate low-level
ETI routines with the panel's window as the argument.

When you create a new panel, it is automatically placed on top of the panel deck. Later,
when you calboupdate to adjust the visibility of all panels, the top panel is completely
visible. On lower levels, a portion of a panel is visible only when no region of another
panel is above it. Where two panels overlap, the higher one hides the lower. (The higher
one is the newer one if neither has changed its position in the panel deck because of calls
totop_panel , bottom_panel , orshow_panel described below.) If the panels do

not over-lap, the new panel is still logically above the old one. Their relative depth is not
apparent until one of them is moved and overlaps the other.

Elementary Panel Window Operations

This section explains how you can fetch pointers to panel windows, change the windows
associated with panels, and move panel windows to new locations on the screen.

Fetching Pointers to Panel Windows

9-2

Each panel has a low-level ETI window associated with it. To retrieve a pointer to this
window, you use the functigmanel_window .

SYNOPSIS

WINDOW *panel_window(pane)
PANEL * panel [* Panel whose window pointer is
returned */

The function returns NULL if the panel pointer argument is NULL.

In general, you may use this returned pointer as an argument to any standard low-level
(curses) routine that takes a pointer to a window as an argument. For example, you can
insert a character at a locatiory,xin a panel window with the functiomvwin-

sch(win,y,x,9, wherewin is the window pointer returned Ipanel_window .

Panels

WINDOW *win;
PANEL *panel;
inty, x;

chtype c;

win = panel_window(panel);
mvwinsch(win,y,x,c);

Changing Panel Windows

To replace a panel's pointer to a window with a pointer to another window, you call func-
tionreplace_panel . After the call, the panel remains at the same level within the panel

deck.

SYNOPSIS
int replace_panel (pane| window)
PANEL * pane| /* Panel with window to be

replaced */
WINDOW twindow /* New window pointer for panel */

This function return©Kif the operation is successful. If not, it returns ERR and leaves the
original panel unchanged. Operatim@mplace_panel fails if the window pointer is
NULL or there is insufficient memory.

To associate a panel with windawn1 and later replace its window lyin2, you can
write the following:

WINDOW *winl, win2;
PANEL *panel,

panel = new_panel(winl);
* intervening processing with winl as panel window */

replace_panel(panel, win2);
/* change window associated with panel to win2 */

Once you have created additional windows with the low-level functavwin , you in
effect can reshape panel windows by usigace _panel . To do so leaves the con-
tents of the two windows unchanged.

Moving Panel Windows on the Screen

You should not move a panel's window by calling the low-level funetiewin directly.

To update the screen correctly, the panels subsystem must know the location of all panel
windows, but functiomvwin does not inform the panels subsystem of the window's new
location. To move a panel's window, you must call the funatione_panel , which

moves a panel and its associated window and informs the panels subsystem of the move.

9-3

Character User Interface Programming

SYNOPSIS
int move_panel (panel, firstrow, firstcol
PANEL * panel /* Panel to be moved */
int firstrow, firstcol, /* row/col of upper left corner

of new location of window
associated with panel */

Note that the screen coordinates you specify are those for the upper-left corner of the win-
dow in its new location. The panel may be moved to any location that the low-level ETI
routines deem legitimate. In particular, a panel may be partly off the screen. The size, con-
tents, and relative depth of the panel remain unchangetbg_panel .

Functionmove_panel returnsOKif the operation was successfERRotherwise. The
move_panel operation fails if the low-level ETI functions are unable to move the panel's
window, or if there is insufficient memory to satisfy the request. In these cases, the origi-
nal panel remains unchanged.

To move the panel pointed to pgnel such that its upper-left corner is at r@@, col-
umn45, you can write

PANEL *panel,

move_panel(panel, 22, 45);

Moving Panels to the Top or Bottom of the Deck

9-4

The relative depth of a panel can be changed by either pulling the panel to the top of the
deck or by pushing it to the bottom. In either case, all other panels remain at the same
depth relative to each other.

SYNOPSIS
int top_panel(pane)
PANEL * pane|
int bottom_panel(pane)
PANEL * pane|

Functiontop_panel moves the panel pointed to by its argument to the top of the panel
deck, while functiorbottom_panel moves the panel to the bottom of the deck.

Both functions leave the size of the given panel, the contents of its associated window, and
the relations of the other panels in the deck wholly intact. Both r&Kifhthe operation

is successfuERRIf not. The functions fail if the panel pointer argument is NULL or if the
panel is hidden by a previous call to functidde_panel described below.

To move the panel pointed to bynell to the top of the deck of panels and the panel
pointed to bypanel?2 to the bottom of the deck, you can write the following:

Panels

PANEL *panell, *panel2;

top_panel(panell);
bottom_panel(panel2);

Updating Panels on the Screen

Functionupdate_panels makes all low-leveturses calls (such asouchwin and
wnoutrefresh) to update all panels so as to maintain proper depth relationships and to
permit display only of the appropriate portions of panels.

SYNOPSIS
void update_panels();

The function does not, however, actually refresh your terminal screen. To do that, you
must make a call tdoupdate whenever you want to display your latest changes.

To avoid displaying text on hidden panels, you should not use the low-level routines
wnoutrefresh andwrefresh when working with panels.

CAUTION

In general, do not use the low-level routingsoutrefresh or
wrefresh to display a window associated with a panel. Instead,
use functiorupdate_panels and functiordoupdate to dis-
play the entire deck of panels.

If you use the low-level routinesnoutrefresh ~ orwrefresh for a window associated
with a panel, it is not displayed properly unless it happens to be associated with the top
panel in the deck or is not hidden at all by other panel windows.

Recall that panels are always abetdscr, the standard ETI window. When a panel is
moved or deletedstdscr is updated along with the visible panels to ensure that it appears
beneath all panels. Althougtidscr has depth relative to other panels, it is not a panel
because panel operations ltkgp_panel andbottom_panel do not apply. However,
becausestdscr rests beneath the deck of panels, you should always call
update_panels when you work with panels and chamggelscr, even if you do not
change any panels themselves.

Functionwgetch automatically callsvrefresh . Hence, if echo mode is active, when
you request input from a window associated with a panel, be sure that the window is
totally unobscured.

In summary, to update all panels and display them with their proper depth relationship,
you write:

9-5

Character User Interface Programming

WINDOW *win;

update_panels();
doupdate();

Note finally that there is no way to display the updates to an obscured panel without dis-
playing the changes to all panels.

Making Panels Invisible

Hiding Panels

9-6

ETI allows you to hide panels from the deck and later return them to it.

Panels may be temporarily hidden. This means that they are removed from the panel deck,
but the memory allocated to them is not released.

SYNOPSIS

int hide_panel(pane)
PANEL * panel [* Pointer to panel to be hidden */

Hidden panels are not refreshed to the screen, but you may nonetheless apply nearly all
panel operations to them.

NOTE

Only the operationsop_panel , bottom_panel , and
hide_panel itself may not be applied to hidden panels because
their panel arguments must belong to the deck of panels.

When you want to return a hidden panel to the deck of panels, you use the function
show_panel described in the next section. When the panel is returned, it is placed on top
of the deck.

To hide the panel pointed to panel2 above, you write
PANEL *panel2;
hide_panel(panel2);

Functionhide_panel returnsOKif the operation is successful aBRRif its panel
pointer argument is NULL.

If you use functiorhide_panel wisely, your program's performance can increase. You
can hide a panel temporarily if no portion of it is to be displayed for awhile. An example is

Panels

the hiding of a pop-up message. Interim calls to funatfmiate panels will then exe-
cute faster. More importantly, you do not incur the overhead of creating the pop-up mes-
sage.

Checking If Panels Are Hidden

To enable you to check if a given panel is hidden, ETI provides the following function.

SYNOPSIS

int panel_hidden (pane)
PANEL * panel

Functionpanel_hidden returns a Boolean value (TRUE or FALSE) indicating whether
or not its panel argument is hidden.

You might want to use this function before calling functidop_panel or
bottom_panel , which do not operate on hidden panels. For example, to minimize the
risk of having the error valuéRRreturned when moving a panel to the top of the deck,
you can write

PANEL *panel;
if (! panel_hidden (panel)) /* panel in deck ? */

top_panel (panel);
/* move panel to top of deck */

Reinstating Panels

This function is the opposite of functitwde panel . It returns the hidden panel refer-
enced in its argument to the top of the panel deck.

SYNOPSIS
int show_panel (pane)
PANEL * pane| /* Panel to return to top of deck */

Note that the panel must have been hidden by a prehidespanel call. The function
returnsOKif the operation is successful, aBRRif the panel pointer is NULL, if there is
insufficient memory, or if the panel is not hidden.

To return, saypanel?2 to the deck, you write

PANEL *panel2;

show_panel(panel2);

Character User Interface Programming

Fetching Panels above or below Given Panels

The following functions return a pointer to the panel immediately above or below the
given panel. They are helpful in walking the panel deck from top to bottom or vice versa.

SYNOPSIS

PANEL *panel_above (pane)
PANEL * panel [* Get panel above this one */

PANEL *panel_below (pane)
PANEL * panel [* Get panel below this one */

Because hidden panels have no depth, they are excluded from these traversals.

Functionpanel_above returns the panel immediately above the given panel. If its argu-
ment is NULL, it returns the bottommost panel. The function returns NULL if the given
panel is on top or hidden, or if there are no visible panels.

Functionpanel_below returns the panel immediately below the given panel. If its argu-
ment is NULL, it returns the topmost panel. The function returns NULL if the given panel
is on the bottom of the deck of panels or hidden, or if there are no visible panels at all.
There may be no visible panels at all if

* they have been hidden usihigle_panel
¢ all panels have been deleted

* or no panels have been created.

If you want to do something to all panels or to search all of them for one with a particular
attribute, you can place one of these functions in a loop. For example, to hide all panels
(perhaps to displagtdscr alone), you can write

{
PANEL *panel, *pnl;
for (panel = panel_above (NULL); panel; panel =
panel_above(pnl))
{
pnl = panel;
hide_panel(panel);
}
}

Setting and Fetching the Panel User Pointer

9-8

To enable your application program to associate arbitrary data with a given panel, the ETI
panel subsystem automatically allocates a pointer associated with each newly created
panel. Initially, the value of this user pointer is NULL. You can set its value to whatever
you want or not use it at all.

Panels

SYNOPSIS

int *set_panel_userptr (pane| ptr)
PANEL * panel /* Panel whose user pointer to set */
char * ptr; [* user-defined pointer */

char *panel_userptr (pane)
PANEL * panel /* Panel whose user pointer to fetch */

The user pointer has no meaning to the panels subsystem. Once the panel is created, the
user pointer is neither changed nor accessed by the subsystem.

Functionset_panel_userptr sets the user pointer of a given panel to the value of
your choice. The function retur@Kif the operation is successful, aBRRif the panel
pointer is NULL.

Functionpanel_userptr returns the user pointer for a given panel. If the panel pointer
is NULL, the function returns NULL.

You can use these routines to store and retrieve a pointer to an arbitrary structure that holds

information for your application. For example, you might use them to store a title or, as in
Screen 9-1, create a hidden panel for pop-up messages.

9-9

Character User Interface Programming

PANEL *msg_panel;
char *message = “Pop-up Message Here”; /* initialize message */

int display_deck (show_it)
int show_it;

WINDOW *w;
int rows, cols;

if (show_it)
{ show_panel (msg_panel); /* reinstate panel */
w = panel_window (msg_panel); /* fetch associated window */
getmaxyx (w, rows, cols); /* fetch window size */

/* center cursor */
wmove (w, (rows-1), ((cols-1) - strlen(message))/2);

/* fetch and write pop-up message */
waddstr (w, panel_userptr (msg_panel));

update_panels(); /* display deck with message, if called for */
doupdate();
if (show_it)
hide_panel (msg_panel); /* hide panel again, if necessary */
main()
int show_mess = FALSE;
msg_panel = new_panel (newwin (10, 10, 5, 60));
set_panel_userptr (msg_panel, message); /*associate message with panel */
hide_panel (msg_panel); /* remove from visible deck */

/* if condition to display pop-up
message is satisfied, set show_mess to TRUE */

display_deck (show_mess);

_)

Screen 9-1. Example Using Panel User Pointer

After creating a window and its associated pamalin callsset_panel_userptr to

set the panel user pointer to point to the panel's pop-up message string. Function
hide_panel hides the panel from the deck so that it is not normally displayed. Later, the
application-defined routindisplay_deck checks if the message is to be displayed. If

so, it callsshow_panel which returns the panel to the deck and enables the panel to
become visible on the next update and refresh. The message string returned by
panel_userptr is then written to the panel window. Finallypdate_panels

adjusts the relative visibility of all panels in the deck dadpdate refreshes the screen.

If called for, the pop-up message is now visible.

Deleting Panels

The following function deletes a panel, but not its associated window. If you want to
delete the window, you should use the low-level funcdielmvin

9-10

Panels

SYNOPSIS
int del_panel (pane)
PANEL * panel; /* Panel to be deleted */

The ETI panels subsystem assumes that the window associated with each panel always
exists.

NOTE

If you want to delete a panel and its associated window, make sure
that you delete the panel first, not the window. Your call to
del_panel should precede your call tielwin

However, it is not necessary to delete a window after its associated panel is deleted: if you
like, you may associate the window with another panel.

Functiondel_panel returnsOKif the operation was successfERRotherwise. The
del_panel operation fails if the panel pointer is NULL.

To delete the panel referencedgmgnel and its associated window referencedabin,
you can write

PANEL *panel;
WINDOW *win = panel_window(panel);

del_panel(panel);
delwin(win);

9-11

Character User Interface Programming

9-12

Menus
INtrOdUCHIONo 1. 10-
Compiling and Linking Menu Programs.ttt 10-1
Overview: Writing Menu Programs in ETI. 10-2
Some Important Menu Terminologyci .. 10-2
What a Menu Application ProgramDoes ..., 10-2
A Sample Menu Program.t e 10-3
Creating and Freeing Menu ltems i e 10-5
Two Kinds of Menus: Single- or Multi-valued 10-7
Manipulating an Iltem's Select Value in a Multi-valued Menu.............. 10-7
Manipulating Item Attributes e 10-8
Fetching Item Names and Descriptionsttt 10-8
Setting tem OptioNS.o 10-9
Checkinganltem's Visibility 10-10
Changing the Current Default Values for Item Attributes 10-11
Setting the ltem User Pointer. i e 10-11
Creatingand Freeing MeNUS ittt e e e e e 10-13
Manipulating Menu Attributes e 10-14
Fetching and Changing Menu ltems. i, 10-14
Counting the Numberof Menu ltems. 10-16
Changing the Current Default Values for Menu Attributes 10-16
Displaying MENUSottt e e 10-17
Determining the Dimensions of Menus 10-17
Specifyingthe MenuFormat. i 10-18
Changing Your Menu's Mark String o i 10-20
Queryingthe MenuDIMENSIONSttt i e 10-22
Associating Windows and Subwindows with Menus. 10-23
Fetching and Changing a Menu's Display Attributes. 10-25
Posting and Unposting Menus i 10-27
Menu Driver ProCesSiNgo oo e e 10-29
Defining the Key Virtualization Correspondence. 10-30
ETIMenu ReqUESES o e e e e e 10-32
ltem Navigation ReqUESES i e 10-32
Directional Item Navigation Requests 10-32
Menu Scrolling Requests 10-33
Multi-valued Menu Selection Request, 10-33
Pattern Buffer Requests. e 10-33
Application-defined Commands. 10-34
Callingthe Menu Driver. i e e e e 10-35
Establishing Item and Menu Initialization and Termination Routines. 10-38
Functionset menu_init. i 10-39
Function set_item _init. e 10-39
Function set_item _term. i 10-39
Function set_ menu_term. i e 10-40
Fetching and Changing the Currentltem.................... 10-41
Fetching and Changingthe TopRow. 10-42
Positioningthe Menu Cursor i e 10-43

Changing and Fetching the Pattern Buffer. 10-44

Character User Interface Programming

Manipulating the Menu User Pointer. e
Setting and Fetching Menu Options. i e

Introduction

10
Menus

A menu is a screen display that presents a set of items from which the user selects one or
more, depending on the type of menu. Once the user makes a selection, your application
program responds accordingly. This response may be to generate a message, display
another menu, or take some other action. Screen 10-1 displays a sample menu.

Black
Charcoal
Light Gray
Brown
Camel
Navy
Light Blue
Hunter Green
Gold
Burgundy
Rust
White

o

~

Screen 10-1. A Sample Menu

Compiling and Linking Menu Programs

To use the menu routines, you specify
#include <menu.h>

in your C program files and compile and link with the command line
cc[flags]

files -Imenu -lcurses [libraries]

If you use the panel routines as well, speé€ifpanel before-lcurses

mand line.

on the com-

10-1

Character User Interface Programming
Overview: Writing Menu Programs in ETI

This section introduces basic ETI menu terminology, lists the steps in a typical menu
application program, and reviews the code in a simple example.

Some Important Menu Terminology

The following terms will be helpful:
item a character string consisting of a name and an optional description

menu a screen display that presents a set of items from which the user
selects one or more, depending on the type of menu

connecting items to a menu
associating an array of item pointers with a menu

menu subwindow a subwindow on which an associated menu is written

menu window a window on which an associated menu subwindow and titles and
borders, if any, are displayed

posting a menu writing a menu on its associated subwindow
unposting a menu erasing a menu from its associated subwindow

pattern matching checking whether characters entered by the user match an item
name of the menu

freeing a menu deallocating the space for a menu and, as a byproduct, disconnect-
ing an associated array of item pointers from a menu

freeing an item deallocating the space for an item

NULL generic term for a null pointer cast to the type of the particular
object (item, menu, field, form, and so on)

What a Menu Application Program Does

In general, a menu application program will
¢ initialize low-level ETI ¢curses)
¢ create the items for the menu
* create the menu
* post the menu

¢ refresh the screen

10-2

Menus

* process end user menu requests
* unpost the menu

¢ free the menu

* free items

¢ terminate low-level ETIdurses)
A Sample Menu Program

Screen 10-2 shows the ETI code necessary for generating the menu of colors in
Screen 10-1.

10-3

Character User Interface Programming

a4)

#include <menu.h>
char * colors[13] =

“Black”, “Charcoal”, “Light Gray”,
“Brown”, “Camel”, “Navy”,
“Light Blue”, “Hunter Green”, “Gold”,
“Burgundy”, “Rust”, “White”,
(char *) 0

h

ITEM * items[13];

main ()

{
MENU* m;
ITEM** i=items;
char* ¢ =colors;

I* low-level ETI (curses) initialization */

initscr ();

nonl ();

raw ();

noecho ();
wclear (stdscr);

[* create items */

while (*c)
*i++ = new_item (*c++, “7);
*i = (ITEM *) O;

/* create and display menu */

m = new_menu (i = items);
post_menu (m);

refresh;

sleep (5);

/* erase menu and free both menu and items */
unpost_menu (m);

refresh;

free_menu (m);

while (*i)
free_item (*i++);

I* low-level ETI (curses) termination */

endwin ();
exit (0);

_)

Screen 10-2. Sample Menu Program to Create a Menu in ETI

To get an overview of ETI menu routines, we will now briefly walk through this menu pro-
gram. In later sections, we discuss these and remaining ETI routines in detail.

Every menu program should have the line
#include <menu.h>

to instruct the C preprocessor to make the file of ETI menu declarations available. The ini-
tial low-level ETI routines establish the best terminal characteristics for working with the
ETI menu routines.

10-4

Menus

Thewhile loop creates each item for the menu using the ETI funogen item . This
function takes as its name argument a color from aolys[] . The optional descrip-

tion argument is here the null string. The new item pointers are assigned to a NULL-termi-
nated array.

Next, the menu is created and connected to the item pointer array using function
new_menu. The menu is then posteddtdscr and the screen is refreshed to display the
menu. Thesleep command makes the menu visible for five seconds.

To erase the menu, you unpost it and refresh the screen. Fuinedomenu discon-
nects the menu from its item pointer array and deallocates the space for the menu. The last
while loop uses functiofree_item to free the space allocated for each item.

Finally, functionsendwin andexit terminate low-level ETI and the program itself.

The following sections explain how to use all ETI menu routines. Program fragments
illustrating the menu routines occur throughout this chapter. Many of these fragments are
portions of a larger program example. The current example and others are included in the
set of high-level ETI demonstration programs delivered with the ETI product. Low-level
ETI demonstration programs are reproduced in the last section of this guide.

NOTE

Like all form routines that return ant value, all menu routines
that do so return the vallile OKwhen they execute successfully.

Creating and Freeing Menu Items

Normally, to create a menu, you must first create the items comprising it. To create a menu
item, you use functionew_item .

SYNOPSIS

ITEM * new_item (name descriptior)
char* name
char* description

Functionnew_item creates a new item by allocating space for the new item and initializ-
ing it. ETI displays the stringamewhen the menu is later posted, but callegv_item

does not alone connect the item to a menu. Theriganeis also used in pattern-matching
operations. Ilhameis NULL or the null string, thenew_item returns NULL to indicate

an error.

The argumentlescriptionis a descriptive string associated with the item. It may or may
not be displayed depending on the SHOWDES@ption, which you can turn on or off
with theset_menu_opts and related functions described belovddscriptionis NULL

or the null string, no description is associated with the menu item.

10-5

Character User Interface Programming

10-6

If successfulnew_item returns a pointer to the new item. This pointer is the key to
working with all item routines. When you pass it to them, it enables the menu subsystem
to change, record, and examine the item's attributes.

If there is insufficient memory for the item, nameis NULL or the null string, then
new_item returns NULL.

In general, you use an array to store the item pointers returnedwyitem .
Screen 10-3 shows how you might create an item array of the planets of our solar system.

~

ITEM * planets[10];

planets[0] = new_item (“Mercury”, “The first planet”);
planets[1] = new_item (“Venus”, “The second planet”);
planets[2] = new_item (“Earth”, “The third planet”);
planets[3] = new_item (“Mars”, “The forth planet”);
planets[4] = new_item (“Jupiter”, “The fifth planet”);
planets[5] = new_item (“Saturn”, “The sixth planet”);
planets[6] = new_item (“Uranus”, “The seventh planet”);
planets[7] = new_item (“Neptune”, “The eighth planet”);
planets[8] = new_item (“Pluto”, “The ninth planet”);
planets[9] = (ITEM *) 0;

- J

Screen 10-3. Creating an Array of ltems

Functionnew_item does not copy the hame or description strings themselves, but saves
the pointers to them. So once you calv_item , you should not change the strings until
you callfree_item

SYNOPSIS

free_item(item)
ITEM* item

Functionfree_item frees an item. It does not, however, deallocate the space for the
item's name or description.

The argument tfree_item is a pointer previously obtained framew_item .

NOTE

To free an item, you must have already created itméth_item
and it must not be connected to a menu. If these conditions are not
met,free_item returns one of the error values listed below.

Once an item is freed, you must not use it again. If a freed item's pointer is passed to an
ETI routine, undefined results will occur.

If successfulfree item returnsE_OK. If it encounters an error, it returns one of the
following:

Menus

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT null item

E_CONNECTED item is connected to a menu

Two Kinds of Menus: Single- or Multi-valued

Menus are of two kinds:
Single-valued menus from which the user may select only one item
Multi-valued menus from which the user may select one or more items

By default, every menu is single-valued. To create a multi-valued menu, you turn off menu
optionO_ONEVALUHRising functionset_menu_opts or menu_opts_off . These
functions are treated in “Setting and Fetching Menu Options” on page 10-47.

Menus of both types always have a current item. With single-valued menus, you determine
the item selected by noting the current item. With multi-valued menus, you determine all
items selected by applying functidgam_value to each menu item and noting the value
returned. Most menu functions pertain to menus whether they are single- or multi-valued.
Functionset_item_value , however, may be used only with multi-valued menus.

Manipulating an Item's Select Value in a Multi-valued Menu

Select values of an item are either TRUE (selected) or FALSE (not selected). Function
set_item_value sets the select value of an item, wiitden_value returns it.

SYNOPSIS

int set_item_value (item value
ITEM* item
int value

int item_value (item)
ITEM * item

Functionset_item_value fails if given an item that is not selectable (the
O_SELECTABLBoption was previously turned off) or the item is connected to a single-
valued menu (connecting items to menus is described in “Creating and Freeing Menus” on
page 10-13). If successfglet_item_value returnsE_OK Otherwise, one of the fol-
lowing is returned.

E_SYSTEM_ERROR system error

E_REQUEST_DENIED item not selectable or single value menu

10-7

Character User Interface Programming

If the argument tédtem_value is an item pointer connected to a single-valued menu,
item_value returns FALSE.

You might want to place the code in Screen 10-4 after your user responds to a menu. Func-
tion process_menu determines which items have been selected, processes them appro-
priately, and marks them as unselected to prepare for further user response.

~

void process_menu (m) /* process multi-valued menu */
MENU * m;

ITEM ** | = menu_items (m);
while (*i) {
{

if (item_value (%)) {

/* take action appropriate for selection of this item */
set_item_value (*i, FALSE);
}

++i;

}

- J

Screen 10-4. Using item_value in Menu Processing

Manipulating Item Attributes

An attribute is any feature whose value can be set or read by an appropriate ETI function.
An item attribute is any item feature whose value can be set or read by an appropriate ETI
function. Item names, descriptions, options, and visibility are examples of item attributes.

Fetching Item Names and Descriptions

The routinestem_name anditem_description take an item pointer as their argu-
ment. Functionitem_name returns the item's name, while function
item_description returns its description.
SYNOPSIS

char * item_name (item)

ITEM* item

char * item_description (item)

ITEM* item

Both functions return NULL if given a NULL item pointer.

10-8

Menus

Setting Item Options

An option is an attribute whose value may be either on or off. The current release of ETI
provides the item optio® SELECTABLE(In the future, ETI may provide additional
options.) Setting th® SELECTABLEoption lets your user select the item. By default,
O_SELECTABLGHSs set for every item. Functicet_item_opts lets you turn on or

turn off this and any future options for an item, wliiéan_opts lets you examine the
option(s) set for a given item.

SYNOPSIS
int set_item_opts (item opty
ITEM* item

OPTIONS opts

OPTIONS item_opts (item)
ITEM* item

options:
O_SELECTABLE

In addition to turning on the named item options, functen item_opts turns off
any other item options.

If successfulset_item_opts returnsE_OK Otherwise, it returns the following:
E_SYSTEM_ERROR system error

If function set_item_opts is passed a NULL item pointer, like other functions it sets
the new current default. If functiatem_opts is passed a NULL pointer, it returns the
current default.

If you turn off optionO_SELECTABLEthe item cannot be selected. You might want to
make an item unselectable to emphasize certain things your application program is doing.
Unselectable items are displayed using the grey display attribute, described in “Fetching
and Changing a Menu's Display Attributes” on page 10-25.

Because options are Boolean values (they are either on or off), you use C Boolean opera-
tors withitem_opts to turn them on and off. Consequently, to turn off option
O_SELECTABLHor itemi0 and turn on the same option for ité€m, you can write:

ITEM *i0, * i1,

set_item_opts (i0, item_opts (i0) & ~O_SELECTABLE);
/* turn option off */

set_item_opts (i1, item_opts (i1) | O_SELECTABLE);
[* turn option on */

ETI also enables you to turn on and off specific item options without affecting others, if
any. The following functions change only the options specified.

10-9

Character User Interface Programming

SYNOPSIS
int item_opts_on (item, opt9

ITEM* item
OPTIONS opts

int item_opts_off (item opt9
ITEM* item
OPTIONS opts
These functions return the same error conditiorseistem_opts

As an example, the following code turns opt@nSELECTABLEbff for itemiO and on
for itemil .

ITEM *i0, * i1,
item_opts_off (i0, O_SELECTABLE); /* turn option off */
item_opts_on (i1, O_SELECTABLE); /* turn option on */
To change the current default to @tSELECTABLEyou can write either
[* set current defaults for all new items */

set_item_opts ((ITEM *) 0, item_opts((ITEM *) 0)
& ~O_SELECTABLE);

or

item_opts_off (ITEM *) 0, O_SELECTABLE);
* turn default option off */

Checking an Item's Visibility

10-10

A menu item is visible if it appears in the subwindow of the posted menu to which it is
connected. (Connecting and posting menus is described below.) Function

item_visible enables your application program to determine if an item is visible.
SYNOPSIS

int item_visible (item)

ITEM* item

If the item is connected to a posted menu and it appears in the menu subwindow,
item_visible returns TRUE. Otherwise, it returns FALSE.

To check if the first menu item is currently visible on the display, you can write

int at_top (m) /* check visibility of first menu item */
MENU * m;
{

ITEM ** i = menu_items (m);

Menus

ITEM * firstitem = i[O];

return item_visible (firstitem);

}

For another example, see “Counting the Number of Menu Items” on page 10-16.

Changing the Current Default Values for Item Attributes

ETI establishes initial current default values for item attributes. During item initialization,
each item attribute is assigned the current default value of the attribute. You can change or
retrieve the current default attribute values by calling the appropriate function with a
NULL item pointer. After the current default value changes, all subsequent items created
with new_item will have the new default value.

NOTE
Items created before changing the current default value retain

their previously assigned values.

The following sections offer many examples of how to change item attributes.

Setting the Item User Pointer

For each item created, ETI automatically allocates a special user pointer that enables you
to associate arbitrary data with the item. By default, the user pointer's value is NULL. You
may set its value to whatever you want or not use it at all.

SYNOPSIS
int set_item_userptr (item userpt)
ITEM* itemy
char* userptr
char * item_userptr (item)
ITEM* itemy

These two functions are helpful for creating item data such as title strings, help messages,
and the like.

Any defined structure can be connected to an item using the item's user pointer. The
pointer must be cast to (char *) and then later recast back to (defined-struct *). Screen 10-5
shows how to use an item's user pointer with a stite¥l_ID , which stores biological
information.

10-11

Character User Interface Programming

typedef struct
{
int id;
char* name;
char* type;
}
ITEM_ID;

ITEM_ID ids[7] =
{

, “apple”, “fruit”,

“ant”, “insect”,

“cow”, “mammal”,
“lizard”, “reptile”,
“potato”, “vegetable”,
“zebra”, “mammal”,

courwbE

b

ITEM * items[7];
for (i = 0; ids[i]; ++i)
{

/* create item from each ids.name */
itemsl[i] = new_item (ids[i].name, “");

/* set user pointer to point to start of each struct in ids[] */
set_item_userptr (itemsJi], (char *) &ids[i]);

}
items[i] = (ITEM *) O;

J

Screen 10-5. Using an Iltem User Pointer

Note that the pointer to each entry in anidg/ is cast tachar* , whichset_userptr
requires. You might then write a function that uses fundtésn_userptr to return the
information. The following function returns the item type:

char * get_type (i)

ITEM *i;

{
ITEM_ID *id = (ITEM_ID *) item_userptr (i);
return id -> type;

}

Here the value returned litgm_userptr is recast tdTEM_ID * so the item'sype
may be found.

Finally, you might calbet type to write the type, thus:
WINDOW * win;
waddstr (win,get_type(i));

If successfulset_item_userptr returnsE_OK Otherwise, it returns the following:
E_SYSTEM_ERROR system error

If function set_item_userptr is passed a NULL item pointer, the argument
userptr becomes the new default user pointer for all subsequently created items. As an

10-12

Menus

example, the following sets the new default user pointer to point to the ¥tiingre
Here:

set_item_userptr((ITEM *) 0, “You are Here");

Creating and Freeing Menus

Once you create the items for your menu, you can create the menu itself. To create and ini-
tialize a menu, you use functioew_menu.

SYNOPSIS

MENU * new_menu (itemg
ITEM** items

The argument tmew_menu is a NULL-terminated, ordered array IGfEM pointers.
These pointers define the items on the menu. Their order determines the order in which the
items are visited during menu driver processing, described below.

Functionnew_menu does not copy the array of item pointers. Instead, it saves the pointer
to the array for future use.

NOTE

Once your application program has callelv._menu, it should

not change the array of item pointers until the menu is freed by
free_menu or the item array is replaced by
set_menu_items , described below.

Items passed tbew_menu are connected to the menu created. They cannot be simulta-
neously connected to another menu. To disconnect the items from a menu, you can use
functionfree_menu or functionset_menu_items , which changes the items con-
nected to a menu from one set to another. See “Fetching and Changing Menu Items” on
page 10-14.

If successfulpew_menu returns a pointer to the new menu. The following error condi-
tions hold:

* |If there is insufficient memory for the menu or it detects an item connected
to another menwew_menu returns NULL.

¢ If the array of item pointers is not NULL-terminated, undefined results
occur.

In addition, ifnew_menu's argumenitems is NULL, as in
MENU * m;

m = new_menu ((MENU *) 0);

10-13

Character User Interface Programming

it creates the menu with no items connected to it and assigns the menu pomter to

The menu pointer returned Iogw_menu is the key to working with all menu routines.
You pass it to the appropriate menu routine to do such tasks as post menus, call the menu
driver, set the current item, and record or examine menu attributes.

Turn again to Screen 10-2 for an example showing how to create a menu. In general, you
want to use avhile loop as illustrated to create the menu items and assign the item point-
ers to the item pointer array. Note the NULL terminator assigned to the item pointer array
before the menu is created witew_menu

When you no longer need a menu, you should free the space allocated for it. To do this,
you use functioriree_menu .

SYNOPSIS
int free_menu (meny
MENU * meny

Functionfree_menu takes as its argument a menu pointer previously obtained from
new_menu. It disconnects all items from the menu and frees the space allocated for the
menu. The items associated with the menu are not freed, however, because you may want
to connect them to another menu. If not, you can free them by daiangtem

Remember that once a menu is freed, you must not pass its menu pointer to another rou-
tine. If you do, undefined results occur.

If successful, calls teree_menu returnE_OK. If free_menu encounters an error, it
returns one of the following:

E_BAD_ARGUMENT NULL menu pointer
E_POSTED menu is posted
E_SYSTEM_ERROR system error

ForE_POSTED,see “Posting and Unposting Menus” on page 10-27.

Manipulating Menu Attributes

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A menu attribute is any menu feature whose value can be set or read by an
appropriate ETI function. The set of items connected to a menu and the number of items in
the menu are examples of menu attributes.

Fetching and Changing Menu Items

During processing, you may sometimes want to change the set of items connected to a
menu. Functiorset_menu_items enables you to do this.

10-14

Menus

SYNOPSIS

int set_menu_items (meny itemg
MENU * meny
ITEM ** items

ITEM ** menu_items (meny
MENU * meny

Like the argument tmew_menu, the second argument s@t_menu_items is a
NULL-terminated, ordered array 6TEM pointers that defines the items on the menu.
Like new_menu, functionset_menu_items does not copy the array of item pointers.
Instead, it saves the pointer to the array for future use.

The items previously connected to the given menu vgeermenu_items s called are
disconnected from the menu (but not freed) before the new items are connected. The new
items cannot be given to other menus unless first disconnecfegtbgnenu or another
set_menu_items call.

If items is NULL, the items associated with the given menu are disconnected from it, but
no new items are connected.

If function set_menu_items is successful, it returris_OK. If it encounters an error, it
returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or NULL associated item array
E_POSTED menu is posted

E_CONNECTED connected item

Functionmenu_items returns the array of item pointers associated with its menu argu-
ment. In the next section, the application-defined funatobottom illustrates its use.

If no items are connected to the menu or the menu pointer argument is NULL,
menu_items returns NULL.

As an example ofet_menu_items , consider Screen 10-6 whose code changes the
items associated with a previously created menu.

10-15

Character User Interface Programming

MENU *m;
ITEMS ** olditems, ** newitems;
/* create items */
m = new_menu(olditems); [* create menu m */

/* process menu with olditems */

set_menu_items (m,newitems); /* change items associated with menu m */

_)

Screen 10-6. Changing the Items Associated with a Menu

Counting the Number of Menu Items

Occasionally, you may want to do different processing depending on the number of items
connected to your current menu. Funcitem_count returns the number of items con-
nected to a menu.

SYNOPSIS
int item_count (meny
MENU * meny

If menuis NULL, functionitem_count returns -1.

As an example of the use of this function, consider the following routine. Because the
index to the last menu item is one less than the number of items, this routine determines
whether the last item is displayed.

[* check visibility of last menu item */
int at_bottom (m)
MENU * m;
{
ITEM ** i = menu_items (m);
ITEM * lastitem = i[item_count(m)-1];

return item_visible (lastitem);

Changing the Current Default Values for Menu Attributes

10-16

As it does with the attributes of other objects, ETI establishes initial current default values

for menu attributes. During menu creation, each menu attribute is assigned the current
default value of the attribute. You can change or retrieve the current default attribute val-

ues by calling the appropriate function with a NULL menu pointer. After the current

Menus

default value changes, all subsequent menus createdhevithmenu will have the new
default value.

NOTE

Menus created before changing the current default value retain
their previously assigned values.

The following sections offer many examples of how to change menu attributes.

Displaying Menus

In general, to display a menu, you determine the menu's dimensions, optionally associate a
window and subwindow with the menu, optionally set the menu's display attributes, post
the menu, and refresh the screen.

Determining the Dimensions of Menus

The simplest way to display a menu is to si#scr as your default window and subwin-
dow. Any titles, borders, or other decorative matter are displayed in the menu window; the
menu proper is displayed in the menu subwindow. If you want to specify a menu window
or subwindow, you use the functiosst_menu_win or set_menu_sub . (These rou-

tines are treated “Associating Windows and Subwindows with Menus” on page 10-23.)
Whether or not you choose a menu window, ETI calculates the minimum window (or
subwindow) size for your menu.

To determine the minimum window size for a menu, ETI considers five factors:

¢ the size and number of items in a menu
* whether optiorO_ ROWMAJARoN
¢ whether optiorD_SHOWDESE€on

¢ the format, or maximum number of rows and columns on a displayed page
of the menu

¢ the mark string for menu items

ETI knows the size and number of items in a menu as soon as yaewatnenu, dis-
cussed above. By default, optioBs ROWMAJC&hdO_SHOWDES#&e on. Option
O_ROW_MAJGHsures that the items are displayed in row major order — fanning out left
to right, then top to bottom. How to change this and other menu options is discussed in
“Setting and Fetching Menu Options” on page 10-47. OpfioSHOWDES&hsures that

an item's description, if any, is displayed with the item's name.

This section first describes the menu's format and mark string. It then describes the routine
scale_menu , which uses the above information to set the window size for the menu.

10-17

Character User Interface Programming

NOTE

The five factors that determine the minimum window size have
default values. You need not worry about them until you want to
customize your menus.

Specifying the Menu Format

In general, the items comprising a menu do not fill a single screen. Sometimes they
occupy considerably less space, sometimes considerably more. The following functions
enable you to set the maximum number of rows and columns of menu items to be dis-
played at any one time.

SYNOPSIS

int set_menu_format (meny maxrows maxcol3
MENU * meny
int maxrows maxcols

void menu_format (meny maxrows maxcol$
MENU * meny
int * maxrows* maxcols

A menu page is the collection of currently visible items. Func@nmenu_format
establishes the maximum number of rows and columns of items that may be displayed on
a menu page.

The actual number of rows and columns displayed may be lesmthaowsor maxcols
depending on the number of items and whethethROWMAJQ#ption is on. (Menu
options are described in “Setting and Fetching Menu Options” on page 10-47.) Function
menu_format returns the maximum number of rows and columns of items that you set
for the given menu.

The default number of item rows is 16, while the default number of item columns is one. If
eithermaxrowsor maxcolsequals zero in the call ®et_menu_format , the current

value is not changed. An error occurs, however, if the value of either of these arguments is
less than zero.

ETI calculates the total number of rows and columns in a row major menu as follows:
#define minimum(a,b)((a) < (b) ? (a) : (b))

total_rows = (number_of _items - 1) / maxcols + 1,
total_cols = minimum (number_of_items, maxcols);

ETI calculates the total number of rows and columns in a column major menu as follows:

total_rows = (number_of_items - 1) /maxcols + 1,
total_cols = (hnumber_of items - 1) /total _rows + 1;

Whether or not th®_ ROW_MAJG#Rtion is on, the number of rows and columns of items
that are displayed at one time on a menu page is

10-18

Menus

displayed_rows = minimum (total_rows, maxrows);
displayed_cols = minimum (total_cols, maxcols);

If total rows is greater thamaxrows, the menu is scrollable — your end-user can
scroll up or down through the menu by making the appropriate menu driver request. See
“ETI Menu Requests” on page 10-32.

As an example, consider the displays in Figure 10-1 and Figure 10-2. They portray menus
consisting of five items. The numbers 0 through 4 signify menu items in the order in which
they live in the item pointer array. Figure 10-1 shows the menu displayed with a format of
maximum number of rows two, maximum number of columns two. To stipulate this for-
mat for menum, you write

set_menu_format(m,2,2);

Using the formulas above, we see ttedél rows is 3 andtotal_cols is 2 in all

four cases displayed in the two figures. The first display in each figure shows the menu in
row major format@_ROW_MAJQGHR), the second in column major format. The displayed
number of rows and columns in Figure 10-1 is 2. To see the last row of items, your user
can make th@EQ_SCR_DLINEequest to scroll down. If, instead, you set the format of
this menu to three rows, two columns, you get one of the two displays in Figure 10-2. The
enclosing block in each case indicates the items displayed at one time.

Figure 10-1. Examples of Menu Format (2, 2)

0 1 0 3
2 3 1 4
4 2
Row Major Column Major

Maximum Rows 2

Figure 10-2. Examples of Menu Format (3, 2)

0 1 0 3
3 1 4
4 2
Row Major Column Major

Maximum Rows 3

For a larger example, consider Figure 10-3. Here the number of items is 18 and the format
in both cases is four rows, three columns. In both cases, the total number of rows comes to
six, the total number of columns to three, and the displayed number of rows to four. Calcu-

10-19

Character User Interface Programming

lation shows that changing the number of items in this example to 19 changes the number
of rows to seven.

Figure 10-3. Examples of Menu Format (4, 3)

0 2 0 6 12
3 4 5 1 7 13
6 2 8 14
9 10 11 3 9 15
12 13 14 4 10 16
15 16 17 5 11 17

Row Major Column Major

The column major examples emphasize that when the total number of rows is greater than
the maximum number of rows, the items displayed do not exactly follow the order of the
items in the array of item pointers. The items are arranged in column-major format
throughout the entire menu, not within each displayed page. This conception agrees with
your user's ability to scroll through the menu.

If successful, functioset menu_format returnsE_OK. If an error occurs, it returns
one of the following:

E_SYSTEM_ERROR system error
E_BAD _ARGUMENT rows <0 orcols<0
E_POSTED menu is posted

If function set_menu_format is passed a NULL menu pointer, it sets a hew system
default. Suppose, for instance, that you want to change the default maximum number of
rows of items displayed to ten, and the default maximum number of columns displayed to
three. You can write

set_menu_format((MENU *)0,10,3);

The functionset_menu_format resets the value ebp_row to 0. See “Fetching and
Changing the Top Row” on page 10-42 for details.

Finally, if functionmenu_format receives a NULL menu pointer, it returns the current
default format.

Changing Your Menu's Mark String

The mark string distinguishes

* selected items in a multi-valued menu

¢ the current item in a single-valued menu.

The mark string appears just to the left of the item name.

10-20

Menus

SYNOPSIS

int set_menu_mark (meny mark)
MENU * meny
char* mark

char * menu_mark (meny
MENU * meny

Functionset_menu_mark sets the mark string, whileenu_mark returns the string.
The initial default mark string is a minus sigr).(The mark string may be as long as you
want, provided each item fits on one line of the menu's subwindow.

NOTE

Do not change the mark string area as long as you want that mark
because ETI does not copy it.

You can callset_menu_mark either before or after the menu is posted. (See “Posting
and Unposting Menus” on page 10-27.) However, there is a restriction to calling it after-
wards.

NOTE

If you callset_menu_mark with a posted menu, the length of
the mark string must stay the same.

If the menu is posted and the length of the mark string changes, the function returns
E_BAD_ARGUMENiNd leaves the mark unchanged.

To change the mark string for menuto---> you can write
MENU * m;

set_menu_mark (m, “--->");
/* change mark string for menu m */

If successful, functioset_menu_mark returnsg_OK. If an error occurs, function
set_menu_mark returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT menu is posted: change in string length impossible or string
is NULL

Note that you can change the current default mark string for all subsequently created
menus in your program by passiset_menu_mark a NULL menu pointer. To change
the current default mark string 6> you write

set_menu_mark ((MENU *) 0, “--->");
/* change default mark string */

10-21

Character User Interface Programming

All subsequently created menus will have as their mark string. To return the current
default mark string, you cathenu_mark with NULL.:

char * mark = menu_mark ((MENU *) 0);
[* default mark string */

Querying the Menu Dimensions

10-22

Remember that the size of menu items,Gh&OWMAJORenu option, the menu format,
and the menu mark determine the smallest window size for a menu. Function
scale_menu returns this smallest window size in terms of the number of character rows
and columns.

SYNOPSIS

int scale_menu (meny rows colg
MENU * meny
int * rows * cols

Because functioscale_menu must return more than one value (hamely, the minimum
number of rows and columns for the menu) and C passes parameters “by value” only, the
arguments ofcale_menu are pointers. The pointer argumerdgw/s andcols point to
locations used to return the minimum number of rows and columns for displaying the
menu.

NOTE

You should calkcale_menu only after the menu's items have
been connected to the menu usimgw_menu or
set_menu_items

The following code places the minimal number of rows and columns necessary for menu
m inrows andcols :

MENU *m;
int rows, cols;

scale_menu (m, &rows, &cols);
/* return dimensions of menu m */

You use the values returned fraotale_menu to create menu windows and subwin-
dows. In the next section, we will see how to do this.

If successfulscale_menu returnsE_OK If an error occurs, the function returns one of
the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer

E_NOT_CONNECTEMo connected items

Menus

Associating Windows and Subwindows with Menus

Two windows are associated with each menu — the menu window and the menu subwin-
dow. The following functions assign windows and subwindows to menus and fetch those
previously assigned to them.

SYNOPSIS

int set_menu_win (meny window)
MENU * meny
WINDOW * window

WINDOW * menu_win (meny
MENU * menu

int set_menu_sub (meny window)
MENU * meny
WINDOW * window

WINDOW * menu_sub (meny
MENU * menu

To place a border around your menu or give it a title, yousealinenu_win and write
to the associated window.

NOTE

By default, (1) the menu window is NULL, which by convention
means that ETI usestdscr as the menu window; and (2) the
menu subwindow is NULL, which means that ETI uses the menu
window as the menu subwindow.

If you do not want to use the system defaults, you may create a window and a subwindow
for every menu. ETI automatically writes all output of the menu proper on the menu's sub-
window. You may write additional output (such as borders, titles, and the like) on the
menu's window. The relationship between ETI menu routines, your application program, a
menu window, and a menu subwindow is illustrated in Figure 10-4.

10-23

Character User Interface Programming

window
C Application
sub - Program
window g
ETI
Menu
Functions

Figure 10-4. Menu Functions Write to Subwindow, Application to Window

NOTE

You should apply all output and refresh operations to the menu
window, not its subwindow.

Figure 10-7 shows how you can create and display a menu with a border of the default
charactersACS_VLINE and ACS_HLINE. (See thebox command in the
curses(3curses) manual pages.)

10-24

Menus

@)

MENU * m;
WINDOW * w;
int rows, cols;

scale_menu (m, &rows, &cols); /* get dimensions of menu */
/* create window 2 characters larger than menu dimensions
with top left corner at (0, 0). subwindow is positioned
at (1, 1) relative to menu window origin with dimensions
equal to the menu dimensions. */

if (w = newwin (rows+2, cols+2, 0, 0))

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, cols, 1, 1));

box (w, 0, 0); /* draw border in w */

}

_)

Screen 10-7. Creating a Menu with a Border

Variablesrows andcols provide the menu dimensions without the border. The dimen-
sions of the menu subwindow are set to these values. In general, if you want a simple bor-
der, you should set the number of rows and columns in the menu's window to be two more
than the numbers in its subwindow, as in the example.

Remember that the initial default menu window and subwindow are NULL. (By conven-
tion, this means thattdscr is used as the menu window and the menu window is used as
the menu subwindow.) If you want to change the current default menu window or subwin-
dow, you can pass functiosgt_menu_win andset_menu_sub a NULL menu
pointer. Thus, the code

WINDOW * dftwin;

set_menu_win ((MENU *) 0, dftwin);
/* sets default menu window to dftwin */

changes the current default windowdtiwwin.

If successful, functionset_menu_win andset_menu_sub returnE_OK. If not, they
return one of the following:

E_SYSTEM_ERROR system error

E_POSTED menu is posted

Fetching and Changing a Menu's Display Attributes

Menu display attributes are visible menu characteristics that distinguish classes of menu
items from each other. Low-level ETdurses) video attributes are used to differentiate
the menu display attributes. These menu display attributes include

10-25

Character User Interface Programming

10-26

foreground attribute distinguishes the current item, if selectable, on all menus and
selected items on multi-valued menus

background attribute distinguishes selectable, but unselected, items on all menus
grey attribute distinguishes unselectable items on multi-valued menus

pad character the character that fills (pads) the space between a menu item's
name and description

The following functions enable you to set and read these attributes.

SYNOPSIS

int set_menu_fore (meny attr)
MENU ** meny
chtype attr;

chtype menu_fore (meny
MENU ** meny

int set_menu_back (meny attr)
MENU ** meny
chtype attr;

chtype menu_back (meny
MENU ** meny

int set_menu_grey (meny attr)
MENU ** meny
chtype attr;

chtype menu_grey (meny
MENU ** meny

int set_menu_pad (meny pad
MENU ** menuy
int pad

intmenu_pad (meny
MENU ** meny

In general, to establish uniformity throughout your program, you should set the menu dis-
play attributes with these functions at the start of the program.

Functionset_menu_fore sets thecurses foreground attribute. The default is
A_STANDOUT

Functionset_menu_back sets thecurses background attribute. The default is
A NORMAL

Functionset_menu_grey sets thecurses attribute used to display nonselectable
items in multi-valued menus. The defaulAisSUNDERLINE

Menus

To set the foreground attribute of memuto A_BOLDand its background attribute to
A_DIM, you write

MENU *m;

set_menu_fore(m,A_BOLD);
set_menu_back(m,A_DIM);

All these functions can change or fetch the current default if passed a NULL menu pointer.
As an example, to set the default grey attributé tNORMALyou write

set_menu_grey((MENU *)0, A_ NORMAL);

If functionsset_menu_fore , set menu_back , andset menu_grey encounter an
error, they return one of the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT badcurses attribute

Functionset_menu_pad sets the pad character for a menu. The initial default pad char-
acter is a blank. The pad character must be a printable ASCII character.

To change the pad character for memto a dot (), you write
MENU * m;
set_menu_pad(m,".");

If functionset_menu_pad encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error

E_BAD_ARGUMENT non-printable pad character

Posting and Unposting Menus

To post a menu is to write it on the menu's subwindow. To unpost a menu is to erase it
from the menu's subwindow, but not destroy its internal data structure. ETI provides two
routines for these actions.

SYNOPSIS
int post_menu (meny
MENU * menu
int unpost_menu (meny
MENU * menu

Note that neither of these functions actually change what is displayed on the terminal.
After posting or unposting a menu, you must ecalefresh (or its equivalents,
wnoutrefresh anddoupdate) to do so.

10-2Z7

Character User Interface Programming

10-28

If function post_menu encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer
E_POSTED menu is already posted
E_NOT_CONNECTEDo connected items
E_NO_ROOM menu does not fit in subwindow

Regardinge_ NO_ROOMecall from “Querying the Menu Dimensions” on page 10-22
that functionscale_menu returns the number of rows and columns necessary to display
the menu. It does not, however, know the size of the subwindow you are associating with
the menu. Only when the menu is posted is this point checked. Any failure of the menu to
fit in the subwindow is then detected.

If function unpost_menu executes successfully, it retutBsOK In the following situa-
tions, it fails and returns the indicated values:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer
E_NOT_POSTED menu is not posted
E_BAD_STATE called from init or term

You might, for instance, receie NOT_POSTELf you forgot to post the menu in the
first place or you mistakenly tried to unpost it twice.

Screen 10-8 illustrates two routines you might write to post and unpost menus. Function
display_menu creates the window and subwindow for the menu and posts it. Function
erase_menu unposts the menu and erases its associated window and subwindow.

Menus

static void display_menu (m)/* create menu windows and post */

MENU * m;

{
WINDOW * w;
int rows;
int cols;

scale_menu (m, &rows, &cols);/* get dimensions of menu */
/* create menu window, subwindow, and border */
if (w = newwin (rows+2, cols+2, 0, 0)) {

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, cols, 1, 1));
box (w, 0, 0); /* create border of O's */

keypad (w, 1); /* set for each data entry window */

else
error (“error return from newwin”, NULL);

/* post menu */

if (post_menu (m) != E_OK)

error (“error return from post_menu”, NULL);
else

wrefresh (w);

}

static void erase_menu (m) /* unpost and delete menu windows */

MENU * m;

{
WINDOW * w = menu_win (m);
WINDOW * s = menu_sub (m);
unpost_menu (m); /* unpost menu */
werase (W); /* erase menu window */
wrefresh (w); /* refresh screen */
delwin (s); /* delete menu windows */
delwin (w);

}

_)

Screen 10-8. Sample Routines Displaying and Erasing Menus

Functionkeypad is called with a second argumentlofo enable virtual keyKEY LL,
KEY_LEFT, and others to be properly interpreted in the routiee request
described in “Menu Driver Processing” on page 10-29. See the discussieypatl in
thecurses(3curses) manual pages for details. Finally, note the placement of checks
for error returns in this example.

Menu Driver Processing

Themenu_driver is the workhorse of the menu system. Once the menu is posted, the
menu_driver handles all interaction with the end-user. It responds to

* item navigation requests

* menu scrolling requests

10-29

Character User Interface Programming

* item selection requests

* pattern buffer requests

SYNOPSIS

int menu_driver (meny C)
MENU * meny
int ¢

Your application program passes a character to the menu driver for processing and evalu-
ates the results.

To enable your application program to fetch the character for the menu driver, you write a
routine that defines the input key virtualization. This is the correspondence between spe-
cific input keys, control characters, or escape sequences on the one hand and menu driver
requests on the other. The virtualization routine returns a specific menu request or applica-
tion command that the menu driver can process. Upon return from the menu driver, your
application can check if the input was processed appropriately. If not, your application
specifies the action to be taken. These actions may include terminating interaction with the
menu, responding to help requests, generating an error message, and so forth.

Defining the Key Virtualization Correspondence

10-30

To illustrate a key virtualization routine, consider Screen 10-9, which shows the key virtu-
alization routineget_request . Nearly all the values it returns are the ETI menu
requests to be discussed in the sections below.

Menus

4)

/* define application commands */
#define QUIT(MAX_COMMAND + 1)

/* Note that ~X represents the character control-X.

~Q - end menu processing
N - move to next item
P - move to previous item

home key- move to first item
home down- move to last item

left arrow- move left to item
right arrow- move right to item
down arrow- move down to item
up arrow- move up to item

AU - scroll up a line
D - scroll down a line
"B - scroll up a page
F - scroll down a page
X - clear pattern buffer
AH <BS> - delete character from pattern buffer
A - request next pattern match
nZ - request previous pattern match
T - toggle item ¥/
static int get_request (w)/* virtual key mapping */
WINDOW * w;
{

int ¢ = wgetch (w);/* read a character */
switch (c)
case 0x11: /*"Q */ return QUIT,;

case Ox0e: /*~N*/ return REQ_NEXT_ITEM;
case 0x10: /*”~P */ return REQ_PREV_ITEM;

case KEY_HOME: return REQ_FIRST_ITEM,;
case KEY_LL: return REQ_LAST_ITEM;
case KEY_LEFT: return REQ_LEFT_ITEM;
case KEY_RIGHT: return REQ_RIGHT_ITEM;
case KEY_UP: return REQ_UP_ITEM;
case KEY_DOWN: return REQ_DOWN_ITEM;

case 0x15: /*~U*/ return REQ_SCR_ULINE;
case 0x04: /*~D */ return REQ_SCR_DLINE;
case 0x06: /*F*/ return REQ_SCR_DPAGE;
case 0x02: /*”"B*/ return REQ_SCR_UPAGE;

case 0x18: /*~X*/ return REQ_CLEAR_PATTERN;
case 0x08: /*"H */ return REQ_BACK_PATTERN;
case 0x01: /*~A*/ return REQ_NEXT_MATCH;
case Oxla: /*~Z*/ return REQ_PREV_MATCH;
case 0x14: /*~T */ return REQ_TOGGLE_ITEM;

return c;

}

_)

Screen 10-9. Sample Routine that Translates Keys into Menu Requests

Note that becaussgetch here automatically does a refresh before reading a character,
you can omit explicit calls tarrefresh in applications that do character input.

10-31

Character User Interface Programming

ETI Menu Requests

ETI menu requests are made by calling functi@nu_driver with anint value that
signifies the request. To appreciate the effects of some requests, bear in mind what a menu
page is.

A menu pagés the collection of currently visible menu items,
that is, those displayed in the menu subwindow.

A menu page is distinct from a form page, which is a logical portion of a form. Form
pages are treated in Chapter 11.

Item Navigation Requests

These requests enable your end user to navigate from item to item whether or not the items
are displayed at the moment.

REQ_NEXT_ITEM move to next item
REQ_PREV_ITEM move to previous item
REQ_FIRST_ITEM move to first item
REQ _LAST ITEM move to last item

The order of the items in the array originally passetete_menu or set_menu_items
determines the order in which items are visited in response to these requests.

The REQ_NEXT_ITEMandREQ_PREV_ITEMrequests are not cyclic. A
REQ_NEXT_ITEMequest from the last item olREQ_PREV_ITEMequest from the
first item returns the valuieé_ REQUEST_DENIED

Often, a scrolling operation not explicitly requested by the user may nonetheless take
place in response to these requests. For exampl®EQe FIRST_ITEMrequest on a
menu that is not currently displaying the first item may scroll to display the menu's first
item at the top of the screen.

Directional Item Navigation Requests

These requests enable your end-user to navigate from item to item in different directions.
REQ_LEFT _ITEM move left to item
REQ_RIGHT_ITEM move right to item
REQ _UP_ITEM move up to item
REQ_DOWN_ITEM move down to item

Directional item navigation requests are not cyclic. If there is no item on the current page
to the left or right of the current item, the menu driver retetnrREQUEST _DENIEN
response to the corresponding request.

10-32

Menus

On the other hand, if the menu is scrollable and there are more items above or below the
current menu page, the corresponding requeBS_UP_ITEMandREQ_DOWN_ITEM
generate an automatic scrolling operation. If not, the menu driver returns
E_REQUEST_DENIED

Menu Scrolling Requests

These requests enable your users to scroll easily through menus that span more than one
menu page.

REQ_SCR_DLINE scroll menu down a line
REQ_SCR_ULINE scroll menu up aline
REQ_SCR_DPAGE scroll menu down a page
REQ_SCR_UPAGE scroll menu up a page
The current and top items are adjusted by these operations.
Menu scrolling requests are also not cyclic. Attempts to scroll up from the first menu page,

or scroll down from the last, return from the menu driver the value
E_REQUEST DENIED

Multi-valued Menu Selection Request

This request enables your end user to select or deselect an item in a multi-valued menu.
REQ_TOGGLE_ITEMselect/deselect item
If the item is currently selected, this request deselects it, and vice versa.

To use this request, t@ ONEVALUBption must be off. (See “Setting and Fetching
Menu Options” on page 10-47.) If the option is on, you have a single-valued menu. In that
case, this request fails aBRd REQUEST DENIEDs returned from the menu driver.

Pattern Buffer Requests

The pattern buffer is an area automatically allocated for your menu application programs.
It is used to position the current menu item at an item name that matches the pattern. You
can modify the pattern buffer

* by callingset_menu_pattern (described below)

* by passing the menu driver printable ASCII characters one at a time.

Each non-printable ASCII character that is received by the menu driver is assumed to be a
menu request. On the other hand, each printable ASCII character that is received by the
menu driver is entered into the pattern buffer. At the same time, the current item advances
to the first matching item. If no matching item is found, the current item remains
unchanged, the character is deleted from the pattern buffer, and the menu driver returns
E_NO_MATCH

10-33

Character User Interface Programming

The following requests enable you to change and read the pattern buffer.
REQ_CLEAR_PATTERN clear pattern buffer
REQ_BACK_PATTERN delete last character from pattern buffer
REQ_NEXT_MATCH move to next pattern match
REQ_PREV_MATCH move to previous pattern match

RequesREQ_CLEAR_PATTER®Mears the pattern buffer entirely.

NOTE

Without requesREQ_CLEAR_PATTERNhe pattern buffer is
automatically cleared after each successful scrolling or item navi-
gation operation. In other words, any time the top item or current
item changes, the pattern buffer is cleared automatically.

REQ_BACK_PATTERG#Eletes the last character from the pattern buffer. This request can
be used to support a backspace operation on the pattern buffer.

Sometimes more than one menu item will match the character(s) entered by the user.
REQ_NEXT_MATCidoves the user forward on the displayed menu to the next array item
that matches the data in the pattern buR&Q_PREV_MATCIHn the other hand, moves

the user backward on the displayed menu to the previous array item that matches the pat-
tern buffer. In both cases, if no additional match is found, the current item remains
unchanged ane_NO_MATCI$ returned from the menu driver.

RequestREQ_ NEXT MATC&hdREQ_PREV_MATChte cyclic through all menu items.
In addition, these requests generate automatic scrolling requests if the menu is scrollable
and the next or previous matching item is not visible.

NOTE

An empty pattern buffer matches all items.

Application-defined Commands

10-34

ETI menu requests are implemented as integers aboweitdes maximum key value
KEY_MAXA symbolic constantIAX_COMMAN®Dprovided to enable your applications

to implement their own requests (commands) without conflicting with the ETI form and
menu system. All menu requests are greater KEavi_MAXand less than or equal to
MAX_COMMANDour application-defined requests should be greater than
MAX_COMMANDwo illustrations occur in the example in the next section. Figure 10-5
diagrams this relationship between ETI key values, ETI menu requests, and your applica-
tion program's menu requests.

Menus

~&— ETI Key Values —#»|-@— ETI MENU Requests —»

KEY _MAX

-— Application-Defined Requests

MAX_COMMAND

Figure 10-5. Integer Ranges for ETI Key Values and MENU Requests

Calling the Menu Driver

The menu driver checks whether the virtualized character passed to it is an ETI menu
request. If so, it performs the request and reports the results. If the character is not a menu
request, the menu driver checks if the character is data, that is, a printable ASCII character.
If so, it enters the character in the pattern buffer and looks for the first match among the
item names. If no match is found, the menu driver deletes the character from the pattern
buffer and return&_NO_MATCHT(the character is not recognized as a menu request or
data, the menu driver assumes the character is an application-defined command and

returnsE_ UNKNOWN_COMMAND

To illustrate a sample design for calling the menu driver, we will consider a program that
permits interaction with a menu of astrological signs. Screen 10-10 displays the menu.

-

+:

+

| Aries The Ram |

| Taurus The Bull |

| Gemini The Twins |
| Cancer The Crab |

| Leo The Lion |

| Virgo The Virgin |

| Libra The Balance |

| Scorpio The Scorpion |

| Sagittarius The Archer |

| Capricorn The Goat |

| Aquarius The Water Bearer|
| Pisces The Fishes |

~

J

Screen 10-10. Sample Menu Output (2)

You have already seen much of the astrological sign program in previous examples. Its

functionget_request
remaining routines.

, for instance, appeared in Screen 10-9. Screen 10-11 shows its

10-35

Character User Interface Programming

10-36

Screen 10-11.

-

/* This program displays a sample menu.

Omitted here are the key mapping defined by get_request

in Screen 10-9; application-defined routines display_menu
and erase_menu in Screen 10-8; and the curses initialization
routine start_curses in section “ETI Low-level Interface to
High-level Functions” */

#include <string.h>
#include <menu.h>

static char *PGM= (char *) 0;/* program name */

static int my_driver (m, c)/* handle application commands */
MENU * m;

int c;

{

switch (c)

case QUIT:
return TRUE;
break;

beep ();/* signal error */
return FALSE;
}

main (argc, argv)
int argc;
char * argv[];

WINDOW *w;

MENU * m;

ITEM ** i

ITEM ** make_items ();
void free_items ();

int c, done = FALSE;

PGM = argv[0];
start_curses ();

if (! (m = new_menu (make_items ())))
error (“error return from new_menu”, NULL);

display_menu (m);

/* interact with user */
W = menu_win (m);
while (! done)

switch (menu_driver (m, c = get_request (w)))
{
case E_OK:
break;
case E_UNKNOWN_COMMAND:
done = my_driver (m, c);
break;
default:
beep ();/* signal error */
break;

o

Sample Program Calling the Menu Driver

Menus

4)

erase_menu (m);
end_curses ();

i = menu_items (m);
free_menu (m);
free_items (i);

exit (0);
}
typedef struct
{
char* name;
char* desc;
}

ITEM_RECORD;
/* item definitions */

static ITEM_RECORD signs [] =

{
“Aries”, “The Ram”,
“Taurus”, “The Bull”,
“Gemini”, “The Twins”,
“Cancer”, “The Crab”,
“Leo”, “The Lion”,
“Virgo”, “The Virgin”,
“Libra”, “The Balance”,
“Scorpio”, “The Scorpion”,
“Sagittarius”, “The Archer”,
“Capricorn”, “The Goat”,
“Aquarius”, “The Water Bearer”,
“Pisces”, “The Fishes”,

(char *) O,(char *) O,

#define MAX_ITEM 512
static ITEM *items [MAX_ITEM + 1]; /* item buffer */

static ITEM ** make_items () /* create the items */

L
inti;
for (i = 0; i < MAX_ITEM && signsli].name; ++i)
items[i] = new_item (signs[i].name, signs[i].desc);
itemsl[i] = (ITEM *) O;
return items;
}
static void free_items (i) /* free the items */
ITEM **j;
while (*i)
free_item (*i++);
}

_)

Functionmain first calls the application-defined routimake_items to create the items
from the arraysigns . The value returned is passedhew_menu to create the menu.
Functionmain then initializescurses usingstart_curses and displays the menu
usingdisplay_menu

In itswhile loop, main repeatedly callsnenu_driver with the character returned by

get _request . If the menu driver does not recognize the character as a request or data, it
returnsE_ UNKNOWN_COMMAM#Ereupon the application-defined routing driver

is called with the same character. Routimg driver processes the application-defined
commands. In this example, there is only one, QUIT. If the character passed does not sig-
nify QUIT, my_driver signals an error and returns FALSE and the signal prompts the

10-37

Character User Interface Programming

user to re-enter the character. If the character passed is the QUIT charactieiver
returns TRUE. In turn, this sedene to TRUE, and thevhile loop is exited.

Finally, main erases the menu, terminates low-level Elirg¢es), frees the menu and
its items, and exits the program.

This example shows a typical design for calling the menu driver, but it is only one of sev-
eral ways you can structure a menu application.

If the menu_driver recognizes and processes the input character argument, it returns
E_OK In the following error situations, theenu_driver returns the indicated value:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu

E_BAD_STATE called from init/term routines
E_NOT_POSTED menu is not posted
E_UNKNOWN_COMMANDunknown command
E_NO_MATCH item match failed

E_REQUEST_DENIED recognized request failed

NOTE

Because the menu driver calls the initialization and termination
routines described in the next section, it may not be called from
within them. Any attempt to do so retutBssBAD_STATE

Establishing Item and Menu Initialization and Termination Routines

10-38

Sometimes, you may want the menu driver to execute a specific routine during the change
of an item or menu. The following functions let you do this easily.

SYNOPSIS

typedef void (*PTF_void) ();

int set_menu_init (meny fung
MENU * meny
PTF _void fung

PTF_void menu_init (meny
MENU * meny

int set_menu_term (meny fung
MENU * meny
PTF _void fung

Menus

PTF_void menu_term (meny
MENU * meny

int set_item_init (meny fung
MENU * meny
PTF _void fung

PTF_void item_init (meny
MENU * meny

int set_item_term (meny fung
MENU * meny
PTF _void fung

PTF_void item_term (meny
MENU * meny

The argumenfuncis a pointer to the specific function you want executed by the menu
driver. This application-defined function takes a menu pointer as an argument.

If you want your application to execute an application-defined function at one of the ini-
tialization or termination points listed below, you should call the approfseste routine

at the start of your program. If you do not want a specific function executed in these cases,
you may refrain from calling these routines altogether.

The following subsections summarize when each initialization and termination routine is
executed.

Function set_menu_init

The argumentfuncto this function is automatically called by the menu system

* just before the menu is posted

* just after each menu scrolling operation, that is, every time the top row
changes on a posted menu, whether by the menu driver in response to a
request or by a program's callget_current_item ortop_row

Function set_item_init

The argumentuncis automatically called by the menu system

* just before the menu is posted

¢ just after the current item on a posted menu is changed, whether by the
menu driver's response to a request or by a program's call to
set_current_item ortop_row

Function set_item_term

The argumentuncis automatically called by the menu system

10-39

Character User Interface Programming

* just before the current item changes on a posted menu

* just before the menu is unposted

Function set_menu_term

10-40

The argumentuncis automatically called by the menu system

* just before a scrolling operation on a posted menu

* just before the menu is unposted

If functionsset_menu_init , set_menu_term , set_item_init , Oor
set_item_term encounter an error, they return

E_SYSTEM_ERROR system error

Screen 10-12 shows how you can use funcsemnitem_init to implement a menu
prompting feature as your end-user moves from item to item.

‘.)

WINDOW * prompt_window;

void display_prompt (s)
char * s;
{
WINDOW * w = prompt_window;

werase (w);
wmove (w, 0, 0); /* move to window origin */
waddstr (w, s); [* write prompt in window */
wrefresh (w); /* display prompt */

}

void generate_prompt (m)

MENU * m;

{

/* display the prompt string associated with the current item */

char * s = item_userptr (current_item (m));
display_prompt (s);

}
ITEM * items[NUMBER_OF_ITEMS + 1];
main ()

MENU * m;

for (i = 0; i < NUMBER_OF_ITEMS; ++i)
{

/* read in name and prompt strings here */

items[i] = new_item (name, “);
set_item_userptr (items[i], prompt);

}
itemsl[i] = (ITEM *) O;

m = new_menu (items);
set_item_init (m, generate_prompt); /* set initialization routine */

_)

Screen 10-12. Using an Initialization Routine to Generate Item Prompts

Menus

Functionset_item_init arranges to catjenerate_prompt whenever the menu
item changes. Functiogenerate_prompt fetches the item user pointer associated
with the current item and caltlisplay_prompt , which displays the item prompt.
Functiondisplay_prompt is a separate function to enable you to use it for other
prompts as well.

Fetching and Changing the Current Item

The current item is the item where your end-user is positioned on the screen. Unless it is
invisible, this item is highlighted and the cursor rests on the item. To have your application
program set or determine the current item, you use the following functions.

SYNOPSIS

int set_current_item (meny item)
MENU * meny
ITEM* item

ITEM * current_item (meny
MENU * menu

int item_index (item)
ITEM* item

Functionset_current_item enables you to set the current item by passing an item
pointer, while functiorcurrent_item returns the pointer to the current item.

The functionitem_index takes an item pointer argument and returns the index to that
item in the item pointer array. The value of this index ranges from 0 through N-1, where N
is the total number of items connected to the menu.

Because the menu driver satisfies ETI-defined item navigation requests automatically,
your application program need not csgt_current_item , unless you want to imple-
ment additional item navigation requests for your application. You may, for instance, want
a request to jump to a particular item or an item, say, two items down from the current one
on the menu page.

When a menu is created hgw_menu or the items associated with a menu are changed
by set_menu_items , the current item is set to the first item of the menu.

As an example afet_current_item , the following function sets the current item of
menum to the first item of the menu:

int set_first_item (m) /* set current item to first

item */
MENU * m;
{
ITEM ** i = menu_items (m);
return set_current_item (m, i[0]);
}

10-41

Character User Interface Programming

As an example ofurrent_item , the following routine checks if the first menu item is
the current one:

int first_item (m) /* check if current item is first

item */
MENU * m;
{
ITEM *i = current_item (m);
return item_index (i) == 0;
}
If successful, functioset_current_item returnse_OK. If an error occurs, function
set_current_item returns one of the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer or item not connected to menu
E_BAD_STATE called from initialization or termination routines

Functioncurrent_item returns (ITEM *) O if given a NULL menu pointer or there are
no items connected to the menu.

Functionitem_index returns -1 if the item pointer is NULL or the item is not con-
nected to a menu.

Fetching and Changing the Top Row

10-42

Functiontop_row returns the number of the menu row currently displayed at the top of
your end-user's menu. Functieat_top_row sets the top of the menu to the named
row, unless the row does not start a complete page of items. In this case, it returns
E_BAD_ARGUMENT

SYNOPSIS

int set_top_row(meny row)
MENU * meny
int row;

int top_row(meny
MENU * meny

Functionset_top_row sets the current item to the leftmost item in the new top row.
Variablerow must be in the range of 0 throu§R-VR, whereTR is the total number of

rows as determined by the menu format ¥Rds the number of visible rows. If the value

of row is greater, the row does not start a complete page of items. See “Specifying the
Menu Format” on page 10-18 for details on menu display.

When a menu is created bgw_menu or the items associated with the menu are changed
by set_menu_items , the top row is set to 0.

Menus

NOTE

If the menu format or th® ROWMAJG#Dtion is changed, the
top row is automatically set to 0. See “Specifying the Menu For-
mat” on page 10-18 and “Setting and Fetching Menu Options” on
page 10-47 for details on changing these menu attributes.

In addition, if the current item is changed Bgt_current_item or
set_menu_pattern to an item that is not currently visible, the top row is generally set

to the row that contains the new current item. The sole exception occurs when, as noted
above, the top row does not start a complete page of items.

If successful, functiorset_top_row returnsgE_OK. If an error occurs,
set top_item returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL menu pointer or index out of range
E_BAD_STATE called from init/term routines
E_NOT_CONNECTEMo connected items

Functiontop_row returns -1 if given a NULL menu pointer or no items are connected to
the menu.

Positioning the Menu Cursor

Some applications may need to move the menu's window cursor from the position
required for continued processing by the ETI menu driver. To move the cursor back to
where it belongs, you use functipns_menu_cursor

SYNOPSIS

int pos_menu_cursor (meny
MENU * menu

If your application does not change the cursor position in the menu window, calling this
function is unnecessary.

Your application might change the cursor position automatically because of prior calls to

menu driver initialization routines such set_item_init . Or it might do so because
of explicit calls to application routines such as writing a prompt. Screen 10-13 illustrates
this usage.

10-43

Character User Interface Programming

void generate_prompt (m)
MENU * m;
{

/* display the prompt string associated with the current item */

WINDOW * w = menu_win (m);

char * s = item_userptr (current_item (m));
box (w, 0, 0);

wmove (w, 0, 0);

waddstr (w, s);

pos_menu_cursor (m);

_)

Screen 10-13. Returning Cursor to Its Correct Position for Menu Driver Pro-
cessing

If function pos_menu_cursor is successful, it returris_OK In the following error sit-
uations, it fails and returns the indicated value:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer

E_NOT_POSTED menu is not posted

Changing and Fetching the Pattern Buffer

10-44

Remember that the pattern buffer is used to make the first item that matches the pattern be
the current item. In general, to match the current menu item, your application program
inserts characters into the pattern buffer that have been passed to the menu driver from the
user's data entry. As an alternative, you can insert characters into the pattern buffer with
the functionset_menu_pattern

SYNOPSIS

int set_menu_pattern (meny patterr)
MENU * meny
char* pattern

char * menu_pattern (meny
MENU * menu

Functionset_menu_pattern first clears the pattern buffer and then adds the characters
in pattern to the buffer untipattern is exhausted. The function next tries to find the
first item that matches thmattern . If it does not find a complete match, the pattern
buffer is cleared and the current item does not changettdrn is the null string (*”),

the pattern buffer is simply cleared. The pattern buffer is automatically cleared whenever

¢ each successful scrolling or item navigation operation is completed (in
other words, whenever the top or current item changes)

Menus

* amenu is created mew_menu

* the items associated with a menu are changestynenu_items

If successful, functioset_menu_pattern returnse_OK. If an error occurs, function
set_menu_pattern returns one of the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL menu pointer or NULL pattern pointer
E_NO_MATCH complete match failed

Functionmenu_pattern returns the value of the string in the pattern buffer. If the pat-
tern buffer is empty (the null string “), it returns the null string (*”). If the menu pointer
argument is NULL, it returns NULL, that is, (char *) 0.

To determine if your user has entered data that matches an item, you might write a routine
that useset_menu_pattern , as follows:

int find_match (m, newpattern)

/* returns TRUE or FALSE */
MENU * m;
char * newpattern;

{
}

If the newpattern matches a menu item, functiset_menu_pattern returnse_OK
and hencdind_match returns TRUE. In additiorffind_match advances the current
item to the matching item.

return set_menu_pattern(m, newpattern) == E_OK;

Manipulating the Menu User Pointer

As it does for panels and forms, ETI provides user pointers for each menu. You can use
these pointers to reference menu messages, titles, and the like.

SYNOPSIS

int set_menu_userptr (meny userpt)
MENU * meny
char* userptr,

char * menu_userptr (meny
MENU * meny

By default, the menu user pointer (wiatnu_userptr returns) is NULL.

If successfulset_menu_userptr returnsE_OK. If an error occurs, it returns the fol-
lowing:

E_SYSTEM_ERROR system error

10-45

Character User Interface Programming

The code in Screen 10-14 illustrates how you can use these two functions to display a title
for your menu. Functiomain sets the menu user pointer to point to the title of the menu.
Later, functiondisplay_menu initializes the title with the value returned by
menu_userptr . We have previously seen a versiomisplay_menu in Screen 10-8.

~

static void display_menu (m)/* create menu windows and post */
MENU * m;

char* title = menu_userptr (m); /* fetch menu title */

WINDOW *w;
int rows;
int cols;

scale_menu (m, &rows, &cols);/* get dimensions of menu */
/* create menu window and subwindow */
if (W = newwin (rows+2, cols+2, 0, 0))

set_menu_win (m, w);

set_menu_sub (m, derwin (w, rows, cols, 1, 1));
box (w, 0, 0);

keypad (w, 1);

else
error (“error return from newwin”, NULL);

if (post_menu (m) != E_OK)
error (“error return from post_menu”, NULL);
if (title) /* if title set */
{
size = strlen (title);
wmove (w, 0, (cols-size)/2+1); /* position cursor */
waddstr (w, title);/* write title */

}

I

main ()

{
MENU * m;
char * menutitle; /* initialize menutitle to desired string */
set_menu_userptr (m, menultitle); /* set user pointer to point to title */
display_menu (m);

}

_)

Screen 10-14. Example Setting and Using a Menu User Pointer
If functionset_menu_userptr is passed a NULL menu pointer, like all ETI functions,

it assigns a new current default menu user pointer. In the following, the new default is the
string Default Menu Title

MENU * m;
char * userprtr = “Default Menu Title”;

set_menu_userptr((MENU *) O, userptr);
[* sets new default userptr */

10-46

Menus
Setting and Fetching Menu Options

ETI provides several menu options, some of which we have already met. Two functions
manipulate options: one sets them, the other returns their settings.

SYNOPSIS

int set_menu_opts (meny opt9
MENU * meny
OPTIONS opts

OPTIONS menu_opts (meny
MENU * meny

options:
O_ONEVALUE
O_SHOWDESC
O_ROWMAJOR
O_IGNORECASE
O_SHOWMATCH

Besides turning the named options on, funcBeh menu_opts turns off all other
menu options. By default, all menu options are on.

The menu options and their effects are as follows:

O_ONEVALUE determines whether the menu is a single-valued or multi-valued.
In general, menus are single-valued and this option is on. Recall
that upon exit from single-valued menus, your application queries
the current item to ascertain the item selected. Turning off this
option signifies a multi-valued menu. One way to select several
items is to use thREQ_TOGGLE_ITENMequest, another is to call
set_item_value . (See “Multi-valued Menu Selection
Request” on page 10-33 and “Manipulating an Item's Select Value
in a Multi-valued Menu” on page 10-7.) Recall that your applica-
tion must examine each item's select value to determine whether it
has been selected. When this option is on, all item select values
are FALSE.

O_SHOWDESC determines whether or not the description of an item is displayed.
By default, this option is on and both the item name and descrip-
tion are displayed. If this option is off, only the name is displayed.

O_ROWMAJOR determines how the menu items are presented on the screen — in
row-major or column-major order. In row-major order, menu
items are displayed first left to right, then top to bottom. In col-
umn-major order, they are displayed first top to bottom, then left
to right. By default, this option is on, so menu items are displayed
in row-major order. If the option is off, the items are displayed in
column-major order. See “Specifying the Menu Format” on page
10-18 for more on how menus are displayed.

10-47

Character User Interface Programming

10-48

O_IGNORECASE instructs the menu driver to ignore upper- and lower-case during
the item match operation. If this option is off, character case is not
ignored and the match must be exact.

O_SHOWMATCH determines whether visual feedback is provided as each item's
data entry is processed. Ordinarily, as soon as a match occurs, the
cursor is advanced through the item to reflect the contents of the
pattern buffer. If this option is off, however, the cursor remains to
the left of the current item.

Like all ETI options, men@PTIONSare Boolean values, so you use Boolean operators to
turn them on or off with functionset_menu_opts andmenu_opts . For example, to
turn off optionO_SHOWDESGr menumO and turn on the same option for mena,

you can write:

MENU * mO, * m1,

set_menu_opts (M0, menu_opts (M0) & ~O_SHOWDESC);
[* turn option off */

set_menu_opts (m1, menu_opts (m1) | O_SHOWDESC);
/* turn option on */

ETI provides two alternative functions for turning options on and off for a given menu.

SYNOPSIS

int menu_opts_on (meny opt9
MENU * menu
OPTIONS opts

int menu_opts_off (meny opt9
MENU * menu
OPTIONS opts

Unlike functionset_menu_opts , these functions do not affect options that are unmen-
tioned in their second argument. In addition, if you want to change one option, you need
not apply Boolean operators or usenu_opts .

As an example, the following code turns opt@nSHOWDESES for menumO and on
for menum1:

MENU * mO, * m1;

menu_opts_off (m0, O_SHOWDESC); /* turn option off */
menu_opts_on (m1, O_SHOWDESC); /* turn option on */

As usual, you can change the current default for each option by passing a NULL menu
pointer. For instance, to turn the default op@rSHOWDESSE!, you write

menu_opts_off (MENU *) 0, O_SHOWDESC);
[* turn default option off */

In general, functionset_menu_opts , menu_opts_on , andmenu_opts_off return
E_OK If an error occurs, they return one of the following:

Menus

E_SYSTEM_ERROR system error

E_POSTED menu is posted

10-49

Character User Interface Programming

10-50

Forms
INtrOdUCHIONo 1. 11-
Compiling and Linking Form Programs it 11-1
Overview: Writing Form Programs in ETI i, 11-1
Some Important Form Terminology. oo 11-2
What a Typical Form Application ProgramDoes 11-2
A Sample Form Application Program 11-3
Creating and Freeing Fields. i e i 11-6
Manipulating Field Attributes 11-8
Obtaining Field Size and Location Information. 11-8
Dynamically Growable Fields i, 11-9
Movinga Field e 11-11
Changing the Current Default Values for Field Attributes. 11-12
Setting the Field Type to Ensure Validation. 11-13
TYPE _ALPHA . 11-14
TYPE_ALNUM ..o e 11-15
TYPE _ENUM. .. 11-15
TYPE_INTEGER e e e e 11-16
TYPE_NUMERIC e e 11-17
TYPE _REGEXP . ..o e e 11-18
Justifying Dataina Field 11-18
Setting the Field Foreground, Background, and Pad Character 11-19
Some Helpful Features of Fields. i 11-21
Setting and Reading FieldBuffers i ... 11-21
Setting and Readingthe Field Status 11-22
Setting and Fetching the Field User Pointer. 11-24
Manipulating Field Options. i 11-26
Creating and Freeing FOrMS e e s e 11-29
Manipulating Form Attributes. e 11-31
Changing and Fetching the Fields on an Existing Form 11-31
Counting the Numberof Fields i, 11-32
Querying the Presence of OffscreenData 11-33
Changing ETI Form Default Attributes 11-33
Displaying FOrmsS. e e 11-33
Determining the Dimensions of Forms i .. 11-34
Scalingthe Form 11-34
Associating Windows and Subwindows witha Form 11-35
Posting and Unposting Forms 11-38
FOrm Driver ProCeSSiNg . . .« oottt i et e 11-40
Defining the Virtual Key Mappingo e 11-40
ETIFOrm ReqUESES.ot e e e e 11-43
Page Navigation ReqUeStS.ttt e 11-43
Inter-field Navigation Requests on the CurrentPage 11-43
Intra-field Navigation Requests., 11-44
Field Editing ReqUESES i e e 11-45
Scrolling Requests. 11-46
Field Validation Requests i e 11-47
Choice REeqUESES e 11-48

Character User Interface Programming

Application-defined Commands. 11-48
Callingthe FOorm Driver e 11-48
Establishing Field and Form Initialization and Termination Routines. 11-53
Function set form_init. 11-54
Function set_field_init. 11-54
Function set_field_term. 11-55
Function set_form_term. 11-55
Manipulating the Current Field. 11-57
Changingthe Form Page. 11-59
Positioning the FOrm Cursor. e e 11-60
Setting and Fetching the Form User Pointer 11-61
Setting and Fetching Form Options 11-62
Creating and Manipulating Programmer-defined Field Types. 11-65
Building a Field Type from Two Other Field Types. 11-65
Creating a Field Type with Validation Functions 11-66
Freeing Programmer-defined Field Types. o it 11-68
Supporting Programmer-defined Field Types. 11-68
Argument Support for Field Types i 11-69

Supporting Next and Previous Choice Functions 11-72

11
Forms

Introduction

A form is a collection of one or more pages of fields. The fields may be used for titles,
labels to guide the user, or for data entry. Screen 11-1 displays a simple form with five
fields including two for data entry.

Sample Form

Field 1:
Field 2:

Screen 11-1. Sample Form Display

Compiling and Linking Form Programs

To use the form routines, you specify
#include <form.h>

in your C program files and compile and link with the command line
cc[flags] files -Iform -lcurses [libraries |

If you want to use the menu or panel routines as well, place the apprepriafgion
before the optioAlcurses

Overview: Writing Form Programs in ETI

This section introduces the basic ETI form terminology, lists the steps in a typical form
application, and reviews the sample program that produced the output of Screen 11-1

11-1

Character User Interface Programming

Some Important Form Terminology

The following terms are helpful in working with ETI form functions:

field

active field

inactive field

dynamic field

form

anm x n block of form character positions that ETI functions can
manipulate as a unit

a ield that is visited during form processing for data entry,
change, selection, and so forth

a field that is completely ignored during form processing, such as
a title, field marker or other label

a field whose buffer grows beyond its original size if more data is
entered into the field than the original buffer will hold.

a collection of one or more pages of fields

connecting fields to a form

page
posting a form
unposting a form

freeing a form

freeing a field

NULL

associating an array of field pointers with a form

a logical subdivision of a form usually occupying one screen

writing a form on its associated subwindow

erasing a form from its associated subwindow

deallocating the memory for a form and, as a by-product, discon-
necting the previously associated array of field pointers from the
form

deallocating the memory for a field

generic term for a null pointer cast to the type of the particular
object (field, form, and so on)

What a Typical Form Application Program Does

In general, a form application program will

¢ initialize low-level ETI ¢€urses)
¢ create the fields for the form

* create the form

* post the form

* refresh the screen

* process end user form requests
® unpost the form

* free the form

11-2

Forms

* free the fields

¢ terminate low-level ETIdurses)

A Sample Form Application Program

Screen 11-2 shows the ETI program necessary for producing the form in Screen 11-1.

~

#include <form.h>
#include <string.h>

FIELD * make_label (frow, fcol, label)
int frow;/* first row*/

int fcol;/* first column*/

char * label;/* label*/

{
FIELD * f = new_field (1, strlen (label), frow, fcol, 0, 0);
if (f)
{
set_field_buffer (f, 0, label);
set_field_opts (f, field_opts(f) & ~O_ACTIVE);
}
return f;
}

FIELD * make_field (frow, fcol, cols)
int frow;/* first row*/

int fcol;/* first column*/

int cols;/* number of columns*/

{
FIELD * f = new_field (1, cols, frow, fcol, 0, 0);
if (f)
set_field_back (f, A_UNDERLINE);
return f;
}
main ()
{
FORM* form;
FIELD * f[6];
int i=0;
/*
ETl initialization
*
initscr ();
nonl ();
raw ();
noecho ();
wclear (stdscr);
/*
create fields
*

f[0] = make_label (0, 7, “Sample Form”);
f[1] = make_label (2, 0, “Field 1.");

f[2] = make_field (2, 9, 16);

f[3] = make_label (3, 0, “Field 2:");

f[4] = make_field (3, 9, 16);

f[5] = (FIELD *) 0;

_)

Screen 11-2. Code to Produce a Simple Form

11-3

Character User Interface Programming

create and display form

form = new_form (f);
post_form (form);
wrefresh (stdscr);
sleep (5);

erase form and free both form and fields
*
/

unpost_form (form);

wrefresh (stdscr);

free_form (form);

while (f[i])
free_field (f[i++]);

/*

ETI termination
*

endwin ();

exit (0);
}

_)

In this example, all text within the form is associated with a field. Fields may be active or
inactive: active fields are affected by form processing, inactive fields are not. The under-
lined fields are active, whereas the label fisdkdgsmple Form, Field 1:, andField 2:

are inactive.

Turn now to the program itself. This example starts with#imolude files. Every form
program must include the header fitem.h , which contains important definitions of
form objects. This particular program uses the C string library funstiten , so it
includes the header figtring.h , whose definitions the string library function needs.
Seestring(3C) for details.

Next, there are two programmer-defined functiareke_label andmake_field
which we will discuss in a moment. Consider procedoaé . It declares three objects:

* form , a pointer to a form
* f[6] , an array of field pointers

* |, an index variable, initialized to 0

The first five functions initialize low-level ETk(rses) for high-level ETI form func-
tions. Functiorinitscr initializes the screemonl ensures that a carriage return on
usingwgetch will not automatically generate a newlimaw passes input characters
without interpretation to your programoecho disables echoing of your user's input (the
form functions provide echoing where appropriate), wokbar(stdscr) clears the
standard screen.

The statements that create the form's fields and labels in this example make calls to the
programmer-defined functiomeake_label andmake field . You can do without

these programmer-defined functions, but you may find them convenient. Both of them use
the ETI functionnew_field . They take three arguments, which correspond to three of
the six arguments afew_field

The first argument afew_field is the number of rows of the field. In this example, it is
always one. The last two arguments are often 0 as they are here; they will be explained in

11-4

Forms

the next section. The second argumeme_field is the number of columns in the
field. This number is determined from the third parametemain's calls to
make_label andmake_field . For the label fields, the callstwake label pass the

string that is to constitute the field so thiten can be used to count the length or num-

ber of columns of the string. For the fields to be edited by the end-user (had this example
permitted entering data into the fields), callsrtake _field simply pass the number of
columns directly.

The third and fourth argumentsnew_field correspond to the first and second argu-
ments tomake label andmake field . They are the starting positiofir§trow
firstcol) of the label or field in the form subwindow. (In this example, the default sub-
window stdscr is used.) The last assignmentffs] terminates the array with the
NULL field pointer.

Once the functioomake_label creates the field for the label, it places the label in the
field using functiorset_field_buffer . The second argument to this function is 0
because the value of a field is stored in buffer 0. Finally, functiake_label calls
set_field_opts , which turns off th€d_ACTIVE option for the field. This means that
the field is ignored during form driver processing.

On the other hand, once the functimake_field creates the field proper, it sets the
field's background attribute &8 UNDERLINE This has the effect of underlining the field
so that it is visible.

After you create the fields for a form, you create the form itself uséwg form . This
function takes the pointer to the array of field pointers and connects the fields to the form.

The pointer returned is stored in variafdem — it will be passed to subsequent form
manipulation routines. To display the form, functiwost form posts it on the default
subwindowstdscr, while wrefresh(stdscr) actually displays this subwindow on

the terminal screen. The display remains for 5 seconds, as determisledpby:.

At this point, most forms would accept and process user input. To illustrate a very simple
form, this program does not accept user input.

To erase the form, you first unpost it usimgpost_form . This erases it from the form
subwindow. The call tavrefresh actually erases the form from the display screen.
Functionfree_form disconnects the form from its array of field poinfers

Thewhile loop, starting with the first field in the field pointer array, frees each field ref-
erenced in the array. The effect is to deallocate the space for each field.

We have met the last two lines of the program before. Funetidwin terminates low-
level ETI, whileexit(0) terminates the program.

There are many ETI form routines not listed in Screen 11-2. These routines enable you to
tailor your form programs to suit local needs and preferences. The following sections
explain how to use all ETI form routines. Each routine is illustrated with one or more code
fragments. Many of these are drawn from two larger form application programs listed at
the end of the chapter. By reviewing the code fragments, you will come to understand the
larger programs.

11-5

Character User Interface Programming
Creating and Freeing Fields

To create a form, you must first create its fields. The following functions enable you to cre-
ate fields and later free them.

SYNOPSIS

FIELD * new_field (rows, cols, firstrow, firstcol, nrow, nhuf
int rows cols firstrow, firstcol, nrow, nbuf

FIELD * dup_field (field, firstrow, firstcol)
FIELD * field;
int firstrow, firstcol;

FIELD * link_field (field, firstrow, firstco)
FIELD * field;
int firstrow, firstcol

int free_field (field)
FIELD * field;

Unlike menu items which always occupy one row, the fields on a form may contain one or
more rows. Functionew_field creates and initializes a new field thatasis by cols

large and starts at poirfir§trow, firstcol) relative to the origin of the form subwindow. All
current system defaults are assigned to the new field when it is createdeavsifigld

Variablenrow is the number of offscreen rows allocated for this field. Offscreen rows
enable your program to display only part of a field at a given moment and let the user
scroll through the rest. A zero value means that the entire field is always displayed, while a
nonzero value means that the field is scrollable. A field can be createdrastiset to

zero and allowed to grow and scroll if the field is made dynamic. See “Dynamically Grow-
able Fields” on page 11-9 for more detail.

Variablenbufis the number of additional buffers allocated for this field. You can use it to
support default field values, undo operations, or other similar operations requiring one or
more auxiliary field buffers.

Variablesrows andcols must be greater than zero, whikstrow, firstcol, nrow; andnbuf
must be greater than or equal to zero.

Each field buffer is fows+ nrow) * cols+ 1) characters large. (The extra character posi-
tion holds the NULL terminator.) All fields have one buffer (namely, field buffer 0) that
maintains the field's value. This buffer reflects any changes your end-user may make to the
field. See “Setting and Reading Field Buffers” on page 11-21 for more details.

To create a form fieldccupation one row high and 32 columns wide, starting at posi-
tion 2,15 in the form subwindow, with no offscreen rows and no additional buffers, you
can write:

FIELD * occupation;

occupation = new_field (1, 32, 2, 15, 0, 0);
[* create field */

11-6

Forms

Generally you create all the fields for a form at the same point in your program, as
Screen 11-2 demonstrated.

The functiondup_field duplicates an existing field at the new locafiostrow, firstcol.

During initialization,dup_field copies nearly all the attributes of its field argument as
well as its size and buffering information. However, certain attributes, such as being the
first field on a page or having the field status set, are not duplicated in the newly created
field. See “Creating and Freeing Forms” on page 11-29 and “Manipulating Field Options”
on page 11-26 for details on these attributes.

Like dup_field , functionlink_field duplicates an existing field at a new location

on the same form or another one. Unlikgp_field , howeverlink_field arranges

that the two fields share the space allocated for the field buffers. All changes to the buffers
of one field appear also in the buffers of the other. Besides enabling your user to enter data
into two or more fields at once, this function is useful for propagating field values to later
pages where only the first field is active (currently open to form processing). In this case,
the inactive fields in effect become dynamic labels. See “Manipulating Field Options” on
page 11-26.

NOTE

Linked fields share only the space allocated for the field buffers--
the attribute values of either field may be changed without affect-
ing the other.

Consider fieldbccupation in the previous example. To duplicate it at locaB¢tb and
link it at location4,15 , you write:

FIELD * dup_occ, * link_occ;

dup_occ = dup_field (occupation, 3, 15);
link_occ = link_field (occupation, 4, 15);

Functionsnew_field , dup_field , andlink_field return a NULL pointer, if there
is no available memory for the FIELD structure or if they detect an invalid parameter.

Functionfree_field frees all space allocated for the given field. Its argument is a
pointer previously obtained fromew_field , dup_field , orlink_field

NOTE

To free a field, be sure that the field is not connected to a form.

As described in “Creating and Freeing Forms” on page 11-29, you can disconnect fields
from forms by using functionfsee_form orset _form_fields

To free a form and all its fields, you write:

FORM * form;

11-7

Character User Interface Programming

[* get pointer to form's field pointer array using
form_fields described in section below,
“Changing and Fetching the Fields on an
Existing Form” */

FIELD ** f = form_fields (form);
free_form (form); [* free form */

while (*f)
free_field (*f++);
/* free each field and increment pointer */
Notice that you free the form before its fields.
If successful, functiofree_field returnsE_OK If not, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL field pointer
E_CONNECTED connected field

Remember that the field pointer returned mgw_field , dup_field , or
link_field is passed to all field routines that record or examine the field's attributes.
As with menu items, once a form field is freed, it must not be used again. Because the
freed field pointer does not point to a genuine field, undefined results occur.

Manipulating Field Attributes

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A field attribute is a feature of a field whose value can be set or read by an appro-
priate ETI function. Field attributes include the field size and location.

Obtaining Field Size and Location Information

11-8

This function enables you to determine the defining characteristics of a field — its size,
position, number of offscreen rows, and number of associated buffers.

SYNOPSIS

int field_info (field, rows cols firstrow, firstcol, nrow, nbuf

FIELD * field;

int * rows * cols* firstrow, * firstcol, * nrow, * nbuf
Because functiofield_info must return more than a single value and C passes argu-
ments to functions “by value” onlfield_info uses the pointer argumemtsvs cols

firstrow, firstcol, nrow, andnbuf These arguments are pointers to the locations used to
return the requested information: the number of rows and columns comprising the field,

Forms

the field starting location relative to the origin of its form subwindow, the number of off-
screen rows, and the number of additional buffers.

As an example, consider how you might fistl _info to determine a field's buffer
size. You fetch the field's number of onscreen and offscreen rows and number of columns,
and do the arithmetic, thus:

int bufsize (f)
FIELD *f;
{

int rows, cols, firstrow, firstcol, offrow, nbuf;

field_info (f, &rows, &cols, &firstrow, &firstcol,
&offrow, &nbuf);

/* add up size of field and its terminator */

return (rows + offrow) * cols + 1;

}

Note the use of the address operd&tdo pasdield_info the requisite pointers to the
locations used to return the requested field information.

If successful, functiofield_info returnsE_OK If not, it returns one of the following:
E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL field pointer

Dynamically Growable Fields

A dynamically growable field within a form will allow a user to add more data to a field
than was specified when the field was originally created. Recall, when a field is created, a
buffer is allocated based on the size of the field. With dynamically growable fields, if a
user enters more data than the original buffer can hold, the buffer will grow as the user
enters more data into the field. The application developer can specify the maximum
growth of a field or allow a field to grow without bound.

A field can be made dynamically growable by turning off@h&TATIC field option. See
“Manipulating Field Options” on page 11-26 for more information on changing field
options.

Recall the library routineew_field ; a new field created witfows set to one androw
set to zero will be defined to be a one line field. A new field createdrattk + nrow
greater than one will be defined to be a multi-line field.

A one line field withO_STATIC turned off will contain a single fixed row, but the number

of columns can increase if the user enters more data than the initial field will hold. The
number of columns displayed will remain fixed and the additional data will scroll horizon-
tally.

A multi-line field with O_STATIC turned off will contain a fixed number of columns, but
the number of rows can increase if the user enters more data than the initial field will hold.

11-9

Character User Interface Programming

The number of rows displayed will remain fixed and the additional data will scroll verti-
cally.

It may be desirable to allow a field to grow, but within bounds. The following function can
be used to limit the growth of a dynamic field either horizontally or vertically.

SYNOPSIS

int set_max_field(field, max_growth
FIELD * field;
int max_growth

If field is a horizontally growable one line field, its growth will be limitedrtax_growth
columns. Iffield is a vertically growable field, its growth will be limited noax_growth
rows. To remove any growth limit, calet _max_field with max_growthset to zero.
To query the current maximum, if specified, dgpamic_field_info below.

If successful this procedure will retun OK otherwise the following is returned:

E_BAD_ARGUMENT NULL field pointer or field size is already greater than
max_growth ormax_growth is less than zero.

This procedure will work regardless of the setting ofGh&TATIC option.

In order to allow the user to query the current size of the buffer, the following function is
provided.

SYNOPSIS

int dynamic_field_info(field, drows dcols may
FIELD * field;
int * drows * dcols* max

If successful this procedure will retuEh OK anddrowsanddcolswill contain the actual
number of rows and columns fiéld . If a maximum growth has been specified (see
set_max_field above) foffield, maxwill contain the specified growth limit, otherwise
maxwill contain zero.

If field is NULL, drows dcols andmaxare unchanged and the following is returned:
E_BAD_ARGUMENT NULL field pointer
This procedure will work regardless of the setting ofGh&TATIC option.

Making a field dynamic by turning off the_STATIC option will affect the field in the
following ways:

1. If parametenbufin the originalnew_field library call is greater than
zero, all additional buffers will grow simultaneously with buffer 0. Recall,
buffer 0 is used by the system to store data entered by thelskran be
used to request the allocation of additional buffers available to the applica-
tion. The field buffers will grow in chunks of sibeif_size= ((rows+
nrow) * colg , the size of the original buffer minus one.

If a field is dynamic, the remainder of the forms library is affected in the following way.

11-10

Forms

1. The field optiorD_AUTOSKIPwill be ignored if the optio®_STATIC is
off and there is no maximum growth specified for the field. Currently,
O_AUTOSKIPgenerates an automaREQ_NEXT_FIELDform driver
request when the user types in the last character position of a field. On a
growable field with no maximum growth specified, there is no “last” char-
acter position. If a maximum growth is specified, teAUTOSKIPoption
will work as normal if the field has grown to its maximum size.

2. The field justification will be ignored if the optigdd_STATIC is off. Cur-
rently, set_field_just can be used tdUSTIFY_LEFT,
JUSTIFY_RIGHT, JUSTIFY_CENTERthe contents of a one line field. A
growable one line field will, by definition, grow and scroll horizontally and
may contain more data than can be justified. The return from
field_just will be unchanged.

3. The overloaded form driver requ&EQ_NEW _LINEvill operate the same
way regardless of th®@_NL_OVERLOAIrm option if the field option
O_STATIC s off and there is no maximum growth specified for the field.
Currently, if the form optio®©_NL_OVERLOAB on,REQ_NEW_LINE
implicitly generates & EQ_NEXT_FIELDIf called from the last line of a
field. If a field can grow without bound, there is no last line, so
REQ_NEW_LINEvill never implicitly generate REQ_NEXT_FIELDIf a
maximum growth limit is specified and tie NL_ OVERLOArm option
is on,REQ_NEW_LINEwill only implicitly generateREQ NEXT_FIELD
if the field has grown to its maximum size and the user is on the last line.

4. The library caldup_field will work as described in “Creating and Free-
ing Fields” on page 11-6; it will duplicate the field, including the current
buffer size and contents of the field being duplicated. Any specified maxi-
mum growth will also be duplicated.

5. The library callink_field will work as described in the section “Cre-
ating and Freeing Fields” on page 11-6; it will duplicate all field attributes
and share buffers with the field being linked. If @eSTATIC field option
is subsequently changed by a field sharing buffers, how the system reacts to
an attempt to enter more data into the field than the buffer will currently
hold will depend on the setting of the option in the current field.

6. The library calffield_info will work as described in “Obtaining Field
Size and Location Information” on page 11-8; the variabbev will con-
tain the value of the original call teew_field . The user should use
dynamic_field_info , described above, to query the current size of the
buffer.

Moving a Field
ETI provides the following function to move an existing disconnected field to a new loca-
tion.
SYNOPSIS
int move_field (field, firstrow, firstcol)
FIELD * field;

11-11

Character User Interface Programming

int firstrow;
int firstcol;

Screen 11-3 shows one way you might use functimve_field . Function
shift_fields receives thént valueupdown, which it uses to change the row num-
ber of each field in a given field pointer array. You could, of course, shift the columns in
like fashion.

~

void shift_fields (f, updown)
FIELD ** f;
int updown; /* signed number of rows to shift */

{

int rows, cols, frow, fcol, nrow, nbuf;

while (*f)
{

/* field_info fetches the values of the field parameters */
field_info (*f, &rows, &cols, &frow, &fcol, &nrow, &nbuf);

move_field (*f, frow + updown, fcol);
++f;

}

_)

Screen 11-3. Example Shifting All Form Fields a Given Number of Rows

See “Obtaining Field Size and Location Information” on page 11-8 for more on
field_info used in this example.

If successful, functiomove_field returnse_OK If not, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL field or firstrow/firstcol < 0

E_CONNECTED connected field

Changing the Current Default Values for Field Attributes

11-12

ETI establishes initial current default values for field attributes. During field initialization,
every field attribute is assigned the current default value for the attribute. As you can with
menu functions, you can change or retrieve the current default attribute values by calling
the appropriate function with a NULL field pointer. After the current default changes,
every field created usimiew_field will have the new default value.

NOTE

Fields previously created do not have their attributes changed by
changing the current system default.

Forms

Several of the following sections show how to change the default values for various field
attributes.

Setting the Field Type to Ensure Validation

Every field is created with the current default field type. The initial ETI default field type

is a no_validation field. Any data may occupy it. (This default can be changed as described
below.) To change a field's type from the default, ETI provides the following functions for
manipulating a field's (data) type.

SYNOPSIS

int set_field_type (field, type[arg_l arg 2 ..])
FIELD * field;
FIELDTYPE * type

FIELDTYPE * field_type (field)
FIELD* field:

char * field_arg (field)
FIELD * field;

The functionset_field_type takes aFIELDTYPE pointer and a variable number of
arguments depending on the field type. The field type ensures that the field is validated as
your end-user enters characters into the field or attempts to leave it.

The form driver (described later in “Form Driver Processing” on page 11-40) validates the
data in a field only when data is entered by your end-user. Validation does not occur when

* the application program changes the field value by calling
set_field_buffer

¢ linked field values are changed indirectly — by changing the field to which
they are linked

In all cases, validation occurs only if data is changed by passing data or making requests to
the form driver. To make requests, your user enters characters or escape sequences
mapped to commands that the form driver recognizes. See“Form Driver Processing” on
page 11-40.

If successfulset_field type returnsE_OK If not, it returns the following:
E_SYSTEM_ERROR system error

Functionfield_type returns the field type of the field, while functifield_arg
returns the field argument pointer. For more on the field argument pointer in programmer-
defined field types, see “Supporting Programmer-defined Field Types” on page 11-68.

If the functionset_field_type is not applied to a field, the field type is the current
default.

11-13

Character User Interface Programming

TYPE_ALPHA

TYPE_ALNUM

11-14

NOTE

Remember that the initial ETI default is not to validate the field at
all — any kind of data may be entered into the field.

You can change the ETI default by giving functset_field_type a NULL field

pointer. Suppose, for instance, that you want to change the system default field type to a
minimum 10-character field of typEYPE_ALNUMAS described below, this field type
accepts alphanumeric data — every entered character must be a digit or an alphabetic (not
a special) character. You can write

set_field_type ((FIELD *) 0, TYPE_ALNUM, 10);

ETI provides several generic field types besitéBE_ALNUMMoreover, you can define
your own field types, as described in “Creating and Manipulating Programmer-defined
Field Types” on page 11-65. The following sections describe all ETI generic field types.

The form driver restricts a field of this type to alphabetic data.

SYNOPSIS

set_field_type (field, TYPE_ALPHA, width);
int width; /* minimum token width */

TYPE_ALPHAtakes one additional argument, the minimum width specification of the
field. Note that when you previously create a field with functiew_field , yourcols
argument is the maximum width specification of the field. Ii¥PE_ALPHA(and
TYPE_ALNUMs well), your specificatiowidth must be less than or equaldals If not,

the form driver cannot validate the field.

NOTE

TYPE_ALPHAdoes not allow blanks or other special characters.

To set amiddlename field, for instance, t& YPE_ALPHAwith a minimum of O charac-
ters (in effect, to make the end-user's completing the field optional), you can write

FIELD * middlename;

set_field_type (middlename, TYPE_ALPHA, 0);

This type restricts the set field to alphanumeric data, alphabetic characters (upper- or
lower-case) and digits.

TYPE_ENUM

Forms

SYNOPSIS

set_field_type (field, TYPE_ALNUM, width);
int width; /4 minimum token width */

Like TYPE_ALPHATYPE_ALNUMakes one additional argument, the field's minimum
width specification.

NOTE

Like TYPE_ALPHATYPE_ALNUMoes not allow blanks or other
special characters.

To set a field, sapartnumber , to receive alphanumeric data at least eight characters
wide, you write

FIELD * partnumber;

set_field_type (parthumber, TYPE_ALNUM, 8);

This field type enables you to restrict the valid data for a field to a set of enumerated val-
ues. The type takes three arguments beyond the minimum twsethfield_type
requires.

SYNOPSIS

set_field_type (field, TYPE_ENUM, keyword_list checkcase
checkuniqug

char ** keyword_list/* list of acceptable values */

int checkcase /* check character case */

int checkunique /* check for unique match */

The argumenkeyword_listis a NULL-terminated array of pointers to character strings
that are the acceptable enumeration values. Arguoietkcasés a Boolean flag that
indicates whether upper- or lower-case is significant during match operations. Finally,
checkuniqués a Boolean flag indicating whether a unique match is required. If it is off and
your end-user enters only part of an acceptable value, the validation procedure completes
the field value automatically with the first matching value in the type. If it is on, the valida-
tion procedure completes the field value automatically only when enough characters have
been entered to make a unique match.

To create a field, sayesponse, with valid responses gfes (y) orno (n) in upper- or
lower-case, you write:

char * yesno[] = { “yes”, “no”, (char *)0 };
FIELD * response,

set_field_type (response, TYPE_ENUM, yesno, FALSE,
FALSE);

11-15

Character User Interface Programming

TYPE_INTEGER

11-16

For an example that sets the last fielddéckunique) to TRUE, see Screen 11-4 which
sets thel YPE_ENUM(field color to a list of colors.

~

char * colors[13] =

“Black”, “Charcoal”, “Light Gray”,
“Brown”, “Camel”, “Navy”,
“Light Blue”, “Hunter Green”, “Gold”,
“Burgundy”, “Rust”, “White”,
(char *) 0

h

FIELD * color;

set_field_type (color, TYPE_ENUM, colors, FALSE, TRUE);

_)

Screen 11-4. Setting a Field to TYPE_ENUM of Colors

Setting the field to TRUE requires the user to enter the seventh character of the color name
in certain cased.{ght Blue andLight Gray) before a uniqgue match is made.

This type enables you to restrict the data in a field to integers.

SYNOPSIS

set_field_type (field, TYPE_INTEGER, precision vmin vmay;
int precision /* width for left padding with 0's */

long vmirt /* minimum acceptable value */

long vmax /* maximum acceptable value */

TYPE_INTEGERtakes three additional arguments: a precision specification, a minimum
acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validityPE_INTEGER
value is valid if it consists of an optional minus sign followed by some number of digits.
As the end-user tries to leave the field, the range check is applied.

NOTE

If, contrary to possibility, the maximum valwenaxis less than or
equal to the minimum valuemin the range check is ignored —
any integer that fits in the field is valid.

If the range check is passed, the integer is padded on the left with zeros to the precision
specification. For instance, if the current value were 18, a precision of 3 would display

018

TYPE_NUMERIC

TYPE_REGEXP

Forms

whereas a precision of 4 would display
0018
For more on ETI's handling of precision, see the manual pragé§3S)

As an example of how to uset field type with TYPE_INTEGER the following
might represent a month, padded to two digits:

FIELD * month;

set _field_type (month, TYPE_INTEGER, 2, 1L, 12L);
[* displays single digit months with leading 0 */

Note the requirement that the minimum and maximum values be converted tontype
with thelL.

This type restricts the data for the set field to decimal numbers.

SYNOPSIS

set_field_type (field, TYPE_NUMERIC, precision vmin vmay;
int precision /* digits to right of the decimal point */

double vmin /* minimum acceptable value */

double vmax /* maximum acceptable value */

TYPE_NUMERIQGakes three additional arguments: a precision specification, a minimum
acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validity as decimal numbers. A
TYPE_NUMERIGralue is valid if it consists of an optional minus sign, some number of
digits, a decimal point, and some additional digits.

The precision is not used in validation; it is used only in determining the output format.
Seeprintf(3S) for more on precision. As the end-user tries to leave the field, the range
check is applied.

As with TYPE_INTEGER if the maximum value is less than or equal to the minimum
value, the range check is ignored.

For instance, to set a maximum value of $100.00 for a monetargfigdint, you write:

FIELD * amount;

set_field_type (amount, TYPE_NUMERIC, 2, 0.00, 100.00);

This type enables you to determine whether the data entered into a field matches a specific
regular expression.

11-17

Character User Interface Programming

SYNOPSIS

set_field_type (field, TYPE_REGEXP, expressio)
char* expression/* regular expression */

TYPE_REGEXPakes one additional argument, the regular expressiome§emp(3G)
for regular expression details.

Consider, for example, how you might create a field that represents a part number with an
upper- or lower-case letter followed by exactly 4 digits:

FIELD * partnumber;

set_field type (parthumber, TYPE_REGEXP,
“N[A-Za-z][0-9K{4}$");

Note that this example assumes the field is five characters wide. If not, you may want to
change the pattern to accept blanks on either side, thus:

FIELD * partnumber;

set_field_type (parthumber, TYPE_REGEXP,
“N*A-Za-z][0-9]{4} *$");

Justifying Data in a Field

11-18

Unlike menu items, which always occupy one line, form fields may occupy one or more
lines (rows). Fields that occupy one line may be justified left, right, center, or not at all.

SYNOPSIS

int set_field_just (field, justification)
FIELD * field,
int justificatior

int field_just (field)
FIELD * field;

Fields that occupy more than one line are not justified because the data entered typically
extends into subsequent lines. Justification is also ignored on a one line field if the
O_STATIC option is off or the field was dynamic and has grown beyond its original size.
See “Dynamically Growable Fields” on page 11-9 for more detail.

Field contents justification is not allowed for non-editable fields. However, if the field was
already justified before making it, it will remain justified.

Setting the number of field columnso(g and the minimum width or precision does not
always determine where the data fits in the field — there may be excess character space
before or after the data. Functiset_field_just lets you justify data in one of the
following ways:

NO_JUSTIFICATION no justification processing (initial default)

Forms

JUSTIFY_LEFT left justify value in field
JUSTIFY_RIGHT right justify value in field
JUSTIFY_CENTER center value in the field

No matter what the justification, fields are automatically left justified as your end-user
enters data and edits the field. Once field validation occurs upon the user's request to leave
the field, ETI justifies the field as specified.

For instance, to left justify a name field and right justify an amount field, you can write:

FIELD * name, * amount;

set_field_just (name, JUSTIFY_LEFT);
[* left justify a field */

set_field_just (amount, JUSTIFY_RIGHT);
[* right justify a field */

If successfulset_field_just returnsE_OK If not, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT bad justification
E_REQUEST_DENIED justification request denied

As with most other ETI functions, if one of these functions is passed a NULL field pointer,
it assigns or fetches the system default. For instance, to change the system default from no
justification to centering the value in its field, you write

set_field_just((FIELD *) 0, JUSTIFY_CENTER);
/* set new default */

Setting the Field Foreground, Background, and Pad Character

The following functions enable you to set and read the pad character and the low-level ETI
(curses) attributes associated with your field's foreground and background. The fore-
ground attribute applies only to those field characters that represent data proper, while the
background attribute applies to the entire field.

SYNOPSIS

int set_field_fore (field, attr)
FIELD * field;
chtype attr;

chtype field_fore (field)
FIELD * field;

11-19

Character User Interface Programming

int set_field_back (field, attr)
FIELD * field;
chtype attr;

chtype field_back (field)
FIELD * field;

int set_field_pad (field, pad
FIELD * field;
int pad

int field_pad (field)
FIELD * field;

The initial default for both the foreground and backgrounddalORMAL(See the sec-

tion on attribute descriptions earlier in this guide oradheses(3curses) pages for

more on screen attributes.) The pad character is the character displayed wherever a blank
occurs in the field value stored in field buffer 0.

As an example, to change the background of a fietél to A_ UNDERLINEand
A_STANDOUTyou write:

FIELD * total;

set_field_back (total, A_UNDERLINE | A_STANDOUT);

If function set_field fore or set_field_back encounter an error, they return
one of the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT bad curses attribute

The functionset _field_pad sets the field's pad character. The default pad character is
a blank. During form processing, pad characters in the field are translated to blanks in the
field's value.

NOTE
Because ETI does not distinguish between system-generated pad

characters and those entered as data, be sure to choose your pad
character so as not to conflict with valid data.

To set the pad character for figtital to an asterisk (*) you write:
FIELD * total;
set_field_pad (total, *);

If successful, functioset_field_pad returnsé_OK If not, it returns one of the fol-
lowing:

E_SYSTEM_ERROR system error

11-20

Forms

E_BAD_ARGUMENT unprintable pad character

As usual, you can change or access the ETI defaults. To change the default background to
A_UNDERLINE you write:

set_field_back ((FIELD *) 0, A_UNDERLINE);

Some Helpful Features of Fields

ETI provides special features that promote development of a wide range of form applica-
tions. These include field buffers, field status flags, and field user pointers.

Setting and Reading Field Buffers

Recall that you set the number of additional buffers associated with a field upon its cre-
ation withnew_field . Buffer O holds the value of the field. The following functions let
you store values in the buffers and later read them.

SYNOPSIS

int set_field buffer (field, buffer, valug
FIELD * field;

int buffer,

char* value

char * field_buffer (field, buffer)
FIELD * field;
int buffer,

The parametebuffer should range from 0 througibuf wherenbuf is the number of
additional buffers in theew_field call. All buffers besides 0 may be used to suit your
application.

If field in set_field_buffer is a dynamic field and the lengthwa@flueis greater than

the current buffer size, the buffer will expand, up to the specified maximum, if any, to
accommodatgalue See “Dynamically Growable Fields” on page 11-9 for more detail on
dynamic fields and setting a maximum growth. If the field is not dynamic or the length of
valueis greater than any specified maximum field size, ¥iadremay be truncated.

As an example, suppose your application kept a field's default value in field buffer 1. It
could use the following code to reset the current field to its default value.

#define VAL_BUF 0
#define DFL_BUF 1

void reset_current (form)

FORM * form;
{

11-21

Character User Interface Programming

/* set f to current field, described in
section “Manipulating the Current
Field” below */

FIELD * f = current_field (form);
/* set field f to default value */

set_field buffer (f, VAL_BUF,
field_buffer (f, DFL_BUF));
}

If successfulset_field buffer returnsE_OK If not, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL field pointer, NULL value, or buffer out of range

Functionfield_buffer , however, returns NULL if it§ield pointer is NULL or
buffer is out of range.

The functionfield_buffer always returns the correct value if the field is not current.
However, if the field is current, the function is sometimes inaccurate because data is not
moved to field buffer 0 immediately upon entry. You may rest assured that
field_buffer is accurate on the current field if

¢ jtis called from the field check validation routine, if any

* jtis called from the form or field initialization or termination routines, if
any

¢ itis called just after REQ_VALIDATIONrequest to the form driver

See “Creating a Field Type with Validation Functions” on page 11-66, “Establishing Field
and Form Initialization and Termination Routines” on page 11-53, and “Field Validation
Requests” on page 11-47 for details on these routines.

Setting and Reading the Field Status

11-22

Every field has an associated status flag that is set whenever the field's value (field buffer
0) changes. The following functions enable you to set and access this flag.

SYNOPSIS

int set_field_status (field, statug
FIELD * field;
int status

int field_status (field)
FIELD * field;

The field status is TRUE if set or FALSE if cleared. By default, the field status is FALSE
when the field is created.

Forms

These routines promote increased efficiency where processing need occur only if a field
has been changed since some previous state. Two examples are undo operations and data-
base updates. Functiapdate in Screen 11-5 for instance, loops through your field
pointer array to save the data in each field if it has been changedi€lfiitstatus is

TRUE).

~

void update (form)
FORM * form;
void save_field_data (f)
FIELD * f;
{
char * data = field_buffer (f, 0); /* fetch data in field */

/* save data */

FIELD ** f = form_fields (form); /* fetch pointer to field pointer array
*

while (*f)
{
if (field_status (*f)) /* field data changed ? */
save_field_data (*f); /* yes, save new data */
set_field_status (*f, FALSE); /* set field status back */
}

++f;

}

.)

Screen 11-5. Using the Field Status to Update a Database

If successfulset field status returnsE_OK If not, it returns the following:
E_SYSTEM_ERROR system error

The initial ETI default field status is clear. As always, you can change the default by pass-
ing set_field status a NULL field pointer.

Like the functionfield_buffer , functionfield_status always returns the correct

value if the field is not current. However, if the field is current, the function is sometimes
inaccurate because the status flag is not set immediately. You may rest assured that
field_status is accurate on the current field if

11-23

Character User Interface Programming

it is called from the field check validation routine, if any

it is called from the form or field initialization or termination routines, if
any

it is called just after REQ_ VALIDATIONrequest to the form driver

See “Creating a Field Type with Validation Functions” on page 11-66, “Establishing Field
and Form Initialization and Termination Routines” on page 11-53, and “Field Validation
Requests” on page 11-47 for details on these routines.

Setting and Fetching the Field User Pointer

11-24

As it does with panels and menus, ETI provides functions to manipulate an arbitrary
pointer convenient for field data such as title strings, help messages, and the like.

SYNOPSIS

int set_field_userptr (field, userpt)
FIELD * field;
char* userptr,

char * field_userptr (field)
FIELD * field;

You can connect an application-defined structure to the field using this pointer. By default,
the field user pointer is NULL.

Screen 11-6 for example, shows three routines that use these field functions:

set_field id allocates space forsruct 1D to be associated with a field and
callsset_field userptr to establish the field's pointer to it

free_field_id frees the space for the associated ID

find_field searches the names associated with all fields on the form to deter-

mine whether any of them match an arbitrary name passed to it

Forms

#define match(a,b) (strcmp (a, b) == 0)
typedef struct
{

int type;
char* name;

ID; /* to be hooked onto field userptr */

void set_field_id (f, type, name) /* associate type and name with field f */
FIELD * f;

int type;
char * name;

/* allocate space, see malloc(3curses) */
ID *id = (ID *) malloc (sizeof (ID));

if (id) /* if space allocated */

id -> type = type; /* assign type and name */
id -> name = name;

}
set_field_userptr (f, (char *) id); /* point to id */
}

void free_field_id (f) /* free id connected to field */
FIELD * f;

x = (ID *) field_userptr (*f); /* fetch field user pointer */

if (x)
free (x);

}

FIELD * find_field (f, name) /* find field on form with name */

FORM * form;

char * name;

{
FIELD ** f = form_fields (form); /* fetch pointer to form's field array */
ID *x;

while (*f) / * for each field in the form */
x = (ID *) field_userptr (*f); /* fetch ID associated with field */
if (x && x -> name && match (name, x -> name))
/* does its name match ? */

break;
++f;

return *f; /* return field pointer of match or NULL */

.)

Screen 11-6. Using the Field User Pointer to Match Items

Note that if a match is not founiihd_field returns a NULL field pointer. See the pre-
vious sections on panel and menu user pointers for more examples.

If successfulset_field userptr returnsE_OK If not, it returns the following:
E_SYSTEM_ERROR system error

To change the system default user pointer from NULL to one of your choice, you need
only passset_field_userptr a NULL field pointer. Passing a NULL field pointer to
field_userptr returns the current default user pointer.

11-25

Character User Interface Programming

Manipulating Field Options

11-26

ETI provides several field options for controlling how data is entered and displayed in a
field. The following functions let you set or clear these options or read their settings.

SYNOPSIS
int set_field_opts (field, optg
FIELD * field;

OPTIONS opts

OPTIONS field_opts (field)
FIELD * field;

options:
O_VISIBLE
O_ACTIVE
O_PUBLIC
O_EDIT
O_WRAP
O_BLANK
O_AUTOSKIP
O_NULLOK
O_PASSOK
O_STATIC

Functionset_field_opts turns off all options that do not appear in its second argu-
ment. By default, all options are on.

The field options and their effects are as follows:

O_VISIBLE determines field visibility. If this option is on, the field is dis-
played. If this option is off, it is erased. This option is useful for
supporting pop-up fields, fields visible or not depending on
another field's value.

O_ACTIVE determines if a field is visited during form processing. If inacti-
vated, the field is ignored during form processing. Inactive fields
enable you to create field labels and other static form symbols or
changeable symbols that are not affected during form processing.
Examples of fields that change value but are not affected during
form processing are row and column totals, as in a spreadsheet
program. You can change field values using calls to
set_field_buffer

O_PUBLIC determines how feedback is presented to the user as data is
entered. The data in public fields is displayed as entered, while the
data in non-public fields is not displayed at all. Further, in non-
public fields, the cursor does not actually move across the field,
but the forms subsystem internally maintains the cursor position
relative to the field data. You can use non-public fields to imple-
ment password fields.

O_EDIT

O_WRAP

O_BLANK

O_AUTOSKIP

O_NULLOK

O_PASSOK

O_STATIC

Forms

determines if field editing is permitted. By default, this option is
on and a field may be edited. If tbe EDIT option is off, the field
may be visited but not changed. Editing requests or attempts to
enter data will fail. REQ_PREV_CHOICEand
REQ_NEXT_CHOICEequests, however, are honored, if they are
defined for the field's type.) This is useful for creating fields for
browsing such as scrollable help messages.

determines if word wrapping occurs at the end of each line of the
field. If any character of the word does not fit on the line as it is
entered, the entire word is automatically moved to the beginning
of the next line, if there is one. If tl@ WRAPption is off, the
word is split between the two lines.

determines if the whole field is automatically erased when the
end-user types a character in the first character position of the
field before any character position has been changed. If the
O_BLANKoption is off, this does not occur.

determines how the field responds when it becomes full. Ordi-
narily, when a field is full, an automatic request to move to the
next field on the form is generated. If, however, GhdAUTOSKIP
option is off, the end-user remains at the end of the field.

The O_AUTOSKIPoption will be ignored if the option
O_STATIC is off and there is no maximum growth specified for
the field. On a growable field with no maximum growth specified,
there is no “last” character position. If a maximum growth is spec-
ified, theO_AUTOSKIPoption will cause alREQ_NEXT_FIELD

to be generated from the last character position if the field has
grown to its maximum size.

determines how the field responds when your end-user tries to
leave a blank field. By default, this option is on — when a field is
blank, a request to leave the field is honored without validating the
field. If, on the other hand, tHé_ NULLOKoption is off, the vali-
dation procedure is applied to the blank field.

When this option is on, the field is checked for validity only if
your end-user entered data into the field or edited it. If it is off, the
validity check occurs whenever your user leaves the field, whether
or not the field was changed. This is useful for fields whose vali-
dation function may change dynamically.

When this option is on, the field is fixed in size and any attempt to
add more data than the current field buffer will hold will fail. If it
is off, the field will grow dynamically to accommodate additional
data entered by the user. See “Dynamically Growable Fields” on
page 11-9 for more information on dynamic fields.

Remember that options are Boolean values. So to turn off opti?dCTIVE for field fO
and to turn it on for fieldl, you use the Boolean operators and write:

FIELD * fO, * f1;

11-27

Character User Interface Programming

11-28

set_field_opts (fO, field_opts (f0) & ~O_ACTIVE);
[* turn option off */

set_field_opts (f1, field_opts (f1) | O_ACTIVE);
[* turn option on */

NOTE

Although you can change field option settings on posted forms,
you cannot change option settings for the current field.

ETI also provides the following two functions which let you turn a field option on or off
without using functiorfield_opts

SYNOPSIS
int field_opts_on (field, opt9

FIELD * field;
OPTIONS opts

int field_opts_off (field, opt9
FIELD * field;
OPTIONS opts

Unlike functionset_field_opts , these functions leave unnamed option settings
intact.

As an example, the following code turns optiGan8BLANKandO_AUTOSKIPoff for field
fO and on for field1:

FIELD * fO, * 1,

field_opts_off (f0, O_BLANK | O_AUTOSKIP);
[* turn options off */

field_opts_on (f1, O _BLANK | O_AUTOSKIP);
[* turn options on */

If successful, functionsset_field_opts , field_opts_on , and
field_opts_off returnE_OK. If not, they return the following:

E_SYSTEM_ERROR system error
E_CURRENT cannot change current field options
As usual, you can change the ETI default option settings by passing function

set_field_options , field_opts_on , or field_opts_off a NULL field
pointer. Callingfield_opts with a NULL field pointer returns the system default.

Forms
Creating and Freeing Forms

Once you have established a set of fields and their attributes, you are ready to create a
form to contain them.

SYNOPSIS

FORM * new_form (fields)
FIELD ** fields

int free_form (form)
FORM * form;

The functionnew_form takes as an argument a NULL-terminated, ordered array of
FIELD pointers that define the fields on the form. The order of the field pointers deter-
mines the order in which the fields are visited during form driver processing discussed
below.

As with the comparable ETI menu functioaw_menu, functionnew_form does not

copy the array of field pointers. Instead, it saves the pointer to the array. Be sure not to
change the array of field pointers once it has been passedtdorm , until the form is

freed byfree_form or the field array replaced gt _form_fields described in the

next section.

Fields passed toew_form are connected to the resulting form.

NOTE

Fields may be connected to only one form at a time.

To connect fields to another form, you must first disconnect them freiagform or
set_form_fields . If fields is NULL, the form is created but no fields are con-
nected to it.

Unlike menus, ETI forms are logically divided into pages. Two functions enable you to
mark a field that is to start a new page and to return a Boolean value indicating whether a
given field does so.

SYNOPSIS
int set_new_page(field, bool)
FIELD * field;
int book I* TRUE or FALSE */

int new_page(field)
FIELD * field;

The initial system default value oBw_page is FALSE. This means that, unless speci-
fied withset_new_page , each field is assumed to continue the current page.

11-29

Character User Interface Programming

NOTE

In general, you should make the size of each form page smaller
than the form’'s window size.

If function set_new_page executes successfully, it retutBsOK. If not, it returns one
of the following:

E_SYSTEM_ERROR system error
E_CONNECTED field connected to form

Screen 11-7 shows how to create a simple two-page form.

FIELD * [7];
FORM * form;

/* create fields as described in “Creating and Freeing Fields” on page 11-6 */
f[0] = new_field (...); /* 1st field on page 1 */
f[1] = new_field (...); /* 2nd field on page 1 */
f[2] = new_field (...); /* 3rd field on page 1 */
f[3] = new_field (...); /* 4th field on page 1 */

f[4] = new_field (...); /* 1st field on page 2 */
f[5] = new_field (...); /* 2nd field on page 2 */

f[6] = (FIELD *) O; /* signal end of form */
set_new_page (f[4], TRUE); /* start new page with fifth field f[4] */

form = new_form (f); /* create the form */

_)

Screen 11-7. Creating a Form

If successfulnew_form returns a pointer to the new form. If there is no memory avail-
able for the form or one of the given fields is connected to another faam,form
returns NULL. Undefined results occur if the array of field pointers is not NULL-termi-
nated.

The functionfree_form disconnects all fields and frees any space allocated for the
form. Its argument is a form pointer previously obtained frew_form . The fields
themselves are not automatically freed.

NOTE
You should free the fields comprising a form udreg_field

only after you free their form usirfgee_form

If successfulfree_form returnsE_OK. If not, it returns one of the following:

11-30

Forms

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

E_POSTED form is posted
Posting forms is described below.

As with panel, item, menu, and field pointers, form pointers should not be used once they
are freed. If they are, undefined results occur.

Manipulating Form Attributes

Recall that an attribute is any feature whose value can be set or read by an appropriate ETI
function. A form attribute is any form feature whose value can be set or read by an appro-
priate ETI function. The set of fields connected to a form and the number of fields con-
nected to it are examples of form attributes.

Changing and Fetching the Fields on an Existing Form

Once you create a form with one set of fields usg_form , you can change the fields
connected to it.

SYNOPSIS

int set_form_fields (form, fieldsg
FORM * form;
FIELD ** fields

FIELD ** form_fields (form)
FORM * form;
Like new_form , functionset_form_fields takes as an argument a NULL-termi-

nated, ordered array of FIELD pointers that define the fields on the form and determine the
order in which the fields are visited during form driver processing.

Whenset_form_fields is called, the fields previously connected to the form are dis-
connected from it (but not freed) before the new fields are connected. Like any set of fields
connected to a form, the new fields cannot be passed to other forms while they are con-
nected to the given form. You must first disconnect them by cdiegform or again

calling set_form_fields

There are two ways to disconnect the fields associated with a form without connecting
another set of fields to the form:

* you can calfree_form

* you can calket_form_fields with fields set to NULL

11-31

Character User Interface Programming

The first method frees the space allocated for the form, whereas the second does not.

To change the fields associated withhm to those referenced in array pointew-
fields , you can write:

FORM * form;
FIELD ** newfields;

set_form_fields (form, newfields);
/* associate new set of fields with form */

If function set_form_fields encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form pointer
E_POSTED form is posted
E_CONNECTED connected field
Posting forms is discussed in “Posting and Unposting Forms” on page 11-38.

The functionform_fields returns the array of field pointers defining the form's fields.
The function returns NULL if no fields are connected to the form or the form pointer is
NULL.

Counting the Number of Fields

The following function returns the number of fields connected to the given form.

SYNOPSIS
int field_count (form)
FORM * form;

If formis NULL, field_count returns -1.

As an example, consider the following routine, which determines whether your user is on
the last field of the form as numbered in the field pointer array:

int on_last_field (form)
FORM * form;

[* fetch number of last field */
int lastindex = field_count (form) - 1;

/* determine whether number of current field
is the same */

11-32

Forms

return field_index (current_field (form)) ==
lastindex;

}

Note the use of functiorfield_index andcurrent_field , described in “Manipu-
lating the Current Field” on page 11-57.

Querying the Presence of Offscreen Data

It may be desirable to indicate to the user whether there is additional data either ahead or
behind in a scrollable field. It is the responsibility of application developers to indicate,
however they like, the presence of off screen data. The following functions allow the
developer to query the presence of offscreen data.

SYNOPSIS

int data_ahead(form)
FORM *form;

int data_behind(form)
FORM *form;

data_ahead returns TRUE, if there is either more data offscreen to the right if the cur-
rent field is a one line field, or more data offscreen below if the current field is multi-line.
Otherwise FALSE is returned. Data is defined to be any non-pad character; see “Setting
the Field Foreground, Background, and Pad Character” on page 11-19 for more detail on
the pad character.

data_behind returns TRUE, if the first character position of the current field is not cur-
rently being displayed. Otherwise FALSE is returned.

Changing ETI Form Default Attributes

During form initialization usingnew_form , all form attributes are assigned default val-
ues. As you can with menu attributes, you can change these default attribute values by
calling the appropriate function with a NULL form pointer as its first argument. All subse-
guent forms created usimgw_form will then have the new default attribute value. How-
ever, forms created before the change to the current default value will retain the initial val-
ues of their attributes. Several examples of changing default values occur throughout the
rest of this chapter.

Displaying Forms

In general, to display a form, you determine the form dimensions, optionally associate a
window and subwindow with the form, post the form, and refresh the screen.

11-33

Character User Interface Programming

Determining the Dimensions of Forms

Scaling the Form

11-34

Every form is associated with a window and subwindow.

NOTE

By default, (1) the form window is NULL, which by convention
means that ETI usesddscr as the form window; and (2) the form
subwindow is NULL, which means that ETI uses the form win-
dow as the form subwindow.

Windows are used to create borders, titles, and the like. Before ETI posts a form, it must
determine the sizes of its window and subwindow.

To determine the minimum window or subwindow size for a form, ET| considers the fol-
lowing:

* the number of rows and columns for each field

* the starting position (upper left corner) of each field within the form sub-
window

By automatically fetching this information previously established by calls to
new_field , functionscale_form saves you the effort of calculating the size of your
form subwindow.

Considering the above information, this function returns the minimum window size neces-
sary for containing the form.

SYNOPSIS

int scale_form (form, rows colg
FORM * form;

int * rows

int * cols

Because functioscale_form must return more than one value (namely, the minimum
number of rows and columns for the form) and C passes parameters “by value” only, the
arguments ofcale_form are pointers. The pointer argumertw/s andcols point to
locations used to return the minimum number of rows and columns for the form.

NOTE

You should calkcale_menu only after the form's fields have
been connected to the form usinmew_form or
set_form_fields

Forms

As an example, to return the minimum (sub)window size for formvariablesows and
cols you can write:

FORM * form;
int rows, cols;

[* create fields
create form */

/* determine minimum row and column size */
scale_form (form, &rows, &cols);

/* create form subwindow, as described
in next section */

If functionscale_form encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form pointer

E_NOT_CONNECTEDo fields connected to the form

Associating Windows and Subwindows with a Form

Remember that two windows are associated with every form — the form window and the
form subwindow. The following functions assign windows and subwindows to forms and
fetch those previously assigned to them.

SYNOPSIS

int set_form_win (form, window)
FORM * form;
WINDOW * window

WINDOW * form_win (form)
FORM * form;

int set_form_sub (form, window)
FORM * form;
WINDOW * window

WINDOW * form_sub (form)
FORM * form;

These functions enable you to place stylistic borders, titles, and other decoration around a
form.

11-35

Character User Interface Programming

11-36

NOTE

Remember that if the form window is NULL (the default), ETI
usesstdscr. If the form subwindow is NULL (the default), ETI
uses the form window so you need not use functions
set form_win orset form_sub atall.

If you do not want to usgtdscr, you should create a window and a subwindow for every
form. ETI automatically writes all low-level ETE€grses) output of the form proper on

the form subwindow. If you want further output (such as borders, titles, or static mes-
sages), you should write it on the form window. However, you need not write any further

output at all.
NOTE
Be sure to apply all low—Ilevel ETE@rses(3curses)) com-

mand output and refresh operations to your form's window, not its
subwindow.

Figure 11-1 diagrams the relationship between ETI Form functions, your application pro-
gram, and its form window and subwindow.

window
C Application
sub - Program
window g
ETI
Form
Functions

Figure 11-1. Form Functions Write to Subwindow, Application to Window

Screen 11-8 shows how to create a form with a border of the terminal's default vertical and
horizontal characters.

Forms

4)

/* create window 4 characters larger than form dimensions
with top left corner at (0, 0). subwindow is positioned
at (2, 2) relative to the form window origin with dimensions
equal to the form dimensions. */

FORM * f;

WINDOW * w;

int rows, cols;

scale_form (f, &rows, &cols); /* get dimensions of form */

if (w = newwin (rows+4, cols+4, 0, 0))
set_form_win (f, w); /* associate window and subwindow with form */
set_form_sub (f, derwin (w, rows, cols, 2, 2));

box (w, 0, 0); /* create border */

}

_)

Screen 11-8. Creating a Border around a Form

Functionscale_form sets the values of the variablesvs andcols , which provide
the form dimensions without the border. Adding four to the dimensions of the form win-
dow clearly sets off the form border from the fields of the form (the form proper).

If functionsset form_win orset form_sub encounter an error, they return one of
the following:

E_SYSTEM_ERROR system error
E_POSTED form is posted

As usual, you can change the default form window or subwindow. For instance, you can
change the default form window frostdscr to a windoww by passing a NULL form
pointer, as follows:

int rows, cols, firstrow, firstcol;
[* create form window */
WINDOW * w = newwin (rows, cols, firstrow, firstcol);

set_form_win((FORM *)0, w);
/* change default form window to w */

Note that if you later change a posted form by writing directly to its window, before con-
tinuing you must reposition the form window cursor uspog_form_cursor . See
“Positioning the Form Cursor” on page 11-60.

11-37

Character User Interface Programming

Posting and Unposting Forms

When you have created a form and its window and subwindow, you are ready to post it. To
post a form is to display it on the form's subwindow; to unpost a form is to erase it from
the form's subwindow.

SYNOPSIS
int post_form (form)
FORM * form;
int unpost_form (form)
FORM * form;

Unposting a form does not remove its data structure from memory.

NOTE

To post a form, be sure that you have connected fields to it first.

Screen 11-9 uses two application routirdésplay form anderase_form , to show
how you might post and later unpost a form. The code builds on that used previously in
Screen 11-8 to create the form's window and subwindow.

11-38

Forms

static void display_form (f)/* create form windows and post */

FORM * f;

{
WINDOW *w;
int rows;
int cols;

scale_form (f, &rows, &cols);/* get dimensions of form */
/* create form window as in Screen 11-8 */
if (w = newwin (rows+4, cols+4, 0, 0))
set_form_win (f, w);
set_form_sub (f, derwin (w, rows, cols, 2, 2));
box (w, 0, 0);
keypad (w, 1);
else
[* error routine in previous section “ETI Low-level Interface to
High-level Functions” */
error (“error return from newwin”, NULL);
if (post_form (f) != E_OK) /* post form */

error (“error return from post_form”, NULL);

else
refresh (w);
}
static void erase_form (f)/* unpost and delete form windows */
FORM * f;
{
WINDOW * w = form_win (f);
WINDOW * s = form_sub (f);
unpost_form (f); /* unpost form */
werase (w); /* erase form window */
wrefresh (w); /* refresh screen */
delwin (s); /* delete form windows */
delwin (w);
}

_)

Screen 11-9. Posting and Unposting a Form
If successful, functiopost_form returnsE_OK. If not, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form pointer
E_POSTED form is already posted
E_NOT_CONNECTEMo connected fields
E_NO_ROOM form does not fit in subwindow

If successful, the functioanpost_form returnse_OK. If not, it returns one of the fol-
lowing:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer

11-39

Character User Interface Programming

E_NOT_POSTED form is not posted
E_BAD_STATE called from init/term function

The initialization and termination routines are discussed in the next section.

Form Driver Processing

Like the functiormenu_driver for the menu subsystem, functifamm_driver is the
workhorse of the form system. Once the form is posted, the form driver handles all inter-
action with your end-user. The form driver responds to

¢ field navigation requests
* page navigation requests
¢ field editing requests

* data entry

¢ field validation requests

Your application passes a character to the form driver for processing and evaluates the
results.

SYNOPSIS
int form_driver (form, ¢)
FORM * form;
int ¢

As with menu processing, to enable the form driver to process your end-users' requests,
you must write an input key virtualization routine. This routine defines a correspondence
between input keys, control characters, and escape sequences on the one hand and ETI
form requests on the other. The routine returns a specific form request or application com-
mand that the form driver can process. Upon return from the form driver, your application
can check if the input was processed appropriately. If not, it can specify actions to be
taken. These may include terminating interaction with the form, responding to help
requests, generating an error message, and so on.

Defining the Virtual Key Mapping

11-40

For a sample virtual key mapping, consider Screen 11-10, which contains the application-
defined functiorget_request . Most of the values returned gt request are ETI

form requests defined in header fitem.h and described in the next section. The other
values returned (in this example, only value QUIT are defined by the application program
treated in “Calling the Form Driver” on page 11-48.

Forms

-

/* The following key mapping is defined by get_request.
Note that ~X represents the character control-X.

Q - end form processing
F - move to next page

B - move to previous page
N - move to next field

P - move to previous field

home key- move to first field
home down- move to last field

AL - move left to field

"R - move right to field

U - move up to field

D - move down to field

W - move to next word

T - move to previous word

S - move to beginning of field data
"E - move to end of field data

left arrow- move left in field
right arrow- move right in field
down arrow- move down in field
up arrow- move up in field

M <CR> - enter new line

Al - insert blank character

el - insert blank line

NV - delete character

AH <BS> - delete previous character

Y - delete line

"G - delete word

~C - clear to end of line

K - clear to end of field

X - clear entire field

A - request next field choice

~Z - request previous field choice
ESC - toggle between insert and overlay mode

define application commands */

#define QUIT(MAX_COMMAND + 1)

static int get_request (w)/* virtual key mapping */

WINDOW * w;

{
static intmode= REQ_INS_MODE;
int c = wgetch (w);/* read a character */
switch (c)

o

Screen 11-10. A Sample Key Virtualization Routine

11-41

Character User Interface Programming

11-42

4)

case Ox11: /*~Q */ returnQUIT;

case 0x06: /*"F*/ return REQ_NEXT_PAGE;
case 0x02: /*~B*/ return REQ_PREV_PAGE;
case 0x0e: /*~N*/ return REQ_NEXT_FIELD;
case 0x10: /*"P */ return REQ_PREV_FIELD;
case KEY_HOME: return REQ_FIRST_FIELD;
case KEY_LL: return REQ_LAST_FIELD;
case 0xOc: /*~L*/ return REQ_LEFT_FIELD;
case 0x12: /*"R*/ return REQ_RIGHT_FIELD;
case 0x15: /*~U*/ return REQ_UP_FIELD;

case 0x04: /*"D*/ return REQ_DOWN_FIELD;
case 0x17: /*"W */ return REQ_NEXT_WORD;
case 0x14: /*~T* return REQ_PREV_WORD;
case 0x13: /*"S*/ return REQ_BEG_FIELD;

case 0x05: /*"E*/ return REQ_END_FIELD;

case KEY_LEFT: return REQ_LEFT_CHAR;
case KEY_RIGHT: return REQ_RIGHT_CHAR;
case KEY_DOWN: return REQ_DOWN_CHAR;
case KEY_UP: return REQ_UP_CHAR;

case 0x0d: /*~M*/ return REQ_NEW_LINE;
case 0x09: /*~l*/ return REQ_INS_CHAR;
case OxOf: /*"~O*/ return REQ_INS_LINE;
case 0x16: /*"AV*/ return REQ_DEL_CHAR,;
case 0x08: /*"H*/ return REQ_DEL_PREV;
case 0x19: /*~Y */ return REQ_DEL_LINE;
case 0x07: /*~G*/ return REQ_DEL_WORD;
case 0x03: /*~C* return REQ_CLR_EOL;
case OxOb: /*~K* return REQ_CLR_EOF;
case 0x18: /*~X* return REQ_CLR_FIELD;
case 0x01: /*"A*/ return REQ_NEXT_CHOICE;
case Oxla: /*~Z*/ return REQ_PREV_CHOICE;
case Oxlb: /*ESC*
if (mode == REQ_INS_MODE)
return mode = REQ_OVL_MODE;
else
return mode = REQ_INS_MODE;
}

return c;

}

_)

In get_request , only a subset of the requests are defined so that the requests your end-
user can make are limited. If you like, you can also map two or more keys onto one
request. This is helpful where some terminals lack one of the keys in question. In that case,
the user can press the other key to the same effect.

Functionget_request first sets the data entry mode for the end-user. Here it is set ini-
tially to insert mode. The last case statement in the routine enables your end-user to press
the escape kelg SC to switch to overlay mode. Both modes are discussed in “Field Edit-

ing Requests” on page 11-45.

Next,get_request callswgetch to read a character entered by the user.sWiteh

statement maps the character read onto a specific application command or form request.
The application command QUIT appears here as the first case; the other cases map charac-
ters onto form requests. Any character that is not an application command or form request
is simply returned unchanged—it is treated as data being entered into the current field.

Note that this key mapping assumes your end-user will be using a terminal with arrow
keys KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN), a home key
(KEY_HOME), and a home down keliKEY _LL).

ETI Form Requests

Forms

The ETI form subsystem places the following requests at your application program's dis-

posal.

Page Navigation Requests

These requests enable your end-user to navigate or move from page to page on a multi-

page form.
REQ_NEXT_PAGE
REQ_PREV_PAGE
REQ_FIRST_PAGE

REQ_LAST_PAGE

move to next page
move to previous page
move to first page

move to last page

Page navigation requests are cyclic so that

* theREQ_NEXT_PAGEequest from the last page moves to the first page
* theREQ_PREV_PAGftom the first page moves to the last.

Inter-field Navigation Requests on the Current Page

These requests enable your end-user to move from field to field on the current page of a
single form.

REQ_NEXT_FIELD move to next field

REQ_PREV_FIELD move to previous field
REQ_FIRST_FIELD move to first field
REQ_LAST FIELD move to last field
REQ_SNEXT_FIELD move to sorted next field
REQ_SPREV_FIELD move to sorted previous field
REQ_SFIRST_FIELD move to sorted first field
REQ_SLAST_FIELD move to sorted last field
REQ_LEFT _FIELD move left to field
REQ_RIGHT_FIELD move right to field
REQ_UP_FIELD move up to field
REQ_DOWN_FIELD move down to field

All field navigation requests are cyclic on the current page so that

11-43

Character User Interface Programming

* theREQ_NEXT_FIELDrequest from the last field on a page moves to the
first field on that page.

* theREQ_PREV_FIELDrequest from the first field on a page moves to the
last field on that page.

and so forth. The order of the fields in the field array passeeltoform determines the
order in which the fields are visited using REQ_NEXT_FIELD REQ_PREV_FIELD
REQ_FIRST_FIELD, andREQ_LAST_FIELDrequests.

NOTE

Remember that the order of fields in the form array is simply the
order in which fields are processed during form processing. This
order bears no necessary relation to the order of the fields as they
are displayed on the form page.

Your end-user may also move from field to field on the form page in row-major order —
left to right, top to bottom. To do so, you use tREQ_SNEXT_FIELD
REQ_SPREV_FIELDREQ_SFIRST_FIELD, andREQ_SLAST_FIELDrequests.

Finally, your end-user can move about in different directions using the
REQ_LEFT_FIELD, REQ_RIGHT_FIELD REQ_UP_FIELD andREQ_DOWN_FIELD
requests. Note that the first character (top left corner) of the field is used to determine
where the field is located relative to other fields. This means, for example, that a multi-line
field whose first character is on the second row of a form is not on the same row as a field
whose first character is on the third row of a form even though the multi-line field may
extend below the third row.

Intra-field Navigation Requests

These requests let your end-user move about inside a field. They may generate implicit
scrolling operations on scrollable fields.

REQ_NEXT_CHAR move to next character in field
REQ_PREV_CHAR move to previous character in field
REQ_NEXT_LINE move to next line in field
REQ_PREV_LINE move to previous line in field
REQ_NEXT_WORD move to next word in field
REQ_PREV_WORD move to previous word in field
REQ BEG_FIELD move to beginning of field

REQ _END_FIELD move after last character in field
REQ_BEG_LINE move to beginning of line

REQ_END_LINE move after last character in line

11-44

Forms

REQ _LEFT_CHAR move left in field
REQ_RIGHT_CHAR move right in field
REQ_UP_CHAR move up in field
REQ_DOWN_CHAR move down in field
The effect of these requests is as follows:

* TheREQ_NEXT_CHARBRNAREQ_ PREV_CHARquests step forward and
backward through the field.

* TheREQ NEXT_ LINEandREQ PREV_LINEequests move the cursor to
the beginning of the next and previous line.

* TheREQ_NEXT_WORDIREQ_ PREV_WORE&qguests move the cursor to
the beginning of the next or previous word.

* TheREQ_BEG_FIELDplaces the cursor at the first non-pad character in
the field. TheREQ_END_FIELDrequest places the cursor after the last
non-pad character in the field. This lets the user easily add characters to the
field. If there is no room, it returns the cursor to the start of the field.

* TheREQ_BEG_LINErequest places the cursor at the first non-pad charac-
ter in the current line of the field. TREQ_END_LINErequest places the
cursor after the last non-pad character in the current line. If there is no
room, it returns the cursor to the start of the line.

* The REQ_LEFT_CHARREQ_RIGHT_CHARREQ_UP_CHARand
REQ_DOWN_CHA&guests move one character position in the stated
direction.

Field Editing Requests

These requests set the editing mode — insert or overlay.
REQ_INS_MODE begin insert mode
REQ_OVL_MODE begin overlay mode

In insert mode (the default), all text is inserted at the current cursor position, while all

existing text starting at the current cursor position is moved to the right. In overlay mode,
text entered by your end-user overlays (replaces) existing text in the field. In both modes,
the cursor is advanced one character position as each character is entered.

The following requests provide a complete set of field editing requests.
REQ_NEW_LINE new line request
REQ_INS_CHAR insert blank character at cursor
REQ_INS_LINE insert blank line at cursor
REQ _DEL CHAR delete character at cursor

REQ_DEL PREV delete character before cursor

11-45

Character User Interface Programming

REQ_DEL_LINE delete line at cursor
REQ_DEL WORD delete word at cursor
REQ_CLR_EOL clear to end of line
REQ_CLR_EOF clear to end of field
REQ_CLR_FIELD clear entire field

The effects oOREQ_NEW_LINEBndREQ_DEL_PREVequests depend on several factors
such as the current mode (insert or overlay) and the cursor position within the field.

* The effects oOREQ_NEW _LINEre as follows:

- Ininsert mode — if the cursor is at the beginning of a field or on the
last line of a field, th(REQ_NEW_LINEequest acts like a
REQ_NEXT_FIELDrequest. Otherwise, thREQ_NEW _LINE
request inserts a new line after the current line and moves the text on
the current line starting at the cursor position to the beginning of the
new line. The cursor is moved to the beginning of the new line.

- In overlay mode — if the cursor is at the beginning of a field, the
REQ_NEW_LINEequest acts like REQ_NEXT_FIELDrequest. If
the cursor is on the last line of a field, REQ_NEW_LINEequest
erases all data from the cursor position to the end of the line and sat-
isfies a REQ_NEXT_FIELD request. Otherwise, the
REQ_NEW_LINEequest erases all data from the cursor position to
the end of the line and moves the cursor to the beginning of the next
line.

* The effects of th@REQ_DEL_PREVWequest is as follows:

- Ininsert mode — if the cursor is at the beginning of a field, the
REQ_DEL_PREVequest behaves likeREQ_PREV_FIELD
request. If the cursor is at the beginning of a line other than the first
and the text on that line will fit at the end of the preceding line, the
text is moved and the current line is deleted. Otherwise, the
REQ_DEL_PREVequest simply deletes the previous character.

- In overlay mode — if the cursor is positioned at the beginning of a
field, the REQ_DEL_PREVrequest behaves like a
REQ_PREV_FIELDrequest. Otherwise, thREQ_DEL_PREV
request simply deletes the previous character.

Because the reques®Q NEW_LINEBndREQ DEL_PREMutomatically do a request
REQ_NEXT_FIELDor REQ_PREV_FIELDas described, they are said to be overloaded
field editing requests. See the remarks on optiGnsNL_OVERLOARNd
O_BS_OVERLOADD “Setting and Fetching Form Options” on page 11-62.

Scrolling Requests

Fields can scroll if they have offscreen data. A field can have offscreen data if it was origi-
nally created with offscreen rows-the parametes in thenew _field library routine

11-46

Forms

was greater than 0-or the field has grown larger than its original size. See “Dynamically
Growable Fields” on page 11-9 for more details on the growth of fields.

There are two kinds of scrolling fields, vertically scrolling fields and horizontally scrolling
fields. Multi-line fields with offscreen data scroll vertically and one line fields with off-
screen data scroll horizontally. Recall the library routiee _field ; a new field created
with rows set to one androw set to zero will be defined to be a one line field. A new field
created withhows+ nrow greater than one will be defined to be a multi-line field.

The following form driver requests are used on vertically scrolling multi-line fields.
REQ_SCR_FLINE scroll field forward a line
REQ_SCR_BLINE scroll field backward a line
REQ_SCR_FPAGE scroll field forward a page
REQ_SCR_BPAGE scroll field backward a page
REQ_SCR_FHPAGE scroll field forward half a page
REQ_SCR_BHPAGE scroll field backward half a page

In the descriptions above, a page is defined to be the number of visible rows of the field as
displayed on the form.

The following form driver requests are used on horizontally scrolling one line fields.
REQ_SCR_FCHAR scroll field forward a character
REQ_SCR_BCHAR scroll field backward a character
REQ_SCR_HFLINE scroll field forward a line
REQ_SCR_HBLINE scroll field backward a line
REQ_SCR_HFHALF scroll field forward half a line
REQ_SCR_HBHALF scroll field backward half a line

In the descriptions above, a line is defined to be the width of the field as displayed on the
form.

In addition, intra-field navigation requests may generate implicit scrolling on scrollable
fields. See “Intra-field Navigation Requests” on page 11-44.

Field Validation Requests

This request supports field validation for those field types that have it.

REQ_VALIDATION validate current field

11-47

Character User Interface Programming

Choice Requests

NOTE

In general, the ETI form driver automatically performs validation
on a field before the user leaves it. (If your user leaves a field, it is
valid.) However, before your user terminates interaction with the
form, you should make thREQ_VALIDATIONrequest to vali-
date the current field.

Recall that on current fields, the values returned by functiiehd buffer and
field_status are sometimes inaccurate. (See “Setting and Reading Field Buffers” on
page 11-21 and “Setting and Reading the Field Status” on page 11-22.) If, however, you
make requedREQ_VALIDATIONimmediately before calling these functions, you can be
sure that the values they return are accurate—they agree with what your end-user has
entered and appears on the screen.

The following requests enable your user to request the next or previous value of a field
type.

REQ_NEXT_CHOICEdisplay next field choice
REQ_PREV_CHOICEdisplay previous field choice

TYPE_ENUM is the only generic field type that supports these choice requests. In addi-
tion, programmer-defined field types may support these requests. See “Setting the Field
Type to Ensure Validation” on page 11-13 and “Creating and Manipulating Programmer-

defined Field Types” on page 11-65 for information on these field types.

Application-defined Commands

Form requests are implemented as integers above the low-levat lHEEE) maximum

key valueKEY_MAXA symbolic constan¥lAX_COMMANDprovided so applications can
implement their own commands without conflicting with the ETI form or menu sub-
systems. All ETI system form requests are greaterkliadh MAXand less than or equal to
MAX_COMMANYDu should set your application-defined commands to an integer greater
thanMAX_COMMAND

Calling the Form Driver

11-48

The ETI form driver works very much like the ETI menu driver. As soon as the form
driver receives a request, it checks if it is an ETI form request. If so, it performs the request
and reports the results. If the request is not an ETI form request, the form driver checks if
the character is data, that is, a printable ASCII character. If it is, it enters the character at
the current position in the current field. If the character is not recognized as a form request
or data, the form driver assumes the character is an application-defined command and
returnsE_ UNKNOWN_COMMAND.

Forms

To illustrate a sample design for calling the form driver, we will consider a program that
permits interaction with a sweepstakes entry form reproduced in Screen 11-2.

4)

+ +
| |
| Sweepstakes Entry Form |

| |
| Last Name First Middle

| |

| |
| Comments |
| |

| |

| |

| |

| |

_)

Figure 11-2. Sweepstakes Form Output

You have already seen much of the sweepstakes program in previous examples.
Screen 11-11 shows its remaining routines.

11-49

Character User Interface Programming

-

#include <string.h>
#include <form.h>

/* This program displays a sweepstakes entry form. */

static void start_curses()/* see the previous section “ETI Low-level */
/* Interface to High-level Functions” */

static void display_form (f)/* create form windows and post */
/* see Screen 11-9 for details */

static void erase_form (f)/* unpost and delete form windows */
/* see Screen 11-9 for details */

/* define application commands */
#define QUIT (MAX_COMMAND + 1)

static int get_request (w)/* virtual key mapping; see Screen 11-10 */

static int my_driver (form, c)/* handle application commands */
FORM * form;
int c;

switch (c)
case QUIT:
/* validate current field */

if (form_driver (form, REQ_VALIDATION) == E_OK)
return TRUE;
break;

beep ();/* signal error */
return FALSE;
}

main (argc, argv)
int argc;
char * argv[];

WINDOW *w;

FORM * form;

FIELD **f;

FIELD **make_fields ();
void free_fields ();

int c, done = FALSE;

PGM = argv[0];

o

Screen 11-11. An Example of Form Driver Usage

11-50

Forms

if (! (form = new_form (make_fields ())))
error (“error return from new_form”, NULL);

start_curses ();
display_form (form);

/* interact with user */
w = form_win (form);
while (! done)

switch (form_driver (form, c = get_request (w)))
{
case E_OK:
break;
case E_UNKNOWN_COMMAND:
done = my_driver (form, c);
break;
default:
beep ();/* signal error */
break;

}

/* terminate form processing */

erase_form (form);
end_curses ();

f = form_fields (form);
free_form (form);
free_fields (f);

exit (0);
}
typedef FIELD *(* PF_field) ();
typedef struct /* define struct for creation */
{
PF_fieldtype;/* field constructor*/
int rows;/* number of rows*/
int cols;/* number of columns*/
int frow;/* first row*/
int fcol;/* first column*/

char* v; /*field value*/
FIELD_RECORD;

static FIELD * LABEL (x)/* create a LABEL field */
FIELD_RECORD * Xx;

{

o

11-51

Character User Interface Programming

-

FIELD * f = new_field (1, strlen (x->Vv), x->frow, x->fcol, 0, 0);
if (f)
{

set_field_buffer (f, 0, x->v);
field_opts_off (f, O_ACTIVE);

return f;

}

static FIELD * STRING (x)/* create a STRING field */
FIELD_RECORD * Xx;

{
FIELD * f = new_field (x->rows, x->cols, x->frow, x->fcol, 0, 0);
if (f)
set_field_back (f, A_UNDERLINE);
return f;
}

/* field definitions */

static FIELD_RECORD F [] =

{
LABEL, O, O, 0, 11, “Sweepstakes Entry Form”,
LABEL, O, 0O, 2, 0, “LastName”,
LABEL, O, O, 2, 20, “First’,
LABEL, O, 0, 2, 34, “Middle”,
LABEL, O, 0O, 5, 0, “Comments”,
STRING, 1, 18, 3, 0, (char*)O0,
STRING, 1, 12, 3, 20, (char* 0,
STRING, 1, 12, 3, 34, (char*)O0,
STRING, 4, 46, 6, 0, (char*)O0,
(PF_field) 0,0,0,0,0, (char *) 0,

b

#define MAX_FIELD512
static FIELD *fields [MAX_FIELD + 1];/* field buffer */

static FIELD ** make_fields ()/* create the fields */

{
FIELD ** f = fields;
inti;
for (i = 0; i < MAX_FIELD && F[i].type; ++i, ++f)
f = (Flil.type) (& F[i]);
*f = (FIELD *) 0;
return fields;
}
static void free_fields (f)/* free the fields */
FIELD ** f;
while (*f)
free_field (*f++);
}

o

J

Functionmain first calls an application-defined routimeake_fields to create the
fields andnew_form to create the form. Routimeake_fields offers a somewhat dif-
ferent way to create fields from what we have seen previously. (Arhatds the string
labels and field sizes; it can be changed sontelte_fields can create any form.)
Functionmain then initializescurses usingstart_curses and displays the form

usingdisplay_form

In itswhile loop, main repeatedly callform_driver

with the character returned by

11-52

get _request . If the form driver does not recognize the character as a request or data, it
returnsE_ UNKNOWN_COMMANIZhereupon the application-defined routine

Forms

my_driver is called with the same character. Routime driver processes the appli-
cation-defined commands. In this example, there is only one, QUIT. Note how this request
automatically calls the form driver again, now with REQ_VALIDATIONrequest.
Remember that this request is necessary to ensure that current field validation occurs
before your end-user leaves the form. If validation is successfuldriver returns

TRUE. In turn, this setdone to TRUE, and the while loop is exited.

Finally, main erases the form, terminates low-level Edurées), frees the form and its
fields, and exits the program.

This example is typical, but it is only one of many ways you can structure an application.
ETI's flexibility lets you use it over a wide range of applications.

Like other ETI routines that return @t , the form driver returng_OKif it recognizes
and processes the input character argument. If it encounters an error, it returns one of the
following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form pointer
E_BAD_STATE called from init/term routines
E_NOT_POSTED form is not posted
E_UNKNOWN_COMMANDunknown command
E_REQUEST_DENIED recognized request failed

E_INVALID_FIELD failed field validation

NOTE
Like the menu driver, the form driver may not be called from any

of the initialization or termination routines described next. Any
attempt to do so returiis BAD_STATE.

Establishing Field and Form Initialization and Termination Routines

As with the menu driver, you may sometimes want the form driver to execute a specific
routine whenever the current field or form changes. The following routines let you do this.

SYNOPSIS
typedef void (* PTF_void) ();
int set_form_init (form, fung

FORM * form;
PTF _void fung

11-53

Character User Interface Programming

PTF_void form_init (form)
FORM * form;

int set_form_term (form, fung
FORM * form;

PTF _void fung

PTF_void form_term (form)
FORM * form;

int set_field_init (form, fung
FORM * form;
PTF _void fung

PTF_void field_init (form)
FORM * form;

int set_field_term (form, fung
FORM * form;

PTF _void fung

PTF_void field_term (form)
FORM * form;

The argumentuncis a pointer to the specific function you want executed by the form
driver. This application-defined function itself takes a form pointer as an argument.

As with menus, if you want your application to execute a routine at one of the initializa-
tion or termination points listed below, you should call the appropriate form initialization
or termination routine at the start of your program. If you do not want a specific function
called in these cases, you may refrain from calling these routines altogether.

Function set_form_init

The argumentuncto this function is automatically called by the form driver

* when the form is posted

* just after every form page operation, that is, after the page changes on a
posted form

Function set_field_init

The argumenfuncto this function is automatically called by the form driver

¢ when the form is posted

* just after a field change operation, that is, every time the current field
changes on a posted form.

11-54

Forms

Function set_field_term

The argumentfuncto this function is automatically called by the form driver

* just after the field is validated, that is, just before the current field changes
on a posted form

* when the form is unposted

Function set_form_term

The argumentuncto this function is automatically called by the form driver

* just before every form page operation, that is, just before the page changes
on a posted form

¢ when the form is unposted

To see more precisely when the initialization and termination routines may be executed,
note that your form page and current field can be changed in the following circumstances:

* Both the form page and the current field may be changed automatically by
the form driver in response to a user's request.

* The form page may be changed when the current field is changed using
set_current_field

* The current field is changed when the page is changed using
set_form_page

NOTE

All of these initialization and termination functions are NULL by
default. This means that no function need be called.

These functions promote common operations, such as row or column total updates, dis-
play of previously invisible fields, activation of previously inactive fields, and more. As an
example, Screen 11-12 shows a field termination rougdate_total , which dynam-

ically adjusts a column total field whenever a row field value changes. Fumasion
callsset_field term to establistupdate_total as the field termination routine.

11-55

Character User Interface Programming

void update_total (form)
FORM * form;

FIELD ** f = form_fields (form);
char buf[80];
double total, atof(); /* atof() converts string to float */

switch (field_index (current_field (form)))
{

case ROW_1:

case ROW_2:

case ROW_3:

[* field_buffer returns field's value as string,
which atof converts to float */

total = atof (field_buffer (fROW_1], 0)) +
/* calculate total */
atof (field_buffer (fROW_2], 0)) +
atof (field_buffer (ffROW_3], 0));

sprintf (buf, “%.2f", total);
set_field_buffer (ffTOTAL], 0, buf);

break;
}
}
main ()
FORM * form;

set_field_term (form, update_total); /* establish termination routine */

}

_)

Screen 11-12. Sample Termination Routine that Updates a Column Total

Functionset_field buffer sets the column total field to the valiagal stored in
buf . See “Setting and Reading Field Buffers” on page 11-21 for details on
field_buffer andset _field_buffer

For another example, consider Screen 11-13. It shows a common use for field initializa-
tion and termination—nhighlighting a field when it becomes current and removing the
highlight when it is no longer current.

11-56

Forms

void bold_off (form)
FORM * form;
{
/* remove highlight */

set_field_back (current_field (form), A_UNDERLINE);
}

void bold_on (form)
FORM * form;

/* highlight field */

set_field_back (current_field (form), A_STANDOUT | A_UNDERLINE);
}

main ()
FORM * form;
/* establish initialization and termination routines */
set_field_init (form, bold_on);

set_field_term (form, bold_off);

}

_)

Screen 11-13. Field Initialization and Termination to Highlight Current Field

If functionsset_form_init , set_form_term |, set_field_init , or
set_field _term encounter an error, they return the following:

E_SYSTEM_ERROR system error

As usual, if you want a specific default initialization or termination function for all forms
or all fields, you can pass the appropriate set function a NULL form pointer. Passing a
NULL form pointer to the access functions returns the current ETI default.

Manipulating the Current Field

The current field is the field where your end-user is positioned on the display screen. It
changes as the end-user moves about the form entering or changing data. The cursor rests
on the current field. To have your application program set or determine the current field,
you use the following functions.

SYNOPSIS
int set_current_field (form, field)
FORM * form;
FIELD * field;

FIELD * current_field (form)
FORM * form;

11-57

Character User Interface Programming

11-58

int field_index (field)

FIELD * field,
The functionset_current_field enables you to set the current field, while function
current_field returns the pointer to it. The value returnedibld _index is the

index to the given field in the field pointer array associated with the connected form. This
value is in the range of 0 throutjhl, whereNis the total number of fields.

When a form is created mew_form or the fields associated with the form are changed
by set_form_fields the current field is automatically set to the first visible, active
field on page O.

NOTE

Your application program need not csdit_current_field

unless you want to implement field navigation requests that are
not supported by the form driver and discussed in “ETI Form
Requests” on page 11-43.

Screen 11-14 illustrates the use of these functions. Fursgtofirst field uses
set_current_field to set the current field to the first field in the form's field pointer
array. Functiorfirst_field , on the other hand, returns a Boolean value indicating
whether the current field is the first field.

~

int set_first_field (form) /* set current field to first field */
FORM * form;

FIELD ** f = form_fields (form);
return set_current_field (form, f[0]);

}

int first_field (form) /* check if current field is first field */
FORM * form;

FIELD * f = current_field (form);

return field_index (f) == 0;

}

_)

Screen 11-14. Example Manipulating the Current Field
If function set_current_field encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error

E_BAD_ARGUMENT NULL form pointer or field not connected to

form
E_BAD_STATE called from init/term routines
E_INVALID_FIELD current field is invalid on posted form

E_REQUEST_DENIED field not active or not visible

Forms

The functioncurrent_field returns (FIELD *) O if given a NULL form pointer or
there are no fields connected to the form.

The functionfield_index returns -1 if its field pointer argument is NULL or the field
is not connected to a form.

Changing the Form Page

Two form functions enable your application program to change to another page on the
form or to determine the current page of the form.

SYNOPSIS

int set_form_page (form, pageg
FORM * form;
int page

int form_page (form)
FORM * form;

Upon execution ofet_form_page , the current field is set to the first field on the new
page that is visible and active (visited during form driver processing). Vapagémust

be in the range of 0 throudit+1, whereN is the total number of pages. The function
form_page returns the page number of the page currently visible on the screen.

When functiomnew_form creates a form or functicset_form_fields changes the
fields associated with a form, the form page is automatically set to 0.

NOTE

Your application program need not csdit_form_page unless

you want to implement page navigation requests that are not sup-
ported by the form driver and discussed in “ETI Form Requests”
on page 11-43.

Screen 11-15 illustrates the use of these functions. Funstipfirst_page uses
set_form_page to change to the first page of the form, while funcficsi_page
usedorm_page to return a Boolean value indicating whether the first page of the form is
currently displayed. Note that the first page is numbered 0.

11-59

Character User Interface Programming

int set_first_page (form) /* set to first form page */
FORM * form;
{

}

int first_page (form) /* check if on the first form page */
FORM * form;

{

}

_)

return set_form_page (form, 0);

return form_page (form) == 0; /* return Boolean */

Screen 11-15. Example Changing and Checking the Form Page Number
If function set_form_page encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form or page out of range
E_BAD_STATE called from init/term routines
E_INVALID_FIELD current field is invalid on posted form

The functionform_page returns -1 if given a NULL form pointer or there are no fields
connected to the form.

Positioning the Form Cursor

11-60

As with menu processing, some processing of user form requests may move the cursor
from the location required for continued processing by the form driver. This function
moves the cursor back to where it belongs.

SYNOPSIS

int pos_form_cursor (form)
FORM * form;

You need call this function only if your application program changes the cursor position of
the form window.

Screen 11-16 illustrates one use of this function. Fungiitnipage repositions the
cursor after it prints the page number in the form window.

Forms

void printpage (form)
FORM * form;
{

int p = form_page (form) + 1;
WINDOW *w = form_win (form);

int rows, cols;

char buf[80];

box (w, 0, 0); /* put border around form window */

getmaxyx (w, rows, cols); /* fetch window size */
sprintf (buf, “ %d ", p); /* store next page number */

wmove (w, (rows-1), ((cols-1)-strlen(buf))/2); /* position cursor */
waddstr (w, buf); /* print page number */
/* position the form cursor for continued form processing */

pos_form_cursor (form);

}
main ()
FORM * form;

set_form_init (form, printpage);

}

- J

Screen 11-16. Repositioning the Cursor after Printing Page Number

If pos_form_cursor encounters an error, it returns one of the following:
E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL form pointer

E_NOT_POSTED form is not posted

Setting and Fetching the Form User Pointer

As it does for items, menus, and fields, ETI supplies a form user pointer for data such as
titles, help messages, and the like. These functions enable you to set the pointer and return
its referent.

SYNOPSIS

int set_form_userptr (form, userpt)
FORM * form;
char* userptr,

char * form_userptr (form)
FORM * form;

11-61

Character User Interface Programming

You can define a structure to be connected to the form using this pointer. By default, the
form user pointer is NULL.

Screen 11-17 illustrates the use of these form user pointer functions to determine whether
a given name matches a pattern name. Funaotiain usesset_form_userptr to
establish the pattern name, whitempare usedform_userptr to fetch the pattern and

do the comparison.

~

#define match(a,b)(strcmp (a, b) == 0)

int compare (form, name)
FORM * form;
char * name;

{
char * s = form_userptr (form); /* fetch pattern string */
return match (name, s); /* return Boolean indicating match or not */

}
main ()

FORM * form;
char * form_name; /* initialize form_name to desired string */

set_form_userptr (form, form_name); /* set user pointer

to point to string */

}

_)

Screen 11-17. Pattern Match Example Using Form User Pointer

For more user pointer examples, see the previous sections on item, menu, and field user
pointers and the sample programs at the end of this guide.

If successfulset_form_userptr returnsE_OK. If not, it returns the following:
E_SYSTEM_ERROR system error

As usual, you change the default by passetgform_userptr a NULL form pointer.
So to change the default user pointer to point to the Strfng you write:

/* change default user pointer */
set_form_userptr((form *) 0, “***");

Setting and Fetching Form Options

ETI provides form options regulating how specific user requests are handled. These func-
tions enable you to set the options and read their settings.

SYNOPSIS

int set_form_opts (form, opt9
FORM * form;

11-62

OPTIONS opts

Forms

OPTIONS form_opts (form)

FORM * form;

options:

O_NL_OVERLOAD
O_BS_OVERLOAD

Note that functiorset_form_opts automatically turns off all form options not refer-
enced in its second argument. By default, all options are on.

The effects of the options are as follows:

O_NL_OVERLOAD

O_BS_OVERLOAD

determines how &EQ_NEW_LINEequest is processed. If
O_NL_OVERLOAI on, the request is overloaded. See “Field
Editing Requests” on page 11-45 for a description of overloading.
If O_NL_OVERLOAB off, theREQ_NEW_LINEequest behav-

ior depends on whether insert mode is on.

In insert mode, th&®EQ_NEW_LINEequest first inserts a new
line after the current line. It then moves the text on the current line
starting at the cursor position to the beginning of the new line. The
cursor is repositioned to the beginning of the new line.

In overlay mode, th®@EQ_NEW_LINHEequest erases all data
from the cursor position to the end of the line. It then repositions
the cursor at the beginning of the next line.

If the field optionO_STATIC if off and there is no maximum
growth specified for the field, the overloaded form driver request
REQ_NEW_LINEwill operate the same way regardless of the set-
ting of theO_NL_OVERLOAIBrm option. If a field can grow
without bound, there is no last line, BEQ_NEW_LINBwill
never implicitly generate REQ_NEXT_FIELD If a maximum
growth limit is specified and tH@_NL_OVERLOA®rm option is
on, REQ_NEW_LINEwill only implicitly generate
REQ_NEXT_FIELDIf the field has grown to its maximum size
and the user is on the last line.

determines how &EQ_DEL_PREVequest is processed. If
O_BS_OVERLOAIB on, the request is overloaded. See again
“Field Editing Requests” on page 11-45 for information on over-
loading. IfO_BS_ OVERLOADB off, theREQ_DEL PREVequest
depends on whether insert mode is on.

In insert mode, if the cursor is at the beginning of any line except
the first and the text on the line will fit at the end of the previous
line, the text is appended to the previous line and the current line
is deleted. If not, th@EQ_ DEL PREVequest simply deletes the
previous character, if there is one. If the cursor is at the first char-
acter of the field, the form driver simply returns
E_REQUEST_DENIED

11-63

Character User Interface Programming

In overlay mode, thREQ DEL_PREVequest simply deletes the previ-
ous character, if there is one.

Options are Boolean values, so you use Boolean operators to turn them on or off. For
example, to turn off optio® NL_OVERLOADf formfO and turn on the same option of
formf1, you write:

FORM * 0, * f1;

set_form_opts (fO, form_opts (f0) & ~O_NL_OVERLOAD);
/* turn option off */

set_form_opts (f1, form_opts (f1) | O_NL_OVERLOAD);
[* turn option on */

ETI provides two more functions to turn options on and off.

SYNOPSIS
int form_opts_on (form, opt9y
FORM * form;

OPTIONS opts

int form_opts_off (form, opt9
FORM * form;
OPTIONS opts

Unlike functionset_form_opts , these functions do not affect options unreferenced in
their second argument.

Another way to turn off optio®_NL_OVERLOADN formfO and turn it on on fornfl is
to write

FORM * {0, * f1;

form_opts_off (f0, O_NL_OVERLOAD); /* turn option off */
form_opts_on (f1, O_NL_OVERLOAD); /* turn option on */

If functionsset_form_opts , form_opts_off , orform_opts_on encounter an
error, they return the following:

E_SYSTEM_ERROR system error

To change the current system default from, sayNL OVERLOADo not-
O_NL_OVERLOAIMithout affecting th&®® BS OVERLOADBption, you write:

form_opts_off((FORM *) 0, O_NL_OVERLOAD);

11-64

Forms

Creating and Manipulating Programmer-defined Field Types

In addition to the wealth of field types that ETI automatically provides, ETI lets you create
new field types from old ones. For most applications, you may not need them, but when
you do, you will have them.

Building a Field Type from Two Other Field Types

One way to define a new field type is to create one from two existing field types. The func-

tion link_fieldtype lets you do this.
SYNOPSIS
FIELDTYPE * link_fieldtype(typel typed

FIELDTYPE * typel
FIELDTYPE * type2

The constituent types may be system-defined or programmer-defined types. They may
require additional arguments for the later caket field_type and may be associ-

ated with validation functions or choice functions. Validation functions validate the value
in the field, while choice functions enable the user to choose the next or previous value of
the field type. See “Creating a Field Type with Validation Functions” on page 11-66 and
“Supporting Next and Previous Choice Functions” on page 11-72.

If additional arguments are required for the later calidb field type , those of
typelshould precede those type2 If there are validation or choice functions associated
with the constituent types, the new type first executes the function associatggbedtk

it is successful, it returns TRUE. If not, the new type executes the function associated with
type2 Whatever it returns is the value returned by the new type.

As an example, the following code creates a new field type that accepts either a color key-
word or an integer between 0 and 255, inclusive:

FIELD *f1;
extern char ** colors;

ENUM_OR_INT = link_fieldtype
(TYPE_ENUM, TYPE_INTEGER);
[* Constituent types are System types
described in “Setting the Field Type
to Ensure Validation” */

set_field_type (f1, ENUM_OR_INT, colors,
FALSE, FALSE, 0, OL, 255L);
[* create field of field type
ENUM_OR_INT */

Once you have created the new field type, you can create fields of that type. The last state-
ment here creates fieldl, which accepts only values of tyg®lUM_OR_INT

11-65

Character User Interface Programming

If an error occurdink_fieldtype returns the following:

NULL no available memory

Creating a Field Type with Validation Functions

11-66

Another way to create a new field type is by specifying

* a function that validates each character as it is entered into the field

* a function that validates the entire value entered into the field

or both. Functiomew_fieldtype returns your new field type given pointers to these
validation functions.

SYNOPSIS
typedef int (* PTF_int) ();

FIELDTYPE * new_fieldtype (f check c_check
PTF_ int f check
PTF_int c_check

The form driver automatically calls the named validation functions during form driver pro-
cessing.

To create a new field type, you must write at least one of the two validation functions.
Functionf_checkis a pointer to a function that takes two arguments: a field pointer and an
argument pointer. The argument pointer is treated in the next seciibeckis called
whenever the end-user tries to leave the field. It should check the field value stored in field
buffer 0 and return TRUE if the field is valid or FALSE if not. If the validation function
fails, your end-user remains on the offending field.

Functionc_checkis also a pointer to a function that takes two arguments: an integer that
represents an ASCII character and an argument pointer. Fuactibecks called as each
character is entered by your end-user. It should check the character for validity and return
TRUE if it is and FALSE if not.

Functionnew_fieldtype is useful for creating field types for specialized applications.
For example, Screen 11-18 defines a new field TiffeE_HEXas a hex number between
0x0000 andOxffff

Forms

#include <ctype.h>
#include <form.h>
extern long strtol ();

#define isblank(c) ((c) ==""

static int padding = 4; /* pad on left to 4 digits */
static long vmin = 0x0000L; /* minimum acceptable value */
static long vmax = OxffffL; /* maximum acceptable value */

static int fcheck_hex (f, arg)
FIELD * f;
char * arg; /* unnecessary here, discussed in the next section */

{
char buf[80];

char * x = field_buffer (f, 0);
while (*x && isblank (*x)) ++x;
if (*x)
{
char *t=x;
while (*x && isxdigit (*x)) ++x;
while (*x && isblank (*x)) ++x;
if (! *x)
{
long v = strtol (t, (char **) 0, 16);
if (v >= vmin && v <= vmax)
sprintf (buf, “%.*Ix”, padding, v);

set_field_buffer (f, 0, buf);
return TRUE;

}
}
return FALSE;

static int ccheck_hex (c, arg)
int c;
char * arg; /* unnecessary in this example, discussed in next section */

{

return isxdigit (c);

}
FIELDTYPE * TYPE_HEX = new_fieldtype (fcheck_hex, ccheck_hex);
/* create new field type */

_)

Screen 11-18. Creating a Programmer-defined Field Type

Later, you assign fields with the field typ&PE_HEXas you do with any field type and
field:

FIELD * field;
set_field_type (field, TYPE_HEX);

Functionccheck_hex checks that the input character is a valid hexadecimal digit, while
functionfcheck_hex examines the field value for valid characters and checks the range.
If successfulfcheck_hex pads the field to four digits and returns TRUE. If not, it
returns FALSE.

11-67

Character User Interface Programming

NOTE

The argumenarg to functionsf_check andc_check is not
used in this version of thEYPE_HEXexample because the new
type does not require additional arguments to the
set_field_type routine.

If successfulpew_fieldtype returns a pointer to the new field type. If either argument
to new_fieldtype is a NULL pointer, the corresponding validation is not performed. If
no memory is available or both function pointers are NUhdw _fieldtype returns
NULL.

Freeing Programmer-defined Field Types

This function frees any space allocated for a field type createchauthfieldtype or
link_fieldtype . Its argument is a field type pointer previously obtained from one of
these functions.

SYNOPSIS

int free_fieldtype (fieldtypg
FIELDTYPE * fieldtype

You may want to free the field typeyPE_HEXfrom the previous example once fields of
that type have been processed. To do so, you write

[* create field type TYPE_HEX */
create fields of this type
free fields of this type */

free_fieldtype(TYPE_HEX);
[* free programmer-defined type */

If successful, functioffree_fieldtype returnse_OK. If an error occurs, it returns
one of the following:

E_SYSTEM_ERROR system error
E_BAD_ARGUMENT NULL field type
E_CONNECTED type is connected to one or more fields

Once a field type is freed, you must not use it again. If you do, the effect is undefined.
Supporting Programmer-defined Field Types

You may want to support some programmer-defined field types with additional arguments
or with previous and next choice functions. This section explains how to do so.

11-68

Forms

Argument Support for Field Types

Some field types may require additional arguments teéhefield_type routine,
which sets the field type of a field. Functiset_fieldtype_arg takes as arguments
pointers to functions that manage storage for the additional arguments.

SYNOPSIS

typedef char * (* PTF_charP) ();
typedef void (* PTF_void) ();

int set_fieldtype_arg (fieldtype make_arg copy_arg free_arg
FIELDTYPE * fieldtype

PTF_charP make_arg

PTF_charP copy_arg

PTF void free_arg

You must write the functions referenced by pointeeke_argcopy_arg andfree_arg
These functions should do the following:

make_arg allocate a structure for the field specific parameters to
set_field_type and return a pointer to the saved data

copy_arg duplicate the structure createdrogke arg
free_arg free any storage allocated bhwake argor copy_arg

Functionmake_argis called automatically when your application program calls
set_field_type . It takes one argument,va_list * . (Seevarargs(5) for
details.) Functiommake_argn turn should calla_arg for each additional argument to
set_field_type associated with the field type. Note that functi@n start is
called byset_field_type beforemake_arggains control, while functioma_end is
called byset_field_type aftermake_argeturns.

Functionmake_argmust allocate space for the information associated with the additional
arguments, save the information, and return the pointer to the information cast to a charac-
ter pointer. It is this character pointer that is the arguiargrto the other functions associ-

ated with the field type, namelgopy_arg , free_arg ,f check , c_check ,
next_choice , andprev_choice

Functioncopy_argtakes as its sole argument a pointer to existing argument information. It
returns a pointer to a copy of this information. Functiea_argtakes as its sole argument

a pointer to existing argument information. It should free any space allocated by
make_arg

Screen 11-19 illustrates how you can add padding and range argument$Y&BuUHEX
defined above.

11-69

Character User Interface Programming

-

/* TYPE_HEX
set_field_type (f, TYPE_HEX, padding, vmin, vmax);

int padding; for padding with leading zeros
long vmin; minimum acceptable value
long vmax; maximum acceptable value */

#include <form.h>
#include <ctype.h>
#include <varargs.h>
extern long strtol ();

#define isblank(c) ((c) =="")

typedef struct {
int padding;
long vmin, vmax;
} HEX;

static char * make_hex (ap)
va_list * ap;

HEX * n = (HEX *) malloc (sizeof (HEX));
if (n)
{

n -> padding = va_arg (*ap, int);
n ->vmin = va_arg (*ap, long);
n ->vmax = va_arg (*ap, long);

return (char *) n;

}
static char * copy_hex (arg)
char * arg;

HEX * n = (HEX *) malloc (sizeof (HEX));
if (n) *n = *((HEX *) arg);
return (char *) n;

static void free_hex (arg)
char * arg;

free (arg);

static int fcheck_hex (f, arg)
FIELD * f;
char * arg;

HEX * n = (HEX *) arg;
int padding = n -> padding;

o

Screen 11-19. Creating TYPE_HEX with Padding and Range Arguments

11-70

Forms

long vmin = n -> vmin;
long vmax = n -> vmax;
char buf[80];
char * x = field_buffer (f, 0);
while (*x && isblank (*x)) ++x;
if (*x)
{
char*t=x;

while (*x && isxdigit (*x)) ++x;
while (*x && isblank (*x)) ++x;

if (! *x)
long v = strtol (t, (char **) 0, 16);
if (v >= vmin && v <= vmax)
sprintf (buf, “%.*Ix", padding, v);

set_field_buffer (f, 0, buf);
return TRUE;

}

}
return FALSE;

static int ccheck_hex (c, arg)
int c;
char * arg;

{

return isxdigit (c);

}
FIELDTYPE * TYPE_HEX = new_fieldtype (fcheck_hex, ccheck_hex);
set_fieldtype_arg (TYPE_HEX, make_hex, copy_hex, free_hex);

_)

Later, to create a field that stores a hex number betd800 andOxffff , we have:

set_field_type (field, TYPE_HEX, 4, 0x0000L, OxffffL);
From this example, note that

* Your functionmake_arg(here,make_hex) picks off the additional argu-
ments toset_field_type usingva_arg .

* Functionmake_hex allocates a HEX structure, saves the information pro-
vided by the additional arguments, and returns a pointer to the saved infor-
mation.

* Functioncopy_hex allocates and copies a HEX structure.
* Functionfree_hex frees a HEX structure.

* Functionsmake_hex andcopy_hex return NULL if the memory alloca-
tion fails.

* Functioncheck_hex uses the argument information to do the necessary
padding and range check and returns TRUE if successful.

* ETI's internal caller tanake_hex andcopy_hex automatically checks
that the valuesafg) returned from the functions are not NULL. So there is

11-71

Character User Interface Programming

no need for functions (such &heck _hex) that use these values to
check that they are not NULL.

If successful, functiorset_fieldtype_arg returnsé_OK. If an error occurs, it
returns one of the following:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT field type,make_argcopy_arg orfree_argis NULL

Supporting Next and Previous Choice Functions

Some field types comprise a set of values from which your user chooses (enters) one. The
following functions support those types that have a set of choices.

SYNOPSIS

typedef char * (* PTF_charP) ();

int set_fieldtype_choice (type next_choice prev_choicg
FIELDTYPE * type
PTF_int next_choicg
PTF_int prev_choice

int next_choice(f, arg);
FIELD * f;
char* arg;

int prev_choice(f, arg);
FIELD * f;
char* arg;

These functions enable the ETI form driver to supportRE€ NEXT_CHOICENd
REQ_PREV_CHOICEequests mentioned in “Form Driver Processing” on page 11-40.

To support these requests, your application-defined funatiexischoiceandprev_choice
must

* take two arguments: a pointer to the current field and a pointer to the value
arg that themake_arg function (such amake_hex above) returned

¢ use functiorfield_buffer to read the current value

¢ call functionset_field_buffer with buffer argument 0 to set the
next or previous value

* return success or failure if there is no logically next or previous value
Both functions can be quite similar.

Screen 11-20 shows an implementation of functient_choicefor the field type
TYPE_HEXas defined above, such tHREQ NEXT_CHOICHEcrements the current
value andREG_PREV_CHOICHecrements the current value.

11-72

Forms

static int next_hex (f, arg)
FIELD * f;
char * arg;
{
HEX * n = (HEX *) arg;
long v =n -> vmin;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;
if (*x)
{

v = strtol (x, (char **) 0, 16);

if (v >=n ->vmin && v < n -> vmax)
++v;

}

sprintf (buf, “%.*Ix", n -> padding, v);

set_field_buffer (f, 0, buf);

return TRUE;

}
static int prev_hex (f, arg)
FIELD * f;
char * arg;
{
HEX * n = (HEX *) arg;
long v = n -> vmax;
char buf[80];
char * x = field_buffer (f, 0);
while (*x && isblank (*x)) ++x;
if (*x)
v = strtol (x, (char **) 0, 16);
if (v>n ->vmin && v <= n -> vmax)
v
}
sprintf (buf, “%.*Ix", v -> padding, v);
set_field_buffer (f, 0, buf);
return TRUE;
}

[* associate previous and next choice functions */
set_fieldtype_choice (TYPE_HEX, next_hex, prev_hex);

_)

Screen 11-20. Creating a Next Choice Function for a Field Type

If given a blank field, your functionsext_choiceandprev_choiceshould, of course, do
something reasonable, such as setting the field to the first or last value of the type.

If function set_fieldtype_choice encounters an error, it returns one of the follow-
ing:

E_SYSTEM_ERROR system error

E_BAD_ARGUMENT field type,next_choice , orprev_choice is NULL

11-73

Character User Interface Programming

11-74

12
Other ETI Routines

INtrOdUCHIONo 1. 12-
Routines for Drawing Lines and Other Graphics 12-1
Routines for Using SoftLabels 12-2

Working with More ThanOne Terminal 12-3

Character User Interface Programming

Introduction

12
Other ETI Routines

Knowing how to use the basic ETI routines to get output and input and to work with win-
dows, panels, menus, and forms, you can design screen management programs that meet
the needs of many users. The ETI library, however, has routines that let you do still more
in your program. The following few pages briefly describe some of these routines and
what they can help you do—namely, draw simple graphics, use a terminal's soft labels,
and work with more than one terminal in a single ETI program.

You should be comfortable using the routines previously discussed and the other routines
for I/0O and window manipulation discussed on theses(3curses) manual pages
before you try to use the following ETI features.

Routines for Drawing Lines and Other Graphics

Many terminals have an alternate character set for drawing simple graphics (or glyphs or
graphic symbols). You can use this character set in ETI programs. ETI uses the same
names for glyphs as the VT100 line drawing character set.

To use the alternate character set in an ETI program, you pass a set of variables whose
names begin with\CS_to the ETI routinevaddch or a related routine. For example,
ACS_ULCORNER the variable for the upper left corner glyph. If a terminal has a line
drawing character for this glypACS_ULCORNE®&value is the terminal's character for

that glyphORd (|) with the bit-maskA_ALTCHARSETIf no line drawing character is
available for that glyph, a standard ASCII character that approximates the glyph is stored
in its place. For example, the default characte’AG6_HLINE, a horizontal line, is a -
(minus sign). When a close approximation is not availabte(pdus sign) is used. All the
standardACS_names and their defaults are listed ondheses(3curses) manual

pages.

Part of an example program that uses line drawing characters follows. The example uses
the ETI routinebox to draw a box around a menu on a scrber. uses the line drawing
characters by default or whén(the pipe) and are chosen. Up and down more indicators

are drawn on the box border (usihgS UARROWHNJACS DARROW the menu con-

tained within the box continues above or below the screen:

12-1

Character User Interface Programming

box(menuwin, ACS_VLINE, ACS_HLINE);

/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE);

[*output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACS_DARROW);
else

waddch(menuwin, ACS_HLINE);

J

Here's another example. Because a default down arrow (like the lowercase letter v) isn't
very discernible on a screen with many lowercase characters on it, you can change it to an
uppercase V.

if (! (ACS_DARROW & A_ALTCHARSET))
ACS_DARROW = 'V';

For more information, see tloairses(3curses) pages in this guide.

Routines for Using Soft Labels

12-2

Another feature available on most terminals is a set of soft labels across the bottom of their
screens. A terminal's soft labels are usually matched with a set of hard function keys on
the keyboard. There are usually eight of these labels, each of which is usually eight char-
acters wide and one or two lines high.

The ETI library has routines that provide a uniform model of eight soft labels on the
screen. If a terminal does not have soft labels, the bottom line of its screen is converted
into a soft label area. It is not necessary for the keyboard to have hard function keys to
match the soft labels for an ETI program to make use of them.

Let's briefly discuss most of the ETI routines needed to use soft lalkelmit, slk_set,
slk_refresh, andslk_noutrefresh, slk_clear, andslk_restore.

When you use soft labels in an ETI program, you have to call the ralkinait
beforeinitscr . This sets an internal flag faritscr to look at that says to use the

soft labels. Ifinitscr discovers that there are fewer than eight soft labels on the screen,
that they are smaller than eight characters in size, or that there is no way to program them,
then it will remove a line from the bottom sifidscr to use for the soft labels. The size of
stdscr and thelLINES variable will be reduced by one to reflect this change. A properly

Other ETI Routines

written program, one that is written to use thdES andCOLSvariables, will continue to
run as if the line had never existed on the screen.

slk_init takes a single argument. It determines how the labels are grouped on the
screen should a line get removed fretdscr. The choices are between a 3-2-3 arrange-
ment as appears on AT&T terminals, or a 4-4 arrangement as appears on Hewlett-Packard
terminals. The ETI routines adjust the width and placement of the labels to maintain the
pattern. The widest label generated is eight characters.

The routineslk_set takes three arguments, the label number (1-8), the string to go on
the label (up to eight characters), and the justification within the label (0 = left justified, 1
= centered, and 2 = right justified).

The routineslk_noutrefresh is comparable tanoutrefresh in that it copies the
label information onto the internal screen image, but it does not cause the screen to be
updated. Since slk_refresh commonly follows slk_noutrefresh is the func-

tion that is most commonly used to output the labels.

Just aswrefresh is equivalent to avnoutrefresh followed by adoupdate , so too
the functionslk_refresh is equivalent to &lk_noutrefresh followed by a
doupdate .

To prevent the soft labels from getting in the way of a shell esstkpelear may be
called before doing thendwin . This clears the soft labels off the screen and does a
doupdate . The functiorslk_restore may be used to restore them to the screen. See
the curses(3curses) manual pages for more information about the routines for
using soft labels.

Working with More Than One Terminal

An ETI program can produce output on more than one terminal at the same time. This is
useful for single process programs that access a common database, such as multi-player
games.

Writing programs that output to multiple terminals is a difficult business, and the ETI
library does not solve all the problems you might encounter. For instance, the programs—
not the library routines—must determine the file name of each terminal line, and what
kind of terminal is on each of those lines. The standard method, ché&giERMin the
environment, does not work, because each process can only examine its own environment.

Another problem you might face is that of multiple programs reading from one line. This
situation produces a race condition and should be avoided. However, a program trying to
take over another terminal cannot just shut off whatever program is currently running on
that line. (Usually, security reasons would also make this inappropriate. But, for some
applications, such as an inter-terminal communication program, or a program that takes
over unused terminal lines, it would be appropriate.) A typical solution to this problem
requires each user logged in on a line to run a program that notifies a master program that
the user is interested in joining the master program and tells it the notification program's
process ID, the name of the tty line, and the type of terminal being used. Then the program
goes to sleep until the master program finishes. When done, the master program wakes up
the notification program and all programs exit.

12-3

Character User Interface Programming

12-4

An ETI program handles multiple terminals by always having a current terminal. All func-
tion calls always affect the current terminal. The master program should set up each termi-
nal, saving a reference to the terminals in its own variables. When it wishes to affect a ter-
minal, it should set the current terminal as desired, and then call ordinary ETI routines.

References to terminals in an ETI program have theS@REEN* A new terminal is ini-
tialized by callinghnewterm(type, outfd, infl. newterm returns a screen reference to the
terminal being set ugypeis a character string, naming the kind of terminal being used.
outfdis astdio(3S) file pointer FILE*) used for output to the terminal aimid a file
pointer for input from the terminal. This call replaces the normal calitser , which
callsnewterm(getenv("TERM"), stdout, stdin)

To change the current terminal, csdt_term (sp) wherespis the screen reference to be
made currentset_term returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and options. Each
terminal must be initialized separately withwterm . Options such asbreak and

noecho must be set separately for each terminal. The funcéod®in andrefresh

must be called separately for each terminal. Screen 12-1 shows a typical scenario to output
a message to several terminals.

for (i=0; i<nterm; i++)

{
set_term(termsi]);
mvaddstr(0, 0, “Important message”);
refresh();

}

Screen 12-1. Sending a Message to Several Terminals

See théwo program in Appendix D for a more complete example.

13

terminfo
INtrOdUCHIONo 1. 13-
Organizationof ThisChapter. i, 13-1
What Isterminfo?. e 13-1
Working with terminfo Routines. e 13-2
What Every terminfo Program Needs i, 13-3
Compiling and Running a terminfo Program. 13-4
An Example terminfo Program e 13-4
Working with the terminfo Database. 13-6
Writing Terminal DescCriptions. o e e 13-6
Namethe Terminal e 13-7
Learn About the Capabilities. 13-7
Specify Capabilities. e 13-8
Basic Capabilities. e 13-10
Screen-oriented Capabilities 13-10
Keyboard-entered Capabilities. 13-11
Parameter String Capabilities. 13-11
Compile the Description e e 13-12
Testthe DeSCription.t e e e 13-13
Comparing or Printing terminfo Descriptions 13-14

Converting a termcap Description to a terminfo Description. 13-14

Character User Interface Programming

13
terminfo

Introduction

This chapter explains how to use teeminfo database and thierminfo routines to
write terminal-independent screen management programs on the UNIX system. Other
support tools are also described.

The purpose of this chapter is to explain how to write screen management programs as
quickly as possible. Therefore, this chapter does not attempt to cover every detail. Use this
chapter to get familiar with the way these routines work, then use the manual pages for
more information.

Organization of This Chapter

This chapter has the following sections:

* “What Is terminfo?” on page 13-1 introduces you totdreninfo rou-
tines and théerminfo database.

¢ “Working with terminfo Routines” on page 13-2 describes howtéhe
minfo routines access and manipulate data irtgiminfo database.

* “Working with the terminfo Database” on page 13-6 describesethe
minfo database, related support tools, and their relationship to the
curses library.

What Is terminfo?

terminfo refers to both of the following:

* |tis a group of routines within theurses library that handles certain ter-
minal capabilities. You can use thaeeminfo routines to write a filter
or program the function keys, if your terminal has programmable keys.
Shell programmers can use the commgnd(1) to perform many of
the manipulations provided by these routines.

* |tis a database containing the descriptions of many terminals that can be
used withcurses programs. These descriptions specify the capabilities of
a terminal and the way it performs various operations—for example, how
many lines and columns it has and how its control characters are inter-
preted.

13-1

Character User Interface Programming

Each terminal description in the database is a separate, compiled file. You use the
source code thaerminfo(4) describes to create these files and the command
tic(LM) to compile them.

The compiled files are normally located in the directofies/share/lib/

terminfo/? . These directories have single character names, each of which is the
first character in the name of a terminal. For example, an entry for the AT&T Tele-
type 5425 is normally located in the filesr/share/lib/terminfo/a/

att5425

Here's a simple shell script that usestémminfo database.

a4)

Clear the screen and show the 0,0 position.
tput clear

tputcup 0 0 # or tput home

echo “<- thisis 0 0”

Show line 5, column 10.

tput cup 5 10
echo “<- this is 5 10”

_)

Screen 13-1. A Shell Script Using terminfo Routines

Working with terminfo Routines

13-2

Some programs need to use lower level routines (that is, primitives) than those offered by
thecurses routines. For such programs, tleeminfo routines are offered. They do

not manage your terminal screen, but rather give you access to strings and capabilities
which you can use yourself to manipulate the terminal.

There are three circumstances when it is proper tdausenfo routines. The first is

when you need only some screen management capabilities, for example, making text stand
out on a screen. The second is when writing a filter. A typical filter does one transforma-
tion on an input stream without clearing the screen or addressing the cursor. If this trans-
formation is terminal dependent and clearing the screen is inappropriate, usteof the

minfo routines is worthwhile. The third is when you are writing a special purpose tool
that sends a special purpose string to the terminal, such as programming a function key,
setting tab stops, sending output to a printer port, or dealing with the status line. Other-
wise, you are discouraged from using these routines: the highecleges routines

make your program more portable to other UNIX systems and to a wider class of termi-
nals.

terminfo

NOTE

You are discouraged from usitgrminfo routines except for

the purposes noted, becauseses routines take care of all the
glitches present in physical terminals. When you usddhe

minfo routines, you must deal with the glitches yourself. Also,
these routines may change and be incompatible with previous
releases.

What Every terminfo Program Needs

A terminfo program typically includes the header files and routines shown in
Screen 13-2.

~

#include <curses.h>
#include <term.h>

msetupterm((char®)0, 1, (int*)0);
pu't.r.)(clear_screen);

reéét_shell_mode();
exit(0);

_)

Screen 13-2. Typical Framework of a terminfo Program

The header filesurses.h andterm.h are required because they contain the defini-
tions of the strings, numbers, and flags used bydtminfo routines.setupterm

takes care of initialization. Passing this routine the valtles*)0, 1, and(int*)0
invokes reasonable defaultssHtupterm can't figure out what kind of terminal you are
on, it prints an error message and ex#set_shell_mode performs functions similar

to endwin and should be called beforéemaminfo program exits.

A global variable likeclear_screen is defined by the call teetupterm . It can be
output using théerminfo routinesputp ortputs , which gives a user more control.
This string should not be directly output to the terminal using the C library routine

printf(3S) , because it contains padding information. A program that directly outputs
strings will fail on terminals that require padding or that usextiméxoff flow control
protocol.

At theterminfo level, the higher level routines lileldch andgetch are not avail-

able. It is up to you to output whatever is needed. For a list of capabilities and a description
of what they do, seterminfo(4) ; seecurses(3curses) for a list of all theter-

minfo routines.

13-3

Character User Interface Programming

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for running a program with
terminfo routines are the same as those for compiling any otlises program. See

“Compiling an ETI Program” on page 6-4 and “Running an ETI Program” on page 6-4 for
more information.

An Example terminfo Program

The example progratermhl shows a simple use tdfrminfo routines. It is a version
of thehighlight program (see Appendix D) that does not use the higherdaxsss

routinestermhl can be used as a filter. It includes the strings to enter bold and underline
mode and to turn off all attributes.

(.)

* A terminfo level version of the highlight program.
*/

#include <curses.h>
#include <term.h>

int uimode = 0; /* Currently underlining */
main(argc, argv)
int argc;
char **argy;
FILE *fd;
intc, c2;
int outch();
if (argc > 2)
fprintf(stderr, “Usage: termhl [file]\n");
exit(1);
}
if (argc == 2)
{

fd = fopen(argv[1], “r");
if (fd == NULL)

perror(argv[1]);

exit(2);
}

else
{
fd = stdin;

}
setupterm((char*)0, 1, (int*)0);

_)

Screen 13-3. Example of terminfo Program

13-4

terminfo

@r) \
¢ = getc(fd);
if (c == EOF)
break;
if c==")

c2 = getc(fd);

switch (c2)
case 'B":
tputs(enter_bold_mode, 1, outch);
continue;
case 'U"
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;
case 'N"
tputs(exit_attribute_mode, 1, outch);
ulmode = 0;
continue;
}
putch(c);
putch(c2);
else
putch(c);
fclose(fd);
fflush(stdout);
resetterm();
exit(0);

}

/*
* This function is like putchar, but it checks for underlining.
*
putch(c)
int c;

outch(c);
if (uilmode && underline_char)

outch(\b');
tputs(underline_char, 1, outch);
}
}
/*
* QOutchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*
outch(c)
int c;

putchar(c);
- /

Let's discuss the use of the functtpats(cap, affcnt, oufein this program to gain some
insight into thegerminfo routinestputs applies padding information. Some terminals
have the capability to delay output. Their terminal descriptions itethenfo database
probably contain strings like<20>, which means to pad for 20 milliseconds (see “Spec-
ify Capabilities” on page 13-8)puts generates enough pad characters to delay for the
appropriate time.

tputs has three parameters. The first parameter is the string capability to be output. The
second is the number of lines affected by the capability. (Some capabilities may require
padding that depends on the number of lines affected. For exansgle, line may

have to copy all lines below the current line, and may require time proportional to the

13-5

Character User Interface Programming

number of lines copied. By conventiaffcntis 1 if no lines are affected. The value 1 is
used, rather than 0, for safety, siraffentis multiplied by the amount of time per item,
and anything multiplied by 0 is 0.) The third parameter is a routine to be called with each
character.

For many simple programaffcntis always 1 andutc always callgputchar . For these
programs, the routinputp (cap) is a convenient abbreviatiorermhl could be simpli-
fied by usingputp .

Now to understand why you should use ¢heses level routines instead ¢érminfo

level routines whenever possible, note the special check fandeline_char capa-

bility in this sample program. Some terminals, rather than having a code to start underlin-
ing and a code to stop underlining, have a code to underline the current chizraaiér.

keeps track of the current mode, and if the current character is supposed to be underlined,
outputsunderline_char , if necessary. Low level details such as this are precisely why
thecurses level is recommended over ttegminfo level.curses takes care of ter-
minals with different methods of underlining and other terminal functions. Programs at the
terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of tieeminfo routines. It is more com-
plex than it need be in order to illustrate some propertiésrwinfo programs. The
routinevidattr (seecurses(3curses)) could have been used instead of directly
outputting enter_bold_mode , enter_underline_mode , and
exit_attribute_mode . In fact, the program would be more robust if it did, since
there are several ways to change video attribute modes.

Working with the terminfo Database

Theterminfo database describes the many terminals with wdieses programs, as

well as some UNIX system tools, lik§1) , can be used. Each terminal description is a
compiled file containing the names that the terminal is known by and a group of comma-
separated fields describing the actions and capabilities of the terminal. This section
describes théerminfo database, related support tools, and their relationship to the
curses library.

Writing Terminal Descriptions

13-6

Descriptions of many popular terminals are already contained tarthanfo database.
However, it is possible that you'll want to ruawases program on a terminal for which
there is not currently a description. In that case, you'll have to build the description.

The general procedure for building a terminal description is as follows:
1. Give the known names of the terminal.
2. Learn about, list, and define the known capabilities.
3. Compile the newly created description entry.
4

. Test the entry for correct operation.

Name the Terminal

terminfo

5. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts of the
description and test them as you go along. These tests can expose deficiencies in the abil-
ity to describe the terminal. Also, modifying an existing description of a similar terminal
can make the building task easier. (Lest we forget the motto: Build on the work of others.)

In the next few pages, we follow each step required to build a terminal description for the
fictitious terminal namechyterm .

The name of a terminal is the first information given ferminfo terminal description.

This string of names, assuming there is more than one name, is separated by pipe symbols
(]). The first name given should be the most common abbreviation for the terminal. The
last name given should be a long name that fully identifies the terminal. The long name is
usually the manufacturer's formal name for the terminal. All names between the first and
last entries should be known synonyms for the terminal name. All names but the formal
name should be typed in lowercase letters and contain no blanks. Naturally, the formal
name is entered as closely as possible to the manufacturer's name.

Here is the name string from the description of the AT&T Teletype 5420 Buffered Display
Terminal:

5420|att5420|AT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation and the last is the long
name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious termimgfterm :
myterm|mytm|mine|fancy|terminal|My FANCY Terminal,

Terminal names should follow common naming conventions. These conventions start with

a root name, like 5425 anyterm , for example. The root name should not contain odd
characters, like hyphens, that may not be recognized as a synonym for the terminal name.
Possible hardware modes or user preferences should be shown by adding a hyphen and a
“mode indicator” at the end of the name. For example, the “wide mode” (which is shown

by a-w) version of our fictitious terminal would be describedragerm -w. term(5)

describes mode indicators in greater detail.

Learn About the Capabilities

After you complete the string of terminal names for your description, you have to learn
about the terminal's capabilities so that you can properly describe them. To learn about the
capabilities your terminal has, you should do the following:

¢ See the owner's manual for your terminal. It should have information about
the capabilities available and the character strings that make up the
sequence transmitted from the keyboard for each capability.

13-7

Character User Interface Programming

Specify Capabilities

13-8

* Test the keys on your terminal to see what they transmit, if this information
is not available in the manual. You can test the keys in one of the following
ways. Type:

stty -echo; cat -vu

Type in the keys you want to test;

for example, see what right arrgyc Right-Arrow>) transmits.
<CR>

<CTRL-D>

stty echo

or

cat >dev/null

Type in the escape sequences you want to test;
for example, see whi[H transmits.
<CTRL-D>

* The first line in each of these testing methods sets up the terminal to carry
out the tests. TheCTRL-D> helps return the terminal to its normal set-

tings.

* See th@erminfo(4) manual page. It lists all the capability names you
have to use in a terminal description. “Specify Capabilities” on page 13-8
gives details.

Once you know the capabilities of your terminal, you have to describe them in your termi-
nal description. You describe them with a string of comma-separated fields that contain
the abbreviateterminfo name and, in some cases, the terminal's value for each capa-
bility. For examplebel is the abbreviated name for the beeping or ringing capability. On
most terminals, £ TRL-G is the instruction that produces a beeping sound. Therefore,
the beeping capability would be shown in the terminal descriptibelasG,

The list of capabilities may continue onto multiple lines as long as white space (that is,
tabs and spaces) begins every line but the first of the description. Comments can be
included in the description by puttingteat the beginning of the line.

Theterminfo(4) manual page has a complete list of the capabilities you can use in a
terminal description. This list contains the name of the capability, the abbreviated name
used in the database, the two-letter code that corresponds to teematdp database
name, and a short description of the capability. The abbreviated name that you will use in
your database descriptions is shown in the column titled “Capname.”

NOTE

For acurses program to run on any given terminal, its descrip-
tion in theterminfo database must include, at least, the capabil-
ities to move a cursor in all four directions and to clear the screen.

terminfo

A terminal's character sequence (value) for a capability can be a keyed operation (like
CTRL-G), a numeric value, or a parameter string containing the sequence of operations
required to achieve the particular capability. In a terminal description, certain characters
are used after the capability name to show what type of character sequence is required.
Explanations of these characters follow:

This shows a numeric value is to follow. This character follows a capability
that needs a number as a value. For example, the number of columns is
defined agols#80,

= This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

n This shows a control character is to be used. For example, the beeping sound
is produced by £TRL-G. This would be shown &%.

\E or\e These characters followed by another character show an escape instruction.
An entry of\EC would transmit to the terminal &SCAPE-C.

\n These characters providecBlL> character sequence.
\l These characters provide a linefeed character sequence.
\r These characters provide a return character sequence.
\t These characters provide a tab character sequence.
\b These characters provide a backspace character sequence.
\f These characters provide a form-feed character sequence.
\s These characters provide a space character sequence.
\ nnn This is a character whose three-digit octatnis, wherennncan be one to
three digits.
$< > These symbols are used to show a delay in milliseconds. The desired length of

delay is enclosed inside the “less than/greater than” symkots)(The
amount of delay may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*). The * shows that the
delay will be proportional to the number of lines affected by the operation. For
example, a 20-millisecond delay per line would appe#&#<298*> . See the
terminfo(4) manual page for more information about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal ignores
this particular field. This is done by placing a period) in front of the abbreviated name

for the capability. For example, if you would like to comment out the beeping capability,
the description entry would appear as

.bel=""G,

With this background information about specifying capabilities, let's add the capability
string to our description ahyterm . We'll consider basic, screen-oriented, keyboard-
entered, and parameter string capabilities.

13-9

Character User Interface Programming

Basic Capabilities

Screen-oriented Capabilities

13-10

Some capabilities common to most terminals are bells, columns, lines on the screen, and
overstriking of characters, if necessary. Suppose our fictitious terminal has these and a few
other capabilities, as listed below. Note that the list gives the abbrevgaieitifo
name for each capability in the parentheses following the capability description:

An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margini

The ability to produce a beeping sound. The instruction required to produce
the beeping sound is "®d]).

An 80-column wide screerdls).
A 30-line long screerlifies).

Use of xon/xoff protocolxon).

By combining the name string (see “Name the Terminal” on page 13-7) and the capability
descriptions that we now have, we get the following getenaiinfo database entry:

myterm|mytm|mine|fancy|terminal|[My FANCY terminal,
am, bel="G, cols#80, lines#30, xon,

Screen-oriented capabilities manipulate the contents of a screen. Our example terminal
myterm has the following screen-oriented capabilities. Again, the abbreviated command
associated with the given capability is shown in parentheses.

A <CR>isaCTRL-M (cr).

A cursor up one line motion isGTRL-K (cuul).

A cursor down one line motion isGTIRL-J (cudl).

Moving the cursor to the left one space S BRL-H (cubl).
Moving the cursor to the right one space GERL-L (cufl).
Entering reverse video mode isBBCAPE-D (smso).
Exiting reverse video mode is &5 CAPE-Z (rmso).

A clear to the end of a line sequence iIi€E8CAPE-K and should have a
3-millisecond delayd]).

A terminal scrolls when receiving<dNL> at the bottom of a pagad).

The revised terminal description foryterm including these screen-oriented capabilities
follows:

terminfo

myterm|mytm|mine|fancy|terminal|My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cud1="J, cub1="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-entered Capabilities

Keyboard-entered capabilities are sequences generated when a key is typed on a terminal
keyboard. Most terminals have, at least, a few special keys on their keyboard, such as
arrow keys and the backspace key. Our example terminal has several of these keys whose
sequences are, as follows:

* The backspace key generateSBRL-H (kbs).

* The up arrow key generatesBBCAPE-[A (kcuul).

* The down arrow key generatesBSCAPE-[B (kcudl).
* The right arrow key generates B8 CAPE-[C (kcufl).
* The left arrow key generates BISCAPE-[D (kcubl).

* The home key generates BB CAPE-[H (khome).

Adding this new information to our database entrynfigterm produces:

myterm|mytm|minel|fancy|terminal|[My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cud1="J, cub1="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=
kbs="H, kcuul=\E[A, kcud1=\E[B, kcufl=\E[C,
kcub1=\E[D, khome=\E[H,

Parameter String Capabilities

Parameter string capabilities are capabilities that can take parameters — for example,
those used to position a cursor on a screen or turn on a combination of video modes. To
address a cursor, tisap capability is used and is passed two parameters: the row and col-
umn to address. String capabilities, suclewgs and set attributesgr) capabilities, are
passed arguments irtexminfo program by théparm routine.

The arguments to string capabilities are manipulated with sp#csEduences similar to
those found in grintf(3S) statement. In addition, many of the features found on a
simple stack-based RPN calculator are availahip., as noted above, takes two argu-
ments: the row and columagr , takes nine arguments, one for each of the nine video
attributes. Seterminfo(4) for the list and order of the attributes and further examples
of sgr .

13-11

Character User Interface Programming

Our fancy terminal's cursor position sequence requires a row and column to be output as
numbers separated by a semicolon, precedddS@APE-[and followed withH. The
coordinate numbers are 1-based rather than 0-based. Thus, to move to row 5, column 18,
from (0,0), the sequencESCAPE-[6; 19 H' would be output.

Integer arguments are pushed onto the stack witbpasequence followed by the argu-
ment number, such &p2 to push the second argument. A shorthand sequence to incre-
ment the first two arguments %i*. To output the top number on the stack as a decimal, a
'%d sequence is used, exactly apiimtf

Our terminal'cup sequence is built up as follows:

cup= Meaning

\E[OUtputESCAPE-[

%i increment the two arguments

%pl push the 1st argument (the row) onto the stack

%d output the row as a decimal

; output a semi-colon

%p2 push the 2nd argument (the column) onto the stack
%d output the column as a decimal

H output the trailing letter

or
cup=\E[%i%p1%d;%p2%dH,

Adding this new information to our database entrynfigterm produces:

myterm|mytm|minel|fancy|terminal|My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cud1="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=
kbs="H, kcuul=\E[A, kcud1=\E[B, kcufl=\E[C,
kcub1=\E[D, khome=\E[H,
cup=\E[%i%p1%d;%p2%dH,

Seeterminfo(4) for more information about parameter string capabilities.

Compile the Description

Theterminfo database entries are compiled usingtithe compiler. This compiler
translateserminfo database entries from the source format into the compiled format.

The source file for the description is usually in a file suffixed with. For example, the
description ofmyterm would be in a source file namedyterm.ti . The compiled

13-12

terminfo

description ofmyterm would usually be placed itusr/share/lib/terminfo/m/

myterm , since the first letter in the description entrynid.inks would also be made to
synonyms ofnyterm , for example, tdf/fancy . If the environment variablTER-
MINFOwere set to a directory and exported before the entry was compiled, the compiled
entry would be placed in tfRTERMINFOdirectory. All programs using the entry would
then look in the new directory for the description filSTERMINFOwere set, before
looking in the defaultusr/share/lib/terminfo . The general format for the

compiler is as follows:

tic [-v] [-C] file

The-v option causes the compiler to trace its actions and output information about its
progress. Thec option causes a check for errors; it may be combined witlv tlugtion.

file shows what file is to be compiled. If you want to compile more than one file at the
same time, you have to first usat(1) to join them together. The following command
line shows how to compile therminfo source file for our fictitious terminal:

tic -v myterm.ti RETURN
(The trace information appears as the compilation proceeds.)

Refer to theic(1M) manual page for more information about the compiler.

Test the Description

Let's consider three ways to test a terminal description. First, you can test it by setting the
environment variabl8TERMINFOto the path name of the directory containing the
description. If programs run the same on the new terminal as they did on the older known
terminals, then the new description is functional.

Second, you can test for correct insert line padding by commentixgroun the descrip-

tion and then editing (using(1)) a large file (over 100 lines) at 9600 baud (if possible),
and deleting about 15 lines from the middle of the screen. OTy(p@ado) several times
quickly. If the terminal messes up, then more padding is usually required. A similar test
can be used for inserting a character.

Third, you can use thput(1) command. This command outputs a string or an integer
according to the type of capability being described. If the capability is a Boolean expres-
sion, thertput sets the exit code (0 fdiRUE 1 for FALSE) and produces no output. The
general format for thiput command is as follows:

tput[-T typd capname

The type of terminal you are requesting information about is identified wittTttype

option. Usually, this option is not necessary because the default terminal name is taken
from the environment variabTERM Thecapnamefield is used to show what capability

to output from theerminfo database.

The following command line shows how to output the “clear screen” character sequence
for the terminal being used:

tput clear

(The screen is cleared.)

13-13

Character User Interface Programming

The following command line shows how to output the number of columns for the terminal
being used:

tput cols
(The number of columns used by the terminal appears here.)

Thetput(l) manual page contains more information on the usage and possible mes-
sages associated with this command.

Comparing or Printing terminfo Descriptions

Sometime you may want to compare two terminal descriptions or quickly look at a
description without going to thterminfo source directory. Thimfocmp(1M) com-

mand was designed to help you with both of these tasks. Compare two descriptions of the
same terminal; for example,

mkdir /tmp/old /tmp/new

TERMINFO=/tmp/old tic 0ld5420.ti
TERMINFO=/tmp/new tic new5420.ti

infocmp -A /tmp/old -B /tmp/new -d 5420 5420

compares the old and new 5420 entries.
To print out theerminfo source for the 5420, type

infocmp -1 5420

Converting a termcap Description to a terminfo Description

13-14

CAUTION

Theterminfo database is designed to take the place of the
termcap database. Because of the many programs and processes
that have been written with and for tteemcap database, it is

not feasible to do a complete cutover at one time. Any conversion
from termcap toterminfo requires some experience with
both databases. All entries into the databases should be handled
with extreme caution. These files are important to the operation of
your terminal.

The captoinfo(1M) command convertiermcap descriptions taerminfo(4)
descriptions. When a file is passedcaptoinfo , it looks fortermcap descriptions
and writes the equivaletgrminfo descriptions on the standard output. For example,

captoinfo /usr/share/lib/termcap

converts the fildusr/share/lib/termcap toterminfo source, preserving com-
ments and other extraneous information within the file. The command line

terminfo

captoinfo

looks up the current terminal in thermcap database, as specified by $iEERMand
$TERMCARNvironment variables and converts iteaominfo

If you must have botkermcap andterminfo terminal descriptions, keep ther-

minfo description only and usaefocmp -C to get theermcap descriptions. This is
recommended because teeminfo entry will be more complete, descriptive, and accu-
rate than théermcap entry possibly could be.

If you have been using cursor optimization programs withitkencap or -lterm-
lib option in thecc command line, those programs will still be functional. However,
these options should be replaced with-therses option.

13-15

Character User Interface Programming

13-16

A
Programming Tips and Known Problems

Programming Tips

Internationalization Support

FMLI accepts as input any character from a standard 7- or 8-bit character set. This means
that descriptor and variable values and application-specific command names may be coded
in a language other than English, provided the language implementation employs a stan-
dard 8-bit code set. It also means that users may enter input in a form, or edit the text in a
text frame, in any such language. Note, however, that the built-in ufifitlegpr(1F)
fmigrep(1F) , andregex(1F) do not support regular expression matching for non-
ASCII character sets, and that FMLI error messages are always displayed in English.

FMLI uses thesetlocale(3C) function to examine the user's environment for a cur-
rentlocale—a collection of information that describes conventions appropriate to some
nationality, culture, and language. This information is stored in databases that specify how
to sort or classify characters, for instance, according to these conventions. If such data-
bases exist on a user's system, they are accessed throlgtNtBeariable in the user's
environment. An application coded for a German locale, then, should instruct users to set
the LANGenvironment variable tde[utsche]; character classification, sorting, and so on
will be done in the appropriate way. For details on this mechanism, seetthe

cale(3C) andenviron(5) manual pages.

Building Trusted FMLI Applications

This section gives tips on how to build FMLI applications that prevent unauthorized users
from circumventing access controls or mechanisms that protect sensitive system opera-
tions.

Access to External Executables

An FMLI application may allow users to access UNIX system executables by escaping to
the shell, either with tHeshell escape or theix-system command, or by selecting a
menu item or SLK for which the action coded invokes an external executable. It is your
responsibility to make sure these means of access are not abused.

Both means of escaping to the shell can be disabled if necessary. Whabaimg
descriptor is defined and evaluates to TRUE, users cannot uUssltleé escape to invoke
external executables. Nor will they be able to invokeoipen command from the com-

A-1

Character User Interface Programming

mand line. That means the user cannot, for instance, create a menu that invokes an external
executable and open it to gain access to the shell. You can disahlaxisystem

command as described in “The Commands File” on page 4-12. Keep in mind that dis-
abling the command will also make it unavailable to your own FMLI scripts.

FMLI does not try to second-guess your application by setting shell variables such as
PATHor IFS . It leaves it to you to insure that the execution environment is correct, and
that the correct executable will be found. Similarly, it is your responsibility to make sure
that any commands you add or redefine in the commands file perform as expected and do
not violate security principles. For discussions, see Chapter 4.

Interruptible Commands

Variables

A-2

By default, FMLI commands and executables invoked through FMLI (except those run-
ning under a full-screen mode executable) are not interruptible. If you enable interrupts for
some or all parts of your application, you must insure that not completing the interrupted
action will not compromise the system and thainterrupt is defined such that the
appropriate recovery actions are taken. The risks here include leaving sensitive data files
or incomplete or inconsistent data on the system after the unfinished operation. You need
to weigh these risks against the “friendliness” of allowing interrupts. At the very least,
interrupts should be enabled at the lowest possible level, rather than for the whole applica-
tion. Theoninterrupt in effect should always be the appropriate one. It, too, should be
defined at the lowest level of the hierarchy. For a discussion, see “Interrupt Signal Han-
dling” on page 2-39.

FMLI uses four distinct types of variables, each of which can produce unexpected results
if handled improperly.

UNIX system shell environment variables are inherited from the invocation environment
and can be modified with tiset andunset built-in utilities. The effects of any modifi-
cation are visible to child processes of the application.

File-based variables are stored in and read from the file that is part of their name, so that
multiple applications or sessions can share data.

So-called local variables are local to FMLI but global within the application. Any line that
references$foo , for example, will reference the same value; changing the variable's value

in one frame changes its value in all frames. For this reason, extreme care should be taken
to avoid name collision when developing applications, especially when there is more than
one programmer involved. For this reason, too, you should be sure to implement valida-
tion tests with appropriate criteria when using FMLI's mechanisms for validating user
input. In particular, if you set a variable based on user input in one frame and reference it
in another, the data may be valid at the time of entry but not at the time of use. For a dis-
cussion and example, see “Validation of Form Fields” on page A-4.

Built-in variables are read-only variables that are visible only within the FMLI session.
Some are maintained on a per-frame basis and have different values in each frame. Others
are visible throughout the application.

Programming Tips and Known Problems

There are two ways to dereference a varigd@ARparses the variable on&®.VARrep-

arses the variable as long as it contains special characters. That is, if YWARdet

‘pwd’ , $VARIs ‘pwd” , whereass!VAR may befhome/chris . You should never use
the$! notation when referencing built-in variables because it is impossible to guard
against users entering special characters in fields. Note that if the initialization file descrip-
tor use_incorrect_pre_4.0_behavior is set to TRUE, the first form implies the
second. For discussions, see “Variables” on page 2-6.

NOTE

A significant amount of FMLI code was written to implement
software that is now obsolete. This code should not be used by
other applications. To avoid unexpected results in this regard, the
UNIX shell environment variabl¢ MFMLI should not be passed

to the FMLI environment. Better still, the variable can be set to
FALSE. Since this variable is tested only when FMLI is invoked,
changes made to it later by the user will not affect FMLI's behav-
ior.

Frequency of Evaluation Type Casts

Co-processing

FACE-specific Code

By default, FMLI determines how often descriptors are evaluated. You can usmshe

type cast to make sure that a descriptor is evaluated only once, no matter how many times
it is referenced, or theary type cast to make sure that a descriptor is evaluated whenever

it is referenced. Use these casts with care. In particular, do nconste if the data could
become out of date, that is, unless you know that the descriptor value will be the same no
matter how many times it is referenced, or are certain that the first value must be retained
(a startup-time value, for example). For a discussion, see “Descriptor Evaluation” on page
2-10.

Co-processes for trusted applications should use named pipes created by the application
with the appropriate permissions; the default pipes created by FMLI are readable and writ-
able by everyone. Handshaking can also be used to enhance security. For a discussion and
examples, see “Other Useful Examples” on page 3-61.

There is a significant amount of code in FMLI that was written to implement FACE. This
code should not be used by other applications. To avoid unexpected results in this regard,
the UNIX shell environment variabMMFMLIshould not be passed to the FMLI environ-
ment. Better still, the variable can be set to FALSE. Because it is tested only when FMLI
is invoked, changes made to it by the user after that will not affect FMLI's behavior.

Although the executabliacesuspend is provided only with the FACE product, access
to it may give the knowledgeable user the ability to return to an FMLI application before
completing a task begun in a full-screen window. Access to this executable should be

A-3

Character User Interface Programming

restricted. Alternatively, appropriate validation should be performed to insure that the task
begun in the full-screen window was completed.

Validation of Form Fields

Scenario 1

Scenario 2

Commands

A4

Developers should be aware that information stored in FMLI variables vðatility

or the argument passing mechani§ARGY) may not be valid at the time it is used even if

it was validated at the time it was set. This can occur when variables set from data in one
frame are used in the processing activity of another frame. If the use of a variable contain-
ing invalid data could seriously corrupt or compromise the system, it must be re-validated
at the time it is used.

Developer-set variables are known to all frames in an FMLI session—therdrame
scopingof variables, no way to make a variable known only to the frame it is set in. This
results in the classic programming issues around global variables.

Here are two scenarios that can result in the value of a variable no longer being valid.

Thedone descriptor oForm.1 sets a variablset -I FOO=3%F] the value of field one,

and opend-orm.la. The user enters data HForm.1 and presses th®AVE SLK;
Form.la opens and becomes the current frame. The user now has a change of mind, nav-
igates back t¢-orm.1, and enters a new value in field one. If, instead of pressing the
SAVE SLK for Form.1 again, the user navigateskorm.1la, when the user saves
Form.1a it will not know the value ifForm.1 has changed and any actiorFiorm.la

based on the value O0will be different from what the user expects. The user's error of
not pressindAVE after changing-orm.1 will not be detected.

The done descriptor d&form.1 opensForm.la passing the value @&F1 as the first
argument (as iopen Form.la $F1). Assume this value is a user ID tiatrm.1 val-

idated. Now the user navigates to another menu and deletes the user, then navigates back
to Form.la. Now the value oRARG1is not a valid user ID even thougbrm.1 validated

it. Form.la must re-validate the value before doing anything based on it.

* If an FMLI application initiates a call to a UNIX system command (for
example,action="unix_command nop) and theinterrupt
descriptor evaluates to FALSE for tleition descriptor (see “Interrupt
Signal Handling” on page 2-39), users will not be able to do other tasks
until the command completes even if the command could be interrupted. If
the command takes a considerable amount of time to execute, the applica-
tion writer may want the command to execute in the background.

Programming Tips and Known Problems

Since FMLI does not recognize the shell background sy&libleshell
built-in command must be used, for instance,

action="shell “unix_command > /dev/null & nop

If you want the user to continue to be able to interact with the application
while the background job is running, the output of an executable run by
shell in the background must be redirected: to a file if you want to save
the output, or tddev/null if you don't want to save it (or if there is no
output); otherwise your application may appear to be hung until the back-
ground job finishes processing. The application writer may also wish to
explore the co-processing facilitpproc(1F) which establishes a pipe
between FMLI and another independent UNIX system process.

When an FMLI command is disabled in the commands file, as in

name=update
action=nop

this disables it throughout the interface. There is no way to remove it from the
Command Menu and still leave it available for use in the application code itself.

Co-processing Functions

Forms

* When writing programs to use as co-processes, the following tips may be

useful. If the co-process program is written in C language, be sure to flush
output after writing to the pipe. (CurrentBywk(1) andsed(l) cannot

be used in a co-process program because they do not flush after lines of
output.) Shell scripts are well-mannered, but slow. C language is recom-
mended. If possible, use the defadhd_stringrpath, andwpath In most
casesexpect_strindnas to be specified. This, of course, depends on the co-
process.

Choices for a form field can be specified usingthenu descriptor. If the

value ofrmenu is a list of items enclosed in brackets, there must be at least
one whitespace character that separates the brackets from the item list:
rmenu={ “item 1" “item 2" “item 3" }

If a definition of thermenu descriptor degenerates to an empty list,
rmenu={} , the value othoicemsg is displayed—your definition if you
have defined one, or the FMLI default messddere are no

choices available . If you definechoicemsg and there might not

be any choices, be sure the message is appropriate to the “empty list” case.

There must be at least one active field visible in a form. If you open a form
with all fields defined as inactive, show=FALSE, FMLI does not display
the frame.

A-5

Character User Interface Programming

Menus

A-6

* Fieldnin a form frame cannot reference fieidwheremis greater than,

and fieldm does not have walue descriptor defined. That is, you cannot
reference the value of a field that is defined later in the form definition file
because that field may not have been evaluated at the time you reference it.

If a second or subsequent page of a form is defined to be larger than can be
displayed on the terminal being used, it is not displayed at all (for example,
if rows=25 is defined, and the terminal being used only has 24 rows avail-
able for display).

The precise rules for how rows and columns are determined in menus are
given in the following table. This table should only be needed in excep-
tional cases (for example, when a developer has coded “unreasonable” val-
ues for theows andcolumns descriptors in a menu definition file). In
general, the number of columns in a menu is determined before the number
of rows, and columns specified with tbelumns descriptor takes prece-
dence if there is a conflict with the number of rows requested. The number
of rows is usually the minimum of the three variat@d®gavailable rows),
sR(specified rows), andR (hneeded rows).

The table entries for the two cases wlohumns is specified and
description is not specified imply that menu items are truncated to fit

in the column size determined fros&. Thus, thecolumns descriptor
should not be specified for menus that are dynamically generated, when
there is no way to guarantee that such a menu will not have truncated items.

Descriptors set? step 1 step 2 step 3
d r c pC pR uC uR
yes no no not needed not needed 1 min(10nR)
yes no yes not needed not needed 1* min(10nR)
yes yes no not needed not needed 1 min(@RnNRsR
yes yes yes not needed not needed 1* min(@RnRsR
no no no k% k% k% k%
no no yes if sC>mC 1, ((tI-1) modpO)+1 if pR>aR 1. if pR>aR
otherwise sC** otherwisepC min(aR10);
otherwisepR
no yes no ((tI-1) modpR+1t min(@RnRsRT if pC>fC, 1; pR
otherwisepC
no yes yes if sC>mC 1, ((tI-1) modpO)+1 if pR>aR 1; if pR>aR
otherwise sC** otherwisepC min(aRsR);
otherwise pRt T

Footnotes

*

*%

*kk

Tt

Legend

sR

aR

nR

pR

urR

tl

sC

fC

mC

pC

uC

Programming Tips and Known Problems

columns descriptor is ignored

the algorithm attempts to open a menu with a 3:1 aspect ratio of width to
height

menu items are truncated if they are too long to fit; equal-width columns
are kept after truncation

step 1 and step 2 are reversed for this ggRen(ust be computed first)

rows descriptor is ignored

description descriptor

rows descriptor

columns descriptor

(specified rows) the value coded with thers descriptor

(available rows) the number of rows that frames can occupy on the ter-
minal screen

(needed rows) the number or rows needed to open the menu—for sin-
gle-column menus this equdls

(probable rows) the number of rows needed to open the menu, as deter-
mined from the first (preliminary) calculations

(used rows) the number of rows used to open the menu, after all steps
are done

(total items) the total number of menu items for the menu (the number
of menu descriptors)

(specified columns) the value coded with ¢tbumns descriptor

(fittable columny the number of columns that can fit on the screen,
given the screen width and the length of the longest menu item; equals
(screenWidti2) mod (maxltemWidth1); this is anaximum value-the
maximum fittable columns

(max columns) the maximum number of columns that could fit on the
screen if each column were only 1 character wide; eqgseisen\Width
3) mod 2

(probable columns) the number of columns needed to open the menu, as
determined from the first (preliminary) calculations

(used columns) the number of columns used to open the menu, after all
steps are done

A-7

Character User Interface Programming

Text

* TheSCROLL-DOWN key displays the complete final page of a text
frame, even if much of it was already visible. B E€ROLL-UP key dis-
plays the entire first page of a text object, even if most of it was already vis-
ible. The action o5CROLL-DOWN might be a surprise to users if they
are not also aware that the scroll-down icon has disappeared, signaling that
they are at the end of the text.

Backquoted Expressions

* Backquoted expressions that appear on a line by themselves are evaluated
before any descriptors are parsed. That is, they are evaluated before the
frame is fully current. Thus, the following can occur:

- if a stand-alone backquoted expression produces output to the mes-
sage line, it may appear before the frame being parsed is posted. This
delay may or may not be significant and depends on the complexity
of the frame definition file.

- message -f statements in stand-alone backquoted expressions are
ignored.

- the built-in functiongetfrm , if used in a stand-alone backquoted
expression, may be parsed before the frame ID it is supposed to
return is available.

¢ |f a command run in a backquoted expression changesttti{g#) set-
ting, the FMLI session may be corrupted. Frames may not display correctly
and the command line may not function (the latter occUREITURN is
mapped td.INEFEED or toRETURN LINEFEED).

* |f a daemon process is started via a shell script that FMLI code invokes in a
backquoted expression, FMLI waits for this process until the UNIX system
clears up zombies. While waiting, FMLI appears to be locked because the
backquoted command that waxsec 'd created a child whostdout is
still connected to FMLI via a pipe. When the command becomes a zombie,
FMLI continues reading the pipe that the (daemon) child still has open.
FMLI does not know if its grandchildren are going to be daemons or if they
are going to write to the pipe. To preserve the ability of grandchildren to
output to FMLI, the following fix must be placed in the script executed by
the backquoted expression, to redirectstdout of the daemon:

nohup my_daemor /dev/null &

Color

* Some color devices may reverse a color request. For example,
highlight_bar=red andhighlight_bar_text=green may be
displayed as “red on green” rather than “green on red.” If this happens, set

A-8

Message Line

Syntax

Miscellaneous

Programming Tips and Known Problems

highlight_bar=green andhighlight_bar_text=red to pro-
duce the proper color combination. This solution will, of course, cause the
problem on devices that handle color requests as expected.

When thecheckworld command is executed explicitly, or when a
SIGALRMoccurs afteMAILCHECKseconds, the message line may clear.
Because the reason the message line clears may not be apparent to users,
documents about your application should include an explanation of this
behavior.

In general, FMLI does not generate messages on syntax errors. However,
some of the built-in functions, such fslgrep andfmlcut, and the
if-then-else statement generate their own syntax error messages.
Developers should be aware that the absence of an error message does not
necessarily mean that there is not a syntax error in their code.

When creating a new menu, form, or text frame, all quotes and backquotes
must match. Quoting mismatches may cause unpredictable results; the
frame may never appear, or appear incorrectly.

Prior to FMLI Release 4.0, only ti$enotation existed for variable evalua-
tion, and that notation exhibited the behavior now define&!for~or pre-
viously written FMLI applications now being run under FMLI Release 4.0
or 4.0+, a Boolean descriptarse_incorrect_pre4.0_behavior ,

can be set in the initialization file, which causes FMLI to ignore$the
notation and interpre in the way defined above fét . The default value

(if not defined in the initialization file) for this descriptor is FALSE.

The FMLI interpreter does not uE®Fto exit a program. The assumption

is that applications are interactive and at some point allow the user to select
an item that evaluates to theit command. Otherwise, the FMLI appli-
cation will run indefinitely. Thus, if the input to FMLI is to come from a
file, the file must include thexit command.

If you are running FMLI on a system with the shell job control feature, you
can interrupt an FMLI application using t@a'RL-z key and resume it
with thefg utility.

A-9

Character User Interface Programming

Known Problems

Messages

* When a mouse is used to navigate to a new frame and the mouse is pointing
within the frame title or its scroll bar, the item message or field message for
the current item or field may flash on the message line.

* |f the evaluation of a descriptor results in a short-term message being
issued, followed by the opening of another frame, then frame or permanent
messages defined in the new frame will not be displayed until another key
is pressed. For example, if thene descriptor were defined as follows:

done="message “I'm doing something; please wait.”;
‘.c.)-pen Text.confirm
whereText.confirm defines
framemsg="Press CONT to continue”

then whenText.confirm opens, the messaden doing something;
please wait. will continue to be displayed. Only when another key is pressed
will the frame message appear.

To avoid this, you can use thmlicator command instead of threessage com-
mand in the original descriptor definition. (However, you must turn off the indicator
before opening the frame.) Alternatively, in the frame that is openefilathemsg
descriptor could be defined as follows”

framemsg="message -0 “Press CONT to continue™

Screen Labels for Function Keys

* The only way to get the commangiev-frm , next-frm , prevpage ,
andnextpage to work on an application-defined SLK is to make the label
of the SLK (using themame descriptor) the same as the command name.
Also, if the SLK label is set to one of these (case irrelevant), that is the
command that will be executed by that application-defined SLK, no matter
what theaction descriptor is coded to.

A-10

Forms

Multi-page forms

Other Form Problems

Text Frames

Programming Tips and Known Problems

An attempt to access a form page that has no acateetiye=true) or
shown ghow=false) fields causes the cursor to be positioned on the first
field (inactive or “not shown” field) and input to the field is allowed.

Sometimes on multi-page forms the scroll indicatorarfdv) may not be
shown when and after any page after the first is displayed.

If a user enters data in a one-line scrollable field, then navigates away from
the frame without having press&lNTER, the field is reset when the
frame becomes current again.

Theshow, value, andinactive descriptors are not re-evaluated for a field
when a SLK is pressed, unless FldTER key has been pressed after the
data are entered in the field.

When an application-defined SLK is pressed after a value has been entered
in a field, the new value of the field is not set in the field variabi§ (
unless th&ENTER key has also been pressed. This is particularly relevant
for forms with only one field in them.

If an active form field is dynamically made to be inactive, then underlining
is retained on those characters of the field that already have data entered in
them.

When toggling between choices, if consecutive choices are identical, the
remaining choices cannot be reached. Note that this does not occur when
there are enough choices to generate a menu.

Theregex built-in utility used in @ext descriptor, with a template argu-
ment thatcat 's a file containing tabs and newlines, does not preserve the
tabs and newlines in the opened text frame.

A text frame withwrap=true set may lose its correct wrapping if the
update command is issued for it.

If therows descriptor of a text frame is reduced after the frame is opened,
and the frame is later updated, the display of the frame will be corrupted.

The header in a text frame is truncated if it is longer tharcdhenns
descriptor specified, even if the title of the frame causes the actual size of
the frame to be big enough to hold the header.

A-11

Character User Interface Programming

Commands

Built-in Utilities

regex

readfile

Co-processing Utilities

A-12

¢ |f a user-defined command contains a compound backquoted expression

including arun statement, such as

name=my_cmd
action="executableA;run executableB; executable C nop

then, if the command is selected from the command menu, everything up to and
including therun statementdxecutableB) occurs with the command menu as
the current frame; the rest of the statemerégutableC) occurs with the previ-
ously current frame as the current frame.

Thereset command does not work in tdene descriptor of a form.

When a second set of SLKs are defined,tdgslk command issued
from the command line works once, to switch from the first set to the sec-
ond, but subsequent executions of it are ignored.

If the rmenu descriptor defines consecutive choices as identical (which
shouldn't be done, since it serves no purpose), toggling the choices using
the CHOICES function key prevents those choices after the duplicated
one from being reachable.

Theregex built-in utility used in @ext descriptor, with a template argu-
ment thatcat 's a file containing tabs and newlines, does not preserve the
tabs and newlines in the opened text frame.

Thelongline utility cannot be used to determine the longest line of a
header read with theeadfile utility if the text descriptor also con-
tains areadfile

If a menu contains eeadfile in a backquoted expression on a line by
itself and the file read contains a series of backquoted expressions on lines
by themselves, the first one of those lines is ignored. Making the first line a
blank or a comment will get around this.

The frame border of a form may not complete until input is provided from
the keyboard when co-processing is used.

if-then-else

fmlcut

Descriptors

Interrupt Facility

Programming Tips and Known Problems

Input and output strings from co-processing should not use non-alphabetic
printable characters, because the FMLI special characters are not correctly
transmitted.

When thereread descriptor is used with co-processing andig
utility causes the reread to occur frequently, the FMLI process may grow
out of memory space.

Omitting the terminating causes the remainder of a frame definition file
to be incorrectly parsed.

The standard output dfthen-else cannot be redirected using the
operator. However, individual parts of the statementtftee part and the
else part) can be.

A null statement following ¢hen followed by arelse can cause a syn-
tax error.

Thefmlcut built-in utility reads standard input piped to it, but does not
read a file redirected usirg

Theinit descriptor for a frame is not evaluated first, although it should
be. In forms, thevalue descriptors are evaluated first, followed by the
page, show, andinactive descriptors for each field; in menus, #rew
descriptors for items are evaluated first. If an application uses backquoted
expressions in these descriptors, this ordering must be taken into consider-
ation;init cannot be relied on to be evaluated first.

When thereread descriptor is used with co-processing andig
utility causes the reread to occur frequently, the FMLI process may grow
out of memory space.

Thepermanentmsg descriptor available in the initialization file incor-
rectly takes precedence oveframemsg descriptor in a frame file.

If an interrupt is generated by the user just as a frame is being displayed,
corruption may occur. Use thefresh command to redraw the screen.

If interrupts are enabled in a text frame anddhiaterrupt descriptor
does not evaluate to a valid command, then an interrupt generated just after
the frame is canceled causes the frame to be canceled, when the result

A-13

Character User Interface Programming

Miscellaneous

A-14

should just be a beep, the standard action wheddbe descriptor does
not evaluate to a valid command.

If interrupts are enabled and tbeinterrupt descriptor in effect does

not evaluate to a valid command, then an interrupt generated when an
application-defined command is being executed causes the current frame to
close.

The action specified in theose descriptor is not interruptible. But the
action specified in thelose descriptor in a text frame is getting inter-
rupted. After the interrupt, the action is incorrect.

Broadcast messages from root (for example, ones sent usimglthe

(1) command) may not be readable while an FMLI application is running,
and can corrupt the screen. Users of your FMLI application should be
warned that this can happen and that they can access the command line
with CTRL-j and execute theefresh command to redraw the screen.

FMLI does not recognizBOFon its input stream, so the only way that

piped input can cause &mli execution to properly terminate is for a cor-

rect string issuing aexit command to reach FMLI at the right time (for

example CTRL-j exit , when the operation to go to the command line is
recognizable). If thexit is not executed, the FMLI session will hang and
must be terminated with thell(1) utility.

Although FMLI Release 4.0 and 4.0+ work with the shell job control fea-
ture of UNIX System V Release 4, an FMLI session cannot be started in
the background, using a command of the form

fmli Menu.1 &

It can be started in the foreground, interrupted withGA&L-Z key, and then put
in the background using thog utility.

Characters that are special to FMLI (such asay require unreasonable
and seemingly arbitrary escaping backslashes to be correctly assigned to
variables or used as arguments.

If FMLI is running in a dynamically resizable window (for example, under
layers orxterm), it will not recognize a new window size if the window
is enlarged or shrunk; this may cause corruption.

B
Keyboard Support

Named Keys and Alternative Keystroke Sequences

The following table shows each of the named keys defined by FMLI and the alternative
keystroke sequence that will produce the same r€3TURL represents the control key.

NAMED KEY ALTERNATIVE SEQUENCE

BACKSPACE CTRL-h

Form: Menu:

moves cursor left one position, same as LEFT-ARROW.
replacing the character there with

space.

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

BACKTAB CTRL-t

Form: Menu: Text:

moves cursor to the previous field, same as LEFT-ARROW. n/a

whether above the current field or 1

the left, wrapping from the first fielc

of the form to the last.

BEG CTRL-b

Form: Menu: Text:

moves cursor to the first field of th¢ moves cursor to the first item, displays first frame full of text.
current page. whether currently visible or not.

CLEAR CTRL-y

CLEAR-LINE CTRL-y

Form: Menu: Text:

clears the current line. n/a if text frame is editable, same as for

forms. Otherwise, n/a.

CLEAR-EOL CTRL-fy

Form: Menu:
clears the current line from the cur n/a
rent cursor position to the end of tt

line.

Text:
if text frame is editable, same as for
forms. Otherwise, n/a.

B-1

Character User Interface Programming

NAMED KEY ALTERNATIVE SEQUENCE

COMMAND LINE CTRL-j

orCTRL-fc

Form: Menu: Text:
moves cursor to command line. same. same.
DEL CTRL-x

DELETE-CHAR CTRL-x

Form: Menu: Text:

deletes the character under cursor
and closes the gap.

n/a

if text frame is editable, same as for
forms. Otherwise, n/a.

DELETE-LINE CTRL-k
Form: Menu: Text:
in multi-line fields, deletes the cur- n/a if text frame is editable, same as for

rent line and closes the gap. In sin
gle-line fields, same as CLEAR-
LINE.

forms. Otherwise, n/a.

DOWN-ARROW CTRL-d

Form:

in a single-line field, moves cursor
to the next field below the current
one, wrapping from the last field ot
the column to the first. In a multi-
line field, it moves cursor to the ne»
line; on the last line, it moves cursc
to the next field below the current
one.

Menu:

moves cursor down one item, wraj
ping to the top of the column in a
single-column menu, the top of the
next column in a multi-column
menu. On the last item in the last
column of a multi-column menu, it
wraps to the top of the first column

Text:
moves cursor down one line. It does
not wrap.

END CTRL-e

Form:
moves cursor to the last field of the
current page.

Menu:
moves cursor to the last item,
whether currently visible or not.

Text:
displays last frame full of text.

ENTER CTRL-m

Form:

in a single-line field, moves cursor
to the next field, whether below the
current field or to the right, wrap-
ping from the last field of the form
to the first. In a multi-line field, it
moves the cursor to the next line.
This key cannot be used to naviga
from a multi-line field (it scrolls on
the last line if the field is scrollable
stops and beeps if it is non-scrolla:
ble). Validation occurs even if no
data have been entered or modifie
in the field since it became current

Menu:

selects the current item in a single
select menu, the marked items in ¢
multi-select menu.

Text:
moves cursor down one line. It does
not wrap.

Keyboard Suppar

NAMED KEY ALTERNATIVE SEQUENCE
HOME CTRL-fb
Form: Menu: Text:

moves cursor to the first character
the current field.

moves cursor to the first item cur-
rently visible.

displays first frame full of text.

HOME-DOWN CTRL-fe

Form:
moves cursor to the last character
the current field.

Menu:
moves cursor to the last item cur-
rently visible.

Text:
displays last frame full of text.

INSERT-CHAR CTRL-a

Form: Menu: Text:

inserts a space to the left of the ch n/a if text frame is editable, same as for
acter under cursor and moves curs forms. Otherwise, n/a.

over the space. The next charactel

entered will replace the space.

INSERT-LINE CTRL-0

Form: Menu: Text:

in a multi-line field, if space is avail n/a if text frame is editable, same as for
able, opens a line below the currer forms. Otherwise, n/a.

line and puts cursor on that line.

Otherwise, n/a.

LEFT-ARROW CTRL-I

Form: Menu: Text:

moves cursor non-destructively on
character to the left. It does not wre
to the previous field, or the previou
line in a multi-line field.

moves cursor left one item in a
multi-column menu, up one item in
a single-column menu. In a multi-
column menu, it does not wrap. In
single-column menu, it wraps to th
bottom of the column.

same as for forms.

MARK CTRL-fm

Form: Menu: Text:

n/a In a multi-select menu, marks the n/a
item to be selected. In a single-sele
menu, n/a.

NEXT CTRL-n

Form: Menu: Text:

same as TAB. same as DOWN-ARROW. n/a

PAGE-DOWN CTRL-w

Form: Menu: Text:

in a multi-page form, moves cursol
to the first field of the next page.

in a scrollable menu, moves curso
to the first item of the next frame fu
of items and displays that frame ful
unless there are fewer than 10 iten
in which case the terminal rings (o
flashes).

in a scrollable text frame, moves
cursor to the first line of the next
frame full of text and displays that
frame full, preserving two lines from
the current frame.

B-3

Character User Interface Programming

NAMED KEY ALTERNATIVE SEQUENCE
PAGE-UP CTRL-v
Form: Menu: Text:

in a multi-page form, moves cursol
to the first field of the previous pagt

in a scrollable menu, moves curso
to the first item of the previous
frame full of items and displays the
frame full, unless there are fewer
than 10 items, in which case the te
minal rings (or flashes).

in a scrollable text frame, moves
cursor to the first line of the previous
frame full of text and displays that
frame full, preserving two lines from
the current frame.

PREV CTRL-p

Form: Menu: Text:
same as BACKTAB. same as UP-ARROW. n/a
RESET CTRL-fr

Form: Menu: Text:
resets a field to its default value. n/a n/a
RETURN CTRL-m

Form: Menu: Text:

same as ENTER.

same as ENTER.

same as ENTER.

RIGHT-ARROW CTRL-r

Form:

moves cursor non-destructively on
character to the right. It does not
wrap to the next field, or the next
line in a multi-line field.

Menu:

moves cursor right one item in a
multi-column menu, down one iten
in a single-column menu. In a mult
column menu, it does not wrap. In
single-column menu, it wraps to th
top of the column.

Text:
same as for forms.

SCREEN-LABELED KEYS
CTRL-f1...CTRL-f8

Form: Menu: Text:
performs the action assigned to th same. same.
function key by default or by pro-

grammer.

SCROLL-DOWNCTRL-fd

Form: Menu: Text:

rolls the contents of a multi-line
scrollable field down by the numbe
of lines displayed.

rolls the contents of a scrollable
menu down one line, without mov-
ing the cursor.

rolls the contents of a scrollable text
frame down one line, without mov-
ing the cursor.

SCROLL-UP CTRL-fu

Form:

rolls the contents of a multi-line
scrollable field up by the number o
lines displayed.

Menu:

rolls the contents of a scrollable
menu up one line, without moving
the cursor.

Text:

rolls the contents of a scrollable text
frame up one line, without moving
the cursor.

B-4

Keyboard Suppar

NAMED KEY ALTERNATIVE SEQUENCE

SPACEBAR none

Form: Menu: Text:

replaces the current character with same as RIGHT-ARROW if text frame is editable, same as for
space and moves cursor one chari forms. Otherwise, n/a.

ter to the right.

TAB CTRL-i

Form: Menu: Text:

moves cursor to the next field, same as RIGHT-ARROW. n/a

whether below the current field or t
the right, wrapping from the last
field of the form to the first.

UP-ARROW CTRL-u

Form: Menu: Text:

in a single-line field, moves cursor moves cursor up one item, wrappir moves cursor up one line. It does not
to the previous field above the cur- to the bottom of the column in a sii wrap.

rent one, wrapping from the first gle-column menu, the bottom of th

field of the column to the last. In a previous column in a multi-column

multi-line field, it moves cursor to menu. On the first item in the first

the previous line; on the first line, i column of a multi-column menu, it

moves cursor to the previous field wraps to the bottom of the last col-

above the current one. umn.

Automatic Function Key Downloading

FMLI applications rely heavily on the use of function kBysthroughF8. Because these

keys are not available on some terminals or are not assigned default escape sequences that
curses can use, FMLI provides alternative keystroke sequer@&RL-f 1 through

CTRL-f 8, respectively, whose use is equivalent to that of function keys. Some terminals,
such as the AT&T 5620 and 630 terminals, as defined intdreiinfo(4) entries, do

not assign default escape sequences to these function keys, but can download strings into
them. FMLI will automatically download the alternative keystroke sequences if either of

the following is true:

¢ the environment variableOADPFKs set toyes , true , or the null string;

* the user chooses FMLI function key downloading at a prompt given during
initialization of the application. This prompt is not giveh@ADPFKis set
to any value.

In either case, the alternative sequences replace any previously defined strings for the
function keys. You can, however, restore the previously defined strings if you have taken
the precaution of storing them as an executable shell script. Such a script might use the
tput utility as follows:

tput pfx 1 string-for-function-key-1
tput pfx 2 string-for-function-key-2

B-5

Character User Interface Programming

tput pfx 3 string-for-function-key-3
tput pfx 4 string-for-function-key-4
tput pfx 5 string-for-function-key-5
tput pfx 6 string-for-function-key-6
tput pfx 7 string-for-function-key-7
tput pfx 8 string-for-function-key-8

If you execute this script after exiting from an FMLI application, the stored function key
definitions will be downloaded.

An FMLI application will execute this script automatically if it is named
restorePFKs . FMLI looks for a file namedestorePFKs first in the current direc-
tory, then indHOMEIT it finds such a file, the FMLI application displays the message

Running the shell script in filename
to restore function key settings

wherefilenameis either.restorePFKs or $HOME/.restorePFKs

NOTE

Thetput utility must be UNIX System V Release 4 or later.

Referencing é&erminfo entry for the AT&T 5620 terminal from
aterminfo database older than UNIX System V Release 4 will
cause the alternative keystroke sequences to be incorrectly down-
loaded. Not all the alternative sequences will be downloaded, and
garbage may be output to the screen. This can occur if a user
maintains a private variant of therminfo entry. Such a user
should not choose function key downloading.

Introduction

Compiling and

C
TAM Transition Library

Character mode applications that run under the Terminal Access Method (TAM) on the
UNIX PC can now run under ETI with a wide range of terminals. This appendix explains
how to use the TAM transition library, the source of this portability. In addition, it explains
how you can eventually rewrite your TAM application programs to run more efficiently
under ETI without the TAM transition library.

Running TAM Applications under ETI

The TAM transition library consists of a header fden.h and a set of library routines.
The filetam.h translates between TAM routines and equivalent sets of low-level ETI rou-
tines. For example, the TAM functiavcreate is mapped to the conversion library func-
tion TAMwcreate , which consists of a series of low-level ETI calls, sucheasvin and
subwin .

To use the TAM transition library, be sure to include the standard TAM headanfile
in your application program. So at the beginning of your TAM application program, you
should already have

#include <tam.h> /* as usual, for TAM calls */

Next, you recompile and link your application program,tsayprog.c , to form an exe-
cutable, as follows:

cc -l /usr/fadd-on/include tamprog.c -ltam -lcurses\
-0 executable_name

Note the use of theé option, which tells the compiler where to find the TAM header files.
The two uses of thé option link the requisite library subroutines, the TAM transition
library and the low-level ETI library.

Alternatively, you might separately compile one or more TAM application files (say,
taml.c ,tam2.c , andmain.c) and later link them to form an executable program.

cc -c -l /usr/add-on/include/ taml.c
[* compile files individually */
cc -c -l /usr/add-on/include/ tam2.c
cc -c -l /usr/add-on/include/ main.c
* link objects to form executable */

C-1

Character User Interface Programming

cC -0 executable_nam@aml.o tam2.0 main.o -ltam -lcurses

Note that thel option is required for the compilation of any file that uses the TAM
library.

Tips for Polishing TAM Application Programs Running under

ETI

To enable the code in your TAM application program to run smoothly under ETI, you
should do the following:

remove code that would be executed if a low-lésswind function call
returned a non-zero value, that is, TRUE. Under the TAM transition library,
iswind always returns FALSE.

remove all TAM calls to mouse management routines and theagadis
wicoff , andwrastop , because they will translate to null operations.

remove all machine-specific code, because the TAM transition library does
not translate system calls specifically tailored to the UNIX PC or calls
(such adoctl(2)) that have no meaning under ETI. These calls fail
under the TAM transition library on all machines except the UNIX PC.

note that all calls ttrack(3T) map to the low-level functiowgetc .

remove all references to TAM calls that bear the same name as ETI calls
because calls that have the same names in both systems have different
effects.

remove all arbitrary ANSI escape sequences for display output. For exam-
ple, the TAM transition library does not recognize the escape sequence
used on the UNIX PC in the commaecho “\ 33[J” , which clears the
screen. Instead, you should use equivalent ETI routines (these,).

Eliminating the superfluous code in the first three cases reduces your program's size and
execution time.

How the TAM Transition Library Works

C-2

The TAM Transition Library translates between TAM function calls and low-level ETI
function calls. It also ensures that escape and control sequences entered at a terminal's
keyboard are properly interpreted.

TAM Transition Library

Translations from TAM Calls to ETI Calls

The table in Table C-1 summarizes the translation of TAM to low-level &irkés)
functions. Eventually, if you want to rewrite your TAM applications to make ETI calls
directly and to run more efficiently, you can use this table as a guide.

Table C-1. Translations from TAM to ETI Function Calls

TAM Function Low-level ETI (curses(3curses)) Equivalent

winit Call initscr

wexit Call endwin andexit

iswind Return FALSE.

wcreate Call newwin ornew_panel .

wdelete Call delwin ordel_panel

wselect Calltouchwin andwrefresh, then update the list of windows to
indicate the new ordering.

wgetsel Calltop_panel orbottom_panel with NULL pointer.

wgetstat Call getyx , getmaxyx , orgetbegyx .

wsetstat Call del_panel , thennew_panel .

wputc Callwaddch.

wputs Callwaddstr .

wprintf Call wprintw .

wslk Create small window at bottom and useses routines with
wprintw .

wemd The character string passedweymdis copied to the
bottom of the screen.

wprompt The character string passedvegrompt is copied to the bottom of
the screen.

wlabel The character string is printed in the upper left corner of the specified
window.

wrefresh Call wrefresh . If the window index is -1, all windows should be
refreshed in the appropriate order.

wuser This functionality is not necessary. Remove this from your code.

wgoto Callwmove

wgetpos Call getyx .

wgetc Callwgetch . Character translation from ETI to ANSI may be
required, depending on the curréaypad mode.

kcodemap This functionality is not necessary. Remove this from your code.

keypad Call keypad .

C-3

Character User Interface Programming

Table C-1. Translations from TAM to ETI Function Calls (Cont.)

TAM Function Low-level ETI (curses(3curses)) Equivalent

wsetmouse This is a null operation.
wgetmouse This is a null operation.

wreadmouse This is a null operation.

wprexec Callerase andrefresh

wpostwait Callwrefresh for each window in the window list.

wnl The functionality of this routine is not supporteddoyses .
wicon This is a null operation.

wicoff This is a null operation.

wrastop This is a null operation.

track Callwgetch .

initscr Call initscr

nl The functionality of this routine is not supporteddoyses .
nonl The functionality of this routine is not supporteddoyses .
cbreak Call cbreak .

nocbreak Call nocbreak .

echo Callecho .

noecho Call noecho .

insch Callinsch .

getch Call getch .

flushinp Call flushinp

attron Call attron

attroff Call attroff

savetty Call savetty

resetty Call resetty

addch Call addch .

addstr Call addstr

beep Call beep.

clear Call clear

clearok This is a null operation.

clrtobot Call clrtobot

clrtoeol Call clrtoeol

delch Call delch .

deleteln Call deleteln

C-4

TAM Transition Library

Table C-1. Translations from TAM to ETI Function Calls (Cont.)

TAM Function Low-level ETI (curses(3curses)) Equivalent

erase Call erase .

flash Callflash

getyx Callwgetyx .

insertin Callinsertin

leaveok This is a null operation.
move Call move.

mvaddch Call move andaddch .
mvaddstr Call move andaddstr .
mvinch Call move andinch .
nodelay Call nodelay .
wndelay Call nodelay .

refresh Call refresh

resetterm Call resetterm
baudrate Call baudrate

endwin Call endwin .

fixterm Call fixterm

printw Call printw

Because the high-level TAM functions in the table in Table C-2 make calls only to the
low-level functions in the previous table, you can continue to use those high-level TAM
functions in your application programs as well. However, with ETI, you cannot use other
TAM high-level functions such astargeton

Table C-2. TAM High-level Functions

Usable TAM High-level Functions

form menu message
pb_empty pb_gets adf_gttok
pb_open pb_check pb_seek
pb_name pb_puts pb_weof
pb_gbuf adf gtwrd adf gtxcd

wind exhelp

C-5

Character User Interface Programming

The TAM Transition Keyboard Subsystem

Both TAM and ETI use a set of virtual function keys that translate between an escape
character sequence entered at the keyboard and a bit pattern inside the machine. Under the
TAM transition library, the TAM virtual key values are translated into ETI virtual key val-

ues.

The table in Table C-3 lists these equivalent virtual key values. Entering the escape
sequence listed in the left column will generate the corresponding TAM virtual function
key value given in the middle column. The right column lists the ETI equivalent of the
TAM virtual key and is for reference only.

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values

TAM Virtual Key Value
Escape

Sequence TAM ETI
ESC-! s F1 KEY_F(8)
ESC-@ s F2 KEY_F(9)
ESC-# s F3 KEY_F(10)
ESC-$ s F4 KEY_F(11)
ESC-% s F5 KEY_F(12)
ESC-A s F6 KEY_F(13)
ESC-& s F7 KEY_F(14)
ESC-* s F8 KEY_F(15)
ESC-f1 PF1 KEY_F(16)
ESCf2 PF2 KEY_F(17)
ESC-f4 PF3 KEY_F(18)
ESC-f4 PF4 KEY_F(19)
ESC-f5 PF5 KEY_F(20)
ESC-f6 PF6 KEY_F(21)
ESCf7 PF7 KEY_F(22)
ESC-f8 PF8 KEY_F(23)
ESCf9 PF9 KEY_F(24)
ESC-f0 PF10 KEY_F(25)
ESC-f- PF11 KEY_F(26)
ESCf= PF12 KEY_F(27)
ESC-1 F1 KEY_F(0)
ESC-2 F2 KEY_F(1)

C-6

TAM Transition Library

Table C-3. Translation Between TAM Escape Sequences and
Virtual Key Values (Cont.)

TAM Virtual Key Value
Escape

Sequence TAM ETI
ESC-3 F3 KEY_F(2)
ESC-4 F4 KEY_F(3)
ESC-5 F5 KEY_F(4)
ESC-6 F6 KEY_F(5)
ESC-7 F7 KEY_F(6)
ESC-8 F8 KEY_F(7)
ESC-bg Beg KEY_BEG
ESC-BG s _Beg KEY_SBEG
ESC-br Break KEY_BREAK
ESC-bw Back KEY_LEFT
ESC-BW s Back KEY_SLEFT
ESC-ce Clear KEY_CLEAR
ESC-CE Clear KEY_CLEAR
ESC-ci ClearLine KEY_EOL
ESC-CI s_ClearLine KEY_SEOL
ESC-cl Close KEY_CLOSE
ESC-CL Close KEY_CLOSE
ESC-cmm Cmd KEY_COMMAND
ESC-CM s Cmd KEY_SCOMMAND
ESC-cn Cancl KEY_CANCEL
ESC-CN s _Cancl KEY_SCANCEL
ESC-cp Copy KEY_COPY
ESC-CP s_Copy KEY_SCOPY
ESC-cr Creat KEY_CREATE
ESC-CR s _Creat KEY_SCREATE
ESC-dc DleteChar KEY_DC
ESC-Del DleteChar KEY_DC
ESC-DC s DleteChar KEY_SDC
ESC-dl Dlete KEY_DL
ESC-DL s _Dlete KEY_SDL
ESC-dn Down KEY_DOWN

Character User Interface Programming

C-8

Table C-3. Translation Between TAM Escape Sequences and

Virtual Key Values (Cont.)

TAM Virtual Key Value
Escape

Sequence TAM ETI
ESC-DN RollDn KEY_SF
ESC-en End KEY_END
ESC-EN s End KEY_SEND
ESC-ESC Esc none

ESC-ex Exit KEY_EXIT
ESC-EX s_Exit KEY_SEXIT
ESC-fi Find KEY_FIND
ESC-FI s_Find KEY_SFIND
ESC-fw Forward KEY_RIGHT
ESC-FW s_Forward KEY_SRIGHT
ESC-hl Help KEY_HELP
ESC-? Help KEY_HELP
ESC-HL s _Help KEY_SHELP
ESC-hm Home KEY_HOME
ESC-HM s _Home KEY_SHOME
ESC-im InputMode KEY_IC
ESC-NJ s_InputMode KEY_SIC
ESC-mk Mark KEY_MARK
ESC-MK Slect KEY_SELECT
ESC-ms Msg KEY_MESSAGE
ESC-MS s Msg KEY_SMESSAGE
ESC-mv Move KEY_MOVE
ESC-MV s_Move KEY_SMOVE
ESC-nx Next KEY_NEXT
ESC-NX s_Next KEY_SNEXT
ESC-op Open KEY_OPEN
ESC-OP Close KEY_CLOSE
ESC-ot Opts KEY_OPTIONS
ESC-OT s _Opts KEY_SOPTIONS
ESC-pg Page KEY_NPAGE
ESC-PG s _Page KEY _PPAGE

TAM Transition Library

Table C-3. Translation Between TAM Escape Sequences and

Virtual Key Values (Cont.)

TAM Virtual Key Value
Escape

Sequence TAM ETI
ESC-pr Print KEY_PRINT
ESC-PR s _Print KEY_SPRINT
ESC-pv Prev KEY_PREVIOUS
ESC-PV s_Prev KEY_SPREVIOUS
ESC-rd RollDn KEY_SF

ESC-RD RollDn KEY_SF

ESC-re Ref KEY_REFERENCE
ESC-RE Rsitrt KEY_RESTART
ESC-rf Rfrsh KEY_REFRESH
ESC-RF Clear KEY_CLEAR
ESC-rm Rsume KEY_RESUME
ESC-RM s_Rsume KEY_SRSUME
ESC-ro Redo KEY_REDO
ESC-RO s _Redo KEY_SREDO
ESC-rp Rplac KEY_REPLACE
ESC-RP s Rplac KEY_SREPLACE
ESC-rs Rstrt KEY_REFERENCE
ESC-RS Rstrt KEY_RESTART
ESC-ru RollUp KEY-SR

ESC-RU Rollup KEY_SR

ESC-sl Slect KEY_SELECT
ESC-SL Slect KEY_SELECT
ESC-ss Suspd KEY_SUSPEND
ESC-SS s _Suspd KEY_SSUSPEND
ESC-sv Save KEY_SAVE
ESC-SV s_Save KEY_SSAVE
ESC-ud Undo KEY_UNDO
ESC-UD s _Undo KEY_SUNDO
ESC-up Up KEY_UP

ESC-UP Rollup KEY_SR

C-9

Character User Interface Programming

Some keyboards have one or more keys that emit escape sequences that are identical to the
UNIX PC keyboard sequences but do not match in terms of functionality. The function of

an operationally incompatible key will always map totégninfo specification. The

TAM specific function implied by the same escape sequence will be accessible through the

technique describe above. Mechanismsurses(3curses) automatically handle
timing conflicts between actual keyboard function keys and UNIX PC keyboard escape
sequences.

C-10

D
ETI Program Examples

Program Examples

The following programs demonstrate uses of low-level Elilses) functions.

The editor Program

This program illustrates how to userses routines to write a screen editor. For simplic-

ity, editor keeps the buffer istdscr; obviously, a real screen editor would have a sep-
arate data structure for the buffer. This program has many other simplifications: no provi-
sion is made for files of any length other than the size of the screen, for lines longer than
the width of the screen, or for control characters in the file.

Several points about this program are worth making. First, it usesave mvaddstr |,
flash , wnoutrefresh , andclrtoeol routines that are all discussed in this docu-
ment.

Second, it also uses sormgrses routines that are not discussed in this document. For
example, the function to write out a file usesrthénch routine, which returns a charac-

ter in a window at a given position. The data structure used to write out a file does not keep
track of the number of characters in a line or the number of lines in the file, so trailing
blanks are eliminated when the file is written. The program also usiescthe, delch

insertin , anddeleteln routines. These functions insert and delete a character or
line. See thecurses(3curses) manual pages for more information about these rou-
tines.

Third, the editor command interpreter accepts special keys, as well as ASCII characters.
On one hand, new users find an editor that handles special keys easier to learn about. For
example, it's easier for new users to use the arrow keys to move a cursor than it is to mem-
orize that the letteh means leftj means downk means up, and means right. On the

other hand, experienced users usually like having the ASCII characters to avoid moving
their hands from the home row position to use special keys.

NOTE
Because not all terminals have arrow keys, yauses pro-

grams will work on more terminals if there is an ASCII character
associated with each special key.

D-1

Character User Interface Programming

D-2

Fourth, theCTRL-L command illustrates a feature most programs usimges rou-

tines should have. Often some program beyond the control of the routines writes some-
thing to the screen (for instance, a broadcast message) or some line noise affects the screen
so much that the routines cannot keep track of it. A user invadditgr can type
CTRL-L, causing the screen to be cleared and redrawn with a ealétesh(cur-

scr) .

Finally, another important point is that the input command is terminated by CTRL-D, not
the escape key. It is very tempting to use escape as a command, since escape is one of the
few special keys available on every keyboard. (Return and break are the only others.)
However, using escape as a separate key introduces an ambiguity. Most terminals use
sequences of characters beginning with escape (that is, escape sequences) to control the
terminal and have special keys that send escape sequences to the computer. If a computer
receives an escape from a terminal, it cannot tell whether the user depressed the escape
key or whether a special key was pressed.

editor and otheccurses programs handle the ambiguity by setting a timer. If another
character is received during this time, and if that character might be the beginning of a
special key, the program reads more input until either a full special key is read, the time
out is reached, or a character is received that could not have been generated by a special
key. While this strategy works most of the time, it is not foolproof. It is possible for the

user to press escape, then to type another key quickly, which causesséise program

to think a special key has been pressed. Also, a pause occurs until the escape can be passed
to the user program, resulting in a slower response to the escape key.

Many existing programs use escape as a fundamental command, which cannot be changed
without infuriating a large class of users. These programs cannot make use of special keys
without dealing with this ambiguity, and at best must resort to a time-out solution. The
moral is clear: when designing yoturses programs, avoid the escape key.

~

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.

* The buffer is kept in stdscr to simplify

* the program.

*

#include <stdio.h>
#include <curses.h>

#define CTRL(c) ((c) & 037)

main(argc, argv)

int argc;

char **argv;

{

extern void perror(), exit();

inti,n, [;
int c;
int line = 0;
FILE *fd;

_)

ETI Program Examples

/ if (argc 1= 2)
{

fprintf(stderr, “Usage: %s file\n”, argv[0]);
exit(1);

}
fd = fopen(argv[1], “r");
if (fd == NULL)

perror(argv[1]);
exit(2);
}

initscr();

cbreak();

nonl();

noecho();

idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

/* Read in the file */
while ((c = getc(fd)) |= EOF)

if (c =="\n")
line++;
if (line > LINES - 2)
break;
addch(c);

}
fclose(fd);
move(0,0);
refresh();
edit();

/* Write out the file */
fd = fopen(argv[1], “w");
for (I=0; I <LINES - 1; I++)

n = len(l);
for (i=0;i<n;i++)
putc(mvinch(l, i) & A_CHARTEXT, fd);
putc(\n', fd);
}
fclose(fd);

endwin();
exit(0);
}

len(lineno)
int lineno;

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) =="")
linelen--;

return linelen + 1;

}

/* Global value of current cursor position */
int row, col;

edit()
t
intc;
for (;;)
{
move(row, col);

refresh();
¢ = getch();

~

Character User Interface Programming

-

o

/* Editor commands */
switch (c)

{

/* hjkl and arrow keys: move cursor
* in direction indicated */
case 'h"
case KEY_LEFT:
if (col > 0)
col--;

else
flash();
break;

case J:
case KEY_DOWN:
if (row < LINES - 1)
row++;
else
flash();
break;

case 'K
case KEY_UP:
if (row > 0)
row--;
else
flash();
break;

case 'I"
case KEY_RIGHT:
if (col < COLS - 1)
col++;
else
flash();
break;
/* i enter input mode */

case KEY_IC:

case i
input();
break;

/* x: delete current character */
case KEY_DC:
case ‘X

delch();

break;

/* 0: open up a new line and enter input mode */
case KEY_IL:
case '0":

move(++row, col = 0);

insertin();

input();

break;

/* d: delete current line */
case KEY_DL:
case 'd":

deleteln();

break;

ETI Program Examples

4)

[* ~L: redraw screen */

case KEY_CLEAR:

case CTRL(L"):
wrefresh(curscr);
break;

[* w: write and quit */
case 'w'"
return;

/* g: quit without writing */
case 'q"

endwin();

exit(2);

default:
flash();
break;

}

/*

* Insert mode: accept characters and insert them.
* End with ~D or EIC

*/

input()

{

int c;

standout();
mvaddstr(LINES - 1, COLS - 20, “INPUT MODE");
standend();
move(row, col);
refresh();
for (;;)
{
¢ = getch();
if (c == CTRL('D") || c == KEY_EIC)
break;
insch(c);
move(row, ++col);
refresh();

}

move(LINES - 1, COLS - 20);
clrtoeol();

move(row, col);

refresh();

_)

The highlight Program

This program illustrates a use of the routatieset . highlight reads a text file and
uses embedded escape sequences to control attribltesns on underliningB turns
on bold, andN restores the default output attributes.

Note the first call tscrollok , a routine that we have not previously discussed (see the
curses(3curses) manual pages). This routine allows the terminal to scroll if the file

is longer than one screen. When an attempt is made to draw past the bottom of the screen,
scrollok automatically scrolls the terminal up a line and a&lfeesh

Character User Interface Programming

-

/*

* highlight: a program to turn \U, \B, and
*\N sequences into highlighted

* output, allowing words to be

* displayed underlined or in bold.

*

#include <stdio.h>
#include <curses.h>

main(argc, argv)
int argc;
char **argv;
{
FILE *fd;
intc, c2;
void exit(), perror();

if (argc 1= 2)
{

fprintf(stderr, “Usage: highlight file\n”);
exit(1);
}

fd = fopen(argv[1], “r");
if (fd == NULL)

perror(argv[1]);
exit(2);
}

initscr();

scrollok(stdscr, TRUE);
nonl();

while ((c = getc(fd)) = EOF)
{

if (c=="\)
{

c2 = getc(fd);

switch (c2)

{

case 'B"
attrset(A_BOLD);
continue;

case 'U"
attrset(A_UNDERLINE);
continue;

case 'N":
attrset(0);
continue;

}

addch(c);
addch(c2);
}
else
addch(c);

}
fclose(fd);
refresh();
endwin();
exit(0);

o

The scatter Program

This program takes the firstNES - 1

displays the characters on a terminal screen in a random order. For this program to work

D-6

lines of characters from the standard input and

ETI Program Examples

properly, the input file should not contain tabs or non-printing characters.

(.)

/*
* The scatter program.
*

#include<curses.h>
#include<sys/types.h>

extern time_t time();

#define MAXLINES 120

#define MAXCOLS 160

char siIMAXLINES][MAXCOLS];/* Screen Array */

int TIMAXLINES][MAXCOLS];/* Tag Array - Keeps track of *
* the number of characters ~ *
* printed and their positions. */

main()

register int row = 0,col = 0;
register int c;

int char_count = 0;
time_tt;

void exit(), srand();

initscr();
for(row = 0;row < MAXLINES;row++)
for(col = 0;col < MAXCOLS;col++)
s[row][col]="";

col=row =0;
/* Read screen in */
while ((c=getchar()) != EOF && row < LINES) {

if(c '="\n")
{

/* Place char in screen array */
s[row][col++] = c;
ifc!=""

char_count++;

}
else
{
col=0;
row++;
}
}
time(&t);/* Seed the random number generator */
srand((unsigned)t);
while (char_count)
{
row = rand() % LINES;
col = (rand() >> 2) % COLS;
if (T[row][col] != 1 && s[row][col] !="")
move(row, col);
addch(s[row][col]);
T[row][col] = 1;
char_count--;
refresh();
}
endwin();
exit(0);

_ J

Character User Interface Programming

The show Program

D-8

This program pages through a file, showing one screen of its contents each time you
depress the space bar. The program célisak so that you can depress the space bar
without having to hit return; it callsoecho to prevent the space from echoing on the
screen. Theonl routine, which we have not previously discussed, is called to enable
more cursor optimization. Thdlok routine, which we also have not discussed, is called

to allow insert and delete line. (See theses(3curses) pages for more informa-

tion about these routines). Also notice ttlatbeol andclrtobot are called.

By creating an input file foshow made up of screen-sized (about 24 lines) pages, each
varying slightly from the previous page, nearly any exercisedarses program can be
created. This type of input file is called a show script.

ETI Program Examples

~

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv([];

FILE *fd;

char linebuf[BUFSIZ];

int line;

void done(), perror(), exit();

if (argc 1= 2)
{
fprintf(stderr, “usage: %s file\n”, argv[0]);
exit(1);
}
if ((fd=fopen(argv[1], “r")) == NULL)
{
perror(argv[1]);
exit(2);
}
signal(SIGINT, done);
initscr();
noecho();
chbreak();
nonl();
idlok(stdscr, TRUE);
while(1)

move(0,0);
for (line = O; line < LINES; line++)

if ((fgets(linebuf, sizeof linebuf, fd))

clrtobot();
done();

move(line, 0);
printw(“%s”, linebuf);

refresh();
if (getch() =='q)
done();
}
}
void done()

move(LINES - 1, 0);
clrtoeol();

refresh();

endwin();

exit(0);

_ /

The two Program

This program pages through a file, writing one page to the terminal from which the pro-
gram is invoked and the next page to the terminal named on the command line. It then
waits for a space to be typed on either terminal and writes the next page to the terminal at
which the space is typed.

D-9

Character User Interface Programming

Thetwo program is just a simple example of a two-termauases program. It does not
handle notification; instead, it requires the name and type of the second terminal on the
command line. As written, the commarsléep 100000 " must be typed at the second
terminal to put it to sleep while the program runs, and the user of the first terminal must
have both read and write permission on the second terminal.

~

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)

int argc;

char **argv;

{
void done(), exit();
unsigned sleep();
char *getenv();
int c;

if (argc 1= 4)

fprintf(stderr, “Usage: two othertty otherttytype inputfile\n”);
exit(1);

fd = fopen(argv[3], “r");
fdyou = fopen(argv[1], “w+");
signal(SIGINT, done);/* die gracefully */

me = newterm(getenv(“TERM”), stdout, stdin); /* initialize my tty */
you = newterm(argv[2], fdyou, fdyou);/* Initialize the other terminal */

set_term(me);/* Set modes for my terminal */
noecho();/* turn off tty echo */

cbreak();/* enter cbreak mode */

nonl(); /* Allow linefeed */

nodelay(stdscr, TRUE);/* No hang on input */

set_term(you);/* Set modes for other terminal */
noecho();

cbreak();

nonl();

nodelay(stdscr, TRUE);

/* Dump first screen full on my terminal */
dump_page(me);

/* Dump second screen full on the other terminal */
dump_page(you);

for (;;)/* for each screen full */

set_term(me);
¢ = getch();

o

D-10

ETI Program Examples

}

{

1*

*

_

if (c =='q’)/* wait for user to read it */
done();

if(c==""
dump_page(me);

set_term(you);

¢ = getch();

if (c =='q’)/* wait for user to read it */
done();

if(c=="")
dump_page(you);

sleep(1);

dump_page(term)
SCREEN *term;

int line;

set_term(term);
move(0, 0);
for (line = 0; line < LINES - 1; line++) {

if (fgets(linebuf, sizeof linebuf, fd) == NULL) {

clrtobot();
done();

mvaddstr(line, 0, linebuf);

standout();

mvprintw(LINES - 1, 0, “--More--");
standend();

refresh();/* sync screen */

Clean up and exit.

void done()

/* Clean up first terminal */
set_term(you);
move(LINES - 1,0);/* to lower left corner */

clrtoeol();/* clear bottom line */
refresh();/* flush out everything */
endwin();/* curses cleanup */
delscreen(); /* remove screen */

/* Clean up second terminal */
set_term(me);

move(LINES - 1,0);/* to lower left corner */
clrtoeol();/* clear bottom line */

refresh();/* flush out everything */
endwin();/* curses cleanup */
delscreen();/* remove screen */

exit(0);

~

The window Program

This example program demonstrates the use of multiple windows. The main display is

kept instdscr. When you want to put something other than what stiscr on the

physical terminal screen temporarily, a new window is created covering part of the screen.
for that window causes it to be written over ghéscr image on the

onstdscr results in the original window being
routine (which we have not dis-

A call towrefresh
terminal screen. Callingefresh
redrawn on the screen. Note the calls totthuehwin

D-11

Character User Interface Programming

cussed — see thaurses(3curses) manual pages) that occur before writing out a
window over an existing window on the terminal screen. This routine prevents screen opti-
mization in acurses program. If you have trouble refreshing a new window that over-
laps an old window, it may be necessary to walthwin for the new window to get it
completely written out.

~

#include <curses.h>
WINDOW *cmdwin;
main()

{

inti, c;
char buf[120];
void exit();

initscr();
nonl();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i=0; i < LINES; i++)
mvprintw(i, 0, “This is line %d of stdscr”, i);

for (;;)

{

refresh();
¢ = getch();
switch (c)

{

case 'c":./* Enter command from keyboard */
werase(cmdwin);
wprintw(cmdwin, “Enter command:”);
wmove(cmdwin, 2, 0);
for (i=0; i< COLS; i++)

waddch(cmdwin, '-);

wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wagetstr(cmdwin, buf);
touchwin(stdscr);

/*
* The command is now in buf.
* |t should be processed here.
*/

case 'q"
endwin();
exit(0);

D-12

ETI Program Examples

The colors Program

This program creates two windows. All characters displayed in the first window will be in
red, on a blue background. All characters displayed in the second window will be in yel-
low, on a magenta background.

~

#include <curses.h>

#define PAIR1 1
#define PAIR2 2

main()
WINDOW *winl, *win2;

initscr();
if ((start_color()) == OK)
{

[* create windows */

winl = newwin (5, 40, 0, 0);
win2 = newwin (5, 40, 15, 40);

[* create two color pairs */

init_pair (PAIR1, COLOR_RED, COLOR_BLUE);
init_pair (PAIR2, COLOR_YELLOW, COLOR_MAGENTA);

/* turn on color attributes for each window */

wattron (winl, COLOR_PAIR (PAIR1));
wattron (win2, COLOR_PAIR (PAIR2));

[* print some text in each window and exit */
waddstr (winl, “This should be red on blue”);
waddstr (win2, “This should be yellow on magenta”);
wnoutrefresh (winl);

wnoutrefresh (win2);

doupdate();

/* wait for any key before terminating */

wgetch (win2);

}

endwin();

}

_)

D-13

Character User Interface Programming

D-14

Index

Symbols B
I (shell escape) 1-23 Backquoted expression (FMLI) 2-4, 2-5, 4-3, A-8
(pound sign) 2-2 statement operators 2-5
& (background symbol) A-5 Backslash (\) 2-4
&& (conditional execution) 2-5 Backup frame 1-20
' (singlequote) 2-4 bancol descriptor 2-24, 4-3
; (semicolon) 2-5 banner descriptor 2-24, 4-4
< (redirect input) 2-6 Banner line (FMLI) 1-3
<< (here document) 4-15 descriptor definitions 4-3, 4-4
> (redirect output) 2-6 list of descriptors 2-24
\ (backslash) 2-4 banner_text descriptor 2-26, 4-5, 4-6
* (backquote) 2-4 beep(3curses) 7-21
| (pipe) 2-5 begcol descriptor 2-17, 2-21, 3-3, 3-28, 3-52
| | (conditional execution) 2-5 begrow descriptor 2-14, 2-17, 2-21, 3-3, 3-28, 3-52,

A-11

Blinking attribute 2-42

Bold attribute 2-42

Built-in utilities (FMLI) 2-34, 2-37

Built-in variables (FMLI) 2-7, 2-8
action descriptor 2-20, 2-22, 2-27, 2-28, 3-6, 4-11, 4-13®utton descriptor 2-20, 2-22, 2-27, 4-11
active_border descriptor 2-26, 4-5
active_title_bar descriptor 2-26, 4-5
active_title_text descriptor 2-26, 4-5

A

addstr(3curses) 6-3, 7-3 c
Alias file (FMLI) 4-14, 4-15
defining pathname aliases 4-14 can_change_colors(3curses) 7-18
defining search paths 4-14 cancel command
overview 1-8 FMLI 2-29
Alternate character set 2-41, 2-42, 2-44 captoinfo(1M) 13-14
altslks descriptor 2-14, 2-21, 3-3, 3-28, 3-52 Case sensitivity (FMLI) 2-2
Application level files (FMLI) Casts
lists of descriptors 2-23, 2-28 FMLI 2-2, 2-3
overview 1-8 cbreak(3curses) 7-23
ARGnN variable 2-7 Character sequences for terminal attributes
autoadvance descriptor 2-18, 3-31 table of 2-42
autolayout descriptor 2-17, 2-18, 3-28, 3-32, 3-34, 3-4%heckworld command (FMLI) 2-29, A-9
application-level 4-6 choicemsg descriptor 2-18, 3-31, A-5
autosort descriptor 2-14, 3-3 choices command (FMLI) 2-29

Choices menu 1-7, 1-19, 3-35
cleanup command
FMLI 2-29
clear(3curses) 7-6
close command (FMLI) 2-29

Index-1

Character User Interface Programming

close descriptor 2-17, 2-21, 3-4, 3-29, 3-53
clrtobot(3curses) 7-6
clrtoeol(3curses) 7-6
cmd-menu command (FMLI) 2-30
cocheck(1F) 2-36
cocreate(1F) 2-36
codestroy(1F) 2-36
color_content(3curses) 7-18
COLOR_PAIR 7-16
Colors
(ETI) 7-14,7-21
A_COLOR (ETI) 7-18
changing definitions (ETI) 7-17
COLOR_PAIR (ETI) 7-16
descriptor definitions (FMLI) 4-4, 4-6
examples of (FMLI) 4-6
list of descriptors (FMLI) 2-26
other macros and routines (ETI) 7-18
PAIR_NUMBER (ETI) 7-18
portability (ETI) 7-17
redefining defaults (ETI) 7-17
table (ETI) 7-14
table of defaults (ETI) 7-14
colors
attribute (ETI) 7-16
columns descriptor 2-14, 2-18, 2-21, 2-24, 3-4, 3-31,
3-36, 3-53, 4-3
Command execution (FMLI) 1-20, 1-23
Command line
CTRL-fc 1-4,1-11, 1-21
CTRL- 1-4,1-11,1-21
CTRL-z 1-22
execute commands from 2-33
FMLI 1-4,1-21, 1-22
Command Menu
FMLI 1-8, 1-21, 2-30
FMLI table of defaults 2-33
Command Menu, FMLI
modifying 4-12
Commands (FMLI) 2-28, 2-34
syntax and use 2-29, 2-33
user access to 1-14, 2-33, 2-34
Commands file (FMLI) 4-12, 4-14, 4-15
descriptor definitions 4-13
examples of 4-13, 4-14
list of descriptors 2-27, 2-28
overview 1-8
Comments
FMLI 2-2
Conditional statements (FMLI) 2-37, 2-38
&& 2-5
|l 2-5
const cast 2-3, 2-11, A-3
Co-processing 3-65, A-3, A-12

Index-2

coreceive(1F) 2-36
cosend(1F) 2-36
Current frame

definition 1-5
current_field(3curses) 11-58
current_item(3curses) 10-41
curs_addch(3curses) 7-1
curs_attr(3curses) 7-13
curses library 13-1
curses(3curses) 2-41, 4-4
curses.h 13-3
Cursor 1-14

D

data_ahead(3curses) 11-33
data_behind(3curses) 11-33
description descriptor 2-15, 3-7
example of 3-18
Descriptors
default values 1-11
definitions for form frames 3-26, 3-42
definitions for menu frames 3-1, 3-8
definitions for text frames 3-51, 3-55
evaluation order A-13
lists of 2-10, 2-28
statement syntax 2-10
types of 2-12
Disabling FMLI commands 4-12
DISPLAYH variable 2-7
DISPLAYW variable 2-7

DMD
5620 B-6
630 B-5

done command (FMLI) 2-30
done descriptor 2-17, 2-21, 3-4, 3-29, 3-53
doupdate(3curses) 8-2
dup_field(3curses) 11-6
Dynamic frame (FMLI)

example of 3-23

generation 2-5
dynamic_field_info(3curses) 11-10

echo(1F) 2-35
echo(3curses) 7-23

edit descriptor 2-21, 3-53
endwin(3curses) 6-2
erase(3curses) 7-6

ETI
basic programming 6-1, 6-8
colors (see colors) 7-14, 7-21
compile program 6-4
components 5-4, 5-6
connection with terminfo 5-3, 5-4
forms (see forms) 11-1, 11-73
header files 6-1, 6-2
input options 7-21, 7-24
input options settings 7-22
input routines 7-7, 7-11
libraries 5-1, 5-3
lines and columns 6-5
low-level interface (curses) 8-7, 8-8
menus (see menus) 10-1, 10-49
output attributes 7-11, 7-21
output routines 7-1, 7-7
panels (see panels) 9-1

program examples (see ETl examples) D-1, D-13
routines for drawing lines and other graphics 12-1,

12-2

routines for soft labels 12-2, 12-3

run program 6-4, 6-5

windows 6-5

windows (see windows) 8-1, 8-8

working with more than one terminal 12-3, 12-4
ETI examples D-1, D-13

colors program D-13

editor program D-1

highlight program D-5

scatter program D-6

show program D-8

two program D-9

window program D-11
Executable files

interrupting in FMLI 2-39
exit command

FMLI 1-11, 2-30, A-9

FACE-specific code A-3
fcol descriptor 2-18, 3-32
field_arg(3curses) 11-13
field_back(3curses) 11-20
field_buffer(3curses) 11-21
field_count(3curses) 11-32
field_fore(3curses) 11-20
field_index(3curses) 11-58
field_info(3curses) 11-8
field_init(3curses) 11-54
field_just(3curses) 11-18

Index

field_opts(3curses) 11-26
field_opts_off(3curses) 11-28
field_opts_on(3curses) 11-28
field_pad(3curses) 11-20
field_status(3curses) 11-23
field_term(3curses) 11-54
field_type(3curses) 11-13
field_userptr(3curses) 11-24
fieldmsg descriptor 2-18, 3-32
flash(3curses) 7-21
fmlcut(1F) 2-35, A-13
fmlexpr(1F) 2-35
fmligrep(1F) 2-35
FMLI
commands 2-28, 2-34
comments 2-2
disabling commands 4-14
file type casts 2-1, 2-31
filename conventions 2-1, 4-15
internationalized applications 1-12
overview 1-1,1-11
redirection of input and output 2-6, 4-15, A-9
re-evaluation of descriptors 2-3
referencing variables 2-8, 2-10
screen layout 1-2, 1-5
special characters 2-3, 2-4
syntax 2-1, 2-6
use on asynchronous terminal 1-9
using an application 1-13, 1-23
fmli(1) 1-2, 1-11, 3-30
command syntax 4-15
fmlmax(1F) 2-35
Fn variable 2-7
form descriptor 2-17, 3-29
Form_Choice variable 2-7
form_driver(3curses) 11-40
form_fields(3curses) 11-31
form_init(3curses) 11-54
form_opts(3curses) 11-63
form_opts_off(3curses) 11-64
form_opts_on(3curses) 11-64
form_page(3curses) 11-59
form_sub(3curses) 11-35
form_term(3curses) 11-54
form_userptr(3curses) 11-61
form_win(3curses) 11-35
Forms (ETI) 11-1, 11-73
application-defined commands 11-48
associate windows and subwindows with a form
11-35
build field type 11-65
call form driver 11-48
change and fetch fields 11-31
change default attributes 11-33

Index-3

Character User Interface Programming

change default field attributes 11-12
change form page 11-59, 11-60
choice requests 11-48

compile and link form programs 11-1
count number of fields 11-32

create and free 11-29, 11-31

create and free fields 11-6, 11-8
create field type 11-66

dimensions 11-34

display 11-33, 11-40

driver processing 11-40, 11-61
dynamically growable fields 11-9
field buffers 11-21

field editing requests 11-45

field size 11-8

field status 11-22

field types argument support 11-69
field user pointer 11-24

field validation requests 11-47

form options 11-62, 11-64

form requests 11-43, 11-48

form user pointer 11-61, 11-62

free programmer-defined field types 11-68
helpful field features 11-21, 11-25
initialization routines 11-53, 11-57
inter-field navigation requests 11-43
intra-field navigation requests 11-44
justify data in field 11-18

location information 11-8

manipulate current field 11-57, 11-59
manipulate field attributes 11-8, 11-19
manipulate field options 11-26, 11-28
manipulate form attributes 11-31, 11-33
move a field 11-11

next and previous choice functions support 11-72

non-editable fields 11-18

page navigation requests 11-43

position form cursor 11-60, 11-61

posting 11-38

presence of offscreen data 11-33

programmer-defined field types 11-65, 11-73

sample program 11-3

scale 11-34

scrolling requests 11-46

set and fetch field user pointer 11-24

set and read field buffers 11-21

set and read field status 11-22

set field background 11-19, 11-21

set field foreground 11-19, 11-21

set field type 11-13

set pad character 11-19, 11-21

support programmer-defined field types 11-68,
11-73

termination routines 11-53, 11-57

Index-4

terminology summary 11-2
unposting 11-38
validation functions 11-66
virtual key mapping 11-40
what a form program does 11-2
write form programs 11-1, 11-5
Forms (FMLI)
automatic layout of fields 3-40, 3-42
Choices menu 1-7, 3-35
definition 1-7
descriptor descriptions 3-26, 3-42
editing 1-18, 1-19
examples of 3-42, 3-51
graphic characters in 2-42
lists of descriptors 2-17, 2-20
multi-page 1-7, 3-35, A-11
navigation in 1-17, 1-18, B-1
order of descriptors 3-27
positioning 3-28
saving 1-18
Frame definition file
descriptors 2-12, 2-23
overview 1-6, 1-8
framemsg descriptor 2-14, 2-17, 2-21, 3-4, 3-29, 3-53
Frames (FMLI)
definition of 1-5
dynamically generated 2-5
ID number 1-6
Frame-to-frame navigation 1-19, 1-20
free_field(3curses) 11-6
free_fieldtype(3curses) 11-68
free_form(3curses) 11-29
free_item(3curses) 10-6
frm-mgmt command
FMLI 2-30
frow descriptor 2-18, 3-32
Function keys
FMLI (see screen-labeled function keys) 1-4, 1-22

G

getch(3curses) 7-8
getfrm(1F) 2-35
getitems(1F) 2-35
getstr(3curses) 7-9
Global variables 2-6
Glyphs

table of 2-42
goto command

FMLI 2-30
Graphic characters 2-41

H

Half bright attribute 2-42, 3-7
HAS_COLORS variable 2-8
has_colors(3curses) 7-18
header descriptor 3-53
help command
FMLI 1-22, 2-31, 3-4
help command, FMLI
example of 3-61, 3-65

help descriptor 2-14, 2-17, 2-21, 2-28, 3-4, 3-29, 3-53,

4-13
highlight_bar descriptor 2-26, 4-5
highlight_bar_text descriptor 2-26, 4-5
Highlighting 3-7
automatic mechanisms 1-16
terminal attribute 2-42

if-then-else statement (FMLI) 2-37, 2-38, A-13
inactive descriptor 2-15, 2-18, 3-7, 3-33, A-11
inactive_border descriptor 2-26, 4-6
inactive_title_bar descriptor 2-26, 4-6
inactive_title_text descriptor 2-26, 4-6
indicator(1F) 2-35, 4-4
infocmp(1M) 13-14
init descriptor 2-14, 2-17, 2-21, 3-4, 3-29, 3-53, A-13
init_color(3curses) 7-20
init_pair(3curses) 7-19
Initialization file (FMLI) 4-1, 4-4, 4-12, 4-15

graphic characters in 2-42

lists of descriptors 2-23, 2-27

order of descriptors 4-2

overview 1-8
initscr(3curses) 6-2, 6-5
Internationalization support (FMLI) 1-10, A-1
interrupt descriptor 4-7, 4-11, 4-13

description 3-5, 3-7, 3-29, 3-53

example of 3-16
Interrupt signal handling (FMLI) 2-39, 2-41, A-13
Introductory frame (FMLI)

descriptor definitions 4-2, 4-3

example of 4-3

list of descriptors 2-24
invalidmsg descriptor 2-18, 3-33
invalidOnDoneMsg descriptor 2-18, 3-33
item_count(3curses) 10-16
item_description(3curses) 10-8
item_index(3curses) 10-41
item_init(3curses) 10-39

Index

item_name(3curses) 10-8
item_opts(3curses) 10-9
item_opts_off(3curses) 10-10
item_opts_on(3curses) 10-10
item_term(3curses) 10-39
item_userptr(3curses) 10-11
item_value(3curses) 10-7
item_visible(3curses) 10-10
itemmsg descriptor 3-7
example of 3-20

Job control 1-22, A-9, A-14

Keystrokes
alternate 1-5, 1-15, B-1

layers(1) A-14
lifetime descriptor 3-5, 3-30, 3-54
Line-drawing glyphs

table of 2-42
lininfo descriptor 2-15, 2-18, 3-7, 3-33
LININFO variable 2-8
link_field(3curses) 11-6
link_fieldtype(3curses) 11-65
LOADPFK variable 2-8
longline(1F) 2-35

M

MAILCHECK variable 2-8, A-9
mark command (FMLI) 2-31
menu descriptor 2-14, 3-5
menu_back(3curses) 10-26
menu_driver(3curses) 10-30
menu_fore(3curses) 10-26
menu_format(3curses) 10-18
menu_grey(3curses) 10-26
menu_init(3curses) 10-39
menu_items(3curses) 10-15
menu_mark(3curses) 10-21

Index-5

Character User Interface Programming

menu_opts(3curses) 10-47 what a menu program does 10-2
menu_opts_off(3curses) 10-48 windows and subwindows 10-23
menu_opts_on(3curses) 10-48 write programs using 10-2, 10-5
menu_pad(3curses) 10-26 Menus (FMLI)
menu_pattern(3curses) 10-44 creating a dynamic 3-23
menu_sub(3curses) 10-23 definition 1-6, 1-7
menu_term(3curses) 10-39 descriptor definitions 3-1, 3-8
menu_userptr(3curses) 10-45 examples of 3-8, 3-12, 3-26
menu_win(3curses) 10-23 lists of descriptors 2-14, 2-16
menuonly descriptor 2-18, 3-33 marking items 1-6
Menus (ETI) 10-1, 10-49 multi-column 3-4

application-defined commands 10-34 multi-select 1-6, 3-4, 3-5, 3-7, 3-8

call menu driver 10-35 navigation in 1-15, 1-16

change and fetch pattern buffer 10-44 order of descriptors 3-2

change default item attributes 10-11 passing parameters 3-23

change default menu attributes 10-16 positioning 3-3

check item visibility 10-10 scrollable 1-6, 1-16

compile and link programs 10-1 selecting an item 1-16, 1-17

count menu items 10-16 single-select 1-6, 3-6

create and free 10-13, 10-14 Message line, FMLI 1-4

create and free items 10-5, 10-7 duration of display 3-4, 4-8

definition of kinds 10-7 message(1F) 2-35

dimensions 10-17, 10-22 move(3curses) 6-3, 7-4

directional item navigation requests 10-32 move_field(3curses) 11-12

display 10-17, 10-29 multiselect descriptor 2-14, 3-5

driver processing 10-29, 10-45
ETI menu requests 10-32
fetch and change current item 10-41

fetch and change display attributes 10-25 N

fetch and change menu items 10-14

fetch and change top row 10-42 name descriptor 2-15, 2-18, 2-20, 2-22, 2-27, 2-28, 3-7,
fetch names and descriptions 10-8 3-33, 4-11, 4-13

format 10-18 Named keys (FMLI) 1-15, B-1

item and menu initialization 10-38 problems A-8

item and menu termination 10-38 Navigation

item navigation requests 10-32 FMLI 1-15, 1-20, B-1

item select value 10-7 ncol descriptor 2-18, 3-34

key virtualization correspondence 10-30 new_field(3curses) 11-6

manipulate item attributes 10-8, 10-11 new_fieldtype(3curses) 11-66
manipulate menu attributes 10-14, 10-17 new_form(3curses) 11-29
manipulate menu user pointer 10-45, 10-46 new_item(3curses) 10-5

mark string 10-20 new_menu(3curses) 10-13
multi-valued 10-7 new_page(3curses) 11-29
multi-valued menu selection request 10-33 newwin(3curses) 8-6

pattern buffer requests 10-33 next_choice(3curses) 11-72

position cursor 10-43 next-frm command (FMLI) 2-31, A-10
post and unpost 10-27 nextpage command (FMLI) 2-31, A-10
sample program 10-3 nobang descriptor 2-25, 4-7

scrolling requests 10-33 nocbreak(3curses) 7-23

set and fetch menu options 10-47, 10-49 noecho descriptor 2-18, 3-34

set item options 10-9 noecho(3curses) 7-23

set item user pointer 10-11 nop command (FMLI) 2-31
single-valued 10-7 NR variable 2-8

terminology summary 10-2 nrow descriptor 2-18, 3-34

Index-6

O

oninterrupt descriptor 4-8, 4-11, 4-13
description 3-6, 3-8, 3-30, 3-54
example of 3-16
table entry 2-16, 2-20, 2-28

open command (FMLI) 2-31

Pads 6-7
page descriptor 2-18, 3-34
pair_content(3curses) 7-18
PAIR_NUMBER 7-18
Panels 9-1, 9-11

change 9-3

check if hidden 9-7

compiling and linking programs 9-1

create 9-1

delete 9-10

elementary operations 9-2, 9-4

fetch above or below 9-8

fetch pointers 9-2

hide 9-6, 9-7

make invisible 9-6, 9-7

move 9-3, 9-4

move to top or bottom 9-4

reinstate 9-7

setting and fetching pointer 9-8, 9-11

update 9-5, 9-6
pathconv(1F) 2-35
permanentmsg descriptor 2-25, 4-8, A-13
Pipes 2-5

FMLI input A-14

named 2-36
pos_form_cursor(3curses) 11-60
pos_menu_cursor(3curses) 10-43
post_form(3curses) 11-38
post_menu(3curses) 10-27
prev_choice(3curses) 11-72
prev-frm command (FMLI) 2-31, A-10
prevpage command (FMLI) 2-32, A-10
printw(3curses) 7-3

Q

Quoting mechanisms (FMLI) 2-4

Index

R

readfile(1F) 2-35, 4-3, A-12

refresh command
FMLI 2-32

refresh(3curses) 6-2, 6-5

regex(1F) 2-36, A-11, A-12
example of 3-25

reinit(1F) 2-36

release command (FMLI) 2-32

reread descriptor 2-14, 2-21, 3-6, 3-31, 3-55, A-13
example of 3-14

reset command (FMLI) 2-32, A-12

RET variable 2-8

Reverse video attribute 2-42

rmenu descriptor 2-18, 3-33, 3-35, A-5, A-12

rows descriptor 2-14, 2-18, 2-21, 2-24, 3-6, 3-36, 3-55,

4-3, A-11
run(1F) 2-36

scale_form(3curses) 11-34
scale_menu(3curses) 10-22
scanw(3curses) 7-10
screen descriptor 2-26, 4-6
Screen-labeled function keys 1-4, 1-22, A-10
automatic downloading B-5
default assignments 1-14, 2-34, 4-10
defining color of 4-6
descriptor definitions 4-9, 4-12
display alternate set 3-3, 3-28, 3-52
examples of 4-12
how to disable 4-11
layout of 4-8
list of descriptors 2-27
Scroll box (FMLI) 1-5, 1-7
scroll descriptor 2-18, 3-36
Scroll symbol
FMLI 1-5, 1-7
Security (FMLI) A-1, A-4
selected descriptor 2-15, 3-8
SELECTED variable 2-8
set(1F) 2-6, 2-36, A-4
set_current_field(3curses) 11-58
set_current_item(3curses) 10-41
set_field_back(3curses) 11-20
set_field_buffer(3curses) 11-21
set_field_fore(3curses) 11-20
set_field_init(3curses) 11-54
set_field_just(3curses) 11-18

Index~

Character User Interface Programming

set_field_opts(3curses) 11-26
set_field_pad(3curses) 11-20
set_field_status(3curses) 11-23
set_field_term(3curses) 11-55

set_field_type(3curses) 11-13, 11-14, 11-15, 11-16,

11-17,11-18

set_field_userptr(3curses) 11-24
set_fieldtype_arg(3curses) 11-69
set_fieldtype_choice(3curses) 11-72
set_form_fields(3curses) 11-31
set_form_init(3curses) 11-54
set_form_opts(3curses) 11-63
set_form_page(3curses) 11-59
set_form_sub(3curses) 11-35
set_form_term(3curses) 11-55
set_form_userptr(3curses) 11-61
set_form_win(3curses) 11-35
set_item_init(3curses) 10-39
set_item_opts(3curses) 10-9
set_item_term(3curses) 10-39
set_item_userptr(3curses) 10-11
set_item_value(3curses) 10-7
set_max_field(3curses) 11-10
set_menu_back(3curses) 10-26
set_menu_fore(3curses) 10-26
set_menu_format(3curses) 10-18
set_menu_grey(3curses) 10-26
set_menu_init(3curses) 10-39
set_menu_items(3curses) 10-15
set_menu_mark(3curses) 10-21
set_menu_opts(3curses) 10-47
set_menu_pad(3curses) 10-26
set_menu_pattern(3curses) 10-44
set_menu_sub(3curses) 10-23
set_menu_term(3curses) 10-39
set_menu_userptr(3curses) 10-45
set_menu_win(3curses) 10-23
set_new_page(3curses) 11-29
set_top_row(3curses) 10-42
setcolor(1F) 2-36, 4-6
shell(1F) 2-36, A-5
show descriptor 2-15, 2-18, 3-8, 3-36, A-11

example of 3-21
SIGALRM alarm 2-8
SIGINT signal 2-39
slk_bar descriptor 2-26, 4-6
slk_clear(3curses) 12-2
slk_init(3curses) 12-2
slk_layout descriptor 2-25, 4-8
slk_noutrefresh(3curses) 12-2
slk_refresh(3curses) 12-2
slk_restore(3curses) 12-2
slk_set(3curses) 12-2
slk_text descriptor 2-26, 4-6

Index-8

SLKs (see screen-labeled function keys) 1-4, 1-22

Special characters

FMLI 2-3, 2-4
standend(3curses) 7-13
standout(3curses) 7-13
start_color(3curses) 7-18
Statement operators (FMLI) 2-5
stty(1) 1-9, A-8
subwin(3curses) 8-6
Syntax

errors (FMLI) 2-6

T

TAM C-1, C-10
compiling and running C-1
how the library works C-2, C-10
library 6-4
tips for polishing programs C-2
transition keyboard subsystem C-6
translation of calls C-3
TERM environment variable 6-4
term.h 13-3
termcap 13-8, 13-14, 13-15

Terminal Access Method (see TAM) C-1, C-10

Terminal display attributes
reset 2-42
table of 2-42
using 2-41, 2-44
Terminal independence (FMLI) 1-9, 1-10
terminfo(4) 13-1, 13-15
basic capabilities 13-10
compare descriptions 13-14
compile and run a program 13-4
compile description 13-12
convert from termcap 13-14
database 1-9, 13-6, 13-15, B-6
example program 13-4
keyboard-entered capabilities 13-11
learn capabilities 13-7
name terminal 13-7
parameter string capabilities 13-11
print descriptions 13-14
routines 13-2, 13-6
screen-oriented capabilities 13-10
specify capabilities 13-8
terminal descriptions 13-6
test description 13-13
test(1F) 2-36
text descriptor 2-21, 2-24, 3-55, 4-3
Text frames (FMLI)
definition 1-8

Index

descriptor definitions 3-51, 3-55 built-in 2-7, 2-8
editing 1-19 evaluation of 2-8, 2-10
examples of 3-57, 3-61 notation 2-8, 2-9
graphic characters in 2-41 vary cast 2-3, 2-11, A-3
header A-11

lists of descriptors 2-21, 2-23
navigation in 1-19

order of descriptors 3-51 w
positioning 3-52
scrollable 1-8 window_text descriptor 2-26, 4-6
TEXT variable 2-8 Windows 8-1, 8-8
textframe command (FMLI) 1-8, 1-22, 2-21, 2-32, 3-56, create 8-6
3-57 output and input 8-1
example of 3-64 wnoutrefresh(3curses) 8-2
options 3-56 Work area (FMLI) 1-3
title descriptor 2-21, 2-24, 3-55, 4-3 Working descriptor 4-4
toggle descriptor 2-25, 4-8 working descriptor 2-24, 4-4
Toggling 2-32 Working icon 1-3, 4-4
togslk command (FMLI) 2-32, A-12 wrap descriptor 2-20, 2-21, 3-39, 3-55, A-11
top_row(3curses) 10-42 Wrapping (FMLI)
tput(1) 1-9 navigation keys B-1
Trusted applications (FMLI) A-1, A-4 word 3-39, 3-55, 3-59
Type casts (FMLI) 2-2, 2-3
descriptor evaluation time 2-3
file names 2-1, 2-2, 2-3 X

U xterm XWIN terminal emulator A-14

Underlining attribute 2-42
UNIX System

accessing from FMLI 1-23

interrupting commands A-4
unix-system command

FMLI 2-32
unpost_form(3curses) 11-38
unpost_menu(3curses) 10-27
unset(1F) 2-36
update command

FMLI 2-32, A-11
use_incorrect_pre4.0_behavior descriptor 2-9, 4-9, A-9
User-defined variables (FMLI) 2-6, 2-7
Utilities (FMLI)

built-in 2-34, 2-37

\Y,

valid descriptor 2-18, 3-36, A-4
validOnDone descriptor 2-18, 3-38
value descriptor 2-18, 3-39, A-11
Variables (FMLI) 2-6, 2-10

Index-9

Character User Interface Programming

Index-10

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

-
)
=
@
<
>
X
O
w

Programmer

Character User’s
Interface
Programming

0890424

