
Device Driver Programming

0890425-070

October 1999



Copyright 1999 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope“Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.

Power Hawk is a trademark of Concurrent Computer Corporation
PowerPC is a trademark of IBM Corporation, used by permission of Motorola, Inc.
Symmetric Superscalar is a trademark of Motorola, Inc.
Night Hawk is a registered trademark of Concurrent Conputer Corporation
UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- August 1994 000 PowerUX 1.1

Previous  Release-- February 1998 060 PowerMAX OS 4.2
Previous  Release-- October 1999 070 PowerMAX OS 4.3



iii

Preface

Scope of Manual

This manual provides reference information and procedures for developing device driver
for all Concurrent systems (except PowerStack) running PowerMAX OS. It focuses only
on development of drivers for character devices.

Structure of Manual

This manual consists of seventeen chapters, one appendix, a glossary, and an index. A
brief description of the chapters is presented as follows:

•  Chapter 1 introduces this manual.

•  Chapter 2 overviews device drivers.

• Chapter 3 describes the Peripheral Component Interconnect (PCI) Envi-
ronment

•  Chapter 4 describes the Series 6000 hardware environment.

•  Chapter 5 describes the Power Hawk Model 610 hardware environment.

•  Chapter 6 describes the PowerMAXION hardware environment.

• Chapter 7 describes the Power Hawk Model 620/640 hardware environ-
ment.

•  Chapter 8 describes the Motorola MCP750 hardware environment.

•  Chapter 9 explains the kernel environment.

•  Chapter 10 decsribes the procedure for developing a device driver.

•  Chapter 11 explains how to multithread device drivers.

•  Chapter 12 explains how to support direct memory access (DMA).

•  Chapter 13 explains how to dynamically link device drivers to the system.

• Chapter 14 explains driver installation and tuning.

• Chapter 15 explains how to test and debug device drivers.

• Chapter 16 describes the special factors considered when developing
device drivers for real-time or secure systems.

• Chapter 17 discusses how to write a user-level device driver.

• Appendix A provides an example user-level device driver for a National
Instruments PCI DIO-96 card.



Device Driver Programming

iv

The glossary defines technical terms important to understanding the concepts this guide
presents.

The index contains an alphabetical reference to key terms and concepts and the page num-
bers where they occur in the text.

Syntax Notation

This manual uses the following notation:

italic Books, reference cards, and items that users must specify print in
italic type. Special terms might also print initalic.

list bold User input prints inlist bold type and must match what this
guide shows. Names of directories, files, commands, options and
man page references also print inlist bold  type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs print inlist  type.

[] Brackets enclose optional arguments and command options for
ease of reading. Actual user input must not include brackets.

Referenced Publications

This manual refers to the following publications:

0830047 HN6200 Console Reference Manual

0830044 HN6800 Console Reference Manual

0830050 Motorola SBC Console Reference Manual

0830048 HN6200 Architecture Manual

0830046 HN6800 Architecture Manual

0830053 PowerMAXION Architecture Manual

0890276 HVME Extension Specification

0890423 PowerMAX OS Programming Guide

0890426 STREAMS Modules and Drivers

0890429 System Administration (Volume 1)

0890430 System Administration (Volume 2)

0890431 Audit Trail Administration

0890466 PowerMAX OS Real-Time Guide

0890479 PowerMAX OS Guide to Real-Time Services



Preface

v

On line Command Reference

On line Operating System API Reference

On line System Files and Devices Reference

On line Device Driver Reference



Device Driver Programming

vi



Contents

vii

Contents

Chapter 1   Introduction

Focus of Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Overview of the Driver Development Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Writing a New Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Porting an Existing Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Organization of Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Supporting Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Chapter 2   Understanding Device Drivers

What Is a Device Driver?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Application Programs Versus Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Parallel Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Driver As Part of the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Types of Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Hardware Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Software Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Types of Device Driver Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Block and Character Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
STREAMS Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Major and Minor Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Major Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Minor Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Driver Entry Points and Kernel Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Entry Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Initialization Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Switch Table Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Interrupt Entry Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Kernel Support Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Driver Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Installation and Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Master, System, and Sadapters Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11

Master File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
System File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Sadapters File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Driver Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Driver Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Chapter 3   The PCI Environment

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
PCI Variants and Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Big Vs Little Endian Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
RISC Vs CISC CPU Processor Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Types of PCI Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3



Device Driver Programming

viii

Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Base Address Registers(BAR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Decode into I/O Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Decode into Memory Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

ROM Base Address Registers(BAR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Decode into Memory Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
System Memory and PCI bus Master Devices  . . . . . . . . . . . . . . . . . . . . . . 3-5

Effects of PCI to PCI Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
PowerMax OS Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Finding the Correct Adapter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Accessing the Configuration Space Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Getting/Releasing the Base Address Register Assignments. . . . . . . . . . . . . . . . 3-6
Determining the Kernel Virtual Address of PCI Base Address Register . . . . . . 3-6
Accessing PCI Device Registers and Memory Space
Though Kernel Virtual Maps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Determining PCI Memory Address of Particular System Memory
Location  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Attaching and Releasing a PCI Interrupt Vector Assigned to a
PCI Slot/Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Chapter 4   Series 6000 Hardware Environment

System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Processor Board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Byte-Ordering and Alignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

(H)VME Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Transfer Width Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Address Modifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
HVME Address Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
VME Address Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

(H)VME Devices as (H)VME Bus Slaves. . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
(H)VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
VME Device Address Assignment and Configuration . . . . . . . . . . . . . . . . . . . . 4-8

Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Bus Request Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Configuring Devices Without BR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Chapter 5   Power Hawk 610 Hardware Environment

System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Processor Board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3



Contents

ix

Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 5-8

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
VME to PCI Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

Chapter 6   PowerMAXION Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 6-8

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11

Chapter 7   Power Hawk 620/640 Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5



Device Driver Programming

x

Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Byte-Ordering and Alignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Transfer Width Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Address Modifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
VME Address Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
VME Device Address Assignment and Configuration . . . . . . . . . . . . . . . . . . . . 7-10

Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Bus Request Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
PCI Address Decode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13

Chapter 8   Motorola MCP750 Hardware Environment

SYSTEM OVERVIEW  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
PROCESSOR BOARD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
BUSSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
TIMERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
DATA TYPES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
BYTE-ORDERING AND ALIGNMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

Byte-Ordering and Alignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

Chapter 9   Understanding the Kernel Environment

Overview of the Kernel I/O Structure and Flow of Control. . . . . . . . . . . . . . . . . . . . 9-1
Overview of Source Directories and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
System Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
The cdevsw Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
The cred Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
The iovec and uio Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
The adapter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
The device Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

Kernel Support Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Ioctl Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Memory Allocation and Management Routines. . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Memory Access Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Address Management Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Data Transfer Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16
Synchronization Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

Spin Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Sleep Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Event Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18

Processor Priority Level Adjustment Routines. . . . . . . . . . . . . . . . . . . . . . . . . . 9-18



Contents

xi

Timing and Timeout Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Interrupt Vector Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Debug Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Small vs. Large Offset Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21

Chapter 10   Developing a Device Driver

Understanding the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Device Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Configuration Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Device Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
DMA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Programmed I/O Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Data Chaining Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Installing and Testing the Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Installing the Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Using the Console Processor to Probe the Device . . . . . . . . . . . . . . . . . . . . . . . 10-5

Validating Slave Address Configurations with the Console Processor . . . . 10-5
Validating Master Address Configurations with the Console Processor. . . 10-6

Understanding the Major Components of a Device Driver . . . . . . . . . . . . . . . . . . . . 10-6
Initialization Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
I/O Service Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7

Developing the Driver Header File and Data Structures . . . . . . . . . . . . . . . . . . . . . . 10-7
Developing the Driver Source File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

Initialization Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
The Init Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9
The Start Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10

I/O Service Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
The Open Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
The Close Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13
The Read Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14
The Write Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
The Ioctl Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17
The Chpoll Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18
The Mmap Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19

Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20
The Intr Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21

Local Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-23
Blocking Primitives and Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24
Blocking Primitives and Premature Returns  . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25

Chapter 11   Multithreading a Device Driver

The Multithreaded, Preemptive Kernel and Device Drivers . . . . . . . . . . . . . . . . . . . 11-1
Protecting a Device Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Using the Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4

Spin Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
Basic Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Read/Write Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

Sleep Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13



Device Driver Programming

xii

Using Multiple Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Synchronization Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

Chapter 12    Supporting Direct Memory Access (DMA)

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
DMA into User Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
DMA into Discontiguous Physical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Building a Scatter/Gather Chain List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
24-Bit DMA Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Direct Memory Access to Kernel Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6

Chapter 13   Loadable Modules

The DLM Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Loadable Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
The Difference between Static Modules and Loadable Modules . . . . . . . . . . . . 13-2
Overview of the Load Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Overview of the Unload Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
The Difference between a Demand Load and an Auto Load . . . . . . . . . . . . . . . 13-3

Demand Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Auto Load  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Demand Unload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Auto Unload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4

Making Modules Loadable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Coding a Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5

Wrapper Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Wrapper Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Wrapper Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Sample Wrapper Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7

Packaging a Loadable Module for Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10
Master File Definitions for Loadable Modules . . . . . . . . . . . . . . . . . . . . . . 13-10
System File Definitions for Loadable Modules . . . . . . . . . . . . . . . . . . . . . . 13-11
Mtune File Definitions for Loadable Modules  . . . . . . . . . . . . . . . . . . . . . . 13-11

Installing and Configuring a Loadable Module  . . . . . . . . . . . . . . . . . . . . . . . . . 13-12
Managing Loadable Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12

Loading the Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12
Querying the Module's Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13
Modifying the DLM Search Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13
Unloading the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14

Debugging a Loadable Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14
DLM Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14
Dynamic Symbols and kdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14

Chapter 14   Driver Installation and Tuning

Using idtools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1
idtools Utilities and Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

idbuild  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
idcheck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
idinstall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
idmkinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
idmknod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4



Contents

xiii

idspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
idtune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5

The Driver Software Package (DSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Overview of DSP Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7
DSP Component Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8

Sadapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8
Driver.o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
Mtune  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12
Rc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12
Sassign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13
Sd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13
Space.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14

Packaging the Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
postinstall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16
preremove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17

Installing a Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-18
Removing a Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19

DSP Commands and Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
Installing a DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
Updating a DSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Modifying a Kernel Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Removing a DSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Building a New Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21
Emergency Recovery (New Kernel Does Not Boot)  . . . . . . . . . . . . . . . . . . . . . 14-21
Documenting Your Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22

Chapter 15   Driver Testing and Debugging

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1
Preparing a Driver for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

General Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Putting Debug Statements in a Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Installing a Driver for Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

Emergency Recovery (New Kernel Does Not Boot). . . . . . . . . . . . . . . . . . 15-4
Common Driver Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5

Coding Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Installation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Data Structure Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Timing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Corrupted Interrupt Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Accessing Critical Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Overuse of Local Driver Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Incorrect DMA Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

Driver Debugging Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7
Using the Console Processor and Setting Breakpoints. . . . . . . . . . . . . . . . . . . . 15-7

Booting Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9
Shutdown and Reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9

System Panic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12



Device Driver Programming

xiv

Breakpoints in the Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . 15-14
Using crash to Debug a Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-16

Saving the Core Image of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-16
Initializing crash on the Memory Dump . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17
Using crash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17
Using crash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18

Kernel Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18
Entering kdb from a Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19
System Panics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19

Chapter 16   Special Considerations

Device Drivers and Real Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1
Device Drivers and VME Bus Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

Additional Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
Device Drivers and Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4

System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
Design and Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5

Chapter 17   Writing a User-Level Device Driver

Understanding a User-Level Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
What Is a User-Level Device Driver? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
What Are the Advantages and Disadvantages of a User-Level Driver? . . . . . . . 17-2
Which Types of Devices Are Candidates for a User-Level Driver? . . . . . . . . . . 17-3
What Affects the Complexity of a User-Level Device Driver?  . . . . . . . . . . . . . 17-3

Programmed I/O versus Direct Memory Access Devices . . . . . . . . . . . . . . 17-3
Single-User Drivers versus Multiuser Drivers. . . . . . . . . . . . . . . . . . . . . . . 17-4
Polling Support versus Interrupt Support  . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4

Understanding the Components of a User-Level Driver . . . . . . . . . . . . . . . . . . . . . . 17-4
Overview of Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5

Shared Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6
User I/O Buffer Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7

Overview of User-Level Device Driver Routines . . . . . . . . . . . . . . . . . . . . . . . . 17-9
Overview of Interrupt-Handling Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11
Overview of Synchronization Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-12
Overview of Error Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-13
Overview of the Device Configuration Program  . . . . . . . . . . . . . . . . . . . . . . . . 17-14

Understanding Operating System Support for a User-Level Driver  . . . . . . . . . . . . . 17-15
The userdma(2) System Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-15
The udbufalloc(3X) Library Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-16
The udbuffree(3X) Library Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17
The atexit(3C) Library Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17
The uderror(3X) Library Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-18
The spl Support Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19
Process Synchronization Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19

Busy-Wait Mutual Exclusion Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20
Rescheduling Control Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20
The Server System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-21

The User-Level Interrupt Library Routines and Utility  . . . . . . . . . . . . . . . . . . . 17-22
The vme_address(3C) Library Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23

Developing the Driver’s I/O Service Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23
The open Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23



Contents

xv

The Asynchronous I/O Support Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-25
The aread Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-26
The awrite Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-27
The acheck Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-28
The await Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-29

Control Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30
The close Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-31

Developing the Driver’s Interrupt Service Routine . . . . . . . . . . . . . . . . . . . . . . . . . . 17-34
Connecting a User-Level Interrupt Process and Interrupt Vector. . . . . . . . . . . . 17-34
User-Level Interrupts and Memory Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36
Use of Local Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36
Constraints on Interrupt-Handling Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-37

Developing the Device Configuration Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-38
Create Shared Memory Regions and Initialize the Device. . . . . . . . . . . . . . . . . 17-39
Reset the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-40
Create a User-Level Interrupt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-40
Provide Debug and Status Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41
Restore the Device to its Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41

Debugging the Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41

Appendix A   Example PCI User-Level Device Driver

Glossary

Index

Illustrations

Figure 2-1.  Driver Placement in the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2.  How the System Calls Driver Routines . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3.  Switch Table Entry Points and System Calls . . . . . . . . . . . . . . . . . . . . . 2-9
Figure 4-1.  Elements of an HN6800 Processor Board . . . . . . . . . . . . . . . . . . . . . . . 4-2
Figure 4-2.  Big Endian Bit and Byte Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Figure 5-1.  Elements of a Power Hawk PH610 Processor Board  . . . . . . . . . . . . . . 5-2
Figure 5-2.  Big Endian Bit and Byte Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Figure 6-1.  Elements of a PowerMAXION Processor Board. . . . . . . . . . . . . . . . . . 6-2
Figure 6-2.  Big Endian Bit and Byte Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Figure 7-1.  Elements of an Power Hawk 620 Processor Board . . . . . . . . . . . . . . . . 7-2
Figure 7-2.  Power Hawk 640 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 7-3
Figure 7-3.  Big Endian Bit and Byte Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Figure 8-1.  Motorola MCP750 System Block Diagram. . . . . . . . . . . . . . . . . . . . . . 8-3
Figure 8-2.  Big Endian Bit and Byte Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
Figure 9-1.  Kernel I/O Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Figure 10-1.  Installing (H)VME Board into 13-slot Rack . . . . . . . . . . . . . . . . . . . . 10-4

Screens

Screen 13-1.  Device Driver Wrapper Coding Example . . . . . . . . . . . . . . . . . . . . . . 13-7
Screen 13-2.  High Level Driver Wrapper Coding Example. . . . . . . . . . . . . . . . . . . 13-8
Screen 13-3.  STREAMS Module Wrapper Coding Example  . . . . . . . . . . . . . . . . . 13-8
Screen 13-4.  File System Module Wrapper Coding Example . . . . . . . . . . . . . . . . . 13-9
Screen 13-5.  Miscellaneous Module Wrapper Coding Example . . . . . . . . . . . . . . . 13-9



Device Driver Programming

xvi

Tables

Table 4-1.  HVME Address Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-2.  HVME Bus Slave Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-3.   HVME Bus Master Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Table 5-1.  VME Bus Slave Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Table 5-2.  VME Bus Master Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Table 5-3.  VME to PCI Address Decode Register . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Table 6-1.  VME Bus Slave Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Table 6-2.  VME Bus Master Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Table 7-1.  Default VME Bus Slave Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Table 7-2.  VME Bus Master Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Table 7-3.  Default PCI Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Table 9-1.  System Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Table 9-2.  Fields in ioctl Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Table 14-1.  Components of Driver Software Package (DSP)  . . . . . . . . . . . . . . . . . 14-7
Table 15-1.  Console Processor Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8
Table 15-2.  Important Parameters to the p Console Processor Command . . . . . . . . 15-9
Table 16-1.  User-Level Device Driver Error Codes and Messages  . . . . . . . . . . . . . 17-13



1
Introduction

Focus of Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Overview of the Driver Development Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Writing a New Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Porting an Existing Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Organization of Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Supporting Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3



Device Driver Programming



1-1

1
Chapter 1Introduction

1
1
1

This chapter defines the scope of this manual and overviews the effort required to develop
a device driver for PowerMAX OS. It describes the PowerMAX OS manuals potentially
needed to develop a device driver.

Focus of Manual 1

This document is written for programmers with experience in writing device drivers and
using UNIX® operating systems. It focuses on device driver development for Concurrent
Computer Corporation hardware and the PowerMAX OS.

Information related specifically to hardware resides in Chapters 4-8.

Note that the information this document contains reflects the current status of the operat-
ing system internals and the interface between the kernel and a device driver. Some of the
internals and the driver interface might change with future development and subsequent
releases of the operating system.

The explanations this document presents focus on developing drivers for character, or
unstructured, devices. Such devices include programmed I/O devices and direct memory
access (DMA) devices.

Overview of the Driver Development Effort 1

This section introduces the steps involved in developing a device driver. First, it outlines
the steps required to write a new device driver. Then, it addresses the effort involved in
porting an existing driver to a PowerMAX OS system.

Writing a New Device Driver 1

Before developing a driver for a device to add to the system, become familiar with the
hardware environment, kernel environment, kernel-to-driver interface, and the device
itself. Chapters 4-7 provide the hardware information. Chapter 9 provides the kernel envi-
ronment information. Chapter 10 provides device evaluation and operation information.
Understanding these topics helps undertake the major tasks of integrating a device and its
drivers into the system:

1. Install the device and test to see if it works.



Device Driver Programming

1-2

2. Design the driver.

3. Write the driver.

4. Integrate the driver into the system

5. Test and debug the driver.

Procedures for installing and testing the device and developing the driver component of
the driver reside in Chapter 10. Procedures for integrating the driver into the system reside
in Chapter 14. Techniques for debugging the driver reside in Chapter 15.

Three phases constitute the driver development process:

1. Design

2. Development

3. Testing.

The time needed to develop a device driver depends upon the following factors:

• Programmer experience

• Device functions

• Device driver complexity

• Tools available

Porting an Existing Device Driver 1

Porting an existing driver to a PowerMAX OS system needs the same basic understand-
ings to develop a new driver: understanding the hardware, the kernel and its interface to
device drivers, and the device. To incorporate the device and its drivers in the system, you
also must do most of the major tasks previously outlined; instead of having to design and
write the driver, you must analyze the difference in architectures, operating system, and
driver interface and modify the driver accordingly.

Porting an existing driver is quicker than developing a new one.

Organization of Manual 1

This manual presents information in the approximate order required by the development
process.

Chapter 2 overviews device drivers, explains the classes of devices and how to identify
them, and describes the interface between a device driver and the kernel.

Chapter 3 covers various aspects of the PCI environment as supported by PowerMAX run-
ning on Motorola-based platforms.



Introduction

1-3

Chapters 4-8 describe the hardware environments, briefly overview the platform and then
provide more information on configuring and operating each system.

Chapter 9 explains the kernel environment. It describes the kernel I/O structure and flow
of control and maps the system source directories and files important to driver develop-
ment. It also details the system data structures and kernel support routines pertinent to
driver development.

Chapter 10 guides you in understanding the device supported by the driver, and explains
how to install and test the device. It also explains the structure and components of a device
driver and how to develop the code.

Chapter 11 explains how to protect a device driver in a multiprocessor system.

Chapter 12 explains how to support direct memory access (DMA).

Chapter 13 explains how to dynamically link a device driver to the system.

Chapter 14 explains how to integrate a device driver into the system. It contains step-by-
step procedures to modify the system files, configure the system, build the kernel, and cre-
ate the device special files. It also details the tools to install and configure driver software.

Chapter 15 explains how to test and debug a device driver. It describes common driver
problems and driver debugging techniques.

Chapter 16 describes the special factors to consider when developing a device driver for a
real-time production environment. It also overviews security issues affecting development
of a device driver for the PowerMAX OS system.

Chapter 17 discusses writing a user-level device driver.

Supporting Documentation 1

This section introduces the other manuals designed to provide additional detailed informa-
tion on the operating system and hardware.

Device Driver Reference

On-line manual pages containing reference information on the PowerMAX OS
Device Driver Interface (DDI) and Driver Kernel Interface (DKI).

STREAMS Modules and Drivers (Pub. No. 0890426)

Explains how to use the STREAMS mechanism for PowerMAX OS system commu-
nication services.

PowerMAX OS Programming Guide(Pub. No. 0890423)

Explains how to use the system services supplied by PowerMAX OS.



Device Driver Programming

1-4

PowerMAX OS Real-Time Guide (Pub. No. 0890466)

Explains user-level interrupt routines and inter-process synchronization on Power-
MAX OS.

System Administration, Volume 1 (Pub. No. 0890429)

System Administration, Volume 2 (Pub. No. 0890430)

Designed to help system administrators, these explain how to set up, configure, and
maintain the operating system. Volume 1 explains system set-up, configuration, and
security administration. Volume 2 explains file system administration, performance
management, backup and restore services, print service administration, and the
sysadm  interface.

HVME Extension Specification(Pub. No. 0890276)

Describes the extensions to the standard VMEbus used by Concurrent Computer
Corporation VME (HVME) boards. These provide a larger board size, more power
pins, fast synchronous burst mode, and bus parity.

PCI System Architecture, MindShare, Inc. - ISBN: 0-201-40993-3

Describes the Peripheral Componet Interconnect (PCI) bus specification.



2
Understanding Device Drivers

What Is a Device Driver?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Application Programs Versus Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Parallel Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Driver As Part of the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Types of Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Hardware Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Software Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Types of Device Driver Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Block and Character Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
STREAMS Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Major and Minor Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Major Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Minor Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Driver Entry Points and Kernel Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Entry Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Initialization Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Switch Table Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Interrupt Entry Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Kernel Support Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Driver Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Installation and Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Master, System, and Sadapters Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11

Master File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
System File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Sadapters File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Driver Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Driver Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12



Device Driver Programming



2-1

2
Chapter 2Understanding Device Drivers

2
2
2

This chapter explains what a device driver is and how a driver differs from an application.
It describes the different types of devices and device driver interfaces. It also introduces
driver entry points and kernel utilities and describes the driver environment.

What Is a Device Driver? 2

The UNIX operating system kernel consists of two logical parts: the first part manages the
file systems, processes, and memory, and the second part manages physical devices, such
as terminals, disks, tape drives, and network media. To simplify the terminology, this
chapter refers to the first part as “the kernel” (although strictly speaking, drivers are also
part of the kernel), and refers to the second part, which contains the drivers, as “the I/O
subsystem.”

Associated with each physical device is a piece of code, called a device driver, which man-
ages the device hardware. The device driver brings the device into and out of service, sets
hardware parameters in the device, transmits data from the kernel to the device, receives
data from the device and passes it back to the kernel, and handles device errors.

To most application programmers using PowerMAX OS, a device driver is simply part of
the operating system. The application programmer is usually concerned only with opening
and closing files and reading and writing data. Standard system calls from a high-level lan-
guage usually do these tasks. The system call gives the application program access to the
kernel, which identifies the device containing the file and the type of I/O request. The ker-
nel then executes the device driver routine provided to perform that function.

Device drivers isolate low-level, device-specific details from the system calls, which can
remain general and uncomplicated. Because each device differs so, kernels cannot practi-
cally handle all the possibilities. Instead, each configured device plugs a device driver into
the kernel. To add a new device or capability to the system, just plug in its driver.

Figure 2-1 shows how a driver links the user level to the hardware level. By issuing system
calls from the user level, a program accesses the file and process control subsystems,
which access the device driver. The driver provides and manages a path to exchange data
with the device and receive service interrupts from the device's controller.



Device Driver Programming

2-2

Figure 2-1.  Driver Placement in the Kernel

UNIX systems see every device as a file. Even the user-level interface to the device is
called a “special file.” The device special files reside in the/dev directory, and executing
a simplels command reveals much about the device. For example, the commandls -l
/dev/lp  might yield the following information:

crw-rw-rw-   1 root     root     4,  0 Jul 26 12:45 /dev/lp

This says that thelp (line printer) is a character type device (the first letter of the file
mode field isc) and that major number4, minor number0 is assigned to the device. One
of the sections that follows further discusses device types, and both major and minor num-
bers.

Application Programs Versus Drivers 2

Programmers write many applications and most drivers in C. Device drivers differ in
major ways from programs designed to run at the user level. This section reviews those
differences and introduces some of the system facilities used to develop drivers.

Structure 2

The most striking difference between a driver and an application is in structure. An appli-
cation compiles into a single executable image whose top-level structure is themain rou-
tine. Subordinate routines run in sequences controlled by themain  routine.

A driver has nomain routine, existing as a collection of routines installed as part of the
kernel. The operating system calls and executes the driver's routines in response to system
calls or other requirements.

User Level

Kernel Level

System Call Interface

File Subsystem
Process Control

Subsystem

I/O Subsystem Device Drivers

Hardware Control

Hardware Level

160970



Understanding Device Drivers

2-3

System data structures, called switch tables, contain the starting addresses for the principal
routines included in all drivers. Switch tables contain a row for each driver, and a column
for each standard routine. Standard routines are collectively named “entry-point routines”,
referring to the memory address where executions begins. The kernel translates the argu-
ments of the system call into a value used as an index into the switch table.

For example, a user process issues a system call to open a file. The kernel directs the
request to the switch table entry for theopen routine of the device driver for the device
that contains the file (see Figure 2-2). The request executes the routine, either giving the
user process access to the file or returning an error code to the kernel.

Figure 2-2.  How the System Calls Driver Routines

Parallel Execution 2

When a traditional single-threaded application program runs, the statements making up
the program execute one at a time; in sequential order. Program control structures (loops
and branches) repeat statements and can branch to alternative sections of code, but at any
given instant only one statement and one routine executes. This is true even of different
instances of a program being run by two users at the same time (for example, a text editor).
As each process receives a scheduled slice of CPU time, the statements execute in the
order maintained for that invocation of the program.

Drivers, however, form part of the kernel and must run instantly at the request of many
processes. A driver might receive a request to write data to a disk while waiting for a pre-
vious request to complete. The design of the driver code must specifically enable it to
respond to numerous requests without creating a separate executable image of itself for
each request (unlike a text editor.) The driver does not create a new instance of itself (and
its data structures) for each process, so it must resolve contention problems resulting from
overlapping I/O requests.

Interrupts 2

Device drivers spend most of their execution time moving data between user address space
and a hardware device, such as a disk drive or terminal. Because hardware devices work

User Issues
System Call To
Open Device

open

open

open

close A

B

C

close

close

• • •

• • •

• • •

Driver A
open Routine

Driver B
open Routine

Driver C
open Routine

Device A

Device B

Device C

160980



Device Driver Programming

2-4

much more slowly than the CPU, the data transfer can squander many processor cycles if
the CPU waits on the drive. To avoid this, the driver normally suspends execution of the
process until the transfer completes, freeing the CPU to service other processes. When the
data transfer completes, the device sends an interrupt telling the original process to resume
execution.

The processing needed to handle hardware interrupts is another of the major differences
between drivers and application programs.

Driver As Part of the Kernel 2

Applications, running at the user level, cannot severely impair the system. Performance
and efficiency considerations mostly affect them in their own address space. Applications
can use excessive disk space, but can neither raise their own priority level to use excessive
amounts of processing time nor access either sensitive areas of the kernel or other pro-
cesses.

But drivers can and do affect the kernel. Inefficient driver code can severely degrade over-
all performance, and driver errors can corrupt or crash the system. For these reasons, test-
ing and debugging driver code is particularly challenging, and requires great care.
Chapter 15 discusses both the tools for finding driver errors and the special problems in
testing driver code.

Also, while application programmers can freely (within reasonable limits) declare and use
data structures and system services, driver programmers face many constraints:

• Many kernel functions called by the driver do not validate passed argu-
ments. Therefore, drivers must validate arguments before passing them to
kernel functions.

• Drivers must include numerous header files declaring data types, initializ-
ing constants, and defining system structures. The exact list of header files
varies from driver to driver; one of the following sections in this chapter
describes the most commonly-used header files.

• Drivers read from and write to various structure members and device regis-
ters, and often use a system buffering structure. The UNIX systemDevice
Driver Interface/Driver-Kernel Interface (DDI/DKI)defines many func-
tions for use with drivers.Section D4 of the on-lineDevice Driver Ref-
erenceexplains the structures.

• Drivers cannot access standard C library routines; however, the routines
included in the DDI/DKI represent a kind of library and provide some
functions like those in the standard C library. The DDI/DKI also provides
many functions unlike standard C library functions. See SectionD3 of the
on-lineDevice Driver Referencefor complete explanations of the driver
interface routines.



Understanding Device Drivers

2-5

NOTE

Some of the DDI/DKI functions (such askmem_alloc(D3) )
resemble standard library functions (such asmalloc(3C) ), but
use different arguments. Serious errors result from ignoring such
differences.

• The kernel calls drivers using a set of system tables and the standard C
function-calling mechanism. Every member of these tables is a structure
containing pointers to the driver's entry point routines. The entry point rou-
tines connect the calling process to the device driver. The entry points, in
turn, call the driver functions to service the caller's requests. SeeSection
D2 of the on-lineDevice Driver Referencefor complete explanations of the
driver entry point routines.

• Drivers cannot use floating point arithmetic.

Types of Devices 2

Interactive terminals and disk drives use different types of hardware device drivers, but
UNIX systems also support software devices, also called pseudo-devices, which differ yet
more.

Hardware Devices 2

Hardware devices include familiar peripherals such as disk drives, tape drives, printers,
and ASCII and graphics terminals. The list might also include optical scanners, analog-to-
digital converters, and robotic devices. In reality, a driver never talks to the actual piece of
hardware, but to its controller board. From the point of view of the driver, the device is
usually a controller. (The controller board, in turn, controls the actual hardware device.)

Sometimes a controller connects to a single device. More often, several devices connect to
a single board (such as eight terminals connected to a terminal controller). A single driver
controls that board and all similar terminal controllers in the system.

Software Devices 2

Software drivers control “devices” that usually consist of a portion of memory, sometimes
called a pseudo-device. As a possible use, the driver might provide applications access to
system structures otherwise unavailable at their level.

For example, a RAM disk is a software device which provides very fast access to files by
using a part of memory for mass storage. A RAM disk driver resembles a driver for a mag-
netic disk drive, but is free of the complications introduced by physical hardware.



Device Driver Programming

2-6

Types of Device Driver Interfaces 2

A device driver interface is the set of structures, routines, and optional functions used to
implement a device driver. UNIX systems provide three device driver interfaces, all based
on one specification, the Device Driver Interface/Driver Kernel Interface (DDI/DKI).

Block and Character Interfaces 2

Block and character are the two traditional UNIX system device driver interfaces, corre-
sponding to the two basic ways drivers move data. Block drivers, using the system buffer
cache, service random-access devices such as disk drives and other mass storage devices
capable of handling data in independently addressable blocks. Character drivers service
devices that send and receive information one character at a time, such as interactive ter-
minals.

It is the individual device and goal of the implementation, not the device type, that deter-
mines whether a driver should be the block or character type. For example, for a 9-track
tape drive one developer codes a block driver to mount file system images, even though
the drive performs random block accesses poorly. Another developer codes a character
driver to sequentially store and retrieve data.

A device can have more than one interface (only one interface at a time can access a
device.) The tape drive mentioned previously had both block and character interfaces. The
DDI/DKI sections of the on-lineDevice Driver Referencecontain the manual pages for
the block and character interfaces.

STREAMS Interface 2

Early UNIX network drivers demonstrated a limitation of block and character interfaces;
they could not divide network protocols into layered modules. A new kind of interface,
STREAMS, has no such limitation.

A stream is a structure made of linked modules, each of which processes the transmitted
information and passes it to the next module. One of these queues of modules connects the
user process to the device, and another provides a data path from the device to the process.

This layered structure accommodates layered network protocols and increases the flexibil-
ity of the interface, making modules more usable by more than one driver.

For more information about STREAMS drivers, refer toSTREAMS Modules and Drivers.



Understanding Device Drivers

2-7

Major and Minor Numbers 2

Before the operating system can access a device, the device needs its driver installed and a
special device file created for it in/dev . The special device file contains the major and
minor device numbers.

Major Numbers 2

The major number identifies the device class or group, such as a controller for several ter-
minals. It tells the kernel which driver'sopen routine to call. Installable Driver Tools
(idtools ) sequentially assigns major numbers to each device driver as it installs them. It
assigns the numbers by creating an entry in a driver system configuration file, theMaster
file, described in a following section.

idtools assigns major numbers separately for block and character devices. This means
two separate special files for two different device drivers might have the same assigned
number. A device that supports both block and character access (for example, the floppy
driver), can have different major numbers for the character and block device files.

Minor Numbers 2

The minor number identifies a specific device, such as a particular terminal. Driver writers
assign minor numbers to special device files in another system configuration file, the
Node file (see theNode(4)  manual page).

Minor numbers usually distinguish sub-devices, but can also convey other information.
For example, floppy disk controllers read and write data from floppies in several formats,
and manage two floppy drives. When the kernel opens the special file associated with the
floppy driver, the minor number used to open the file must tell the floppy driver both which
drive to access and what format to use for the I/O operation. In this case, the least signifi-
cant bit of the minor number identifies the drive and the remaining bits identify the format.

Driver Entry Points and Kernel Utilities 2

This section discusses system tables and their associated entry points in detail.

Entry Points 2

Three ways exist to call a device driver:

• Initialization calls by boot routines



Device Driver Programming

2-8

• System calls by applications

• Interrupts by devices.

The process of initializing the system creates several tables so the system can activate the
correct driver routine. Because the system uses these tables to determine which driver rou-
tines to enter, common practice refers to the routines as driver entry points. Each table cor-
responds to a specific set of entry-point routines:

• Initialization tables correspond with eitherinit(D2) or start(D2)
routines.

• System calls for character drivers use switch tables that correspond with
the open(D2) , close(D2) , read(D2) , write(D2) , and
ioctl(D2)  routines.

System calls for block drivers use switch tables that correspond with the
open(D2) , close(D2) , andstrategy(D2) routines.

System calls for STREAMS drivers indirectly access theopen(D2) ,
close(D2) , put(D2) , and srv(D2) routines through a chain of
pointers to other structures. Since some of these reside in the driver, they
loosely resemble entry points. Therefore, the programming community
finds it both common and convenient to refer to them as such.

• Interrupt vector tables associate device interrupts with their interrupt han-
dling routines; the entry point is theintr(D2)  routine.

Initialization Entry Points 2

When the system starts, it executes both kinds of driver initialization routines (init and
start ). It calls the routines and uses a subset of the information from the driver's config-
uration files to initialize the drivers. Much of the information is irrelevant to initializing
drivers, such as the major/minor numbers and driver type. (The system does not differenti-
ate between character- and block-access drivers when running the initialization routines.)
Some drivers don’t need initialization routines.

During the boot sequence, the system initializes driver routines in the following order:

1. init  routines

2. interrupts

3. start  routines

4. other driver entry points.

The system calls theinit andstart routines of multiple drivers in no set order. If the
order needs setting, adjust theorder field in the drivers’Master(4)  configuration file.

Switch Table Entry Points 2

I/O system calls activate switch table entry-point routines for character and block drivers
using the following procedure:



Understanding Device Drivers

2-9

1. The system directs the I/O system call (open andread , for exam-
ple) to a special device file. This file includes the major number for
the driver that controls the device.

2. The system uses the major number as an index into its switch tables
to find the appropriate routine to call.

3. The operating system calls the appropriate routine. (Figure 2-3
depicts the between these components.)

Figure 2-3.  Switch Table Entry Points and System Calls

When the system does a character-accessread or write operation on a device that
supports both block and character access, the driver typically calls its ownstrategy
routine (throughphysiock(D3) ). The driver references itsstrategy routine directly,
not through a switch table.

STREAMS drivers contain their own entry points accessed indirectly through the driver's
streamtab(D4)  structure.

open

open

close

close strategy

read write ioctl

Device Switch Table(s)

System
Calls

File
Subsystem

Driver
Character Driver

Driver
Entry
Points

Block Driver

open close read write ioctl

buffer cache
calls

Interrupt Handler

Interrupt Vector

Device

mount un-mount read write

160990



Device Driver Programming

2-10

Devices need not use all the entry points provided by the switch table. For instance, printer
drivers do not needread routines. The operating system provides place holders in the
switch tables for unneeded routines.

Interrupt Entry Points 2

The operating system must handle many kinds of system interrupts (such as clock and
software interrupts), system exceptions (such as page faults), and interrupts from periph-
eral devices controlled by drivers. Interrupts cause the processor to stop its current process
and to immediately begin to service the interrupt. Peripheral devices typically generate
interrupts when an I/O transfer encounters an error or completes successfully.

When it receives an interrupt from a hardware device, the kernel determines the interrupt
vector number of the device and passes control to the appropriate driver's interrupt han-
dling routines. It does this by accessing the interrupt vector table, populated during system
initialization. The interrupt handler must determine the reason for the interrupt (device
connect, write acknowledge, data available) and set or clear device state bits as appropri-
ate. It can also awaken processes that sleep while awaiting an event corresponding to the
interrupt.

Kernel Support Routines 2

UNIX system device drivers call kernel support routines to do system-level work such as:

Chapter 9 (“Understanding the Kernel Environment”) describes these routines and their
use in device drivers. SectionD3 of the on-lineDevice Driver Referencecontains manual
pages for all of these routines.

Driver Environment 2

Installation and Configuration 2

To integrate a driver into the system requires adding information to the system configura-
tion files about it, such as type, location of object code, and interrupt priority level.

Four phases comprise the process of adding a device driver to a working system:

accessing memory adjusting processor levels allocating interrupt vectors

allocating memory debugging managing virtual address

synchronizing timing and timeout transferring data



Understanding Device Drivers

2-11

1. Prepare a Driver Software Package (DSP), including theDriver.o object
module (the actual driver code),Master , System , and if needed
Sadapters  file definitions, and other components.

2. Install the driver's DSP

3. Update the system configuration files

4. Prepare to generate a new kernel.

5. Shutdown and reboot the system. During the reboot, the system uses infor-
mation from the modified system configuration files to create special files
in /dev , and the entries for the new driver in the system initialization
tables, switch tables, and interrupt vector tables. When the system reinitial-
izes, it initializes the driver as part of the kernel.

NOTE

Loadable drivers integrate into the kernel while the system runs,
without rebooting the system and rebuilding the kernel.
Chapter 13 (“Loadable Modules”) describes how to install and
configure loadable drivers.

The Installable Driver Tools (idtools) utilities install and configure drivers. Chapter 14
(“Driver Installation and Tuning”) details installing and configuring drivers, and how the
system initializes.

Master, System, and Sadapters Files 2

The following files contain important configuration information needed to integrate a
driver into a running system:

• Master

• System

• Sadapters (for adapter card drivers)

Master File 2

TheMaster file describes properties of the driver as a whole, regardless of the number of
devices supported. Once installed, the driver’sMaster file resides in the directory
/etc/conf/mdevice.d . This directory contains a separateMaster file for each
device driver installed. Once installed, Driver Software Packages (DSPs) should never
access these or any other idtools files directly; use idtools commands to access them.

Configuration data defined in theMaster file includes the names of the driver's entry
point routines, and an alphanumeric prefix (assigned by the driver writer) prepended to the
names of the driver's routines in the system tables. The prefix enables the kernel to distin-
guish between drivers’ routine names (and other variables), avoiding conflict with other
variables in the system named alike. For example, a RAM disk driver given a prefix of



Device Driver Programming

2-12

ram_ results in routines namedram_open , ram_init and so on. For more informa-
tion, see theprefix(D1)  manual page.

TheMaster file can also contain the driver's major number and various flags defining
specific characteristics of that driver (for example, whether a character or block driver).
During installation, the idtools assign a major number if the driver'sMaster file doesn't
specify one. For more information, see theMaster(4)  manual page.

System File 2

A driver'sSystem file provides information needed to configure the driver into the next
kernel build. After installation, the driver’sSystem file resides in the directory
/etc/conf/sdevice.d . This directory contains a separateSystem file for each
device driver installed.

Configuration data defined in theSystem file includes a flag that indicates whether or not
the driver ought to be incorporated into the kernel. For more information, see the
System(4) manual page.

Sadapters File 2

A driver'sSadapters file identifies and describes the functional characteristics of an
adapter card so the system can incorporate it into the next configuration built. TheMas-
ter andSystem files describe the adapter with general configuration information. When
the kernel module’s Driver Software Package is installed,idinstall(1M) stores the
Sadapters  file information in$OBJ/etc/conf/sadapters.d/kernel .

Driver Header Files 2

Driver source code must contain some standard #include files giving the driver access
to system utilities and data structures used to return information to the kernel.

The description of each kernel utility function in theDDI/DKI manual pages indicates
which header files must be included in a driver that uses that function. Chapter 9 (“Under-
standing the Kernel Environment”) describes the standard header files typically included
in a device driver’s source file.

Driver Development 2

Device driver development requires more up-front planning than most application pro-
gramming projects. At the very least it involves more testing and debugging, and requires
more hardware knowledge. Chapter 10 (“Developing a Device Driver”) explains the full
procedure for developing device drivers. Chapter 14 (“Driver Installation and Tuning”)
describes procedures for installing device drivers. Chapter 15 (“Driver Testing and Debug-
ging”) describes the tools available for testing and debugging installed device drivers.



3
The PCI Environment

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
PCI Variants and Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Big Vs Little Endian Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
RISC Vs CISC CPU Processor Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Types of PCI Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Base Address Registers(BAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Decode into I/O Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Decode into Memory Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

ROM Base Address Registers(BAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Decode into Memory Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
System Memory and PCI bus Master Devices  . . . . . . . . . . . . . . . . . . . . . . 3-5

Effects of PCI to PCI Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
PowerMax OS Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Finding the Correct Adapter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Accessing the Configuration Space Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Getting/Releasing the Base Address Register Assignments. . . . . . . . . . . . . . . . 3-6
Determining the Kernel Virtual Address of PCI Base Address Register . . . . . . 3-6
Accessing PCI Device Registers and Memory Space
Though Kernel Virtual Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Determining PCI Memory Address of Particular System Memory
Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Attaching and Releasing a PCI Interrupt Vector Assigned to a
PCI Slot/Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7



Device Driver Programming



3-1

3
Chapter 3The PCI Environment

3
3
3

Introduction 3

The PCI (Peripheral Component Interconnect) BUS specifications was created out of the
need to create a simple plug and play mechanism for access I/O resources. PCI has sev-
eral physical and electrical variances. Generally, a PCI based system can have up to 256
PCI buses with upwards of ten(10) PCI devices per bus. Practically, the actual number of
PCI buses and devices is generally restricted by other factors.

The following sections will cover varies aspects of the PCI environment as supported by
PowerMax running under Motorola base platforms. A subset of functionality described in
this chapter is supported by PowerMax on NightHawk Platforms. The supported PCI
subset varies by combinations of NightHawk platforms and their respective PowerMax
OS releases, contact Concurrent Corporation for support when attempting to use PCI
devices on these platforms.

PCI Variants and Form Factors 3

The variants of PCI buses are PCI 32/64 bit, PMC(PCI mezzanine connector)(32/64bit),
and CompactPCI (32/64bit) with either 5.0volt or 3.3volt drivers and running at either
33mhz, or 66mhz bus speeds. Also, the Advance Graphics Port(AGP) specification is a
variant of PCI 64bit/64mhz with special 133/266mhz modes with either 1.5volt or 3.3volt
drivers. Each PCI variant has a unique connector configuration with some implementa-
tions able to support boards that require only a subset of that function.

Generally the 64 bit PCI variants can accommodate 32 bit cards with some restrictions.
The faster PCI bus speeds reduced the number of available slots for add in PCI devices.
Wider PCI buses usually have extra connectors installed to supply connectivity for the
additional signals. PCI buses which support 5.0 volt drivers are keyed differently from
those that which support only 3.3 volt or 1.5 volt bus drivers.

The most common PCI  form factors are:

- PCI 32 bit, running between 25 and 33mhz with 5.0volt drivers

- PMC 32 bit,  running between 25 and 33mhz with 5.0volt drivers

- Compact PCI 32/64 bit, running at 33mhz with 5.0volt drivers

There are also 64 bit implementations of PCI, PMC and AGP buses.  These



Device Driver Programming

3-2

high performance form factors are used only when the design of the add on device requires
performance or resources that exceed that available in the commonly available form fac-
tors. These high performance buses must be directly connected or bridged into by other
equally high performance PCI buses to System memory, to do otherwise the would com-
promise the performance gain available.

Logically, a single PCI bus can have thirty-two(32) device slots with up to eight(8) func-
tions per device slot. Additional PCI busses can be supported by adding PCI to PCI bridge
chips to connect additional PCI buses to a system.

Electrical considerations reduce the thirty two (32) logical slots down to ten(10), or less
physical PCI devices based on the type of PCI bus extended and connector type.

There are some PCI extender configurations that allow a PMC form factor system to con-
nect standard PCI 32/33mhz(5volt) boards.

Generally, the PCI bus support is limited by the platform’s hardware design thus most
restrictions and subsequent PCI support are determined on a platform by platform basis.

The different types of PCI bus form factors, clock speed, bus width, and voltage of bus
drivers are normally transparent to the programming interface.

Big Vs Little Endian Issues 3

Endian issues occur whenever mathematical operations manipulate a data item whose
width is greater than a byte(8 bits) and the CPU architecture is addressable to a byte based
address. For the most part, byte oriented strings of information are stored in the same
manor whether the architecture is big or little endian.

When the data width of the object exceeds that of a byte is when the endianess of the
architecture becomes significant. A little endian architecture stores the least significant
byte (LSB) in the lowest addressable byte, while a big endian architecture stores the most
significant byte (MSB) in the lowest addressable byte.

• The PCI bus is little endian by design.

• The VME bus is big endian by design.

• Most real world protocols are big endian. (TCP/IP, NFS, SCSI)

• Intel platforms using x86 processors are little endian.

• The PowerPC processor is capable of manipulating either big or little
endian data items, but must be defaulted to one or other on a per applica-
tion or OS basis.

PowerMax is defaulted to manipulate big endian data items.

An address invariant translation generally occurs when reading or writing data objects so
that the appropriate byte lane(s) are used when transferring blocks of data, thus character
or byte oriented strings are stored in the correct order. Address invariant translation can
occur several (up to 3) times depending on the number of big and little endian conversions
required as a I/O cycle traverses between it’s source and destination.



The PCI Environment

3-3

Endian translation is necessary whenever a memory or I/O mapped address space is
accessed, or when accessing configuration space in data widths less than 32 bits.

To provide a common mechanism of byte swapping, the BUSGETSR, BUSGETLR, BUS-
PUTSR and BUSPUTLR macros are provided in the xxxx.h header file.

RISC Vs CISC CPU Processor Issues 3

Generally RISC processors behave in a similar fashion to CISC processors except in two
areas.

RISC processors generally require that a data item must be addressed on a native

address boundary. For example, a 4 byte access must occur on an address boundary that is
evenly divisible by 4.

The second difference is instruction reordering, this aspect of RISC processors is a feature
of the large number of general purpose registers in the design When a particular register
is still busy being manipulated by a instruction a subsequent instruction can proceed as
long as it deals with a non-busy register. This can cause I/O or memory accesses to be
executed out of order with respect to the designers intent.

To overcome endian and reordering issues the designer should use the byte swapping and
i/o flushing macros described previously in the Big verses little endian section.

Types of PCI Resources 3

Configuration Space 3

The PCI configuration space is a mechanism by which the PCI bus configures virtually all
other characteristics of the devices installed. It allows the Plug and Play nature of PCI bus
to become a reality. Allowing a system to dynamically assign system resources to the
devices that are installed or plugged into a PCI bus somewhere on the system. PCI devices
can be arranged in a virtually unlimited number of configurations, where some devices are
directly installed in the system while others are located in PCI expansion busses behind
PCI to PCI bridges. Each PCI to PCI bridge has been configured by PowerMax at IPL
time to forward all necessary I/O, memory, interrupts, and configuration accesses for the
PCI devices it bridges automatically. Care must be taken not to override the system set-
tings of PCI devices using mechanisms not provided. To do otherwise would cause con-
flicts with other PCI devices in an unpredictable manor.

The PCI configuration space is broken up into 256 Buses with 32 slots, and 8 functions per
slot. Each function has up to 256 bytes of configuration information. Some devices can
forgo the use of the additional functions and utilize the entire 2048 byte range assigned to
each PCI slot. The PCI specification only defines the first 64 bytes of each slot or function



Device Driver Programming

3-4

of the configuration space. The remaining 192 or 1984(2048-64) is reserved for custom
use by the device.

Within the configuration space of a PCI device/function 28 of the 64 bytes are reserved for
Base address registers(BAR’s). These are read/write registers that are used to set the start-
ing I/O and Memory space address for any additional resources required by the device.
The type and the size of the resource is determined by the read-only portion of each Base
Address register(BAR). PowerMax scan’s all devices connected to the PCI bus when the
system is booted. When PowerMax scans a PCI device it queries the BAR to determine
the resources required. If PowerMax can satisfy the requirements the OS reserves the nec-
essary resources and writes the appropriate base address value into BAR.

The configuration space of PCI is generally accessed via a special hardware mechanism
and does not generally appear as a directly accessible memory region. A device’s config-
uration space is accessed via a Type 0 configuration cycle while devices connected via PCI
bridges are accessed using Type 1 configuration cycles. When a Type 1 cycle reaches it’s
final destination PCI bus it is converted to a Type 0 configuration cycle. Thus a normal
PCI device must only need to respond to Type 0 configuration cycles without regard to it’s
actual placement within the PCI architecture.

Base Address Registers(BAR) 3

Decode into I/O Space 3

The PowerPC architecture does not allow for a separate I/O space as is allowed in the x86
family which the PCI bus was originally designed for. Thus to access those I/O mapped
resources made available by various PCI devices a region of PowerPC memory space is
dedicated to mapping memory accesses into PCI I/O accesses.

The I/O access region is automatically allocated by the PowerMax OS and requisite reser-
vations are provided for to allow all I/O Base Address Registers of each device to be
accessed by the driver.

The I/O access region is normally allocated in virtual memory page multiples to remove
the possibility of driver or device conflicts.

As with all non-memory cycles the PowerPC cache is inhibited, but the write posting pipe-
line is not. To inhibit the possible effect of the write reordering the user must use the
appropriate PowerPC flush instructions after writing each I/O location.

The flush instructions described above are included within the byte swapping macro’s pro-
vided.

Decode into Memory Space 3

The memory region is a cache inhibited area where the appropriate Base Address Regis-
ters are assigned to. This area has many of the same characteristics of the I/O space
described previously. These characteristics include page alignment, and the same need for
pipeline flushing on writes.



The PCI Environment

3-5

ROM Base Address Registers(BAR) 3

Decode into Memory Space 3

Similar to Base Address Registers that decode into Memory Space with the same charac-
teristics.  These areas are allocated out of the space set aside for PCI memory space.

Interrupts 3

Each sub function of a PCI device can request one interrupt to be attached to the specified
Interrupt Pin defined at offset 0x3d. It should be noted that it is highly unlikely that the
Interrupt vector assigned will be exclusive to this device only. Thus all device drivers
must be written with the intent that the vector is shared and it’s respective interrupt handler
will be called at random times with no activity to process.

System Memory and PCI bus Master Devices 3

The entire memory subsystem of PowerPC which can be as large as 2 gigabytes which is
statically mapped into the memory space portion of the PCI bus. This allows the PCI bus
master devices to access the system memory without further intervention by the CPU.

Effects of PCI to PCI Bridges 3

The effects of PCI to PCI bridges on PCI devices it bridges can vary, but generally they
slow down individual read accesses the most. Most PCI bridges have write posting buffers
that allow a couple of writes to be queued in each layer of PCI bus, thus improving the
performance of individual writes to/from PCI devices. These queues are generally flushed
when a read occurs thought the same data path. The effects of PCI bridges on a PCI bus
master is less pronounced since they generally move more data per PCI arbitration timing
slot. Where most of overhead by PCI bridges is in the setup and the first access. To reduce
this effect even further the programmer should maximize the Bus mastering burst size to
the largest the device can accommodate within reason. This value is generally of the total
DMA FIFO size.

PowerMax OS Support 3

Each PCI device and sub function are assigned aadapter structure entry at System IPL
time. Normally the sub functions of each PCI device should be treated as separate
devices. I.E. SCSI and Ethernet functions combined on a single chip. However their are
exceptions and a single driver may manipulate multiple functions, for that case it should
be noted that all the sub functions will be clustered together in a serial fashion in the
adapter array.



Device Driver Programming

3-6

Finding the Correct Adapter Structure 3

Use the routines adapter_find and adapter_find2 to locate instances of your device. An
alternate method is to scan the external “adapters” array for “adapter_count” entries and
match the “adapter_type” element with a value generated from the macro
“PCI_ADAPTER_TYPE” and check the “adapter_state” e lement for the
“ADAPTER_PRESENT” flag.

Accessing the Configuration Space Registers 3

Use the routines “pci_cfgspc_read” and “pci_cfgspc_write” to access the configuration
space registers other than a BAR or the “PCI CMD” register. A prerequisite for correct
operation is that the routines must be given a pointer to the correct “adapter” structure
entry. Note: These routines read and write 32 bit quantities on 4 byte aligned boundaries
only.

Use “pci_cfg_cmd” routine to enable/disable PCI I/O and memory space slave operation.

This routine has no effect on Configuration space accesses. The “pci_cfg_cmd” routine is
also used to enable PCI bus master operation.

As a general note, most PCI devices also have a Base Address Register assigned to map
the PCI device’s configuration registers. It would advisable to use the BAR mapped con-
figuration space registers to access these resource whenever they required frequent access-
ing by the device driver during normal operation.

Getting/Releasing the Base Address Register Assignments 3

Use the “pc i_ iospc_al loc” , “pc i_memspc_al loc” , “pc i_ iospc_free” and
“pci_memspc_free” routines to retrieve assigned values from Base Address Registers or
release them. The “iospc” and “memspc” versions may be used interchangeably, as they
will retrieve the assigned values or query the PCI device to determine which type of PCI
space is required.

The returned “pci_spc_t” structure will contain the type of space, size, the assigned PCI
address and the equivalent CPU physical address.

It is not necessary or desirable to release PCI allocations each time the driver is closed or
unloaded. The allocation routines will return the same values for each BAR every time
they are cal led. The except ion to this rule is i f you release them using a
“pci_XXXspc_free” call. In which case the assigned address may be different or fail allo-
cate.

Determining the Kernel Virtual Address of PCI Base Address Register 3

To get a working Kernel virtual address of a PCI Base address register, the “physmap”



The PCI Environment

3-7

call must be used. The arguments must include the CPU physical address and the size of
the PCI BAR register returned from the “pci_XXXspc_alloc” call.

Use the “physmap_free” call to release the Kernel virtual address assignment associated
with a PCI BAR assignment.

Accessing PCI Device Registers and Memory Space
Though Kernel Virtual Maps 3

It is important to remember to use the byte swapping and pipeline flushing Macros pro-
vided when accessing PCI devices directly. These macros BUS_GETLR, BUS_GETSR,
BUS_GETBR and BUS_PUTLR, BUS_PUTSR, BUS_PUTBR include the necessary
byte swapping and FIFO flushing instructions to manipulate little endian PCI devices
using a PowerMax which is defaulted to big endian mode.

Determining PCI Memory Address of Particular System Memory
Location 3

To get a valid PCI memory address equivalent to a particular system memory location one
should use the “pci_vtop” call. This returns a PCI memory address that can be used by a
PCI bus master device.

The ‘pci_vtop” call does not lock down or establish any resource that requires releasing.

Therefore, the programmer must insure that each virtual page is locked down and non-
swapable.

Attaching and Releasing a PCI Interrupt Vector Assigned to a
PCI Slot/Function 3

The “adapter” structure entry for a PCI device/slot/function already contains the necessary
information about the Interrupt assignment. It is only necessary to register a handler entry
point or release the handler entry point from within the device driver.

The call to attach or release the interrupt handler entry point is “ivec_init” and “ivec_free”.

Both of these calls should use the “ivec” member of the “adapter” structure as the first
argument.

A special note, the PCI device must be fully initialized or have a disable mechanism estab-
lished to anticipate that handler attached, could be entered at any time, including immedi-
ately after being attached. This occurs because PCI interrupts are shared in nature and the
entry could be for another PCI device which shares the same vector.



Device Driver Programming

3-8



3
Series 6000 Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

(H)VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
HVME Address Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

(H)VME Devices as (H)VME Bus Slaves  . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
(H)VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 3-8

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Configuring Devices Without BR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12



Device Driver Programming



4-1

4
Chapter 4Series 6000 Hardware Environment

4
4
4

This chapter provides hardware-specific information useful in developing device drivers
for the Series 6000 computer systems. The Series 6000 covers models HN6200 and
HN6800; the text points out model-specific information. This chapter also explains how
hardware configuration affects I/O function and performance.

Some hardware information applies to every driver—for instance, I/O error handling
(affects power failure, alignment errors, controller errors, and bus hangs.) Some informa-
tion differs according to the technique by which the device driver communicates with the
processor—for example, programmed I/O, interrupts, and direct memory access (DMA).
Other information relates as much to software as hardware, such as addressing, byte order-
ing and alignment, word sizes, and configuring arbitration levels and assigning arbitration
priorities.

Communicating with devices via interrupts also poses questions about sharing and config-
uring interrupt levels to ensure adequate performance levels. Finally, other questions arise
when communicating with devices via DMA—for example, cache coherency, buffering
and addressing.

The first part of this chapter introduces the main architectural features of the platform in
terms of its system and I/O architecture: processors, memory and I/O expansion and con-
figuration. The second part examines hardware issues more closely including physical
addressing, I/O bus timeout, configuring I/O interrupt request levels and associated priori-
ties, and assigning interrupt vectors.

System Overview 4

Series 6000 systems are multiprocessor, real-time, super-microcomputers. They use Sym-
metric SuperscalarTM Reduced Instruction Set Computer (RISC)microprocessors from
IBM/Motorola, the PowerPC 604.

Processor Board 4

Figure 4-1 depicts the main architectural features of the HN6800 computer system. The
HN6800 computer system can contain up to four processor boards. A processor board
hosts up to two processors, local memory module board, I/O interface, timers, real-time
clocks, UART, and associated components.

The processor clock speed is 150 or 200 MHz (depending on model) and can execute four
instructions per cycle. The processor data bus is 64-bits wide to accommodate two 32-bit
instructions per cycle. TheHN6200or HN6800 Architecture Manualdescribes the proces-
sor board in greater detail.



Device Driver Programming

4-2

Figure 4-1.  Elements of an HN6800 Processor Board

Caches 4

The processor features separate 16-Kb, four-way set-associative instruction and data
caches. Software maintains instruction cache coherency; bits in the instruction cache flag
whether a cache block is valid. Hardware maintains four-state data cache coherency
(MESI). The processor also supports secondary data cache. Software can disable, lock,
and parity-check caches.

CIO

Interface

Local Bus
Error

Add Reg

TOC EPROM UART
Interval

Timer

Health

Register

Interrupt

Controller

RTC
Diagnostic
Control

CPU

Register

Error

Register
ID ID

Port Interface

ISE

Disc Tape

HVME Interface

HVME Backplane

Frontplane
Interface

System
Frontplane

Bus Watcher
(Snoop Filter)

Global
Memory

Secondary

I/O

Local Bus

Local Bus
Control

Local Memory
50MHz Static

or
50MHz Dynamic

PowerPC
604

604
PowerPC

Processor Bus



Series 6000 Hardware Environment

4-3

Memory 4

The HN6800 system uses 32-bit addresses for up to four gigabytes of virtual address
space.

Figure 4-1 shows that any processor on the processor board has cached access to local
memory. The local memory resides on a daughter card attached to the processor board.
The daughter card provides up to 128 MB of dynamic or 64 MB of static memory.

The local memory burst rate of 50MHz matches without saturation the bandwidth
demands of both local processors accessing memory concurrently.

The HN6800 memory architecture also supports anError Detection and Correction
(EDAC) mechanism. This mechanism automatically detects and corrects single-bit errors.
The EDAC mechanism detects multiple-bit errors only upon the firstread access to a cor-
rupted memory location, but cannot correct them. (The system cannot recover from multi-
ple-bit errors.) The EDAC reacts by raising a precise hardware exception to the processor
initiating the access, which panics the operating system and halts it.

Buses 4

The Series 6000 has two main buses: theprocessor bus and thelocal bus.

Theprocessor bus,a dedicated high-performance bus resides on the processor board con-
necting to the main bus, alocal bus. The local bus connects the CIO, port, frontplane
(HN6800 only), and HVME interfaces to the processors.

HVME extends the VMEbus standard. The most important extensions are parity error
reporting and fast synchronous burst mode. Fast synchronous burst mode transfers data at
rates up to 40 MB/sec, depending upon system configuration. The HVME bus extension
also provides other hardware-specific improvements not affecting device programming.
Specific improvements include a larger board size with more power supply pins on the I/O
connectors and eliminating daisy-chained backplane jumpers. Refer to theHVME Exten-
sion Specification for details. Note that any VME board works on the HVME bus.

Data Types 4

The Series 6000 supports the following data types:

• Byte (8 bits)

• Half-Word (16 bits)

• Word (32 bits)

• Doubleword (64 bits)

The Series 6000 computer system is a 64-bit machine, but this manual uses the termword
for sixteen bits andlongwordfor 32 bits to remain compatible with other industry standard
systems.



Device Driver Programming

4-4

Byte-Ordering and Alignment 4

The Series 6000 platform orders bytes according to theBig Endianconvention, in which
the most significant byte (MSB) always has the lowest address. This provides consistent
addressing independent of the machine word size, as Figure 4-2 depicts. (Note that the bit
ordering depicted (with bit 31 most significant) applies to I/O addressing. The bit ordering
of the PowerPC 604 is the opposite (with bit 0 most significant). Byte ordering for both
I/O and the PowerPC 604 is the same.)

During I/O transfers, the system expects the addresses of all words to be even addresses—
that is, zero, two, four, six, eight, and so on. Similarly, the system expects that all long-
word addresses are divisible by four—that is zero, four, eight, twelve, and so on. Finally,
the system expects all double-longword addresses to be divisible by eight—that is, zero,
eight, sixteen, and so on.

NOTE

Starting an I/O transfer using non-aligned data types in a driver
program causes a fatal exception error on all Series 6000 plat-
forms. In other words, the hardware cannot recover from align-
ment errors.

Figure 4-2.  Big Endian Bit and Byte Notation

(H)VME Addressing 4

This section describes the characteristics of data transfers on the (H)VME bus. Doing so
aids in building device addresses and understanding the error detection and recovery fea-
ture of the VMEbus.

LOW
ADDRESS

HIGHER
ADDRESS

LOW ADDRESS = MSB

MSB LSB

7 0

15

16232431

0

07

8 7

815

MSB LSB



Series 6000 Hardware Environment

4-5

Transfer Width Support 4

For all non-block mode transfers, (H)VME supports byte, word and long-word addresses.
It supports byte addresses on even and odd addresses. It supports word addresses (16-bit)
on even addresses. It supports longword transfers on longword addresses.

Synchronous Block Transfers or VME Block Mode Transfers (BMT) only support long-
word addresses.

Address Types 4

Bus masters on the (H)VME I/O bus can use different types of addresses dynamically:
short (16 bit-address), standard(24-bit addresses), orextended (32-bit addresses).

The source of the addresses can either reside on the local (H)VME bus or come from the
processor acting as bus master.

Short address accesses come from sources local to the (H)VME I/O bus on which they
originate, and cannot go outside of the local bus. Standard addresses can access either sys-
tem memory (below 12MB) or memory local to the (H)VME bus. Extended addresses
access all of system memory.

Address Modifiers 4

For each data transfer on the (H)VME bus, the bus master (either a processor or an I/O
device) must identify the characteristics of the data transfer by sending a special six-bit
code along with the transfer. This code is called anaddress modifier. Different types of
data transfers use specific address modifier values. The address modifier specifies:

• Address type (short, standard, extended)

• Access method (single location or multiple locations)

• Data access privilege (supervisory or non-privileged).

If the transfer originates with the processor, the (H)VME I/O interface generates the
appropriate address modifier. If the device initiates the transfer, the device controller gen-
erates the address modifier. In some devices, the address modifier is hard-wired into the
device controller; in others, jumpers or switches on the device set it. Alternatively, some
devices have programmable address modifiers. Refer to the installation manual that
accompanies the device for the procedure to configure the address modifier.

TheHN6200or HN6800 Architecture Manuals contain additional information on address
modifiers.



Device Driver Programming

4-6

HVME Address Ranges 4

Table 4-1 shows the address ranges for HVME devices:

VME Address Ranges 4

This section details the address ranges VME devices use on the (H)VME primary I/O bus
as bus masters or slaves.

(H)VME Devices as (H)VME Bus Slaves 4

When a processor acts as bus master on the (H)VME bus and addresses (H)VME devices
on the (H)VME I/O bus, the (H)VME devices are slave devices.

Table 4-2 shows the address ranges for HVME slave accesses:

(H)VME Devices as Bus Masters 4

When an (H)VME device addresses memory (or other (H)VME sources), the (H)VME
device is the bus master.

Table 4-1.  HVME Address Range

Address Type HVME Primary

A32 0xC0000000-
0xD5FFFFFF

Table 4-2.  HVME Bus Slave Access

Address
Type

Address Modifier Address Range

A32 0x09 0xC0000000-
0xFEFFFFFF

A24 0x39 0xFF000000-
0xFFFEFFFF

A16 0x2D 0xFFFF0000-
0xFFFFFFFF



Series 6000 Hardware Environment

4-7

Table 4-3 shows the address ranges for (H)VME bus master accesses:

Table 4-3.   HVME Bus Master Access

Transfer Type Address Range Address Type Address Modifier

single 00000000-0FFFFFFF A32 09, 0A, 0D, 0E

block 00000000-0FFFFFFF A32 0B, 0F

block 00000000-0FFFFFFF A32 08,0F

sync block 00000000-0FFFFFFF A32 1A, 1B, 1C, 1D

single, slot 1
40000000-4FFFFFFF

A32 09, 0A, 0D, 0E

block slot 1
40000000-4FFFFFFF

A32 0B, 0F, 08, 0C

sync block slot 1
40000000-4FFFFFFF

A32 1A, 1B, 1C, 1D

single slot 2
50000000-5FFFFFFF

A32 09, 0A, 0D, 0E

block slot 2
50000000-5FFFFFFF

A32 0B, 0F, 08, 0C

sync block slot 2
50000000-5FFFFFFF

A32 1A, 1B, 1C, 1D

single slot 3
60000000-6FFFFFFF

A32 09, 0A, 0D, 0E

block slot 3
60000000-6FFFFFFF

A32 0B, 0F, 08, 0C

sync block slot 3
60000000-6FFFFFFF

A32 1A, 1B, 1C, 1D

single slot 4
70000000-7FFFFFFF

A32 09, 0A, 0D, 0E

block slot 4
70000000-7FFFFFFF

A32 0B, 0F, 08, 0C

sync block slot 4
70000000-7FFFFFFF

A32 1A, 1B, 1C, 1D

block XX000000-XXBFFFFF A24 39, 3A, 3D, 3E

block XX000000-XXBFFFFF A24 38,3C

single XX000000-XXBFFFFF A24 39, 3A, 3D, 3E



Device Driver Programming

4-8

Bus Time-Out 4

The (H)VME bus measures with a bus timer the duration of data transfers accessing slave
devices. If a data transfer malfunctions, the bus timer detects the malfunction and gener-
ates a bus time-out, preventing a dead VME slave from hanging the I/O channel.

After a device applies an address to the bus and asserts the address strobe (AS*) and data
strobe (DS*) signals, the VME device addressed must assert the data transfer acknowl-
edge (DTACK*) signal within 51.2 microseconds. If it does not assert the DTACK* signal
in a timely manner, the HVME bus controller asserts bus error (BERR*) and generates a
system fault.

Data transfer malfunctions on the bus occur for the following reasons:

• Invalid address

• Invalid address modifier

• Invalid transfer

• Nonexistent device addressed

• Device correctly addressed but malfunctioning

The kernel tries to recognize VME bus errors and determines their cause. The most com-
mon response by the kernel is to panic the system. A panic halts the system so that the
administrator can fix a malfunctioning board or device, or take some other corrective
action.

An alternative system service,iobus_err(2) , can handle some types of VME bus
errors without panicking the system. This service supports environments in which panick-
ing the system is an undesirable response to bus errors, such as real-time or production
mode. See Chapter 16, “Special Considerations”, “Device Drivers and VME Bus Errors”
and theiobus_err(2)  man page for details on this service.

VME Device Address Assignment and Configuration 4

TheHN6200or HN6800 Architecture Manualdocuments the range of addresses reserved
within the system memory map for I/O purposes. Another document, the(H)VME Address
Specification, further documents this I/O address space and divides it into ranges occupied
by those (H)VME vendor boards Concurrent Computer Corporation supports. Prototype
devices use selected areas within this mapping, which includes instructions for selecting
appropriate device addresses. The system probes the address range occupied by the device
to detect and identify it.

Jumpers, switches, or programmable assemblies (Programmable Read Only Memory
(PROM) orProgrammable Array Logic (PAL)) normally set VME device addresses:

• If set by jumpers or switches, refer to the device installation manual for
selecting the proper valid address and address modifier.

• If set by programmable assembly, and if either the address falls outside
valid VME address space or generates the wrong VME address modifier,



Series 6000 Hardware Environment

4-9

then the device vendor must build a programmable assembly for a suitable
address.

NOTE

Installing components not specified or marketed by the device
vendor might void the warranty. Patent and copyrights that apply
to the device also cover programmable assemblies, which require
written permission from the vendor to modify or copy. (License
fees might accompany such permission.) With such permission,
Concurrent Computer Corporation can provide PALs to address
third-party devices. A different -90x number for each valid
address on the top-level assembly number identifies PALs sup-
plied by Concurrent Computer Corporation.

Bus Arbitration 4

Busses that support multiple bus masters must provide a means of resolving the contention
of concurrent requests for bus mastership by multiple devices. This is the purpose of a spe-
cial unit on the (H)VME bus, the (H)VME bus arbiter.

Bus arbitration is important only for devices that can act as bus masters. Device specifica-
tions indicate this ability as either “bus master” or “DMA Operation.” Because bus arbitra-
tion depends on implementation, the following sections explain arbitration on the Series
6000 platform.

Bus Request Levels 4

The VMEbus specification defines extensive bus arbitration options implemented in
HVME by the following signals:

• Bus request level BR0

• Bus grant BG0 (BG0IN, BG0OUT)

• Bus busy (BBSY) signal.

Each slot has a BR0xxsignal (wherexx refers to the slot number) driven to the bus arbiter.
The bus arbiter directly drives a BG0xx signal (wherexx refers to the slot number) to the
appropriate slot. This eliminates the latency of daisy chaining the bus grants and can also
configure specific slots for round-robin arbitration. All slots receive the BBSY signal,
when appropriate.

Devices on the (H)VME bus become the bus master by asserting bus request and receiving
bus grant. The new bus master asserts the bus busy (BBSY) signal until relinquishing the
bus. During this time, only it can generate bus addresses.



Device Driver Programming

4-10

NOTE

The VMEbus specification defines an optional bus clear (BCLR)
signal for the present master to relinquish the bus. HVME does
not implement this optional signal.

The HVME bus implementation of the VMEbus standard uses only the BR0 bus request
level (for boards that cannot use BR0/BG0, see the following procedure). The bus arbiter
neither uses nor attends to other bus request levels, with the exception of BR3. This bus
request level indicates to Release-On-Request (ROR) devices in the HVME chassis that a
VME request pends in the chassis.

The Series 6000 provides the following options for configuring the bus arbitration:

• Straight priority

• Round robin over processor slots

• Round robin over slots 6 through 11

• CPU Release on Request.

A system can use more than one of these options. By default, the system uses the straight
slot priority scheme, wherein thelowest numbered slot not occupied by a processor board
has thehighest priority.

A configuration register in the (H)VME interface module defines the bus arbitration
schemes. The processor can read from or write to this register.

Configuring Devices Without BR0 4

Some devices cannot use BR0 or can only do so by first using another bus request level
such as BR3. To install such a device in the HVME primary I/O bus, use the following
steps:

1. Configure the device to use bus request level BR3.

2. Locate the backplane jumper for the appropriate slot (refer to the system SI
drawing for locations, generally on the rear of the backplane with one
jumper at each slot). This jumper determines whether the board’s BR0 or
BR3 is routed to the bus arbiter.

3. Move the jumper from position 0 to 3. Note that this jumper doesnot
change the board’s bus request priority in the HVME arbitration scheme.

Refer to theVMEbus Specificationand theHVME Extension Specificationfor more infor-
mation on the bus arbitration scheme.



Series 6000 Hardware Environment

4-11

Interrupt Request Levels and Priorities 4

In the Series 6000, interrupts come from both processors or other hardware devices exter-
nal to or attached to the processors and software. Sources of hardware interrupts include:

• Device controllers on the I/O bus

• Powerfail

• 60 Hz clock

• Timers

• Real-time clocks

• Console processor

• Port controllers (serial or parallel.)

Sources of software interrupts include:

• Inter-processor requests

• Softclock

• Context switches.

Interrupt Lines (Levels) 4

On the HVME I/O bus,interrupt linesare the bus lines carrying the interrupt signal from
interrupt requester to processor. The HVME chassis supports 7 interrupt levels, labeled
IRQ1-7* on the I/O bus.

(H)VME interrupt request lines map to the Series 6000 system’s interrupt levels, but are
not the only source of interrupts in the system. For more details and a list of priority levels
and mapping of interrupt sources to those levels, refer to theHN6800or HN6200 Architec-
ture Manual.

Hardware hierarchically and statically sets Interrupt priorities. The hardware interrupt pri-
ority determines the relative urgency of servicing the event within the overall system. For
each interrupt level, the device on the highest interrupt level with the lowest slot number
has the highest priority.

If two interrupt requests with the same interrupt level occur simultaneously on the HVME
I/O bus, the system resolves the contention by applying the following rules:

1. In devices sharing the same interrupt level on the same I/O bus, the device
with thelowest slot number has the highest priority.

2. In interrupt levels on the same I/O bus, the device connected to level7 has
thehighest priority down to level 1, which has thelowest priority.

3. In all interrupt sources in the system, hardware determines the interrupt pri-
ority of the device by its mapping to the Series 6000 interrupt levels.



Device Driver Programming

4-12

NOTE

For system speed and proper device operation, increase the prior-
ity of devices needing a quick response to interrupts. Decrease the
priority of devices that tolerate longer interrupt latencies; devices
whose interrupts can wait longer before service.

Interrupt Vector Generation and Configuration 4

In hardware, the interrupt process functions as follows:

1. On the VME I/O bus, the interrupt requester requests an interrupt by driv-
ing one of the interrupt request lines (IRQ1* to IRQ7* on the bus) active
low. An interrupt controller that monitors all request lines detects this.

2. The CPU to which the interrupt controller directed the request generates an
interrupt acknowledge, which the controller returns to the VME device.

3. If necessary, the VME device requests mastership of the bus via arbitration.

4. Once it gains mastership, the system controller generates an interrupt
acknowledge cycle by driving the IACK* signal active low and placing the
winning interrupt level request on the address lines A03 to A01. (The con-
troller resolved any contention between the interrupt levels.)

5. By a daisy-chain acknowledgment scheme wherein the IACK* signal prop-
agates via an IACKIN/IACKOUT* signal chain through all I/O bus slots,
the lowest slot number receives the interrupt request acknowledgment sig-
nal IACK* first. The falling edge of the active low on the IACK* signal
validates the data on address lines A03 to A01.

6. Upon detecting its interrupt level code on line A01-A03 on the falling edge
of IACK* low, the interrupt requester identifies itself by placing an imple-
mentation-dependent 8- or 16-bit code on the data lines. The VMEbus stan-
dard calls this the STATUS/ID information code. (The HVME implementa-
tion of the VMEbus standard uses the 8-bit version of the STATUS/ID
information code.)

7. When the interrupt handler on the (H)VME bus forwards an interrupt
acknowledge to a processor, the low-level portion of the operating system
interrupt subsystem reads the code to index one of 256 addresses of inter-
rupt-handling routines. This one-byte code, contained by the VME device,
is aninterrupt vector.

Several ways exist to set the interrupt vector:

• jumpers or switches

• programmable hardware assemblies (PROMs or PALs)

• slave or master programmed registers

8. Chapter 10 provides procedures to either modify the kernel interrupt vector
table or dynamically allocate interrupt vectors:



Series 6000 Hardware Environment

4-13

• If hardware settings determine the interrupt vector (preset), then
recon figu re the in te r rup t vec to r by mod i fy ing the
/etc/conf/cf.d/ivt.s  file and rebuilding the kernel.

• If slave or master register programming determines the interrupt vec-
tor, then the kernel interrupt vector table can dynamically allocate
and assign the interrupt vector to the device during bootstrap.



Device Driver Programming

4-14



5
Power Hawk 610 Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 5-8

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
VME to PCI Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12



Device Driver Programming



5-1

5
Chapter 5Power Hawk 610 Hardware Environment

5
5
5

This chapter provides hardware-specific information useful in developing device drivers
for the Power Hawk 610 computer system. This chapter also explains how hardware
configuration affects I/O function and performance.

Some hardware issues are general in nature—for example, I/O error handling (power
failure, alignment errors, controller errors, and bus hangs.) Some information differs
according to the technique by which the device driver communicates with the processor—
for example, programmed I/O, interrupts, and direct memory access (DMA). Other
information relates as much to software as hardware, such as addressing, byte ordering
and alignment, word sizes, and configuring arbitration levels and assigning arbitration
priorities.

Communicating with devices via interrupts also poses questions about sharing and
configuring interrupt levels to ensure adequate performance levels. Finally, other questions
arise when communicating with devices via DMA—for example, cache coherency,
buffering and addressing.

The first part of this chapter introduces the main architectural features of the platform in
terms of its system and I/O architecture: processors, memory and I/O expansion and
configuration. The second part examines hardware issues more closely including physical
addressing, I/O bus timeout, configuring I/O interrupt request levels and associated
priorities, and assigning interrupt vectors.

System Overview 5

Power Hawk 610 systems are uniprocessor, real-time, super-microcomputers. They use
the Symmetric SuperscalarTM Reduced Instruction Set Computer (RISC)microprocessor
from IBM/Motorola, the PowerPC 604. The processor board is the Motorola MVME1604
Single Board Computer (SBC).

Processor Board 5

Figure 5-1 depicts the main architectural features of the PH610 computer system. A
processor board hosts a single processor, various amounts of memory, an optional L2
cache, I/O interface, various bridge chips, real-time clocks, UART, SCSI interface,
Ethernet interface, and associated components.

The processor cycle time is 10 ns (100 MHz) and can execute four instructions per cycle.
The processor data bus is 64 bits wide to accommodate two 32-bit instructions per cycle.



Device Driver Programming

5-2

Figure 5-1.  Elements of a Power Hawk PH610 Processor Board

Caches 5

The processor features separate 16-Kb, four-way set-associative instruction and data
caches. Software maintains instruction cache coherency; bits in the instruction cache flag
whether a cache block is valid. Hardware maintains four-state data cache coherency
(MESI). The processor also supports secondary data cache. Software can disable, lock,
and parity-check caches.

DRAMDRAM ROM BUFFERS

RAM104 PM604 MPU/DRAM MODULE

PowerPC
604

MPC105
PCI

BRIDGE

32-BIT PCI LOCAL BUS

PCI
EXPANSION

PMC SLOT

VME2PCI

VME
VMEchip2

SCSI
NCR-53C825

ETHERNET
DECchip

21040

VGA
CL-GD5434

VIDEO
RAM

ISA
BRIDGE

RTC/
NVRAM

MOUSE

PARALLEL
I/O

FLOPPY DISK
CONTROLLER
(NOT USED)

KEYBOARD

SERIAL

MVME1600-001/011 BASE BOARD



Power Hawk 610 Hardware Environment

5-3

Memory 5

The Power Hawk 610 uses 32-bit addresses for up to four gigabytes of virtual address
space.

Figure 5-1 depicts both the memory provided on the processor card and on an additional
DRAM daughter card. Each location can contain up to 64 MB of dynamic memory for a
total capacity of 128 MB.

Power Hawk DRAM has a non-burst access time of eight 66 Mhz cycles or about 120
nanoseconds. This memory provides no parity or Error Correction (ECC) capability.

Buses 5

The Power Hawk 610 has two main busses: theprocessor bus and the 32-bitPCI bus.

Theprocessor bus, a dedicated high-performance bus, resides on the processor mezzanine
board. This is supplemented by an industry-standardPCI bus, which is the main bus
connecting the ISA bus and devices, SCSI, Ethernet, and VME interfaces to the processor.

The local ISA bus communicates with the serial and parallel ports, NVRAM, and the
Real-time Clock module; customers cannot access it.

A two-chip set supports theVMEbus; the VME2PCI and the VMEchip2. The VME2PCI
bridge interfaces between the PCI bus and a 68040 local bus. The VMEchip2 provides the
interface between the 68040 local bus and the industry-standard VMEbus. The 68040
local bus exists only as an intermediary between the PCI and VME busses; customers can-
not access it. The VMEbus provides A32 addressing and D64 data transfers, supporting
any third-party controller that can access its addresses.

Timers 5

Several sources provide timers:

• The Intel 82378 ISA Bridge chip contains an interruptible timer providing
the 60 Hz clock interrupt

• The Z8536 multipurpose chip connected to the 82378 contains three 16-bit
timers providing real-time clocks

• The VMEchip2 VMEbus interface chip contains two 32-bit timers provid-
ing real-time clocks.

Interrupts 5

Registers on the ISA Bridge chip provide interrupt priority control. The processor card
routes all interrupts to this chip, which resolves them into one of 16 levels and can



Device Driver Programming

5-4

individually enable and disable them. It sends the resultant interrupt through the MPC105
Bridge chip to the PowerPC 604 processor.

The VMEchip2 initially handles VMEbus interrupts, and can individually enable and
disable them. The chip routes them through the PCI bus to the ISA Bridge chip, which
resolves the interrupts into one of sixteen levels.

Data Types 5

The Power Hawk 610 system supports the following data types:

• Byte (8 bits)

• Half-Word (16 bits)

• Word (32 bits)

• Doubleword (64 bits)

The Power Hawk 610 is a 64-bit machine, but this manual uses the termword for sixteen
bits andlongword for 32 bits to remain compatible with other industry-standard systems.

Byte-Ordering and Alignment 5

The Power Hawk 610 orders bytes according to theBig Endianconvention, in which the
most significant byte (MSB) always has the lowest address. This provides consistent
addressing independent of the machine word size, as Figure 5-2.depicts (Note that the bit
ordering depicted (with bit 31 most significant) applies to I/O addressing. The bit ordering
of the PowerPC 604 is the opposite (with bit 0 most significant). Byte ordering for both
I/O and the PowerPC 604 is the same.)

During I/O transfers, the system expects the addresses of all words to be even addresses—
that is, zero, two, four, six, eight, and so on. Similarly, the system expects that all long-
word addresses are divisible by four—that is zero, four, eight, twelve, and so on. Finally,
the system expects all double-longword addresses to be divisible by eight—that is, zero,
eight, sixteen, and so on.

NOTE

Starting an I/O transfer using non-aligned data types in a driver
program causes a fatal exception error on the Power Hawk 610. In
other words, the hardware cannot recover from alignment errors.



Power Hawk 610 Hardware Environment

5-5

Figure 5-2.  Big Endian Bit and Byte Notation

VME Addressing 5

This section describes the characteristics of data transfers on the VME bus. Doing so aids
in building device addresses and understanding the error detection and recovery feature of
the VMEbus.

Transfer Width Support 5

For all non-block mode transfers, VME supports byte, word and long-word addresses. It
supports byte addresses on even and odd addresses. It supports word addresses (16-bit) on
even addresses. It supports longword transfers on longword addresses.

VME Block Mode Transfers (BMT) only support longword addresses.

Address Types 5

Bus masters on the VME I/O bus can use different types of addresses dynamically:
short(16 bit-address), standard(24-bit addresses), orextended (32-bit addresses).

The source of the addresses can either reside on the local VME bus or come from the
processor acting as bus master.

Short address accesses come from sources local to the VME I/O bus on which they
originate. Standard addresses can access either system memory (below 12MB) or memory
local to the VME bus. Extended addresses access all of system memory.

LOW
ADDRESS

HIGHER
ADDRESS

LOW ADDRESS = MSB

MSB LSB

7 0

15

16232431

0

07

8 7

815

MSB LSB



Device Driver Programming

5-6

Address Modifiers 5

For each data transfer on the VME bus, the bus master (either a processor or an I/O device)
must identify the characteristics of the data transfer by sending a special six-bit code along
with the transfer. This code is called anaddress modifier. For each different type of data
transfer there is one unique address modifier value to be used. The address modifier
specifies:

• Address type (short, standard, extended)

• Access method (single location or multiple locations)

• Data access privilege (supervisory or non-privileged).

If the transfer originates with the processor, the VME I/O interface generates the
appropriate address modifier. If the device initiates the transfer, the device controller
generates the address modifier. In some devices, the address modifier is hard-wired into
the device controller; in others, jumpers or switches on the device set it. Alternatively,
some devices have programmable address modifiers. Refer to the installation manual that
accompanies the device for the procedure to configure the address modifier.

The VMEbus standard specification contains additional information on address modifiers.

VME Address Ranges 5

This section details the address ranges VME devices use on the VME primary I/O bus as
bus masters or slaves.

Unlike the PowerMAXION (Night Hawk), Power Hawk 610 processor and VME
addresses differ. The various busses and bridge chips between the processor and the VME-
bus map and translate the addresses, as this section describes.

VME Devices as VME Bus Slaves 5

When a processor acts as bus master on the VME bus and addresses VME devices on the
VME I/O bus, the VME devices are slave devices. The combination of the Power Hawk
610 and PowerMAX OS provides a highly configurable addressing arrangement for VME
slave accesses. Processor addresses from 0xC1000000 to 0xF0000000 in 64 Kb sections
can map to VME addresses above 0x80000000 with some exceptions and limitations.

The Motorola documentMVME1604 Single Board Computer Programmer’s Reference
Guideprovides more details on the hardware map registers.config(1m) explains
details on configuring VME mappings via the PowerMAX OS.

Table 5-1: shows the address ranges for VME slave accesses.



Power Hawk 610 Hardware Environment

5-7

VME Devices as Bus Masters 5

When a VME device addresses memory (or other VME sources), the VME device is the
bus master.

Table 5-2 shows the address ranges for VME bus master accesses.

Bus Time-Out 5

The VME bus measures with a bus timer the duration of data transfers accessing slave
devices. If a data transfer malfunctions, the bus timer detects the malfunction and
generates a bus time-out, preventing a dead VME slave from hanging the I/O channel.

After a device applies an address to the bus and asserts the address strobe (AS*) and data
strobe (DS*) signals, the VME device addressed must assert the data transfer
acknowledge (DTACK*) signal within 64 microseconds to respond by asserting data
transfer acknowledge (DTACK*). If it does not assert the DTACK* signal in a timely
manner, the VME bus controller asserts bus error (BERR*) and generates a system fault.

Data transfer malfunctions on the bus occur for the following reasons:

• Invalid address

• Invalid address modifier

Table 5-1.  VME Bus Slave Access

Address Type Processor Address VME Address

A32 0xC1010000-
0xE0BFFFFF

0xE0010000-
0xFFBFFFFF

A24 0xE0C00000-
0xE0F3FFFF

0xFFC00000-
0xFFF3FFFF

A16 0xC1000000-
0xC100FFFF

0xFFFF0000-
0xFFFFFFFF

Table 5-2.  VME Bus Master Access

Transfer Type Address Range Address Type Address Modifier

single 00000000-7FFFFFFF A32 09, 0A, 0D, 0E

block 00000000-7FFFFFFF A32 0B, 0F

block-D64 00000000-7FFFFFFF A32 08,0C

block XX000000-XXBFFFFF A24 39, 3A, 3D, 3E

block-D64 XX000000-XXBFFFFF A24 38,3C

single XX000000-XXBFFFFF A24 39, 3A, 3D, 3E



Device Driver Programming

5-8

• Invalid transfer

• Nonexistent device addressed

• Device correctly addressed but malfunctioning

The kernel tries to recognize VME bus errors and determines their cause. The most
common response by the kernel is to panic the system. A panic halts the system so that the
administrator can fix a malfunctioning board or device, or take some other corrective
action.

An alternative system service,iobus_err(2) , can handle some types of VME bus
errors without panicking the system. This service supports environments in which
panicking the system is an undesirable response to bus errors, such as real-time or
production mode. See Chapter 16, “Special Considerations” for more information.,
Device Drivers and VME Bus Errors and theiobus_err(2) man page for details on
this service.

VME Device Address Assignment and Configuration 5

The Motorola MVME1604 Architecture Manualdocuments the range of addresses
reserved within the system memory map for I/O purposes.

Jumpers, switches, or programmable assemblies (Programmable Read Only Memory
(PROM) orProgrammable Array Logic (PAL)) normally set VME device addresses:

• If set by jumpers or switches, refer to the device installation manual for
selecting the proper valid address and address modifier.

• If set by programmable assembly, and if either the address falls outside
valid VME address space or generates the wrong VME address modifier,
then the device vendor must build a programmable assembly for a suitable
address.

NOTE

Installing components not specified or marketed by the device
vendor might void the warranty. Patent and copyrights that apply
to the device also cover programmable assemblies, which require
written permission from the vendor to modify or copy. (License
fees might accompany such permission.) With such permission,
Concurrent Computer Corporation can provide PALs to address
third-party devices. A different -90x number for each valid
address on the top-level assembly number identifies PALs
supplied by Concurrent Computer Corporation.



Power Hawk 610 Hardware Environment

5-9

Bus Arbitration 5

Busses that support multiple bus masters must provide a means of resolving the contention
of concurrent requests for bus mastership by multiple devices. This is the purpose of a
special unit on the VME bus, the VME bus arbiter.

Bus arbitration is important only for devices that can act as bus masters. Device
specifications indicate this ability as either “bus master” or “DMA Operation.” Because
bus arbitration depends on implementation, the following sections explain arbitration on
the Power Hawk 610.

Bus Request Levels 5

The VMEbus specification defines extensive bus arbitration options implemented by the
following signals:

• Bus request level BR0

• Bus grant BG0 (BG0IN, BG0OUT)

• Bus busy (BBSY) signal.

Each slot has a BR0xxsignal (wherexx refers to the slot number) driven to the bus arbiter.
The bus arbiter directly drives a BG0xx signal (wherexx refers to the slot number) to the
appropriate slot. This eliminates the latency of daisy chaining the bus grants and can also
configure specific slots for round-robin arbitration. All slots receive the BBSY signal,
when appropriate.

Devices on the VME bus become the bus master by asserting bus request and receiving
bus grant. The new bus master asserts the bus busy (BBSY) signal until relinquishing the
bus. During this time, only it can generate bus addresses.

NOTE

The VMEbus specification defines an optional bus clear (BCLR)
signal for the present master to relinquish the bus. Power Hawk
610 VME does not implement this optional signal.

The Power Hawk 610 VME bus implementation of the VMEbus standard supports all four
bus request levels (for boards that cannot be configured to BR0/BG0) although BR0/BG0
is recommended whenever possible.

The Power Hawk 610 provides the following options for configuring the bus arbitration:

1. Straight priority

2. Round robin

3. CPU Release on Request.



Device Driver Programming

5-10

A system can use more than one of these options. By default, the system uses the straight
slot priority scheme, wherein thelowest numbered slot not occupied by a processor board
has thehighest priority.

A configuration register in the VME interface module defines the bus arbitration schemes.
The processor can read from or write to this register.

Interrupt Request Levels and Priorities 5

In the Power Hawk 610 interrupts come from both processors or other hardware devices
external to or attached to the processors and software. Sources of hardware interrupts
include:

• Device controllers on the PCI or VME I/O busses

• Powerfail

• 60 Hz clock

• Timers

• Real-time clocks

• Console processor

• Port controllers (serial or parallel.)

Sources of software interrupts include:

• Inter-processor requests

• Softclock

• Context switches.

Interrupt Lines (Levels) 5

On the VME I/O bus,interrupt linesare the bus lines carrying the interrupt signal from
interrupt requester to processor. The VME chassis supports 7 interrupt levels, labeled
IRQ1-7* on the I/O bus.

VME interrupt request lines map to the Power Hawk 610’s interrupt levels, but are not the
only source of interrupts in the system.

Hardware hierarchically and statically sets Interrupt priorities. The hardware interrupt
priority determines the relative urgency of servicing the event within the overall system.
For each interrupt level, the device on the highest interrupt level with the lowest slot
number has the highest priority.

The operating system assigns internal priorities to interrupt levels.



Power Hawk 610 Hardware Environment

5-11

If two interrupt requests with the same interrupt level occur simultaneously on the VME
I/O bus, the system resolves the contention by applying the following rules:

1. In devices sharing the same interrupt level on the same I/O bus, the device
with thelowest slot number has the highest priority.

2. In interrupt levels on the same I/O bus, the device connected to level7 has
thehighest priority down to level 1, which has thelowest priority.

3. In all interrupt sources in the system, hardware determines the interrupt
priority of the device by its mapping to the Power Hawk 610 interrupt
levels.

NOTE

For system speed and proper device operation, increase the prior-
ity of devices needing a quick response to interrupts. Decrease the
priority of devices that tolerate longer interrupt latencies; devices
whose interrupts can wait longer before service.

Interrupt Vector Generation and Configuration 5

In hardware, the interrupt process functions as follows:

1. On the VME I/O bus, the interrupt requester requests an interrupt by
driving one of the interrupt request lines (IRQ1* to IRQ7* on the bus)
active low. An interrupt controller that monitors all request lines detects
this.

2. The CPU to which the interrupt controller directed the request generates an
interrupt acknowledge, which the controller returns to the VME device.

3. If necessary, the VME device requests mastership of the bus via arbitration.

4. Once it gains mastership, the system controller generates an interrupt
acknowledge cycle by driving the IACK* signal active low and placing the
winning interrupt level request on the address lines A03 to A01. (The
controller resolved any contention between the interrupt levels.)

5. By a daisy-chain acknowledgment scheme wherein the IACK* signal
propagates via an IACKIN/IACKOUT* signal chain through all I/O bus
s lo ts , the lowest s lo t number rece ives the in ter rupt request
acknowledgment signal IACK* first. The falling edge of the active low on
the IACK* signal validates the data on address lines A03 to A01.

6. Upon detecting its interrupt level code on line A01-A03 on the falling edge
of IACK* low, the interrupt requester identifies itself by placing an
implementation-dependent 8- or 16-bit code on the data lines. The VME-
bus standard calls this the STATUS/ID information code. (The HVME
implementation of the VMEbus standard uses the 8-bit version of the
STATUS/ID information code.)



Device Driver Programming

5-12

7. When the interrupt handler on the (H)VME bus forwards an interrupt
acknowledge to a processor, the low-level portion of the operating system
interrupt subsystem reads the code to index one of 256 addresses of
interrupt-handling routines. This one-byte code, contained by the VME
device, is aninterrupt vector.

Several ways exist to set the interrupt vector:

• jumpers or switches

• programmable hardware assemblies (PROMs or PALs)

• slave or master programmed registers

8. Chapter 10 provides procedures to either modify the kernel interrupt vector
table or dynamically allocate interrupt vectors:

• If hardware settings determine the interrupt vector (preset), then
recon figu re the in te r rup t vec to r by mod i fy ing the
/etc/conf/cf.d/ivt.s  file and rebuilding the kernel.

• If slave or master register programming determines the interrupt
vector, then the kernel interrupt vector table can dynamically allocate
and assign the interrupt vector to the device during bootstrap.

VME to PCI Address Decode 5

PCI address decode register values represent the upper 16 bits of the address (i.e., 64Kb of
address space). The processor uses the first 16 bytes of A16 I/O space which the user can-
not map (such as Address 0xc1000000). Although the following mapping claims A16
space starts at 0xc1000000, the available space starts at 0xc1000010.

The VME2PCI decodes addresses as follows:

Table 5-3.  VME to PCI Address Decode Register

Address
Type

Processor
Address

PCI Address
VMEchip2/

VME
Decode Register

A16 0xC1000000-
0xC100FFFFF

0x01000000-
0x0100FFFF

0xFFFF0000-
0xFFFFFFFF

star t1 0x0100
end1 0x0100
offset1 0xFEFF

A32 0xC1010000-
0xE0BFFFFF

0x01010000-
0x20BFFFFF

0xE0010000-
0xFFBFFFFF

start2    0x1001

A24 0xE0C00000-
0xE0FEFFFF

0x20C00000-
0x20FEFFFF

0xFFC00000-
0xFFFEFFFF end2 0x20FE

offset2 0xDF00



6
PowerMAXION Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 6-8

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11



Device Driver Programming



6-1

6
Chapter 6PowerMAXION Hardware Environment

6
6
6

This chapter provides hardware-specific information useful in developing device drivers
for PowerMAXION computer systems.This chapter also explains how hardware configu-
ration affects I/O function and performance.

Some hardware information applies to every driver—for instance, I/O error handling
(affects power failure, alignment errors, controller errors, and bus hangs.) Some informa-
tion differs according to the technique by which the device driver communicates with the
processor—for example, programmed I/O, interrupts, and direct memory access (DMA).
Other information relates as much to software as hardware, such as addressing, byte order-
ing and alignment, word sizes, and configuring arbitration levels and assigning arbitration
priorities.

Communicating with devices via interrupts also poses questions about sharing and config-
uring interrupt levels to ensure adequate performance levels. Finally, other questions arise
when communicating with devices via DMA—for example, cache coherency, buffering
and addressing.

The first part of this chapter introduces the main architectural features of the platform in
terms of its system and I/O architecture: processors, memory and I/O expansion and con-
figuration. The second part examines hardware issues more closely including physical
addressing, I/O bus timeout, configuring I/O interrupt request levels and associated priori-
ties, and assigning interrupt vectors.

System Overview 6

PowerMAXION systems are multiprocessor, real-time, super-microcomputers. They use
Symmetric SuperscalarTM Reduced Instruction Set Computer (RISC)microprocessors
from IBM/Motorola, the PowerPC 604.

Processor Board 6

Figure 6-1 gives an overview of the main architectural features of the PowerMAXION
processor board. The PowerMAXION computer system can contain up to eight processor
boards. A processor board hosts one processor, secondary cache, local memory module
board, I/O interface, timers, real-time clocks, UART, and so on.

The processor clock speed is either 150 or 200 MHz and is capable of executing four
instructions per cycle. The processor data bus is 64-bit wide to accommodate two-32 bit
instructions per cycle.



Device Driver Programming

6-2

Figure 6-1.  Elements of a PowerMAXION Processor Board

Caches 6

There are separate 16-Kbyte, four-way set-associative instruction and data caches. Instruc-
tion cache coherency is maintained in the software; bits in the instruction cache indicate
whether a cache block is valid or not. Four-state data cache coherency (MESI) is main-

CIO

Interface

Error
Add Reg

TOC PROM UART
Interval

Timer

Health

Register
EPROM

RTC
Diagnostic
Control

CPU

Register

Error

Register
ID ID

PCI Interface VME64

VME64

Frontplane
Interface

System
Frontplane

Global
Memory

25MHz Local Bus

Local Bus
Control Local Memory

Dynamic

PowerPC
604

50MHz Processor Bus Secondary
    Cache

FLASH

Local Memory
Diagnostic
Control

Clock

Ethernet

Interrupt
Controller

SCSI

 Interface

Backplane
PCI Bus

VME64 Bus System Bus

System Bus

Generation

Console Bus



PowerMAXION Hardware Environment

6-3

tained in the hardware. Secondary data cache support is provided. Caches can be disabled
in software. They can also be locked and parity checked.

Refer to thePowerMAXION Architecture Manualfor additional details on the processor
board.

Memory 6

The PowerMAXION system uses 32-bit addresses for up to four gigabytes of virtual
address space.

As shown in Figure 6-1, the processor has cached access to local memory. The processor
memory bus rate of 50MHz provides the bandwidth required by the processor.

Local memory resides on the processor daughter card and can be either 32MB or 64MB.

The PowerMAXION memory architecture also supports anError Detection and Correc-
tion (EDAC) mechanism. This mechanism detects and recovers from single-bit errors
automatically. However, multiple-bit errors are inherently unrecoverable. When a multi-
ple-bit error is detected, the processor that initialized the reference receives a precise
exception. Consequently, the operating system panics and halts the system.

Buses 6

There are two main buses on the PowerMAXION: theprocessor bus and thelocal bus.

Theprocessor busis a dedicated high-performance bus on the processor board. This is
supplemented by alocal busthat is the main bus connecting the PCI, frontplane, and
VME64 interfaces to the processors.

VMEbus support is provided, etc???

Data Types 6

The PowerMAXION supports the following data types:

• Byte (8 bits)

• Half-Word (16 bits)

• Word (32 bits)

• Doubleword (64 bits)

The PowerMAXION computer system is a 64-bit machine, but in order to remain compat-
ible with other industry standard systems, the use of the nomenclatureword for sixteen
bits andlongword for 32 bits has been retained for the purposes of this manual.



Device Driver Programming

6-4

Byte-Ordering and Alignment 6

The byte-ordering convention used in the PowerMAXION platform isBig Endian. In this
model, the most significant byte (MSB) always has the lowest address. This provides a
consistency of addressing which is independent of the word size of the machine. This is
shown in Figure 6-2. (Note that the depicted bit ordering (with bit 31 most significant) is
applicable to I/O addressing. The bit ordering of the PowerPC 604 is the opposite (with bit
0 most significant). Byte ordering for both I/O and the PowerPC 604 is the same.)

During I/O transfers, the system expects the addresses of all words to be even addresses—
that is, zero, two, four, six, eight, and so on. Similarly, the system expects that all long-
word addresses are divisible by four—that is zero, four, eight, twelve, and so on. Finally,
the system expects all double-longword addresses to be divisible by eight—that is, zero,
eight, sixteen, and so on.

NOTE

Attempting an I/O transfer using non-aligned data types in a
driver program causes a fatal exception error on any PowerMAX-
ION platform. In other words, alignment errors are not recover-
able in hardware.

Figure 6-2.  Big Endian Bit and Byte Notation

VME Addressing 6

The main objective of this section is to help comprehend the characteristics of data trans-
fers on the VME bus. Understanding these characteristics aids in building device
addresses and understanding the error detection and recovery feature of the VMEbus.

LOW
ADDRESS

HIGHER
ADDRESS

LOW ADDRESS = MSB

MSB LSB

7 0

15

16232431

0

07

8 7

815

MSB LSB



PowerMAXION Hardware Environment

6-5

Transfer Width Support 6

For all non-block mode transfers, byte, word and long-word addresses are supported. Byte
addresses are supported on even and odd addresses. Word addresses (16-bit) are supported
on even addresses. Longword transfers are supported on longword addresses. Only long-
word transfers are supported using VME Block Mode Transfers (BMT).

Address Types 6

Bus masters on the VME I/O bus can use different types of addresses dynamically:
short(16 bit-address), standard(24-bit addresses), orextended (32-bit addresses).

The source of the addresses can either be local to the VME bus or come from the proces-
sor acting as bus master.

Short address accesses are local to the VME I/O bus on which they originate. Standard
addresses access either system memory (below 12MB) or memory local to the VME bus.
Extended addresses access all of system memory.

Address Modifiers 6

For each data transfer on the VME bus, the bus master (either a processor or an I/O device)
must identify the characteristics of the data transfer by sending a special six-bit code along
with the transfer. This code is called anaddress modifier. For each different type of data
transfer there is one unique address modifier value to be used. The address modifier speci-
fies the address type (short, standard, extended), the access method (a single location or a
series of locations), and the data access privilege (supervisory or non-privileged).

If the transfer originates with the processor, the VME I/O interface generates the appropri-
ate address modifier. If the device initiates the transfer, the device controller generates the
address modifier. Sometimes the address modifier is hard-wired into the device controller;
other times it can be selected via jumpers or switches on the device. Alternatively, some
devices use programmable address modifiers. Refer to the device Installation manual for
the proper setting of the address modifier when it is configurable.

For additional information on address modifiers, refer to thePowerMAXION Architecture
Manual.

VME Address Ranges 6

The following sections explain the address ranges used by VME devices on the VME I/O
bus when they are bus masters or bus slaves.



Device Driver Programming

6-6

VME Devices as VME Bus Slaves 6

When a processor acts as bus master on the VME bus and addresses VME devices on the
VME I/O bus, the VME device is a slave device.

The address ranges for VME slave accesses are shown in Table 6-1:

VME Devices as Bus Masters 6

When a VME device addresses memory (or other VME sources), the VME device is the
bus master.

The address ranges for VME bus master accesses are shown in Table 6-2

Table 6-1.  VME Bus Slave Access

Address
Type

Address Modifier Address Range

A32 0x09 0xE0000000-
0xFEFFFFFF

A24 0x39 0xFFC00000-
0xFFFEFFFF

A16 0x2D 0xFFFF0000-
0xFFFFFFFF

Table 6-2.  VME Bus Master Access

Transfer Type Address Range Address Type Address Modifier

single 00000000-0FFFFFFF A32 09, 0A, 0D, 0E

block 00000000-0FFFFFFF A32 0B, 0F

block 00000000-0FFFFFFF A32 08,0F

single, slot 1
40000000-47FFFFFF

A32 09, 0A, 0D, 0E

block slot 1
40000000-47FFFFFF

A32 0B, 0F, 08, 0C

single slot 2
48000000-4FFFFFFF

A32 09, 0A, 0D, 0E

block slot 2
48000000-4FFFFFFF

A32 0B, 0F, 08, 0C



PowerMAXION Hardware Environment

6-7

Bus Time-Out 6

For each data transfer accessing a slave device, the VME bus provides a bus timer which
measures the duration of the transfer. If the data transfer malfunctions, the bus timer unit
detects the condition and generates a bus time-out to avoid having a dead VME slave hang
the I/O channel.

Here are some details on the bus timeout mechanism. After an address is applied to the bus
and the address strobe (AS*) and data strobe (DS*) signals are asserted, a VME device has
51.2 microseconds to respond by asserting data transfer acknowledge (DTACK*). If this
timing is not met, the VME bus controller asserts bus error (BERR*) and generates a sys-
tem fault.

single slot 3
50000000-57FFFFFF

A32 09, 0A, 0D, 0E

block slot 3
50000000-57FFFFFF

A32 0B, 0F, 08, 0C

single slot 4
58000000-5FFFFFFF

A32 09, 0A, 0D, 0E

block slot 4
58000000-5FFFFFFF

A32 0B, 0F, 08, 0C

single slot 5
60000000-67FFFFFF

A32 09, 0A, 0D, 0E

block slot 5
60000000-67FFFFFF

A32 0B, 0F, 08, 0C

single slot 6
68000000-6FFFFFFF

A32 09, 0A, 0D, 0E

block slot 6
68000000-6FFFFFFF

A32 0B, 0F, 08, 0C

single slot 7
70000000-77FFFFFF

A32 09, 0A, 0D, 0E

block slot 7
70000000-77FFFFFF

A32 0B, 0F, 08, 0C

single slot 8
78000000-7FFFFFFF

A32 09, 0A, 0D, 0E

block slot 8
78000000-7FFFFFFF

A32 0B, 0F, 08, 0C

block XX000000-XXBFFFFF A24 39, 3A, 3D, 3E

block XX000000-XXBFFFFF A24 38,3C

single XX000000-XXBFFFFF A24 39, 3A, 3D, 3E

Table 6-2.  VME Bus Master Access  (Cont.)

Transfer Type Address Range Address Type Address Modifier



Device Driver Programming

6-8

A data transfer malfunction occurs when using an invalid address, address modifier, or
transfer on the bus. Another possibility is that the device being addressed does not exist or
malfunctions.

The kernel normally recognizes VME bus errors and determines, to some extent, the rea-
son for the error. In most cases, the next action taken by the kernel is to panic the system.
A panic allows for a fix to be made to a board or device, or for some other action to be
taken. However, in some cases, such as a particular real-time or production mode environ-
ment, panicking the system might not be the most desirable way to handle the bus error.

The iobus_err(2) system service can provide an alternative method for handling
some types of VME bus errors, without panicking the system. See Chapter 16, “Special
Considerations” for more information., Device Drivers and VME Bus Errors and the
iobus_err(2)  man page for more details on this feature.

VME Device Address Assignment and Configuration 6

The range of addresses reserved within the system memory map for I/O purposes is
documented in thePowerMAXION Architecture Manual.

On some devices, the address selection is arbitrary and can be changed by re-jumpering
the device to suit a specific configuration. See the installation manuals for information on
specific devices.

VME device addresses are normally configured with jumpers, switches, or a programma-
ble assembly—that is, aProgrammable Read Only Memory(PROM) orProgrammable
Array Logic (PAL).

In the case of the devices with jumpers or switches, refer to the device installation manual
for selecting the proper valid address and address modifier.

In the case of the devices configured with a programmable assembly, if the address does
not fall in valid VME address space or generates the wrong VME address modifier, then
the vendor of the device must be contacted to build a programmable assembly for a suit-
able address.

NOTE

Programmable assemblies are normally covered by the patent and
copyrights that apply to the device being addressed and, as such,
cannot be modified or copied without permission from the vendor.
Also vendor warranties can be voided by installing components
that are not specified or sold by the vendor. With written permis-
sion from the vendor, Concurrent Computer Corporation can pro-
vide a programmable assembly for addressing a third-party
device. Concurrent Computer Corporation-supplied products with
programmed addresses are identified by a different -90x number
for each valid address on the top-level assembly number for the
vendor devices. Note that this permission might be accompanied
by license fees.



PowerMAXION Hardware Environment

6-9

Bus Arbitration 6

Because a bus provides the capability to support multiple bus masters, a means of resolv-
ing the contention of concurrent requests for bus mastership by multiple devices must be
provided. This is the purpose of a special unit on the VME bus, the VME bus arbiter.

Bus arbitration is important only for devices that can act as bus masters. This is indicated
in a device specification as either “bus master” or “DMA Operation.” Because bus arbitra-
tion is implementation-dependent, the following explains what you need to know about
arbitration on the PowerMAXION platform.

Bus Request Levels 6

The VMEbus specification defines extensive bus arbitration options. The options are
implemented using four bus request levels and a bus busy (BBSY) signal.

A device on the VME bus becomes the bus master by asserting bus request and receiving
bus grant. The new bus master then asserts the bus busy (BBSY) signal until it is ready to
relinquish the bus. During this time, the device is the only one allowed to generate bus
addresses until it releases the bus.

NOTE

The VMEbus specification also defines an optional bus clear
(BCLR) signal that is meant to indicate explicitly that the present
master should relinquish the bus. PowerMAXION VME does not
implement this optional signal.

The PowerMAXION computer system provides four options for configuring the bus arbi-
tration: (1) straight priority, (2) round robin, and (3) CPU Release on Request. Combina-
tions of these options are allowed. By default, the system uses the straight slot priority
scheme, whereby thelowest numbered slot that is not occupied by a processor board has
thehighest priority.

The bus arbitration schemes are defined by a configuration register that resides within the
VME interface module. This register can be read or written from the processor.

Refer to theVME bus Specificationfor more information regarding the bus arbitration
scheme.

Interrupt Request Levels and Priorities 6

In the PowerMAXION interrupt architecture, interrupt sources are hardware devices
external to processors, one of the processors or devices attached to the processor, and
software. Possible hardware interrupt sources are device controllers on the I/O bus or the



Device Driver Programming

6-10

powerfail, 60 Hz clock, timers, real-time clocks, the console processor, serial or parallel
port controllers, and so on. Software interrupt sources include inter-processor interrupts,
the softclock interrupt, and context switch interrupts.

Interrupt Lines (Levels) 6

On the VME I/O bus, the bus lines carrying the interrupt signal from an interrupt requester
to a processor are calledinterrupt lines. The VME chassis supports 7 interrupt levels. On
the I/O bus, these are labeled IRQ1-7*.

VME interrupt request lines are only one source of interrupts in the system. VME inter-
rupt request lines are mapped to the PowerMAXION system’s interrupt levels. For addi-
tional details and a list of priority levels and the mapping of interrupt sources to these lev-
els, refer to thePowerMAXION Architecture Manual.

Following are some additional characteristics of the PowerMAXION interrupt levels.

The hardware interrupt priority determines the relative urgency of servicing the event
within the overall system.

Interrupt priorities are set hierarchically and statically in hardware. For each interrupt
level, the device on the highest interrupt level with the lowest slot number has the highest
priority.

If two interrupt requests occur on the same interrupt level simultaneously on the VME I/O
bus, the system resolves the contention as follows:

1. Among devices sharing the same interrupt level on the same I/O bus, the
device with thelowest slot number has the highest priority.

2. Among interrupt levels on the same I/O bus, the device connected to level7
has thehighest priority down to level 1, which has thelowest priority.

3. Among all interrupt sources in the system, the interrupt priority of the
device is predetermined in hardware by its mapping to the PowerMAXION
interrupt levels.

NOTE

For system performance and proper device operation, if a device
is time-critical in that it expects response to an interrupt to be
quick, it should be moved to a higher priority. Devices that can
tolerate longer interrupt latencies—that is, devices whose inter-
rupts can wait for a longer time before being serviced—should be
assigned to a lower priority.



PowerMAXION Hardware Environment

6-11

Interrupt Vector Generation and Configuration 6

In hardware, the interrupt process functions as follows. On the VME I/O bus, the interrupt
requester requests an interrupt by driving one of the interrupt request lines (IRQ1* to
IRQ7* on the bus) active low. This is detected by an interrupt controller that monitors all
request lines. The interrupt acknowledge is generated by the CPU to which the request has
been directed to by the interrupt controller. The CPU receives the interrupt vector. The
CPU then performs a VME interrupt acknowledge read access of the VME interrupt
requester. The VME, in turn, requests mastership of the bus via arbitration.

Once it gains mastership, the VME system controller generates an interrupt acknowledge
cycle by driving the IACK* signal active low and placing the winning interrupt level
request on the address lines A03 to A01. By a daisy-chain acknowledgment scheme
whereby the IACK* signal is propagated to each device via an IACKIN/IACKOUT* sig-
nal chain through the slots on the I/O bus, the interrupt request acknowledgment signal
IACK* is received first by the interrupt requester in the lowest slot number. The falling
edge of the active low on the AS* signal validates the data on A03 to A01 address lines.

Upon detecting its interrupt level code on line A01-A03 on the falling edge of AS*, the
interrupt requester identifies itself by placing an implementation-dependent 8- or 16-bit
code on the data lines. This code is called STATUS/ID information in the VMEbus stan-
dard. The PowerMAXION VME implementation of the VMEbus standard uses the 8-bit
version of the STATUS/ID information. When the interrupt handler on the VME bus for-
wards an interrupt acknowledge to a processor, the low-level portion of the operating sys-
tem interrupt subsystem reads the code to index one of 256 addresses of interrupt-handling
routines. This code is aninterrupt vector.

The interrupt vector can be configured through a register programmed via slave or master
programming, jumpers or switches, or with programmed assembly hardware. The register,
jumpers, switches, or assembly hardware are on the VME device itself.

If the vector byte is programmed, then the interrupt vector can be dynamically allocated
from the kernel interrupt vector table and then assigned to the device during bootstrap via
programmed I/O. Otherwise, if the interrupt vector is hard-wired (preset) in hardware,
then the interrupt vector must be configured in the kernel by modifying the
/etc/conf/cf.d/ivt.s file and rebuilding the kernel. Information needed to dynam-
ically allocate interrupt vectors or modify the kernel interrupt vector table is provided in
Chapter 10.



Device Driver Programming

6-12



7
Power Hawk 620/640 Hardware Environment

System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Processor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

VME Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Transfer Width Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Address Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Address Modifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
VME Address Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

VME Devices as VME Bus Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
VME Devices as Bus Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Bus Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
VME Device Address Assignment and Configuration. . . . . . . . . . . . . . . . . . . . 7-10

Bus Arbitration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Bus Request Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11

Interrupt Request Levels and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Interrupt Lines (Levels)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11

Interrupt Vector Generation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
PCI Slave Address Decode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13



Device Driver Programming



7-1

7
Chapter 7Power Hawk 620/640 Hardware Environment

7
7
7

The objective of this chapter is to give some background information to address hardware
issues involved in developing a device driver for the Power Hawk 620/640 computer
systems. This chapter helps understand the effect that hardware configuration has on I/O
function and performance.

Some hardware issues are general in nature—for example, I/O error handling (power
failure, alignment errors, controller errors, bus hangs, and so on). Other issues can be
classified according to the type of processor interfacing technique used to communicate
with the device—that is programmed I/O, interrupts, direct memory access (DMA). There
are such issues as addressing, byte ordering and alignment, word sizes, and the
configuration of arbitration levels and the assignment of arbitration priorities. When
communicating with devices via interrupts, there are issues such as whether the interrupt
levels can be shared and configured to ensure adequate performance levels. Finally, other
issues arise when communicating with devices via DMA—for example, cache coherency,
buffering and addressing.

The first part of this chapter gives a brief overview of the main architectural features of the
platforms in terms of its system and I/O architecture: processors, memory and I/O
expansion and configuration, etc.

The second part examines hardware issues one by one including the physical addressing
on the platforms, I/O bus timeout, configuration of I/O interrupt request levels and
associated priorities, and the assignment of interrupt vectors.

System Overview 7

The Power Hawk 620 systems are uniprocessor, real-time, super-microcomputers. They
are based on the Symmetric SuperscalarTM Reduced Instruction Set Computer (RISC)
microprocessor from IBM/Motorola, the PowerPC 604e. The processor board is the
Motorola MVME 2604 Single Board Computer (SBC).

Figure 7-1 reviews some of the main elements of the Power Hawk 620 processor board.

The Power Hawk 640 systems are uniprocessor or dual processor, real-time, super-micro-
computers. They are also based on the Symmetric SuperscalarTM Reduced Instruction Set
Computer (RISC)microprocessor from IBM/Motorola, the PowerPC 604e. The processor
board is the Motorola MVME 4604 Single Board Computer (SBC).

Figure 7-2 reviews some of the main elements of the Power Hawk 640 system.



Device Driver Programming

7-2

Figure 7-1.  Elements of an Power Hawk 620 Processor Board

DRAM

FLASH

PowerPC
604

L2 Cache

33MHz 32/64-BIT PCI LOCAL BUS

Falcon

ISA SIO

MOUSE

PARALLEL
I/O

KEYBOARD

Async Serial604 System Bus

Falcon

Sys CSR
Raven

PS/2 Floppy

PMC
Slot 1

PMC/PCIX
Slot 2 VME SCSI Ethernet

Sync Serial

ISA Local Resource Bus

NVRAM

RTC

PIB ISA CSR



Power Hawk 620/640 Hardware Environment

7-3

Figure 7-2.  Power Hawk 640 System Block Diagram

Base Board

Clock
Generator

Debug Connector
Memory Expansion Connectors

(64MB - 1GB DRAM On Mezzanne)

L2 Cache

256K

MPC604

 Processor 0

 Processor 1

MPC604

ASIC

PHB and
MPIC

Flash PROM

1MB

Flash PROM

4MB or 8MB

DRAM
64MB

PCI Expansion

33MHz 32/64-Bit PCI Local Bus

33MHz 32/64-Bit PCI Local Bus

PCI Connector

Secondary
Ethernet

And SCSI

G
ra

ph
ic

s
F

lo
pp

y 
an

d 
LE

D
K

B
D

M
ou

se
P

M
C

 F
ro

nt
 I/

O
 S

lo
t

Fr
on

t P
an

el

64
-B

it 
P

M
C

 S
lo

t

Video
DRAM

Graphics

CL-GD54XX

ISA

Registers

PIB

W83C553

Super I/O

PC87308

Ethernet

DEC21140

SCSI

53C825A

VME Bridge

Universe

AUI/10BT/100BTX

RTC/NVRAM/WD

MK48T559

ESCC

85230

CIO
Z8536

712/761 P2 Options

VME P2 VME P1

Memory Controller
Falcon Chipset

System

Registers

66
M

H
z 

M
P

60
4 

P
ro

ce
ss

or
 B

us

33MHz 32/64-Bit PCI Local Bus

IS
A

 B
us

Buffers

Processor/Memory Mezzanine



Device Driver Programming

7-4

Processor Board 7

Figure 7-1 and Figure 7-2 give an overview of the main architectural features of the Power
Hawk 620/640 processor boards. The Power Hawk 620 processor board hosts a single
processor. The Power Hawk 640 hosts either a single processor or a dual processor. Both
the Power Hawk 620 and Power Hawk 640 contain various amounts of memory, an
optional L2 cache, I/O interface, various bridge chips, real-time clocks, UART, Ultra-
SCSI interface, etc.

The Power Hawk 620/640 processor cycle time is 5 nanoseconds (200 MHz) and is
capable of executing four instructions per cycle. The processor data bus is 64-bits wide to
accommodate two 32-bit instructions per cycle.

There are separate 16-KB, four-way set-associative instruction and data caches.
Instruction cache coherency is maintained in the software; bits in the instruction cache
indicate whether a cache block is valid or not. Four-state data cache coherency (MESI) is
maintained in the hardware. Secondary data cache support is provided. Caches can be
disabled in software. They can also be locked and parity checked.

Refer to either theMotorola MVME 2600 Architecture Manualor theMotorola MVME
4600 Architecture Manualfor additional details on the processor boards.

Memory 7

The Power Hawk 620/640 uses 32-bit addresses for up to 4 GB of virtual address space.

As shown in Figure 7-1 and Figure 7-2 the processor(s) has cached access to local
memory. The processor memory bus rate of 66.666MHz provides the bandwidth required
by the processors. Local memory resides on the processor daughter card and can be either
64MB or 128MB with ECC (Error Correction Capability).

The Power Hawk 620/640 memory architecture also supports anError Detection and
Correction(EDAC) mechanism. This mechanism detects and recovers from single-bit
errors automatically. However, multiple-bit errors are inherently unrecoverable. The
EDAC mechanism detects multiple-bit error(s) only upon the firstread access (of any size)
from a corrupted memory location. There is no error correction possible in this case. The
EDAC handles the error by raising a precise hardware exception to the processor which
initiated the access. Consequently, the operating system panics and halts the system.

Buses 7

There are two main busses on the Power Hawk 620/640: the processor bus and the 64-bit
PCI bus.

The processor bus is a dedicated high-performance bus on the processor mezzanine board.
This is supplemented by an industry-standard PCI bus, which is the main bus connecting
the ISA devices, and SCSI, VME, and network adapter interfaces to the processor.



Power Hawk 620/640 Hardware Environment

7-5

Another bus on the Power Hawk systems is the local ISA bus, which is used to
communicate with the serial and parallel ports, NVRAM, and the Real-time Clock
Module. There is no provision for customers to add devices to the ISA bus.

VMEbus support is provided by a Tundra Universe chip. This chip interfaces between the
PCI bus and the industry-standard VMEbus. The VMEbus provides A32 addressing and
D64 data transfers. Any third-party controller that can be strapped to addresses
appropriate to the Power Hawk VMEbus can be connected to it.

Timers 7

Timers are provided by three sources on the Power Hawk. The ISA Bridge chip, a
Winbond W83C553F, contains an interruptible timer. This is used to provide the 60 Hz
clock interrupt. The Z8536 multipurpose chip connected to the 82378 contains three 16-
bit timers used for real-time clocks. In addition, the Raven MPIC Interrupt Controller
provides four 32-bit timers for additional real-time clocks.

Interrupts 7

Interrupt control is provided by several devices. The main control center is the Raven
Multiprocessor Interrupt Controller (MPIC) chip located in the Processor-PCI bus bridge.
This controller implements the pseudo-standard MPIC capability defined for CHRP-
compliant systems. It accepts and routes interrupts from the W83C553F ISA Bridge
controller and the Tundra Universe VME Bridge Controller along with internally
generated interrupts. Individual priority control is provided by an Interrupt Priority
Register in the MPIC and by enabling/disabling each of the 16 ISA levels in the ISA
Bridge Controller.

Data Types 7

The Power Hawk supports the following data types:

• Byte (8 bits)

• Half-Word (16 bits)

• Word (32 bits)

• Doubleword (64 bits)

The Power Hawk 620/640 computer systems are 64-bit machines, but in order to remain
compatible with other industry standard systems, the use of the nomenclatureword for
sixteen bits andlongword for 32 bits has been retained.



Device Driver Programming

7-6

Byte-Ordering and Alignment 7

The byte-ordering convention used in the Power Hawk 620/640 platform isBig Endian. In
this model, the most significant byte (MSB) always has the lowest address. This provides a
consistency of addressing which is independent of the word size of the machine. See
Figure 7-3, “Big Endian Bit and Byte Notation” for more information. (Note that the
depicted bit ordering (with bit 31 most significant) is applicable to I/O addressing. The bit
ordering of the PowerPC 604 is the opposite (with bit 0 most significant). Byte ordering
for both I/O and the PowerPC 604 is the same.)

Byte ordering on the PCI bus is little endian. The various bridge chips provide appropriate
translation from one ordering to the other for VME bus drivers. However, drivers written
for PCI devices must be aware of the difference and modify device addresses accordingly.

During I/O transfers, the system expects the addresses of all words even addresses— that
is, zero, two, four, six, eight, and so on. Similarly, the system expects that all longword
addresses are divisible by four—that is zero, four, eight, twelve, and so on. Finally, the
system expects all double-longword addresses to be divisible by eight—that is, zero, eight,
sixteen, etc.

NOTE

Attempting an I/O transfer using non-aligned data types in a
driver program causes a fatal exception error on Power Hawk
620/640 platforms. In other words, alignment errors are not
recoverable in hardware.

Figure 7-3.  Big Endian Bit and Byte Notation

LOW
ADDRESS

HIGHER
ADDRESS

LOW ADDRESS = MSB

MSB LSB

7 0

15

16232431

0

07

8 7

815

MSB LSB



Power Hawk 620/640 Hardware Environment

7-7

VME Addressing 7

The main objective of this section is to help comprehend the characteristics of data
transfers on the VME bus. Understanding these characteristics aids in building device
addresses and understanding the error detection and recovery feature of the VMEbus.

Transfer Width Support 7

For all non-block mode transfers, byte, word and long-word addresses are supported. Byte
addresses are supported on even and odd addresses. Word addresses (16-bit) are supported
on even addresses. Longword transfers are supported on longword addresses Only long-
word transfers are supported using VME Block Mode Transfers (BMT).

Address Types 7

Bus masters on the VME I/O bus can use different types of addresses dynamically:short
(16 bit-address), standard(24-bit addresses), orextended (32-bit addresses).

The source of the addresses can either be local to the VME bus or come from the
processor acting as bus master.

Short address accesses are local to the VME I/O bus on which they originate. Standard
addresses access either system memory (below 12MB) or memory local to the VME bus.
Extended addresses access all of system memory.

Address Modifiers 7

For each data transfer on the VME bus, the bus master (either a processor or an I/O device)
must identify the characteristics of the data transfer by sending a special six-bit code along
with the transfer. This code is called anaddress modifier. For each different type of data
transfer there is one unique address modifier value to be used. The address modifier
specifies the address type (short, standard, extended), the access method (a single location
or a series of locations), and the data access privilege (supervisory or non-privileged).

If the transfer originates with the processor, the VME I/O interface generates the
appropriate address modifier. If the device initiates the transfer, the device controller
generates the address modifier. Sometimes the address modifier is hard-wired into the
device controller; other times it can be selected via jumpers or switches on the device.
Alternatively, some devices use programmable address modifiers. Refer to the device
Installation manual for the proper setting of the address modifier when it is configurable.

For additional information on address modifiers, refer to the VMEbus standard
specification.



Device Driver Programming

7-8

VME Address Ranges 7

The following text explains the address ranges used by VME devices on the (H)VME
primary I/O bus when they are bus masters or bus slaves. These ranges are detailed in the
sections that follow.

Unlike PowerMAXION (Night Hawk) systems, on Power Hawk systems the processor
address and VME address are not always the same. The various busses and bridge chips
between the processor and the VMEbus provide mappings and translations. These are
summarized below.

VME Devices as VME Bus Slaves 7

When a processor acts as bus master on the VME bus and addresses VME devices on the
VME I/O bus, the VME device is a slave device. The Power Hawk 620/640 systems
provide a highly configurable addressing arrangement for VME slave accesses. Any
processor address range from 0xA0000000 to 0xFB00000 can be mapped to the
corresponding VME address with minor exceptions. Mappings are done in 64KB sections.
This mapping is provided as part of the PowerMAX OS (operating system.)

Details on the hardware map registers are provided in either theMotorola MVME 2600
Single Board Computer Programmer’s Reference Guideor theMotorola MVME 4600
Single Board Computer Programmer’s Reference Guide. Details on the configuration of
the VME mappings in PowerMAX OS are explained in theconfig(1m) command. The
default address ranges for VME slave access are shown in Table 7-1. The A32 address
range can be altered with theconfig(1m)  command.

VME Devices as Bus Masters 7

When an VME device addresses memory (or other VME sources), the VME device is the
bus master. The address ranges for VME bus master accesses are shown in Table 7-2.

Table 7-1.  Default VME Bus Slave Access

Mode Processor VME Size

A32: Start

End

0xC0000000

0xFAFFFFFF

0xC0000000

0xFAFFFFFF

944MB

A24: Start

End

0xFCC00000

0xFCFEFFFF

0xFFC00000

0xFFFEFFFF

4MB-64KB

A16: Start

End

0xFCFF0000

0xFCFFFFFF

0xFFFF0000

0xFFFFFFFF

64KB



Power Hawk 620/640 Hardware Environment

7-9

Bus Time-Out 7

For each data transfer accessing a slave device, the VME bus provides a bus timer which
measures the duration of the transfer. If the data transfer malfunctions, the bus timer unit
detects the condition and generates a bus time-out to avoid having a dead VME slave hang
the I/O channel.

Here are some details on the bus timeout mechanism. After an address is applied to the bus
and the address strobe (AS*) signal is asserted, a VME device has 51.2 microseconds to
respond by asserting data transfer acknowledge (DTACK*). If this timing is not met, the
VME bus controller asserts bus error (BERR*) and generates a system fault.

A data transfer malfunction occurs when using an invalid address, address modifier, or
transfer on the bus. Another possibility is that the device being addressed does not exist or
malfunctions.

The kernel normally recognizes VME bus errors and determines, to some extent, the
reason for the error. In most cases, the next action taken by the kernel is to panic the
system. A panic allows for a fix to be made to a board or device, or for some other action
to be taken. However, in some cases, such as a particular real-time or production mode
environment, panicking the system might not be the most desirable way to handle the bus
error.

The iobus_err(2) system service can provide an alternative method for handling
some types of VME bus errors, without panicking the system. See Chapter 16, “Special

Table 7-2.  VME Bus Master Access

Address Type Address Transfer Type Address Modifier

A32: Start

End

00000000

7FFFFFFF

single 09, 0A, 0D, 0E

A32: Start

End

00000000

7FFFFFFF

block 0B, 0F

A32: Start

End

00000000

7FFFFFFF

block-D64 08, 0C

A24: Start

End

XX000000

XXBFFFFF

block 39, 3A, 3D, 3E

A24: Start

End

XX000000

XXBFFFFF

block-D64 38, 3C

A24: Start

End

XX000000

XXBFFFFF

single 39, 3A, 3D, 3E



Device Driver Programming

7-10

Considerations” for more information. Also refer to Device Drivers and VME Bus Errors
and theiobus_err(2)  man page for more details on this feature.

VME Device Address Assignment and Configuration 7

The range of addresses reserved within the system memory map for I/O purposes is
documented in either theMotorola MVME 2600 Programmer’s Reference Manualor the
Motorola MVME 4600 Programmer’s Reference Manual.

On some devices, the address selection is arbitrary and can be changed by re-jumpering
the device to suit a specific configuration. See the installation manuals for information on
specific devices.

VME device addresses are normally configured with jumpers, switches, or a
programmable assembly—that is, aProgrammable Read Only Memory(PROM) or
Programmable Array Logic (PAL).

In the case of the devices with jumpers or switches, refer to the device installation manual
for selecting the proper valid address and address modifier.

In the case of the devices configured with a programmable assembly, if the address does
not fall in valid VME address space or generates the wrong VME address modifier, then
the vendor of the device must be contacted to build a programmable assembly for a
suitable address.

NOTE

Programmable assemblies are normally covered by the patent and
copyrights that apply to the device being addressed and, as such,
cannot be modified or copied without permission from the vendor.
Also vendor warranties can be voided by installing components
that are not specified or sold by the vendor. With written
permission from the vendor, Concurrent Computer Corporation
can provide a programmable assembly for addressing a third-party
device. Concurrent Computer-suppl ied products with
programmed addresses are identified by a different -90x number
for each valid address on the top-level assembly number for the
vendor devices. Note that this permission might be accompanied
by license fees.

Bus Arbitration 7

Because a bus provides the capability to support multiple bus masters, a means of
resolving the contention of concurrent requests for bus mastership by multiple devices
must be provided. This is the purpose of a special unit on the VME bus, the VME bus
arbiter.



Power Hawk 620/640 Hardware Environment

7-11

Bus arbitration is important only for devices that can act as bus masters. This is indicated
in a device specification as either “bus master” or “DMA Operation.” Because bus
arbitration is implementation-dependent, the following explains what you need to know
about arbitration on the Power Hawk 620/640 systems.

Bus Request Levels 7

The VMEbus specification defines extensive bus arbitration options. The options are
implemented using a bus request level BR0, a bus grant BG0 (BG0IN, BG0OUT), and a
bus busy (BBSY) signal. Each slot has a BR0xxsignal (wherexx refers to the slot number)
driven to the bus arbiter. The bus arbiter directly drives a BG0xxsignal (wherexx refers to
the slot number) to the appropriate slot. This eliminates the latency of daisy chaining the
bus grants and also allows specific slots to be configured for round-robin arbitration.
BBSY is bussed to all slots.

A device on the VME bus becomes the bus master by asserting bus request and receiving
bus grant. The new bus master then asserts the bus busy (BBSY) signal until it is ready to
relinquish the bus. During this time, the device is the only one allowed to generate bus
addresses until it releases the bus.

The Power Hawk 620/640 implementation of the VMEbus standard supports all four of
the bus request levels although BR0/BG0 is recommended whenever possible.

The Power Hawk 620/640 provides two options for configuring the bus arbitration: (1)
straight priority and (2) CPU Release on Request. Combinations of these options are
allowed. By default, the system uses the straight slot priority scheme, whereby thelowest
numbered slot that is not occupied by a processor board has thehighest priority.

The bus arbitration schemes are defined by a configuration register that resides within the
VME interface module. This register can be read or written from the processor. Refer to
theVME bus Specification for more information regarding the bus arbitration scheme.

Interrupt Request Levels and Priorities 7

In the Power Hawk 620/640 interrupt architecture, interrupt sources are hardware devices
external to processors, one of the processors or devices attached to the processor, and
software. Possible hardware interrupt sources are device controllers on the PCI or VME
I/O bus or the powerfail, 60 Hz clock, timers, real-time clocks, the console processor,
serial or parallel port controllers, and so on. Software interrupt sources include inter-
processor interrupts, the softclock interrupt, and context switch interrupts.

Interrupt Lines (Levels) 7

On the VME I/O bus, the bus lines carrying the interrupt signal from an interrupt requester
to a processor are calledinterrupt lines. The VME chassis supports 7 interrupt levels. On
the I/O bus, these are labeled IRQ1-7*.



Device Driver Programming

7-12

VME interrupt request lines are only one source of interrupts in the system. VME
interrupt request lines are mapped to the Power Hawk 620/640 system’s interrupt levels.
For additional details and a list of priority levels and the mapping of interrupt sources to
these levels, refer to either theMotorola MVME 2600 Architecture Manualor the
Motorola MVME 4600 Architecture Manual.

Following are some additional characteristics of the Power Hawk 620/640 interrupt levels.

The hardware interrupt priority determines the relative urgency of servicing the event
within the overall system.

Interrupt priorities are set hierarchically and statically in hardware. For each interrupt
level, the device on the highest interrupt level with the lowest slot number has the highest
priority.

If two interrupt requests occur on the same interrupt level simultaneously on the VME I/O
bus, the system resolves the contention as follows:

1. Among devices sharing the same interrupt level on the same I/O bus, the
device with thelowest slot number has the highest priority.

2. Among interrupt levels on the same I/O bus, the device connected to level7
has thehighest priority down to level 1, which has thelowest priority.

3. Among all interrupt sources in the system, the interrupt priority of the
device is predetermined in hardware by its mapping to the Power Hawk
620/640 interrupt levels.

NOTE

For system performance and proper device operation, if a device
is time-critical in that it expects response to an interrupt to be
quick, it should be moved to a higher priority. Devices that can
tolerate longer interrupt latencies—that is, devices whose
interrupts can wait for a longer time before being serviced—
should be assigned to a lower priority.

Interrupt Vector Generation and Configuration 7

In hardware, the interrupt process functions as follows. On the VME I/O bus, the interrupt
requester requests an interrupt by driving one of the interrupt request lines (IRQ1* to
IRQ7* on the bus) active low. This is detected by an interrupt controller that monitors all
request lines. The interrupt acknowledge is generated by the CPU to which the request has
been directed to by the interrupt controller. The acknowledge then is passed by the
controller to the VME. The VME, in turn, requests mastership of the bus via arbitration if
necessary.

Once it gains mastership, the system controller generates an interrupt acknowledge cycle
by driving the IACK* signal active low and placing the winning interrupt level request on
the address lines A03 to A01. Note that at this point, the controller has resolved any
contention between the interrupt levels. By a daisy-chain acknowledgment scheme



Power Hawk 620/640 Hardware Environment

7-13

whereby the IACK* signal is propagated to each device via an IACKIN/IACKOUT*
signal chain through the slots on the I/O bus, the interrupt request acknowledgment signal
IACK* is received first by the interrupt requester in the lowest slot number. The falling
edge of the active low on the IACK* signal validates the data on A03 to A01 address lines.

Upon detecting its interrupt level code on line A01-A03 on the falling edge of IACK* low,
the interrupt requester identifies itself by placing an implementation-dependent 8- or 16-
bit code on the data lines. This code is called STATUS/ID information in the VMEbus
standard. This implementation of the VMEbus standard uses the 8-bit version of the
STATUS/ID information. When the interrupt handler on the (H)VME bus forwards an
interrupt acknowledge to a processor, the low-level portion of the operating system
interrupt subsystem reads the code to index one of 256 addresses of interrupt-handling
routines. This code is aninterrupt vector.

The interrupt vector can be configured through a register programmed via slave or master
programming, jumpers or switches, or with programmed assembly hardware. The register,
jumpers, switches, or assembly hardware are on the VME device itself.

If the vector byte is programmed, then the interrupt vector can be dynamically allocated
from the kernel interrupt vector table and then assigned to the device during bootstrap via
programmed I/O. Otherwise, if the interrupt vector is hard-wired (preset) in hardware,
then the interrupt vector must be configured by appropriate calls toivec-init() from a
driver during system initialization. Information needed to dynamically allocate interrupt
vectors or modify the kernel interrupt vector table is provided in Chapter 10.

PCI Address Decode 7

PCI address decode registers in the Tundra Universe VME Bridge provide mappings on
64KB boundaries to the various VME address spaces and PCI memory. The default map-
ping is shown in the following Table 7-3. The address space assigned to VME A32 space
can be modified with theconfig(1m) routine, resulting in modification to the PCI
memory space.



Device Driver Programming

7-14

Table 7-3.  Default PCI Address Decode

Address Mode Processor PCI VME

PCI I/O: Start

End

Offset

0x80000000

0x96000000

0x00000000

0x16000000

0x80000000

PCI Memory: Start

End

Offset

0xA0000000

0xBFFFFFFF

0x00000000

0x1FFFFFFF

0xA0000000

VME Memory-A32: Start

End

Offset

0xC0000000

0xFAFFFFFF

0x20000000

0x5AFFFFFF

0xA0000000

0xC0000000

0xFAFFFFFF

VME Memory-A24: Start

End

Offset

0xFCC00000

0xFCFEFFFF

0x5CC00000

0x5CFEFFFF

0xA3000000

0xFFC00000

0xFFFEFFFF

VME Memory-A16: Start

End

Offset

0xFCFF0000

0xFCFFFFFF

0x5CFF0000

0x5CFFFFFF

0xA3000000

0xFFFF0000

0xFFFFFFFF



8
Motorola MCP750 Hardware Environment

SYSTEM OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
PROCESSOR BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
BUSSES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
TIMERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
DATA TYPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
BYTE-ORDERING AND ALIGNMENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

Byte-Ordering and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5



Device Driver Programming



8-1

8
Chapter 8Motorola MCP750 Hardware Environment

8
8
8

SYSTEM OVERVIEW 8

The Motorola MCP750 system is a , single board, uniprocessor, real-time, super-minicom-
puter. It is based on the Motorola MPC750 processor, an implementation of the PowerPC
microprocessor family of reduced instruction set (RISC) microprocessors.

PROCESSOR BOARD 8

The Motorola MCP750 single board computer contains the following hardware features:

Feature Description

Processors Single MPC750 processor
Bus Clock Frequencies up to 66MHz.

L2 Cache 1 MB of backside external cache

Flash 4 MB or 8 MB (64-bit wide) with socketed
1 MB (16-bit wide)

DRAM 16 MB to 256 MB, ECC Protected
(Single-bit Correction, Double-bit Detection)
Two-way Interleaved

NVRAM 8 KB

RTC MK48T59/559 Device

Peripherals: Two async serial ports
Two sync/async serial ports
One (IEEE1284, or printer) Parallel Port
10Base-T/100Base-TX Ethernet interface
One PS/2 Keyboard and one PS/2 Mouse
One PS/2 Floppy Port
Primary & Secondary EIDE Ports (Primary has
Compact Flash interface on motherboard)

PMC Slots Single 32/64-bit Slot

Miscellaneous RESET/ABORT Switch Status LEDs



Device Driver Programming

8-2

The MCP750 provides the 1 MB backdoor external cache option. The Falcon chip set con-
trols the boot Flash and the ECC DRAM. The Raven ASIC functions as the 64-bit PCI
host bridge and the MPIC interrupt controller. PCI devices include: Ethernet, a PCI-to-PCI
bridge for

CompactPCI bus interface (optional second bridge located on companion card), a PCI-to-
ISA/IDE/USB bridge, and one PMC slot. Standard I/O functions (serial, parallel, FDD,
and keyboard) are provided by the Super I/O device which resides on the ISA bus. The
NVRAM/RTC provides NVRAM and an RTC with battery backup. A 512 x 8 Serial
EEPROM is also provided via an I2C interface off of the PBC.

Refer to Figure 8-1 for a block diagram representation of these features.

MEMORY 8

The Falcon DRAM controller ASIC is designed for the PowerPC families of boards. It is
used in sets of two to provide the interface between the PowerPC 60x bus (also called
MPC60x bus or MPC bus) and a 144-bit ECC-DRAM memory system. It also provides an
interface to ROM/Flash.

The Falcon chipset supports up to 256MB of ECC DRAM with the following features:

- Double-bit error detect/Single-bit error correct on 72-bit basis.

- Up to four blocks.

- Programmable base address for each block.

- Two-way interleave factor.

- Built-in Refresh/Scrub.

- Software programmable Interrupt on Single/Double-Bit Error.

- Error address and Syndrome Log Registers for Error Logging.

- Does not provide TEA_ on Double-Bit Error. (Chip has no TEA_ pin.)

The Falcon pair provides the interface for two blocks of ROM/Flash. Each block provides
addressing and control for up to 64Mbytes.  The ROM/Flash interface provides:

- Two blocks with each block being 16 bits wide (8 bits per Falcon), or 64
bits wide (32 bits per Falcon).

- Software programmable access time for each block.

- No ECC error checking is provided for the ROM/Flash.



Motorola MCP750 Hardware Environment

8-3

Figure 8-1.  Motorola MCP750 System Block Diagram



Device Driver Programming

8-4

BUSSES 8

There are two main busses on the MCP750, the processor bus (also called the MPC60X
bus) and the 64-bit PCI bus.

Interfacing with the processor bus is the MPC750 processor with external cache, the Fal-
con chipset and the Raven.

The Raven supplies the host bridge interface to the primary PCI bus. Interfacing with the
primary PCI bus is a PMC slot, a PCI-to-PCI bridge supporting the compact PCI back-
plane, a PCI-to-ISA/IDE/USB bridge, Ethernet, and one PMC slot.

The primary PCI bus has the following attributes:

- high performance 32-bit or 64-bit,

- burst mode,

- synchronous bus capable of transfer rates of 132 MByte/sec in 32-bit mode
or 264 MByte/sec in 64-bit mode,

- a 33 MHz clock

TIMERS 8

The M48T559, real time clock part, provides the MCP750 a time-of-day clock and a
watchdog timer.

The Raven ASIC supports four 31 bit tick timers and two watchdog timers. The four dec-
rementing timers may be used for system timing or to generate periodic interrupts.

The two watchdog timers are designed to be reloaded by software at any time. When not
being loaded, the timer will continuously decrement itself until either reloaded by soft-
ware or a count of zero is reached. If a timer reaches a count of zero, an output signal will
be asserted and the count will remain at zero until reloaded by software or Raven s reset is
asserted. External logic can use the output signals of the timers to generate interrupts,
machine checks, etc.

INTERRUPTS 8

The Raven ASIC supplies the MCP750 with an MPIC compliant interrupt controller to
handle various interrupt sources.  Sources of interrupts may be any of the following:

- The Raven ASIC itself (timer interrupts or transfer error interrupts)

- The processor 0(processor self-interrupts)

- The Falcon chip set (memory error interrupts)



Motorola MCP750 Hardware Environment

8-5

- The PCI bus (interrupts from PCI devices)

- The CPCI bus (interrupts from CPCI devices)

- Power monitor interrupts

- Watchdog timer interrupt

- The ISA bus (interrupts from ISA devices)

Some of the features of the Raven ASIC include:

Support for 16 external interrupts

Support for 15 programmable Interrupt & Processor Task priority levels

Support for the connection of an external 8259 for ISA/AT compatibility

Distributed interrupt delivery for external I/O interrupts

Direct/Multicast interrupt delivery for Interprocessor and timer interrupts

Four Interprocessor Interrupt sources

Four timers

Processor initialization control

Four 31 bit interrupting tick timers for periodic interrupt generation.

DATA TYPES 8

The Motorola MCP750 supports the following data types:

- Byte (8 bits)

- Half-Word (16 bits)

- Word (32 bits)

- Doubleword (64 bits)

BYTE-ORDERING AND ALIGNMENT 8

Byte-Ordering and Alignment 8

The byte-ordering convention used in the Motorola MCP750 platform isBig Endian. In
this model, the most significant byte (MSB) always has the lowest address. This provides a
consistency of addressing which is independent of the word size of the machine. See



Device Driver Programming

8-6

Figure 8-2, “Big Endian Bit and Byte Notation” for more information. (Note that the
depicted bit ordering (with bit 31 most significant) is applicable to I/O addressing. The bit
ordering of the Motorola MCP750 is the opposite (with bit 0 most significant). Byte order-
ing for both I/O and the Motorola MCP750 is the same.)

Byte ordering on the PCI bus is little endian. The various bridge chips provide appropriate
translation from one ordering to the other for VME bus drivers. However, drivers written
for PCI devices must be aware of the difference and modify device addresses accordingly.

During I/O transfers, the system expects the addresses of all words even addresses— that
is, zero, two, four, six, eight, and so on. Similarly, the system expects that all longword
addresses are divisible by four—that is zero, four, eight, twelve, and so on. Finally, the
system expects all double-longword addresses to be divisible by eight—that is, zero, eight,
sixteen, etc.

NOTE

Attempting an I/O transfer using non-aligned data types in a
driver program causes a fatal exception error on Motorola
MCP750 platforms. In other words, alignment errors are not
recoverable in hardware.

Figure 8-2.  Big Endian Bit and Byte Notation

LOW
ADDRESS

HIGHER
ADDRESS

LOW ADDRESS = MSB

MSB LSB

7 0

15

16232431

0

07

8 7

815

MSB LSB



Motorola MCP750 Hardware Environment

8-7



Device Driver Programming

8-8



Motorola MCP750 Hardware Environment

8-9



Device Driver Programming

8-10



9
Understanding the Kernel Environment

Overview of the Kernel I/O Structure and Flow of Control  . . . . . . . . . . . . . . . . . . . 9-1
Overview of Source Directories and Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
System Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
The cdevsw Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
The cred Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
The iovec and uio Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
The adapter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
The device Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

Kernel Support Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Ioctl Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Memory Allocation and Management Routines. . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Memory Access Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Address Management Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Data Transfer Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16
Synchronization Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

Spin Locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Sleep Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Event Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18

Processor Priority Level Adjustment Routines  . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Timing and Timeout Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Interrupt Vector Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Debug Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Small vs. Large Offset Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21



Device Driver Programming



9-1

9
Chapter 9Understanding the Kernel Environment

9
9
9

This chapter describes the role of device drivers within the kernel and gives an overview of
various system files, structures, and kernel support routines that a driver programmer must
understand in order to develop a device driver.

Overview of the Kernel I/O Structure and Flow of Control 9

This section provides an overview of the kernel I/O structure, the role of device drivers in
the kernel, the interface between processes and the I/O subsystem, and the interfaces
between the kernel and device drivers, and device drivers and hardware.

The kernel I/O structure and flow of control are shown in Figure 9-1.



Device Driver Programming

9-2

Figure 9-1.  Kernel I/O Structure

By issuing system calls from the user level, a program accesses the file and process control
subsystems, which, in turn, use the character and block interfaces to access the device
drivers. The driver provides and manages a path for the data to or from the hardware
device and services interrupts issued by the device’s controller.

Overview of Source Directories and Files 9

Three directories are commonly used while developing device drivers. The system config-
uration directory/etc/conf contains all of the configuration files, kernel build tools,
and the interrupt vector table. This directory is used by the Installable Driver Tools, which
facilitate packaging, installation and configuration of device drivers. Procedures for using
these tools are fu l ly expla ined in Chapter 16. The/usr/ include and

 USER LEVEL

System Call Interface

Device
Drivers

File Subsystem

Buffer Cache

User Processes

 Character  Block

HARDWARE LEVEL

Hardware Control

Scheduler

Interprocess
Communication

Process
Control

Subsystem

Memory
Management

Hardware

KERNEL LEVEL



Understanding the Kernel Environment

9-3

/usr/include/sys directories contain the system header files that contain the defini-
tions of the structures used by device drivers.

System Data Structures 9

This section examines the system data structures that are used by all device drivers. Many
of these are set up and maintained by the kernel itself. They are often passed as arguments
to your device driver routines and can provide information needed by your driver. This
section also describes the data types and header files that are used by device drivers.

Data Types 9

The data structures used by the kernel and device drivers are all built from a group of sim-
ple data types. These are outlined in Table 9-1. Note that most of these data types are
aligned on specific boundaries in memory by the C compiler. This is due to Series 6000
architectural requirements (a word boundary is every 2 bytes; a longword boundary is
every 4 bytes).

Table 9-1.  System Data Types

Type Size Purpose Alignment

udbl_t 8 floating-point double-precision value
(MINDOUBLE to MAXDOUBLE,
as defined invalues.h )

doubleword

int 4 integer value

(–231 to 231–1)

longword

unsigned 4 positive integer

(0 to 232–1)

longword

short 2 short integer value

(–215to 215–1)

word

unsigned
short

2 short integer value

(0 to 216–1)

word

char 1 character value
(–128 to 127)

byte

unsigned char 1 character (0 to 255) byte

pointer 4 address of an object longword

caddr_t 4 character pointer longword



Device Driver Programming

9-4

CAUTION

When using C data types to communicate with hardware devices
on the Series 6000 platform, care must be taken to ensure that the
proper alignment and byte ordering requirements specific to the
CPU and I/O architecture of the Series 6000 system are met. Fail-
ure to adhere to these alignment and byte ordering requirements
can result either in system crashes or scrambled device data.
Alignment should be checked depending on the data type size as
follows. Two–byte quantities (short , unsigned short ) must
fall on word boundaries. Four–byte quantities (int , long ,
pointer) must fall on longword boundaries. Eight-byte quantities
must fall on doubleword (8–byte) boundaries. Refer to Chapter 5
for an overview of the alignment, word size, and ordering issues
on the Series 6000 computer system. Finally, the ordering of bytes
is Big Endian, where the most significant bit is at the lowest
address.

Header Files 9

Every device driver needs to include the system header files that contain the definitions of
the structures used by the device driver. The header fi les are located in the
/usr/include/sys  directory.

The standard header files that are normally included in the device driver’s source file are
described as follows:

adapter.h Defines kernel configuration structures, including the adapter
array.

ioccom.h Defines macros used to formatioctl(2) commands to the
device.

ksynch.h Defines the kernel synchronization primitives.

autoconf.h Defines symbolic constants for minimum and maximum interrupt
vectors, HVME slots.

debug.h Definitions to assist in debugging the kernel.

dev_t 4 major & minor device numbers longword

off_t 4 small offset (-OFF_MAXto +OFF_MAX,
as defined insys/types.h

longword

off64_t 8 la rge o ffse t (-OFF64_MAX to
+OFF64_MAX, as de fined in
sys/types.h )

doubleword

Table 9-1.  System Data Types (Cont.)

Type Size Purpose Alignment



Understanding the Kernel Environment

9-5

cmn_err.h Defines the interface to display messages or panic the system.

param.h Defines the machine type dependent parameters and various
system constants and macros.

file.h Defines the status flags that are set by the user onopen(2) and
fcntl(2) system calls and passed to the driver’sopen(D2) ,
close(D2) , andioctl(D2)  routines.

user.h Defines the per process user structure containing data that is not
needed in core when the process is swapped out.

uio.h Defines the iovec(D4)  and the uio(D4)  structures.

buf.h Defines the buf(D4)  structure.

proc.h Contains theproc structure for a user process. One structure is
allocated per active process and contains all the data needed about
the process while the process is swapped out.

signal.h Defines the signal types for each architecture.

errno.h Defines the system error codes.

conf.h Defines thebdevsw , andcdevsw  structures.

cred.h Defines thecred  structure.

types.h Defines all of the basic system data types.

kmem.h Defines interface to kernel memory allocation routines.

ddi.h Defines the flags and functions that are needed by drivers that con-
form to the DDI/DKI.

NOTE

Note that the DDI/DKI does not permit use of kernel macros and
also does not permit direct reference of fields within most data
structures. This file containsundef statements that undefine ker-
nel macros that are re-implemented as kernel functions. Because
theddi.h file undefines macros that are defined in some of the
other header files, you must include itafter all of the other header
files that are used by your driver.

The cdevsw Structure 9

The kernel uses a large array of function pointers to access a particular device. This array
is composed ofcdevsw structures. The major device number is used as the index into this
array.



Device Driver Programming

9-6

Thecdevsw structure specifies the interface routines present for the character device.
Each device driver can provideopen , close , read , write , ioctl , chpoll , and
mmap entry point routines. All of these are not necessary.

The driver’s entry points are specified in theMaster(4) file associated with the driver
(see Chapter 16 for an explanation of this file). A driver can be either statically or dynami-
cally linked to the kernel image. In the former case, the driver’s entry points are stored as
function pointers in thecdevsw structure. In the latter case, the driver’s entry points are
dynamically linked to thecdevsw  structure using a dynamic loader/linker at run time.

Thecdevsw structure is never accessed directly from the device driver code. This struc-
ture is defined in the/usr/include/sys/conf.h  file.

/*
 * Character device switch table structure.
 */
struct cdevsw {

int (*d_open)();
int (*d_close();
int (*d_read)();
int (*d_write)();
int (*d_ioctl)();
int (*d_mmap)();
int (*d_segmap)();
int (*d_poll)();
int (*d_msgio)();
struct tty *d_ttys;
struct streamtab *d_str;
char *d_name;
int *d_flag;
int               d_cpu;
struct module *d_modp;

};

The fields are defined as follows:

d_open Pointer to the driver’sopen  routine.

d_close Pointer to the driver’sclose  routine.

d_read Pointer to the driver’sread  routine.

d_write Pointer to the driver’swrite  routine.

d_ioctl Pointer to the driver’sioctl  routine.

d_mmap Pointer to the driver’smmaproutine (for the implementation of the
mmap(2)  system call).

d_segmap For character devices, can be used to specify a device specific rou-
tine to be used for creating address translations frommmap(2)
requests.

d_poll Pointer to the driver’schpoll  routine.



Understanding the Kernel Environment

9-7

d_msgio VOP_MSGIO() routine called for non-STREAMS character
devices that supportmsgio .

d_ttys Pointer to the driver’s array oftty structures. This is for
downward compatibility with the advent of STREAMS program-
ming.

d_str Pointer to thestreamtab structure (used only by STREAMS
device drivers).

d_name Pointer to character string that contains the name of the device
driver.

d_flag A pointer to an integer containing flag bits that define driver char-
acteristics. Seedevflag(D1)  for details.

d_cpu Driver binding to a CPU.

d_modp Used by the Dynamically Loadable Module (DLM) installation
code. Not used for statically linked drivers.

The cred Structure 9

A cred , or credential, structure is associated with each process. The purpose of this struc-
ture is to check the access credentials of the current process. As such, it serves the same
purpose as the file access modes and the special minor device number.

Thecred structure is passed into various driver entry point functions—open , close ,
read , write andioctl . A pointer to this structure can also be obtained by calling the
drv_getparm(D3) routine from base-level driver code.

NOTE

Thecred structure must be used only when the file access mode
and minor device number are insufficient to protect a device. In
this case, the driver must use thedrv_priv(D3) routine; for
additional details, refer to the on-lineDevice Driver Reference.

For source and binary compatibility purposes, the DDI/DKI spec-
ification specifies that the driver must not access the contents of
thecred structure directly. Under the DDI/DKI, there should be
no dereferencing of pointers to thecred  structure.

The iovec and uio Structures 9

One of the main purposes of a device driver is to provide a mechanism for applications to
read data from and write data to a hardware device. As a result, a device driver must have
a means for transferring data to and from a user’s virtual address space. To accommodate



Device Driver Programming

9-8

the transfer, two structures are used: theiovec(D4) anduio(D4) structures. These
structures are defined in/usr/include/sys/uio.h and paraphrased as follows (see
the include file for an exact definition):

typedef struct iovec {
caddr_t iov_base;
int iov_len;

} iovec_t;

typedef struct uio {
iovec_t *uio_iov;/* pointer to array of iovecs*/
int uio_iovcnt;/* number of iovecs*/

#ifdef _LARGEFILE64_SOURCE
off64_t uio_offset;/* file offset*/
size64_t uio_limit;/* u-limit(maximum “block” offset)*/

#else
off_t uio_offset;/* file offset*/
daddr_t uio_limit;/* u-limit(maximum “block” offset)*/

#endif
short uio_segflg;/* address space (kernel or user) * /
short uio_fmode;/* file mode flags*/
int uio_resid;/* residual count*/

} uio_t;

The fields in theiovec(D4)  structure are defined as follows:

iov_base A pointer to the beginning of the memory location to or from
which data are to be transferred

iov_len The length in bytes of the location pointed to byiov_base

The fields in theuio(D4)  structure are defined as follows:

uio_iov A pointer to the beginning of an array that contains one or more
iovec(D4)  structures

uio_iovcnt The number ofiovec(D4) structures in the array pointed to by
uio_iov

uio_offset The byte offset in the file from which data are to be read or to
which data are to be written. This will beoff_t for drivers com-
piled to be small offset drivers andoff64_t for drivers compiled
to be large offset drivers.

uio_segflg A flag indicating whether the memory location to or from which
data are to be transferred is in kernel space or in user space. The
flags can be specified by using the following symbolic constants:

UIO_USERSPACE Indicates that the data areas are in user
space and kernel space

UIOP_SYSSPACE Indicates that the data areas are in kernel
space



Understanding the Kernel Environment

9-9

uio_fmode The file status flags set by the value of theoflag argument speci-
fied when the file was opened with anopen(2) system call. The
flags are defined in the file/usr/include/sys/file.h

uio_limit The maximum size in bytes of a file created by a process. This
limit is a tunable parameter. It will be adaddr_t for small offset
drivers andsize64_t  for large offset drivers

uio_resid The number of bytes that remain to be transferred

Normally, the routineuiomove(D3) handles the management of theuio(D4) struc-
tures for you; it determines the location of the data and does all of the copying. The
uio_resid field is typically the only field in theuio(D4) structure that is useful to
device drivers because it contains the number of bytes of data to be transferred. The
device driver should check to see that this number does not exceed the number that the
driver can handle in one operation. Because the data to be transferred might not be contig-
uous in memory, an array ofiovec(D4)  structures is needed.

The adapter Structure 9

Theadapter structure is a control structure that is a part of the kernel configuration sub-
system in the kernel address space. The purpose of the adapter structure is to define each
adapter in the system.

An adapteris a hardware set which connects one or more device controllers to the com-
puter system. An adapter might or might not consume a slot. An adapter always has an I/O
address and might perform DMA and generate interrupts. An example is the HSA.

As the kernel image is created, the kernel build tools create an array ofadapter struc-
tures based on information located in theSadapters(4)  file.

Later, as a part of the kernel configuration during start up, the kernel uses the device
switch table to invoke the driver’sinit(D2) andstart(D2) entry points. In turn,
these routines use the adapter definition to read such hardware characteristics as the
adapter’s standard I/O address range.

The adapter structure is defined in/usr/include/sys/adapter.h  as follows:

typedef struct generic_adapter {

u_char adapter_name[A_NAMESZ]; /* for display/verification */

long    adapter_type;  /* unique adapter code              */

u_char  adapter_no;    /* logical adapter no. (0 relative) */

u_char  cpu;           /* assigned CPU                     */

u_char  bus;           /* bus location                     */

u_char  itype;         /* assigned interrupt type          */

paddr_t sio_address;   /* assigned standard I/Oaddr(phys)  */

paddr_t bus_address;   /* assigned bus I/O addr (phys)     */

vaddr_t v_sio_address; /* mapped standard I/O add(virtual) */

vaddr_t v_bus_address; /* mapped bus I/O addr (virtual)    */

u_char  slot;          /* slot location (one relative)     */

u_char  dma;           /* assigned dma/bus request lev     */

u_char  ilev;          /* assigned interrupt level         */

u_char  ivec;          /* assigned interrupt vector        */



Device Driver Programming

9-10

/*

* Used by drivers

*/

device_t *devices;     /* List of devices on this adapter  */

long     adapter_state;/* Adapter has been probed,etc */

char     *add_info1;   /* Pointers to device specific info */

char     *add_info2;

char     *add_info3;

char     *add_info4;

char     *add_info5;

char     *add_info6;

char     *add_info7;

char     *add_info8;

} adapter_t;

The fields in theadapter  structure are defined as follows:

adapter_name The internal name of the adapter.

adapter_type A unique code that is assigned to the adapter. Codes are
defined inadapter.h .

ADAPTER_HSA SCSI Adapter or VIA

ADAPTER_EGL Eagle Ethernet Controller

ADAPTER_PG Peregrine VMEbus FDDI Control-
ler

ADAPTER_HPS SYSTECH High Performance
Serial Adapter

adapter_no The logical adapter number

bus Identifies the type of bus to which the adapter is physically
attached. Bus types are defined inbus.h  as follows:

Use theBUS_TYPE( )  macro to determine the type of bus.

BUS_TYPE_ HVME HVME bus

BUS_TYPE_VME VMEbus

BUS_TYPE_PCI PCI bus

Use theBUS_INSTANCE macro to determine the # of the
bus.

itype Identifies the interrupt processing method for the adapter.
Interrupt processing methods are defined inadapter.h
as follows:

ITYPE_NONE None

ITYPE_INTR Hardware interrupt

ITYPE_DAEMON Serviced by a kernel daemon



Understanding the Kernel Environment

9-11

cpu Reserved for future use.

sio_address Short I/O address of the adapter. The termshort I/Orefers
to the sixteen-bit wide address space of the I/O bus. Driv-
ers do not normally access this field.

bus_address Bus I/O address of the adapter. Bus I/O refers to the thirty-
two bit wide address space of the I/O bus. Drivers do not
normally access this field.

v_sio_address Virtual short I/O address of the adapter. This component is
populatedby the driver during the driver’sinit(D2)
routine.

v_busaddress Virtual bus address for the adapter. This entry is populated
by the driver after mapping the physical bus address into
the kernel address space usingphysmap(D3) . It is used
for informational display.

slot The physical slot location of the adapter.

dma Not used on the Series 6000 platform.

ilev The assigned interrupt request level to be used by the
adapter.

ivec The assigned interrupt vector to be used by the adapter.
This field is populatedby the driver when the interrupt
vector is programmable—that is, when the interrupt vector
is not hard-wired on the device.

devices A pointer to a linked list of device structures. Each struc-
ture defines one device that is attached to the adapter.
Many adapters have only a single entry in the list. This
field is populatedby the driver during the driver’s
init(D2) or start(D2) routine. The device structure
is defined in the section that follows.

adapter_state This field is used to indicate the condition of an adapter. It
is populatedby the driver and is used for informational
display. Values for this field are defined inadapter.h .
as follows:

ADAPTER_PROBED Adapter is present in the system

ADAPTER_ONLINE The software is fully initialized

add_info1,add_info3-info8
Pointer to device-dependent configuration information
such as hardware model number, revision level, and so on.
This information is provided at the discretion of the driver
developer.

add_info2 Reserved for PCI-based device drivers, available for non-
PCI-based device drivers.



Device Driver Programming

9-12

The device Structure 9

Thedevice_t  structure is defined inadapter.h  as follows:

typedef struct devices device_t;
struct devices {

char driver[15];/* driver name*/
dev_t dev_no;/* major/minor device number*/
long dev_type;/* type of device*/
device_t *next;/* next in linked list*/

};

Kernel Support Routines 9

The objective of this section is to give a synopsis of the kernel support routines for device
driver programming. Manual pages for all of the routines are provided in the on-line
Device Driver Reference. The routines highlighted here are those related to memory allo-
cation, memory access, virtual address management, data transfer, synchronization, pro-
cessor level adjustment, timing and timeout, interrupt vector allocation, and debugging.

Ioctl Macros 9

The ioctl routine of a device driver conforming to the DDI/DKI is called with six argu-
ments: the device number, the command indicating the operation to be performed, a
pointer to any arguments, the file mode set when the device was opened, a pointer to the
user credential structure, and a pointer to the return value for the calling process. The com-
mand word is of a special format. It is strongly recommended that you use the macros in
the file/usr/include/sys/ioccom.h  to format these commands for you.



Understanding the Kernel Environment

9-13

The command word is a 32-bit integer divided into several fields. The fields are explained
in Table 9-2:

As mentioned, there are macros to set up theioctl commands for you. The macros are:
_IO , _IOR, _IOW, _IOWR, _IORN, and_IOWN. _IO takes two parameters; the character
and the command number. The_IOR, _IOWand_IOWRmacros take three parameters:
the character, the command number, and the type of data that is being passed as an argu-
ment. These macros use thesizeof() function to determine the size of that data based
on the type given. The_IORN and_IOWNmacros take three parameters: the character, the
command number, and the size of the data that is being passed as an argument. Note that
the character must be enclosed in single quotation marks (‘ ). Some examples follow:

#define TCGETA _IOR(‘T’, 1, struct termio)
#define TCSETA _IOW(‘T’, 2, struct termio)
#define TCSBRK _IO(‘T’, 5)
#define MCIOCTL _IORN(‘T’, 3, 23)

The ioctl TCGETA is used to get a copy of thetermio structure from the TTY driver.
The character used isT. Note that the character is enclosed insingle quotation marks
(‘ T’ ). TCSETAis used to set thetermio structure.TCSBRKdoes not require any param-
eters (it simply has the TTY driver send out aBREAK  signal.).

Memory Allocation and Management Routines 9

The kernel buffers can be allocated either at compile time, which is calledstatic allocation
or at run time, which is calleddynamic allocation. This section gives an overview of the
kernel support routines for dynamic memory allocation.

The kernel allocates memory dynamically for different purposes: there arekernel memory
buffers, STREAMS message buffers, and system buffers. The kernel memory buffers are
general-purpose buffers allocated to store data or control information within the driver.
STREAMS message buffers are used by drivers using the STREAMS interface. Refer to
the description of STREAMS modules and drivers in theSTREAMS Modules and Drivers

Table 9-2.  Fields in ioctl Command

Bits Field Name Purpose

0-7 Command
Number

A unique number identifying the command.

8-15 IOC Type An arbitrary character (usually first character of driver
name).

16-22 Param Size Holds length of argument data. Data must be less than
256 bytes.

29 IO Void If bit is on, there are no parameters.

30 IO OUT If bit is on, parameters are copied to user space after call.

31 IO IN If bit is on, parameters are copied into kernel space
before call.



Device Driver Programming

9-14

manual for additional information. The system buffers are used to implement the tradi-
tional UNIX buffer cache, which is used by block drivers to support I/O operations. The
buffer sizes are the size of a file system block, which depends, in turn, on the file system.

NOTE

Device drivers ported from earlier releases of System V UNIX
kernels often used another kernel buffering technique called
clist . This feature is not supported in this kernel. If you are
porting an existing driver that usesclist s, you must modify the
driver.

The kernel provides the following routines for allocating and de-allocating kernel mem-
ory:

kmem_alloc(D3) Allocates space from kernel memory

kmem_free(D3) Frees space allocated withkmem_alloc

kmem_alloc_physcontig(D3) Allocates physically contiguous memory

kmem_free_physcontig(D3) Frees space allocated with
kmem_alloc_physcontig()

All memory allocated viakmem_alloc() is managed by the kernel itself and is allo-
ca ted f rom a kerne l memory poo l ava i lab le to a l l d r ive rs . The
kmem_alloc_physcontig() routine is used in the context of DMA programming;
refer to Chapter 14 for additional details.

The kernel also allows a driver to allocate a block of memory from this pool for its own
private use.The private memory pool is allocated as usual viakmem_alloc() . The
driver then takes the responsibility of managing the memory. For this purpose, the driver
must use a specially allocated space management map. This map is independent of the
number and size and semantics of the memory units to be managed. The memory units can
be bytes, block, or pages, for example. The kernel routines to be used to manage the pri-
vate memory pool are as follows:

rmallocmap(D3) Allocate and initialize a private space management map

rmalloc(D3) Allocate space from a private space management map

rmfree(D3) Free space into a private space management map; or return space
allocated with a previous call tormalloc

rmfreemap(D3) Free a private space management map

Typically, these routines are used as follows. The driver allocates its private memory pool
from the kernel memory pool by callingkmem_alloc() . To manage this memory, the
driver invokesrmallocmap() to allocate a private space management map with a suffi-
cient number of entries to span the private memory pool. The driver developer determines
the type and size of the memory units to be managed as desired. For example, for a mem-
ory pool of 16 KB, you can choose a block size of 512 bytes, and thus, to span the memory
pool, at least 32 map entries are required. The driver then adds space to the map by calling
rmfree() . At this point, the driver has reserved the memory for its private use and is



Understanding the Kernel Environment

9-15

ready to manage its own allocation and deallocation requests. This is done by indexing the
memory units in the map structure and callingrmalloc() andrmfree() , respectively.
(Note thatrmfree() calls have different meanings depending on the context in which
they are made; the first call tormfree() is used to add space to the map. After the first
call to rmalloc() occurs, rmfree() is used to return memory space to the map.)
Once the driver has finished using its own private memory pool, it can free the map by
calling rmfreemap() . The memory pool must still be deallocated via a call to
kmem_free() . For an example showing the use of these routines, refer to the
rmalloc(D3)  entry in the on-lineDevice Driver Reference.

Memory Access Routines 9

On the Series 6000, Power Hawk, and PowerMAXION platforms, all I/O hardware is
memory mapped. To communicate with this hardware, the device driver, which is execut-
ing within the kernel address space, must first map a portion of kernel virtual memory onto
the physical address range of the controller’s registers or memory.

The kernel provides the following routines for this purpose:

physmap(D3) Allocate a virtual address mapping for a specified range of
physical addresses

physmap_free(D3) Free a virtual address mapping allocated byphysmap()

Once this is done, the driver communicates with the controller by addressing memory
within the mapped range. Thephysmap() routine is generally used from a driver’s
init() or start() routine to obtain a pointer to the device memory. It returns a virtual
address orNULL if the mapping cannot be allocated. Generally, thephysmap_free()
routine is never called because device drivers keep the mapping forever. It is provided in
case a driver dynamically allocates mappings. The number of bytes specified on the call to
physmap_free() must be identical to the number of bytes specified on the call to
physmap() .

During the system initialization, the system calls theinit(D2) entry point of the device
driver. This entry point must probe for the hardware device at its configured address to
determine whether it is present. The kernel provides a special routine for probing and
detecting devices calledbadaddr() , which must be used for that purpose.

badaddr() probes a virtual address by reading or writing a byte/word/longword to this
location. The length of the access can be a byte, a word, or a longword. Thebadaddr
routine returnsTRUE if accessing the specified address causes a bus error; otherwise, it
must returnFALSE. Note that on a Series 6000 platform, accessing an invalid I/O address
causes a machine check exception and a sysfault interrupt.

Address Management Routines 9

The kernel provides the following address management routines:

btop(D3) Convert size in bytes to size in pages (round down)



Device Driver Programming

9-16

btopr(D3) Convert size in bytes to size in pages (round up)

ptob(D3) Convert size in pages to size in bytes

vtop(D3) Convert virtual address to physical address

Data Transfer Routines 9

As mentioned previously, one of the roles of device drivers is to perform data transfers
between user address space and kernel address space. The kernel provides support rou-
tines for this purpose. These routines are often used within theread(D2) and
write(D2) entry points of drivers to transfer data one byte at a time or one or more
bytes at a time.

The kernel provides the following routines for this purpose:

ureadc(D3) Copy a character to space described byuio(D4)  structure

uwritec(D3) Return a character from space described byuio(D4)  structure

uiomove(D3) Copy data using theuio(D4)  structure

These routines use theuio(D4) structure that is passed to the driver through the driver’s
read() andwrite() entry points. Refer to “The iovec and uio Structures” on page 9-7
for a description of theuio andiovec structures. If the copy is successful, these routines
update the appropriate components of theuio(D4) andiovec(D4) structures. These
components areuio_offset , iov_base , uio_resid , andiov_len .

The ureadc(D3) routine copies a character to the space described by theuio(D4)
structure. Theuwritec(D3) routine copies a character from the space described by the
uio(D4)  structure and returns the character to the caller.

The uiomove(D3) routine copies data associated with user I/O operations (read and
write). Most frequently, it is used to copy data between user space and kernel space. It can
also be used to copy data exclusively in kernel space.

If the UIO_READflag is set,uiomove() transfers a specified number of characters from
kernel space to the user’s I/O buffers.

If the UIO_WRITE flag is set,uiomove() transfers a specified number of characters
from the user’s I/O buffers to the kernel space.

Theuiomove()  routine returns zero on success or an error number on failure.

NOTE

The above three routines exist in both small and large offset ver-
sions. Driver writers should not normally be concerned by this,
since the selections of the correct version needed by their particu-
lar driver is automatically made at compile time. See section
“Small vs. Large Offset Drivers” on page 9-21 for more informa-
tion.



Understanding the Kernel Environment

9-17

Synchronization Routines 9

The kernel provides three broad categories of synchronization/serialization routines: spin
locks, sleep locks, and event synchronization primitives. These routines are used to main-
tain data integrity in the system by serializing process access to shared resources and by
synchronizing processes. The routines associated with each category are presented in the
sections that follow. Guidelines for using these routines are provided in Chapter 11 (“Mul-
tithreading a Device Driver”).

Spin Locks 9

Spin locks are low-level, busy-waiting primitives. They are used to serialize access to
shared resources when blocking primitives cannot be used (at interrupt level, for example)
and when the expected wait time is very short. Spin locks are of two types: basic spin
locks and read/write spin locks.

Basic locks allow only one process to gain access to a shared resource at a time. The basic
lock routines are as follows:

LOCK(D3) Acquire a basic lock

LOCK_ALLOC(D3) Allocate and initialize a basic lock

LOCK_DEALLOC(D3) Deallocate an instance of a basic lock

TRYLOCK(D3) Try to acquire a basic lock

UNLOCK(D3) Release a basic lock

Read/write locks allow you to distinguish between readers and writers when controlling
access to shared resources. Multiple processes can simultaneously obtain a lock in read
mode. Only one process can obtain a lock in write mode. A lock is available in read mode
if it is idle or it is held by one or more readers and there are no waiting writers. A lock is
available in write mode only if it is idle.

The read/write lock routines are as follows:

RW_ALLOC(D3) Allocate and initialize a read/write lock

RW_DEALLOC(D3) Deallocate an instance of a read/write lock

RW_RDLOCK(D3) Acquire a read/write lock in read mode

RW_WRLOCK(D3) Acquire a read/write lock in write mode

RW_TRYRDLOCK(D3) Try to acquire a read/write lock in read mode

RW_TRYWRLOCK(D3) Try to acquire a read/write lock in write mode

RW_UNLOCK(D3) Release a read/write lock



Device Driver Programming

9-18

Sleep Locks 9

Sleep locks are used for serializing access to shared resources when spin locks cannot be
used. At base level, basic locks and read/write locks cannot be used if there is a a possibil-
ity that the kernel might put the process to sleep while the lock is being held, as in the case
of a context switch. Sleep locks are blocking—the calling process is put to sleep until the
lock becomes available.

The sleep lock routines are as follows:

SLEEP_ALLOC(D3) Allocate and initialize a sleep lock

SLEEP_DEALLOC(D3) Deallocate an instance of a sleep lock

SLEEP_LOCK(D3) Acquire a sleep lock

SLEEP_LOCK_SIG(D3) Acquire a sleep lock (interruptible by signals)

SLEEP_LOCKAVAIL(D3) Query whether a sleep lock is available

SLEEP_LOCKOWNED(D3) Query whether a sleep lock is held by the caller

SLEEP_TRYLOCK(D3) Try to acquire a sleep lock

SLEEP_UNLOCK(D3) Release a sleep lock

Event Synchronization Primitives 9

Event synchronization primitives allow you to synchronize process execution with the
occurrence of a particular event. The kernel provides a set of routines that use a synchroni-
zation variable for this purpose. These routines are as follows:

SV_ALLOC(D3) Allocate and initialize a synchronization variable

SV_BROADCAST(D3) Wake up all processes sleeping on a synchronization
variable

SV_DEALLOC(D3) Deallocate an instance of a synchronization variable

SV_SIGNAL(D3) Wake up one process sleeping on a synchronization vari-
able

SV_WAIT(D3) Sleep on a synchronization variable

SV_WAIT_SIG(D3) Sleep on a synchronization variable (interruptible by a
signal)

Processor Priority Level Adjustment Routines 9

The kernel provides routines to block or allow servicing of hardware interrupts on a pro-
cessor. These routines prevent interrupts at or below a specified level from being serviced
on the processor on which the routine is called. By calling the routinespl3() , for exam-
ple, the driver prevents all interrupts at level 3 or lower from being received by the proces-



Understanding the Kernel Environment

9-19

sor. Only interrupt requests at level 4 or higher are presented to the processor. All other
requests are ignored until the same processor lowers the interrupt level. A device driver
can be programmed to temporarily raise the processor Interrupt Priority Level (IPL) to
block undesirable interrupts. Thereafter, the driver lowers the processor’s IPL to its previ-
ous level.

The processor priority level adjustment functions are as follows (seespl(D3) ):

splbase Block no interrupts to the processor (same asspl0 )

spltimeout Block functions scheduled byitimeout anddtimeout
(see “Timing and Timeout Routines” for an explanation of
these routines)

spldisk Block disk device interrupts

splstr Block STREAMS interrupts

spltty Used by a TTY driver to protect critical code—spltty is
mapped tosplstr

splhi Block all hardware interrupts, including the clock—should
be used sparingly

spl n Block all interrupts at or below the value ofn, wheren
ranges from 0 to 8

spl0 Equivalent tosplbase

spl8 Equivalent tosplhi

splx Restore the processor’s interrupt priority level

Timing and Timeout Routines 9

The kernel provides the following timing and timeout routines for timing and timeout pur-
poses:

timeout(D3) Execute a function after a specified length of time

itimeout(D3) Execute a function after a specified length of time

dtimeout(D3) Execute a function on a specified processor at a specified
interrupt priority level after a specified length of time

untimeout(D3) Cancel previous timeout request

timeout (func, arg, interval) can be used in a character device driver in which interrupts
cannot be used to acknowledge a device operation or signal an event. It can be used as an
alternative to a busy wait to schedule a function after a reasonable amount of time. After
receiving aRESET ioctl command, a driver can schedule the completion of the reset
operation by scheduling a routine to do so after one second.



Device Driver Programming

9-20

To assist you in converting between microseconds and clock ticks, the kernel provides the
following routines:

drv_hztousec(D3) Convert clock ticks to microseconds

drv_usectohz(D3) Convert microseconds to clock ticks

The kernel provides the following routines for introducing execution delays within the
driver code:

delay(D3) Delay process execution for a specified number of clock
ticks

drv_usecwait(D3) Busy wait for a specified time interval

Interrupt Vector Routines 9

For boards that support a programmable interrupt vector, allocation of the interrupt vector
and registration of the associated interrupt handler are done dynamically within the
driver’s init(D2)  or start(D2)  entry point.

The following routines allow you to allocate and free one or more interrupt vectors and
register an interrupt handler:

ivec_alloc(D3) Allocate the next available interrupt vector

ivec_free(D3) Return an interrupt vector to the free list

ivec_alloc_group(D3) Allocate a group of sequential interrupt vectors

ivec_free_group(D3) Free a group of vectors to the free list

ivec_init(D3) Register an interrupt handler for an interrupt vector

The ivec_alloc() routine allocates the next available interrupt vector, marks it as
used, and returns it to the caller.Ivec_alloc() returns-1 if no vectors are available.
To free this vector, you can callivec_free() and specify the interrupt vector number.
Ivec_free() marks the interrupt vector entry free; it does not return a value.

To allocate a group of sequential interrupt vectors, invoke theivec_alloc_group()
rou t ine , and spec i f y the number o f in te r rup t vec to rs des i red . The
ivec_alloc_group() routine searches the interrupt vector table from the lowest
interrupt vector to the highest interrupt vector. It attempts to allocate a continuous
sequence of interrupt vectors. If successful, it marks those vectors as used and returns the
base interrupt vector. It returns-1 if a sequential group of the specified number of vectors
cannot be allocated. Vectors that are already allocated for other uses cannot be allocated.

The ivec_free_group() routine frees a specified group of interrupt vectors. The
group is specified with a base interrupt vector and the number of interrupt vectors to be
freed: for example, ivec_free_group(1,3)  frees interrupt vectors 1, 2, and 3.

The ivec_init() routine associates an interrupt handler and an interrupt handler
parameter with a previously allocated interrupt vector. This routine does not return a
value. The interrupt handler parameter is application dependent: for example, it might be a



Understanding the Kernel Environment

9-21

device unit identifier or a pointer to a configuration structure. When the interrupt becomes
active, the interrupt handler parameter is passed as the first and only parameter to the inter-
rupt routine.

Following is an example code fragment that shows how to allocate an interrupt vector and
associate an interrupt handler with that vector:

register int i;
uint myhandlr_param;
extern void myintr_handlr(uint handlr_param);

/*
 * Allocate and initialize an interrupt vector
 */

if ((i = ivec_alloc()) == -1 )
{

/* Attempt to obtain interrupt vector failed: return */
cmn_err(CE_WARN,

"mydriver: \
Can’t allocate an interrupt vector!\n");

return(FALSE);
}

/* Obtained interrupt vector successfully:
 * Register an interrupt handler for the interrupt vector
 */

ivec_init(i, &myintr_handlr, myhandlr_param);

Debug Routines 9

The kernel provides a very useful routine,cmn_err(D3) , that allows you to send an
error message to the system console or the circular kernel bufferputbuf . This routine
can also be used during debugging to display a panic message and halt the system. For
additional information on the use ofcmn_err , refer to Chapter 15, “Driver Testing and
Debugging.”

Small vs. Large Offset Drivers 9

Starting with PowerMAX OS 4.2, drivers may be compiled one of two ways: as large off-
set drivers or as small offset drivers.

The small offset driver is the traditional type of driver provided by the earlier revisions of
PowerMAX OS. These drivers are passed (and return) offsets which are of typeoff_t .
Since theoff_t type is really a 32-bit integer type, small offset drivers cannot handle
devices (such as disk partitions) larger than 4 Gigabytes.

To handle today's newer and larger devices, the ability to create large offset drivers has
been introduced. A driver compiled as a large offset driver is given (and returns) 64-bit



Device Driver Programming

9-22

offsets in all of its dealings with the rest of the kernel. This is the newoff64_t type and
with it offsets, up to approximately 1 Terabyte, can be handled by drivers.

Having two offset types implicitly requires that the kernel provide two different DDI/DKI
interfaces to drivers. On the DKI side, the kernel must know what kind of driver it is deal-
ing with so that it can pass the correctly sized offset whenever it needs to invoke one of the
driver's DKI services. On the DDI side, when the driver calls a kernel-supplied routine
which expects an offset, the driver must call the version expecting the same type of offset
as is used by the driver.

Fortunately, for almost every driver these decisions can be handled automatically. Most
drivers can be compiled either as small or as large offset drivers without any change to
their source code. And most (maybe all) of the few remaining ones can be tweaked so that
they then can be compiled either as small or large offset drivers.

A driver compiled with_LARGEFILE64_SOURCE #defined gets the large offset
interface, otherwise, it gets the small offset interface.

By default_LARGEFILE64_SOURCEis #defined when drivers are built, so to build
small offset drivers, an#undef _LARGEFILE64_SOURCE must be added to the source
of the driver, and before anyinclude statements. This is a departure from earlier revi-
sions of PowerMAX OS, where the default driver type was the small offset version.

The_LARGEFILE64_SOURCE definition has these effects on driver compilation:

- The uio_offset field of the uio(D4) data structure changes from
off_t  to off64_t .

- The uio_limit field of the uio(D4) data structure changes from
daddr_t  to size64_t .

- calls that the driver makes to the DDI routinesphysiock(D3) , uio-
move(D3) , ureadc(D3) , anduwritec(D3) invoke the corresponding
large offset versions, instead of the traditional small offset versions.

- calls that the kernel makes to the drivers' DKI routinesread(D2) and
write(D2) will pass in a universaluio structure which is binary com-
patible with both the small and large offsetuio structures. The driver,
being compiled (or not) with_LARGEFILE64_SOURCE, will either see
and update the large offsetuio structure fields, or the equivalant small off-
set fields (but not both). On return, the kernel notes which of the small or
large offset fields were updated and reacts accordingly.

- the flagD_AUTOwill be set toD_OFF64 if _LARGEFIL64_SOURCEis
defined, or toD_OFF32, if it is not. If desired, the driver writer can use
this flag as part of the driver'sdevflag(D1) definition. The use of this
flag is desirable since the kernel can test it and then directly invoke the
appropriate small or large offset interface in its dealings with that driver,
without incurring the overhead of the autodetection as discussed in the pre-
vious paragraph.

This design was selected to preserve the ability of customers to install DDI/DKI conform-
ant driver packages built against earlier releases of PowerMAX OS. Although, few drivers
which arenot fully conformant may require changes, it is expected that even most of these
will operate correctly in the new driver environment of PowerMAX OS.



Understanding the Kernel Environment

9-23

Although old binaries will install correctly, old sources cannot be rebuilt under the new
PowerMAX OS without some changes. If they are to remain small offset drivers, an
#undef _LARGEFILE64_SOURCE line must be added to the start of the file. In addi-
tion, it is recommended thatall drivers, large or small, have their sources modified to
includeD_AUTO in theirdevflag(D1)  declarations.



Device Driver Programming

9-24



10
Developing a Device Driver

Understanding the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Device Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Configuration Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Device Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
DMA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Programmed I/O Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Data Chaining Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Installing and Testing the Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Installing the Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Using the Console Processor to Probe the Device . . . . . . . . . . . . . . . . . . . . . . . 10-5

Validating Slave Address Configurations with the Console Processor . . . . 10-5
Validating Master Address Configurations with the Console Processor. . . 10-6

Understanding the Major Components of a Device Driver . . . . . . . . . . . . . . . . . . . . 10-6
Initialization Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
I/O Service Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7

Developing the Driver Header File and Data Structures . . . . . . . . . . . . . . . . . . . . . . 10-7
Developing the Driver Source File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

Initialization Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
The Init Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9
The Start Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10

I/O Service Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
The Open Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
The Close Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13
The Read Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14
The Write Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
The Ioctl Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17
The Chpoll Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18
The Mmap Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19

Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20
The Intr Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21

Local Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-23
Blocking Primitives and Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24
Blocking Primitives and Premature Returns  . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25



Device Driver Programming



10-1

10
Chapter 10Developing a Device Driver

10
10
10

This chapter describes the procedures for developing a device driver. It identifies aspects
of the device that you need to understand prior to writing the driver and explains the pro-
cedures for installing the device in a Series 6000 system. It explains how to develop the
driver header file, data structures, and source file. Detailed descriptions of the different
types of driver routines are provided.

Understanding the Device 10

Before attempting to write a device driver for a hardware device, spend some time study-
ing the device itself. Gather as much technical information on the device hardware as pos-
sible. This includes a description of what the device modes are, how they are configured,
and what the associated functions are. It also includes a description of how the device
hardware interfaces with the rest of the system, whether the device uses programmed I/O,
generates interrupts, or uses DMA (Direct Memory Access).

Most of this information can be found by reviewing the documentation supplied by the
vendor from which the board has been obtained. This documentation might be in the form
of a technical reference manual or an installation manual. If necessary, consider contacting
the vendor for technical assistance.

Device Modes 10

A device can have as many device modes as it provides operating features and options.
Such modes might include a normal operating mode and a diagnostic mode. The normal
operating mode might include different options. The HSA adapter, for example, supports
two pass-through modes of operation to support data transfers between attached SCSI
devices and system memory. These modes are called pass-through mode out and
pass-through mode in. The former is from attached SCSI devices to system memory. The
latter is from system memory to the attached SCSI devices.

Consult the technical reference manual for your board to learn the device modes used.
These device modes are important to the functionality of the device and affect the device
driver. Examine each mode carefully, paying particular attention to the way in which each
mode is entered and exited and what its functionality is.

Configuration Modes 10

Some devices have a hardware configuration mode through which the device performs
configuration functions only. The HPS, for example, enters a configuration mode after it is



Device Driver Programming

10-2

reset in hardware or via a software command. While in this mode, the only functions that
the HPS can perform are to open channels, allow the processor to download firmware, run
diagnostics, and issue configuration commands. Until the adapter receives a valid configu-
ration command, the adapter cannot open channels or perform any kind of serial I/O.

Consult the technical reference manual for your board to learn the configuration modes
that are used by your device.

Device Registers 10

Typically, the device hardware is designed with a processor interface. This interface con-
sists of a set of device registers which can be read from or written to. These registers are
most often addressed by using different offsets from a base address.

Usually, there are three types of memory-mapped registers: control registers, status regis-
ters, and data buffer registers. Control registers allow the processor to command the oper-
ation of the device—for example, reset, mode selection, calibration, counters, read/write.
Status registers monitor the I/O status of the device. Status might indicate such conditions
as overflow, busy, and input data available. Data buffer registers are used to buffer data
transfers.

Consult the technical reference manual for your board to learn which registers are defined,
the way in which they can be addressed, and, most importantly, the way in which they are
used.

Command Sequences 10

Devices use byte, word or longword data that are written to the control registers and
termedcommands. The SCSI standard, for example, specifies a set of generic commands
for resetting devices, sending and receiving data, and so on.

Consult the technical reference manual for your board to determine the command
sequences that it uses. Become acquainted with the definitions of the commands defined
for your hardware. These commands need to be coded in the driver header file.

DMA Support 10

Direct Memory Access (DMA) devices transfer large amounts of data between the device
and the system memory without assistance from the processors. The major advantage of
DMA is that it allows the device to drive its own data transfer in parallel with the proces-
sor. During the transfers, the processors can perform other work that does not require
access to the same area of memory as that involved in the transfer.

Consult the technical reference manual for your board to determine whether the device is a
DMA device. If it is, refer to Chapter 12 (“Supporting Direct Memory Access (DMA)”) to
learn how to support this feature in the device driver.



Developing a Device Driver

10-3

Programmed I/O Support 10

A programmed I/O device does not directly access physical memory. Instead the device
supplies data to the CPU only when the CPU reads the data directly from device registers.
Data read from a programmed I/O device can be placed in the user’s I/O buffer via the
buffer’s virtual address, which is supplied on a call to the driver’s read routine.

Consult the technical reference manual for your board to determine whether it is a pro-
grammed I/O device.

Data Chaining Support 10

Often, a device must perform DMA transfers that are physically discontiguous. While the
virtual address space assigned to a buffer is contiguous, it might be made up of discontig-
uous physical memory pages.

To accommodate efficient transfers between the device and discontiguous physical mem-
ory, a device sometimes supports data chaining, or scatter/gather I/O. On a gather opera-
tion, the device reads from a number of discontiguous physical memory locations and
transfers the data to the device via DMA. On a scatter operation, the device writes device
data to a number of discontiguous physical memory locations via DMA. Examples of
devices supporting scatter/gather I/O are the HSA and the Interphase V/Ethernet 4207
Eagle device.

Consult the device technical reference manual for your board to determine whether the
device supports this feature. This features greatly simplifies the programming of DMA
operations in the device driver and allows for more efficient data transfer. Refer to
Chapter 12 (“Supporting Direct Memory Access (DMA)”) for an explanation of the pro-
gramming issues related to DMA transfers.

Installing and Testing the Device 10

The purpose of this section is to show how to install your VME device into the Series 6000
platform. Once you have installed your VME device, this section shows how to test the
functionality of the device using the console processor.



Device Driver Programming

10-4

NOTE

This section illustrates the installation procedure for a 13-slot
model of the Series 6000 platform. Different models have differ-
ent configurations of the card enclosures and hardware switches.
Refer to yourInstallation Manualfor configuration details spe-
cific to your particular model.

Installing the Device 10

To install a VME board in the system, use the following steps:

1. Power down the machine.

2. Configure all of the board’s jumpers or DIP switches as required; refer to
the board’s technical reference or installation manual for details.

3. Install the board as shown in Figure 10-1:

Figure 10-1.  Installing (H)VME Board into 13-slot Rack

REMOVABLE
POWER SUPPLY

DISK CHASSIS

VME SLOT 8

VME SLOT 0

HVME SLOT 0

CARD NEST

DIP SWITCH
LOCATION

VME SECONDARY
I/O BUS

HVME PRIMARY
 I/O BUS

HVME SLOT 3

P1 CONNECTOR

P2 CONNECTOR

P1 CONNECTOR

P2 CONNECTOR

P3 CONNECTOR

VME BOARD

HVME ADAPTER BOARD
CLOCK LOADING BOARD

VME BOARD
B1

A2

163170

A1

C



Developing a Device Driver

10-5

To install the board on the HVME primary I/O bus:

• Mount the VME board onto an HVME adapter board (see A1). There
is a mounting assembly (four screws) located just above the clock
loading board that holds the board in place.

• Plug the adapter board into the first available slot position past the
processor and memory boards (see A2).

To install the board on the VME secondary I/O bus, install the board
directly into the first available slot past the processor and memory boards
(see B1).

4. Refer to yourInstallation Manualto locate the jumpers or DIP switches
indicating the free bus slots. Set these DIP switches or jumpers to reflect
the current configuration of the bus slots (see C).

5. Connect any cables that need to be connected.

6. Power up the machine.

NOTE

Notice the position of the (H)VME slot 0 in each system and the
position of the P1 connector when inserting the boards into the
system. In general, (H)VME slot 0 is found to your right hand side
when looking at the system from the front. The slot chosen deter-
mines the arbitration priority of the device on the bus: slot 0 has
the highest priority; slot 7 has the lowest priority.

Using the Console Processor to Probe the Device 10

After you have installed and configured the board according to the vendor specifications, it
is recommended that you verify that the selected address is correct. The Series 6000 con-
sole processor can be used for this purpose. The sections that follow explain how to use
the console to validate the device slave address configuration. It is recommended that you
refer to theSeries 6000 Console Reference Manual as you review these sections.

Validating Slave Address Configurations with the Console Processor 10

To verify the device slave address configuration:

1. Turn off virtual addresses by using theo command and specifying the -v
option

2. Use thew(write memory) ore(xamine) command to access the slave phys-
ical address for the device. Specify theb(yte), w(ord) or l (ongword) for-
mat.

Thewcommand writes the specified hexadecimal data to specified memory
address.



Device Driver Programming

10-6

Thee command displays a byte, word, or longword of memory beginning
at the specified memory location. This command can also change the data
at that location and subsequent locations to the specified data.

3. Note the result

If the console processor returns with the message “HVME Backplane Timeout,” the
device has not responded to the given address, address modifier, or word size. To solve this
problem, experiment with different word sizes (byte versus word versus longword) at the
same address or with different address spaces (A16, A24, A32). Use thee command to
obtain the value of the device registers. Check the value obtained against the valid values
indicated in the vendor documentation.

Validating Master Address Configurations with the Console Processor 10

Some devices require only one slave address, which is a register into which to write a main
memory address that contains a device command block. Examples of devices of this type
are the HSA adapter and the Excelan Ethernet Controller. Use the following steps to check
the address x:

1. Select any appropriate memory address for the device command block.

2. Use thew(rite) or e(xamine) command to write the command block appro-
priate to the device to that address.

3. Write the address of the command block to that device.

4. After completing the command, the device can access the memory com-
mand block to write a completion status.

5. Examine the return status, and compare it to valid values form the device
documentation. If the device attempts to access memory addresses that do
not exist, the console processor reports a bus timeout. Compare the gener-
ated address, address modifier, and word size to the vendor documentation.

Many controllers, e.g., Eagle, Condor, VCOM-24/34, and 5211, have debug ports that let
you see or debug activity on the controller.

Understanding the Major Components of a Device Driver 10

There are three different types of entry points for a device: initialization routines, I/O ser-
vice routines, and interrupt routines.

The names of the entry points to a driver normally take the form ofxxtypeor xx_type,
wherexx is a unique character string for the driver andtype is the type of entry point.
Therefore, a character class driver nameddr11w can have such entry points as
dr11w_init , dr11w_intr , dr11w_open , dr11w_close , dr11w_ioctl ,
dr11w_read , dr11w_write .



Developing a Device Driver

10-7

Each type of entry point is briefly described as follows.

Initialization Routines 10

Typically, there are some initialization tasks that must be performed before the device is
ready to operate within the system. Typically, the initialization tasks include initializing
the device hardware, allocating control and data buffers, registering interrupt handlers, and
so on. These routines can perform these tasks:init(D2)  andstart(D2) .

I/O Service Routines 10

Once the driver and associated devices have been initialized, the system is ready to inter-
face to the device via I/O service routines. The I/O service routines consist of several man-
datory and optional entry points. All character device driver entry points must have an
open() andclose() entry point. Other entry points are optional—for example,
read() , write() , ioctl() , mmap() andchpoll() . These entry points are speci-
fied in the driver’sMaster(4) configuration file. The driver’s I/O service routines are
called at program level.

Interrupt Service Routines 10

If the device for which you are developing a driver generates interrupts, the driver might
have one or more interrupt service routines. The driver’s interrupt service routines are
called at interrupt level. Typically, an interrupt service routine is invoked to handle the
completion of a data transfer or to signal an error condition or any other type of I/O event.

Developing the Driver Header File and Data Structures 10

Typically, a device drivers’s header file is used to declare device-dependent structures,
define symbolic constants and macros.

Most device drivers are written to control a piece of hardware plugged into the I/O back-
plane of the computer. Most boards are designed to have a set of control registers starting
at memory location zero of the board’s memory. This memory is mapped into the virtual
address space of the kernel at boot time. Because the registers on the board are accessed
frequently, it is helpful to declare a structure that represents those registers, declare a
pointer to this type of structure, and have the pointer point to the virtual address of the
board.

When declaring this structure, you must be aware of certain alignment considerations. The
simple data types and their alignment restrictions are described in Chapter 9 (“Under-
standing the Kernel Environment”).



Device Driver Programming

10-8

You might also want to declare other structures for your device driver. The definitions for
such structures should be in the device driver’s header file (the.h file) or in the device
driver’s source file (the.c file). If the structures are internal to the device driver and not
part of a user interface or if they are shared by other kernel files, they can be declared in
the driver’s.c  file.

There are three methods for actually declaring and allocating memory for your structures:

• Allocate memory for them by using the driver’sinit() routine if they are
dependent on the number of devices configured. With this method, waste of
system memory is minimized.

• Declare them statically in your device driver if their size is independent of
the number of devices configured or if their size is minimal.

• Declare memory in the driver’sspace.c file. This allows you to declare
memory on a per installed/configured controller basis.

Most device structures are allocated in arrays, with the device minor number used as the
index into the array.

Developing the Driver Source File 10

This section describes the different types of driver routines. It describes the driver’s initial-
ization routines. It describes the driver’s I/O service routines. It describes the driver’s
interrupt service routines and provides supporting information about interrupt priorities
and interrupt vectors. It explains the use of local routines in the driver. It points out the
need for adequate error-handling procedures. It describes the properties of blocking primi-
tives and signals.

Initialization Routines 10

The following is a brief overview of the kernel initialization routines for device drivers.
The kernel specifies two types of interfaces: one for statically linked drivers, the other for
dynamically linked drivers.

To initialize statically linked device drivers, the system specifies two optional entry points,
init(D2) andstart(D2) . The purpose of these routines and the driver configuration
files is to initialize the driver and its associated devices. (Refer to Chapter 14 (“Driver
Installation and Tuning”) for a detailed description). As a part of the system start up, the
kernel calls the initialization routines of all device drivers statically linked with the kernel.
These are called before any other driver points are called.

The kernel calls the driver’sinit() routine before system services such as the interrupt
subsystem are initialized—that is,before device interrupts are enabled. The kernel calls a
driver’sstart()  routineafter system services are initialized and interrupts are enabled.



Developing a Device Driver

10-9

Typically, the types of activities performed by a driver’sinit() or start() routine are
as follows:

1. Find the adapter’s entry in the array ofadapter structures keying on the
adapter type and adapter number.

2. Read the device’s bus I/O address, and map the device into virtual address
space viaphysmap(D3) .

3. Probe for the presence of the adapter at that address by calling
badaddr(D3) .

4. If the device is present:

• Initialize the hardware—typically by writing to control registers and
callingdrv_usecwait(D3)  to busy wait while the device resets.

• If appropriate, allocate an interrupt vector by calling
ivec_alloc(D3) , and register the interrupt handler via
ivec_init(D3) .

Allocate and initialize any necessary control and data structures and buffers by calling
kmem_alloc(D3) .

Further, the order in which the device drivers are initialized is not important. In rare cases,
some devices must be initialized before others. For this purpose, you must specify this
order in theMaster(4)  configuration files of the associated drivers.

To initialize dynamically linked device drivers, the system specifies distinct optional entry
points and kernel support routines, including the_load(D2) routine. In general, these
are called when the driver is initially invoked in order to load it into the running system.
Refer to Chapter 13 (“Loadable Modules”) for information on dynamically loadable mod-
ules.

Note that these routines execute on a single processor, do not have any user context, and
cannot cause the process to sleep.

The Init Routine 10

Specification

#include <sys/adapter.h>
void xx init ( void)

Return Values

None.

To get started, the name of theinit() entry point must be specified in the driver’s
Master(4) configuration file. Also theSadapters(4) file must contain the hardware
attributes of the device.

You can take advantage of the fact that interrupts are disabled in theinit() routine to
initialize your device without risk of receiving an inopportune device interrupt. In general,
all tasks that require the system services to be disabled must be coded in theinit() rou-



Device Driver Programming

10-10

tine. The rest of the initialization tasks can be coded either in theinit() routine or in the
start()  routine.

The Start Routine 10

Specification

void xxstart  (void )

Return Values

None.

During system start up, the kernel calls this routine to initialize the driver once it has com-
pletely initialized its system services. These services include initializing the interrupt sub-
system so that if the device requests an interrupt, this routine is preempted unless it raises
the interrupt priority of the processor via anspl()  call.

In general, this routine is used for general-purpose initialization of the driver and its asso-
ciated devices. If there are any initialization tasks that must take place before system ser-
vices are available, then they should be coded in theinit() routine. The rest of the ini-
tialization tasks can be coded either in theinit()  or start()  routine.

I/O Service Routines 10

Once theinit() andstart() entry points have been coded and tested, you are ready
to start implementing the I/O service entry points of the driver. Upon servicing the
open(2) , close(2) , read(2) , write(2) , and ioctl(2) system calls on the
device special file, the kernel calls theopen() , close() , read() , write() , and
ioctl()  entry points for the associated driver.

The open() andclose() entry points are the only mandatory entry points for all
device drivers. The other entry points are optional. The purpose of theopen() entry point
is to prepare a device for further access: this is done by enabling device interrupts, allocat-
ing buffers or other resources, and so on. The counterpart of theopen() is theclose()
entry point: it disables interrupts, frees buffers allocated on theopen() call, and so on.
Theopen() andclose() entry points perform the set up and clean up necessary for
any data transfer to occur.

Data transfer is accomplished by the optionalread() andwrite() entry points. The
read() entry point transfers data from the device to the user process data area. Con-
versely, thewrite()  entry point transfers data from the user area to the device.

The purpose of theioctl() entry point is to perform any device-dependent control of
the data transfers. Typically, it is used to control device hardware parameters and establish
the protocol used by the driver in processing data.

The purpose of thechpoll() entry point is to allow user processes to monitor events via
the poll(2) system call. Themmap() entry point allows a device memory to be
mapped into the user space of a process for direct access by the user application—thus
avoiding system call and kernel buffering overhead.



Developing a Device Driver

10-11

Information needed to develop each type of driver I/O service routine is presented in the
sections that follow.

The Open Routine 10

Specification

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxopen  (devp, oflag, otyp, crp)
dev_t devp;
int oflag;
int otyp;
cred_t *crp;

Return Values

• 0 if the device open is successful

• A nonzero value if the open fails. The number is returned to the user in
errno ; it should be an error number as defined in<sys/errno.h> .

The driver’s open entry point routine is called by the kernel during anopen(2) of the
device special file. It is mandatory in all drivers.

Thedevp argument is a pointer to the device major and minor number.

Theoflag argument is a flag that represents the file status flags set by the value of the
oflag argument set on theopen(2) system call. The file status flags are defined in the
file <sys/file.h> .

The following bits are set if the corresponding bits are set on theopen(2)  system call:

FREAD Open the device with read access permission

FWRITE Open the device with write access permission

FNDELAY Open the device and return immediately without sleeping
(do not block the open even if there is a problem). On a read
or a write,0 is returned if the request cannot be satisfied
immediately.

FNONBLOCK Open the device and return immediately without sleeping
(do not block the open even if there is a problem). On a read
or a write, -1 is returned, anderrno is set toEAGAIN if
the request cannot be satisfied immediately.



Device Driver Programming

10-12

FEXCL Interpreted in a driver dependent manner. Some drivers
interpret this flag to mean open the device with exclusive
access. (fail all other attempts to open the device)

Theotypargument specifies the type of open call that is being made. Three distinct and
mutually exclusive types ofopencalls are defined in the file<sys/open.h> . They are
briefly described as follows:

OTYP_BLK Block special file

OTYP_CHR Character special file

OTYP_LYR Layered process

Thecrp argument is a pointer to acred structure that contains the access credentials of the
calling process. Thecred structure is defined in the file<sys/cred.h> ; it is described
in Chapter 9, “The cred Structure” on page 9-7.

Theopen() routine can perform any of the following general functions, depending on
the type of device and service provided:

• Enable device interrupts

• Allocate buffers or other resources needed to use the device

• Lock a non-sharable device

• Notify the device of the open

The driver should verify that the minor number component ofdevpis valid and that the
type of access requested byotypandoflag is appropriate for the device. If required, the
driver must check permissions using the user credentials pointed to bycredp. (see
drv_priv(D3) ).

When sleeping within the open call, the driver might sleep interruptibly such that signals
can cause it tolongjmp() .

Note that theopen() is not called when a process performs aclose() or adup() sys-
tem call. The kernel keeps track of how many processes have the device open and only
calls theclose()  entry point when the last process performs aclose()  system call.

Also note that theopen() must check whether the device was detected during boot time
in theinit()  entry point. If not, the driver must return with error codeENXIO.



Developing a Device Driver

10-13

The Close Routine 10

Specification

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxclose  (dev, oflag, otyp, crp)
dev_t dev;
int oflag;
int otyp;
cred_t *crp;

Return Values

• 0, if the device close is successful

• A nonzero integer value if the close fails. The number is returned to the
user in errno ; i t shou ld be an er ror number as defined in
<sys/errno.h> .

The driver’sclose() routine can be used to reset the device, free buffer space and leave
the device inactive until the next time it is opened again. The driver’sclose() routine is
called only when the device, as defined by the major/minor pair, is closed for the last
time—that is, when the last process that has the device open closes it. It is not possible for
the driver to maintain a count of the number of processes that are using the device at any
particular time.

Thedev argument is the device number.

Theoflag argument contains the file status flags as set on theclose(2) system call by
the process that performs the finalclose() . The file status flags are defined in the file
<sys/file.h> .

The otyp argument specifies the type ofopen() call that was made. Three types of
open() calls are defined in the file<sys/open.h> . They are briefly described as
follows:

OTYP_BLK Block special file

OTYP_CHR Character special file

OTYP_LYR Layered process

Thecrp argument is a pointer to acredstructure that contains the access credentials of the
process issuing the close. Thecredstructure is defined in the file<sys/cred.h> ; it is
described in Chapter 9, “The cred Structure” on page 9-7.



Device Driver Programming

10-14

The Read Routine 10

Specification

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxread  (dev, uio_p, crp)
dev_t dev;
uio_t *uio_p;
cred_t *crp;

Return Values

• 0 if the device read is successful

• A nonzero value if the read fails. The number is returned to the user in
errno ; it should be an error number as defined in<sys/errno.h> .

The device driver’sread(D2) routine is called when theread(2) system call is made
to read data from the device. This entry point is optional. It is valid only for character
device drivers.

Thedev argument specifies the device major and minor number.

Theuio_pargument is a pointer to auio structure that describes the location and layout
of the user’s I/0 buffers. This structure is defined in<sys/uio.h> ; it is described in
Chapter 9, “The iovec and uio Structures” on page 9-7.

NOTE

A driver compiled as a large offset driver is passed (and expects to
get) the large offset version of theuio structure for the
read(D2) interface it supplies. The same applies for small off-
set drivers. For details on how this is done, see Chapter 9, the sec-
tion “Small vs. Large Offset Drivers” on page 9-21.

Thecrp argument is a pointer to thecred  structure associated with the user process.

The read activity is used to initiate and in some cases complete a read activity when a user
process makes aread() system call. Data are passed directly to the process’s address
space if it is available. This happens, for example, when the device has transferred data
beforehand between the device and the system memory upon receiving an interrupt or on a
DMA operation. In this case, the kernel has the data ready to be read and stored in some
kernel or driver memory pool. The purpose of the read entry point is to transfer this data
between the driver’s kernel address space and the user-level process’s address space.



Developing a Device Driver

10-15

To transfer characters to the user’s I/O buffers, the driver calls theuiomove(D3) kernel
function and sets the read–write flag toUIO_READ . Reference information on the
uiomove() routine is provided in the corresponding system manual page.

Following is a code fragment that illustrates this operation:

#include <sys/types.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/user.h>
#include <sys/cred.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>

static char xyzbuf[]=
"DATA READY TO BE READ IN KERNEL ADDRESS SPACE\n";

int xyzdevflag=0;

int xyzinit()
{
(void) cmn_err(CE_NOTE, "xyzinit:Testing uiomove");
}

int xyzread(dev_t dev, uio_t *uio_p, cred_t *cred_p)
{

if (uiomove(
&xyzbuf[uio_p->uio_offset % sizeof(xyzmsg)],
/* src buffer in kernel address
   indexed by uio_offset
 */
sizeof(xyzbuf) -(uio_p->uio_offset % sizeof(xyzbuf)),
/* number of bytes to copy */
UIO_READ,
/* from kernel address TO
   wherever uio parameter points
*/
uio_p
/* uio structure passed determines
   location and layout of the user’s I/O buffers
   within user address space */
))
return EFAULT; /* bad address */

}
return 0;

}



Device Driver Programming

10-16

The Write Routine 10

Specification

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxwrite  (dev, uio_p, crp)
dev_t dev;
uio_t *uio_p;
cred_t *crp;

Return Values

• 0 if the device write is successful

• A nonzero value if the write fails. The number is returned to the user in
errno ; it should be an error number as defined in<sys/errno.h> .

The driver’s write(D2) routine is called when thewrite(2) system call is made to
write data to the device. This entry point is optional.

Thedev argument specifies the device major and minor number.

Theuio_pargument is a pointer to auio structure that describes the location and layout of
the user’s I/0 buffers. This structure is defined in<sys/uio.h> ; it is described in sec-
tion Chapter 9, “The iovec and uio Structures” on page 9-7.

NOTE

A driver compiled as a large offset driver is passed (and expects to
get) the large offset version of theuio structure for the
write(D2) interface it supplies. The same applies for small off-
set drivers. For details on how this is done, see Chapter 9, the sec-
tion “Small vs. Large Offset Drivers” on page 9-21.

Thecrp argument is a pointer to thecred  structure associated with the user process.

Theuio structure contains the number and position of the characters as given by the user.
uio–>uio_residis the number of characters in theuio structure. Theuio structure
contains a pointer to an array ofiovec structures inuio->uio_iov.The number ofiovec
structures is kept inuio->uio_iovcnt.Eachiovec structure contains the base address of
the user’s characters iniovec->iov_baseand the number of characters iniovec->iov_len.
The system can call the routine internally, so the flaguio->uio_segflgis supplied that
determines if theiovec structures refer to the system address space instead of the user’s.



Developing a Device Driver

10-17

The Ioctl Routine 10

Specification

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxioctl  (dev, cmd, arg, mode, crp, rvalp)
dev_t dev;
int cmd;
void * arg;
int mode;
cred_t *crp;
int * rvalp;

Return Values

• 0 if the deviceioctl  is successful

• A nonzero value if theioctl fails. The number is returned to the user in
errno ; it should be an error number as defined in<sys/errno.h> .

The device driver’sioctl(D2) entry point routine is called when a user makes an
ioctl(2) system call to perform specialized operations on the associated device.

This entry point is optional. It is valid only for character device drivers.

Thedev argument specifies the device major and minor number.

Thecmdargument is an integer value that specifies the type of operation to be performed.
This integer value comprises several fields; these fields encode such information as the
following: the command, the direction of a data transfer, and the size of the transfer
buffer. Command types are defined in the device driver. It is recommended that you
always define them by using theioctl macros that are defined in the fi le
<sys/ioccom.h> . These macros are described in Chapter 9, “Ioctl Macros” on page
9-12.

Thearg argument passes parameters between the user and the driver. The interpretation of
the argument is dependent on the command and the driver. For example, the argument can
be an integer, or it can be the address of a user structure containing driver or hardware
settings. In the latter case, the driver can use thecopyin(D3) andcopyout(D3)
routines to transfer data between the user space and the kernel space.

Themodeargument contains the file modes set when the device was opened. The driver
can use this to determine if the device was opened for reading (FREAD), writing
(FWRITE), and so on. Seeopen(D2) for a description of the values.

Thecrp argument is a pointer to the user credential structure.

The rvalp argument is a pointer to the return value for the calling process. The driver can
elect to set the value if theioctl(D2)  succeeds.



Device Driver Programming

10-18

The Chpoll Routine 10

Specification

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int xxchpoll  (dev, events, anyyet, reventsp, phpp)
dev_t dev;
int events;
void * anyyet;
int reventsp;
cred_t *phpp;

Return Values

• 0 if the poll is successful

• A nonzero value if the poll fails. The number is returned to the user in
errno ; it should be an error number as defined in<sys/errno.h> .

The device driver’schpoll routine is called when apoll(2) system call is made on
the associated device. The poll entry point is optional. It is valid for character device driv-
ers only.

Thedev argument specifies the device major and minor number.

The eventsargument specifies a bit mask that indicates the I/O event(s) for which the
specified device is being polled. One or more of the following bits might be set:

POLLIN Data can be read from the device

POLLOUT Data can be written to the device

Theanyyetargument specifies a flag that indicates whether or not I/O events are pending
for other devices that were specified on thepoll(2)  system call.

Thereventspargument is a pointer to a bit mask that indicates which requested I/O events
have occurred on the specified device. If an error has occurred on the device, the appropri-
ate error bit is set. One or more of the following bits might be set:

POLLIN Data can be read from the device

POLLOUT Data can be written to the device

POLLERR An error has occurred on the device

Thephppargument points to a pointer to apollhead structure. This structure is defined
in <sys/poll.h> . Thepollhead structure is not used by the device driver; it is used
by the poll service to monitor the I/O events for which the device is being polled.

The driver allocates apollhead structure for each minor number of the device. The
pollhead structure might be a part of a driver data structure that is associated with the



Developing a Device Driver

10-19

device minor number. If the I/O event for which the device is being polled has not
occurred when the driver’schpoll routine is initially called, the driver returns a pointer
to the pollhead structure associated with the device minor number (see the
chpoll(D2) manual page in theDevice Driver Reference). The poll service then links
onto thispollhead structure such information as the processes that are waiting for the
I/O event and the events for which they are waiting. When an event occurs on the device,
the driver calls thepollwakeup() kernel function and supplies the pointer to the
pollhead structure as a parameter so that the poll service can identify and wake the pro-
cess that is waiting for the event to occur.

The Mmap Routine 10

Specification

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/vm.h>
#include <sys/ddi.h>

int xx mmap(dev, off, prot )
dev_t dev ;
off_t off ;
int prot ;

Return Values

• the physical page ID if the protection and the offset are valid for the device

• otherwise, returnNOPAGE if the protection and offset are not valid

The device driver’smmap routine is called upon receiving ammap(2) system call for the
associated device. It is optional.

Thedev argument specifies the device whose memory is to be mapped.

Theoff argument specifies the offset within device memory at which mapping begins. For
better or for worse, this offset remains anoff_t even for large offset drivers (for which
offsets normally are the largeroff64_t type ).

The prot argument specifies the access permissions associated with the mapped data.
Valid values for this argument are defined in<sys/mman.h>  as follows:

PROT_READ Data can be read from the device

PROT_WRITE Data can be written to the device

PROT_EXEC Data can be executed

PROT_USER Data are accessible from user-level

PROT_ALL All of the above

Themmaproutine checks whether the offset is within the range of pages supported by the
device. For example, a device that has 32 K bytes of memory that can be mapped into user
space should not support offsets greater than or equal to 32 K. If the offset does not exist,



Device Driver Programming

10-20

themmaproutine returnsNOPAGE. If the offset does exist,mmapreturns the physical page
ID for the page at offsetoff in the device’s memory.

This physical page ID is a machine-specific token that uniquely identifies a page of physi-
cal memory in the system. A driver callskvtoppid(D3) to get the physical page ID for
a particular virtual address. Drivers callphystoppid(D3) to get the physical page ID
for a physical address.

Interrupt Service Routines 10

Check your device technical reference manual to determine whether your device generates
interrupts. (Refer to Chapter 4 (“Series 6000 Hardware Environment”) for a description of
this hardware mechanism, interrupt vectors, and interrupt priority levels).

If your device does not generate interrupts, you need to specify this in theSadapters
configuration file associated with the device driver. The driver has no interrupt service rou-
tine.

If your device generates interrupts, complete the following steps to prepare to code the
interrupt service routine:

1. Determine the level at which the device interrupts. This information is pro-
vided in the vendor documentation for the board.

2. Allocate an interrupt vector for the device. Refer to the vendor’s manual to
determine how to configure the interrupt vector(s) used by the device.
There are two possibilities.

• If your device uses a hard-coded interrupt vector, then you must edit
the file /etc/conf/cf.d/ivt.s and insert the following call in
the kernel interrupt vector table at the location that corresponds to the
interrupt vector used by the device

IS(myintrhandler)

Finally, you must rebuild the kernel as explained in Chapter 14
(“Driver Installation and Tuning”).

• If your device interrupt vector is programmable, be sure to allocate
the vector(s) in thestart() or init() entry points, which are
called during system initialization. Use the kernel routines
ivec_alloc(D3) or ivec_alloc_group(D3) to perform
this task.

3. Register the interrupt handler for the device in either thestart() or
init() entry point. Use theivec_init(D3) kernel routine to perform
this task.



Developing a Device Driver

10-21

The Intr Routine 10

Specification

void xx intr( ivec)
int ivec ;

Return Values

None.

The ivecargument specifies a driver-defined number that identifies the device that gener-
ated the interrupt.

This entry point is required only if the driver provides support for interrupts generated by
a device it controls.

This entry point is called by the kernel when the processor services a hardware interrupt
request from the device. The device interrupts when data are available, a device buffer is
empty, or an I/O error has occurred.

The typical steps that can be taken to handle a device interrupt are described as follows.

First, the interrupt handler is responsible for validating the interrupt request. The driver
performs the following types of tasks during this validation:

• Keeps a record of interrupt occurrences

• Interprets the interrupt routine argumentivec

• Processes interrupts that happen without cause (called spurious interrupts)

Second, when the driver has validated the interrupt request, it must then perform
device-dependent functions to service the request.

If the interrupt signals that an error has occurred, the interrupt handler must update the
device I/O status structures or flags. It can also send a signal to the associated process(es);
for example, if the device has been disconnected, the driver might need to send aSIGHUP

signal to the associated process(es).

If the interrupt signals that the device is now available to be read from or written to, then
the interrupt handler is responsible for initiating and scheduling the data transfers. For all
non-DMA data transfers, then the driver must first transfer device data to driver internal
buffers. The interrupt handler cannot transfer the device data directly between the device
and the user process’s address space. Typically, the driver performs the following types of
tasks during this phase:

• The driver updates the I/O status of the device.

• If the driver’s write() routine has buffered data to be written to the
device, the interrupt handler initiates the transfer of data. The transfer can
be performed using DMA or polled I/O. Refer to Chapter 12 (“Supporting
Direct Memory Access (DMA)”) for details on DMA programming. For
polled I/O, the interrupt handler formats commands and data as necessary
and writes the appropriate commands to the device control registers along
with the data. The interrupt handler notifies any user level processes



Device Driver Programming

10-22

waiting on completion of a write request that data have been written from
the internal driver buffers by waking up any base-level driver processes
sleeping on the I/O event. If the driver has calledSV_WAIT(D3) or
SV_WAIT_SIG(D3) to wait for the completion of the write request, the
interrupt handler must callSV_SIGNAL(D3) to wake the sleeping
process, thus completing the write request on behalf of the user process.

• If the driver’s read() routine is waiting for data to be read from the
device, the driver transfers the data into its internal buffers and wakes up
the sleeping process so that the data can be transferred to the user process’s
address space.

Note that the interrupt routine runs at the processor level associated with the interrupt level
for the given device. Interrupts at or below that level are deferred while the interrupt rou-
tine is active. The driver should set IPL at or above the level of the device’s interrupt.

Note that interrupt routines must meet the following constraints:

• Cannot use functions that block

• Cannot use semaphores (blocking primitives) to protect a structure at inter-
rupt level because it is illegal to block in an interrupt routine

• Must use spin locks—that is, basic locks and read/write locks—to guard
critical sections. The spin lock should be held for a brief period of time
(less than the time required for between one and two context switches). See
Chapter 9 (“Understanding the Kernel Environment”) for a brief descrip-
tion of the kernel synchronization routines and Chapter 11 (“Multithread-
ing a Device Driver”) for an explanation of multithreading procedures.

• Cannot drop the IPL below the level at which the interrupt routine was
entered

• Cannot access any user context (the context in which the interrupt routine
executes is not related to the currently running process)

• Should not depend on fields within the u-area

• Must exit the interrupt routine at the same IPL level as entered

Local Routines 10

Local routines are any routines that the device driver developer feels are necessary to effi-
ciently support the functionality of the device—for example, an initialization sequence
required at device initialization or open time can be a local routine called by the device
driver’s init()  or open()  routine.

In general, the device driver can use local routines to perform such tasks as the following:
(1) obtaining the status of the device by polling registers for a bit to be set or cleared and
(2) diagnosing the nature of a problem by dumping the contents of status variables and
registers when an error condition occurs. The device driver for the SYSTECH High Per-
formance Serial controller (HPS), for example, uses local routines to handle input flow
control by issuingSTARTandSTOPcharacters, get device status, set operating modes,
complete initialization and reset sequences, retry read operations, and so on. The HSA



Developing a Device Driver

10-23

device driver uses a local routine to probe each VME slot until the device is found. It
ignores slots that are already marked as configured. When it finds the HSA controller in a
slot, it fills the associated adapter array entry with the slot and bus address

Error Handling 10

A device driver should be coded to handle all sorts of error possibilities, including invalid
arguments and data passed from a user to a malfunctioning hardware device. A good
device driver handles these situations cleanly without causing the system to panic or halt.
There are many different types of I/O errors.

Some I/O errors are related to defensive programming techniques, such as testing for
non-NULL pointers before using them, validating passed parameters on the argument
list—for example, the minor number of the device. Another type of I/O error is related to
the semantics of the I/O access. For example, a driver can check that a non-sharable device
(such as a printer) is not opened multiple times.

It is strongly recommended that you become familiar with the technical reference manual
of the device controller to which you are interfacing. This is necessary to find the various
hardware error reporting facilities supported by the device controller, such as status regis-
ters, special interrupts, and so on. Typically, drivers are responsible for monitoring and
handling all device controller errors.

The driver carries out monitoring and handling functions depending on the means of com-
munication between the device and the rest of the system. When using programmed I/O,
the driver is responsible for polling the status of the devices to check for errors. Failed I/O
commands must be retried if desirable. Drivers must log significant errors to an error log.
This can be done using thecmn_err(D3) kernel support routine.When necessary, driv-
ers must return error codes to the user. When using DMAs or interrupt-based I/O, the
driver is responsible for checking the source of the interrupt in the interrupt handler each
time an interrupt is received. It is also responsible for checking for missed or absent or
dropped interrupts by programming for the unexpected and using timeouts.

The mechanism for reporting errors is the value reported to the calling process from the
driver’s routine. This is the error numbers, such asENXIO. It can also becmn_err(D3 ) ,
which prints a message to either the system console or the circular bufferputbuf . The
putbuf  buffer is read by thecrash(1M)  utility.

cmn_err() classifies the error condition according to its severity level. You can specify
three severity levels as follows.CE_NOTEis used to report system events that do not nec-
essarily require action, but might interest the system administrator. For example, it can be
used to report the status of control lines on an RS-232C interface for a serial driver.
CE_WARNis used to report events that require immediate attention—for example, those
that might cause the system to panic if an action is not taken. For example, this level must
be used when a device does not initialize properly, a buffer cannot be allocated during ini-
tialization, or the maximum number of devices supported has been reached.CE_PANICis
used only for debugging or in the case of severe errors that indicate that the system cannot
continue to function. This level halts processing. For example, this level must be used
when the memory for essential resources such as locks cannot be allocated or when unex-
pected commands sizes or queue length are found. Finally,CE_CONTis used to continue a
previous message or display an informative message not connected with an error. In addi-
tion, printf()  can be used to generate error messages sent to the system console.



Device Driver Programming

10-24

Finally, the kernel provides an error reporting facility. This facility consists of a kernel
error logging routine, an error log driver, and user commands that collect and report errors.
To use this facility, you must make sure that the error daemon is invoked during the boot
from the /etc/rc2.d/S30errdemon scripts. The error daemon is invoked using
errdemon(1M) . To report errors within the driver, you must use the following function
call:

logchanlerr (drv, board, dev, type),

wheredrv is the name of the driver,board is the board number,devis the device number,
andtype is a driver-specific number that codes the error type.

Many different types of devices log errors to the error daemon. To obtain a detailed report
of the error log restricted to your device, you must use the following command:

errpt -t chan

To extract error records from a system dump, useerrdead(1M) . To terminate the
errdemon , useerrorstop(1M) .

Additionally, the writer of the device driver should be aware of process signals killing a
process sleeping in the kernel. When a device driver makes a call to a process blocking
primitive that allows premature returns due to signals, the device driver must be able to
handle these premature returns from the blocking primitive call without leaving. Anopen
call, for example, might mark a device open and then sleep, waiting for initialization of the
device to complete. If the process is killed and allowed to exit, the device driver must
make sure that the open status of the device is cleared from the driver’s internal tables.

Blocking Primitives and Signals 10

When a device driver calls a system routine to block the execution of the currently running
process, the process that is blocked might or might not react to signals that are sent to it.
The system routines that block a process, also known as blocking primitives, include
SV_WAIT, SV_WAIT_SIG, SLEEP_LOCK, and SLEEP_LOCK_SIG. When the
SV_WAIT_SIG andSLEEP_LOCK_SIGroutines are used, the blocked process might be
interrupted by a signal. When theSV_WAITandSLEEP_LOCKroutines are used, signals
sent to the blocked process are ignored.

In general, a blocking operation should ignore signals only when the event for which the
process is waiting is guaranteed to happen.

When a blocked process ignores signals, it cannot be unblocked if the event for which it is
waiting does not occur; any termination signals are ignored. If a terminal driver is awaiting
data from a remote port, for example, the process is blocked until some data is received. If
the data never arrives, a user might try to abort the program waiting for data or hang up the
line. If signals are ignored by the blocking mechanism, then the process remains blocked.
It is impossible to use that terminal until the system is rebooted.

When a process blocked bySV_WAIT_SIG is interrupted by a job control stop signal and
is subsequently continued,SV_WAIT_SIG returnsTRUE, as if the process were wakened
by a call toSV_SIGNALor SV_BROADCAST. When the process is interrupted by another
type of signal, or a stop signal for which a non-default disposition has been specified,
SV_WAIT_SIG returnsFALSE.



Developing a Device Driver

10-25

When a process blocked bySLEEP_LOCK_SIGis interrupted by a job control stop signal
and is subsequently continued, theSLEEP_LOCK_SIGroutine transparently retries the
lock (the call cannot return without the lock). If the lock is acquired,SLEEP_LOCK_SIG
returnsTRUE. When the process is interrupted by another type of signal, or a stop signal
for which a non-default disposition has been specified,SLEEP_LOCK_SIGreturns
FALSE. Procedures for coding the device driver to handle premature returns from these
routines are explained in the section that follows.

A driver might have set some state as part of the execution of the I/O call before the pro-
cess was blocked. Because receipt of a signal requires a premature return out of the device
driver directly to the user, it might be necessary to clean up the device driver state before
returning to the user. The device driver, for example, might have locked some data struc-
tures that must be unlocked before returning to the user. The clean up must be accom-
plished by the driver. The driver must ensure that the process exits the kernel in an orderly
fashion.

Blocking Primitives and Premature Returns 10

When you use the blocking primitivesSV_WAIT_SIG or SLEEP_LOCK_SIG, you must
be prepared for premature returns. AnSV_WAIT_SIG or SLEEP_LOCK_SIGcall does
not reliably block a process. To completely eliminate premature unblocking on a multipro-
cessor system, these routines would have to be very inefficient. Therefore, the driver
should always set a flag indicating the condition that is causing the process to block.

Prior to invoking theSV_SIGNAL, SV_BROADCAST, or SLEEP_UNLOCKroutines which
unblock the process, the device driver must ensure that the flag has been cleared. When the
process becomes unblocked, the driver must also check the flag to be sure that the process
is unblocked for the correct reason.

The device driver for the SYSTECH High Performance Serial (HPS) controller illustrates
use of such a flag. The HPS and its associated driver provide access to serial devices
(CRTs, TTY devices, and so on) and parallel printers. Additional information on the HPS
is provided in thehps(7)  system manual page.

Communications between the HPS controller and the driver are accommodated by use of
I/O control blocks, or IOCBs. An IOCB is a software structure that is used to pass I/O
requests to the board from the host software. The driver uses an IOCB state flag to coordi-
nate base-level I/O activity with interrupt-level activity. At base level, the driver sets the
flag toIOCB_NEEDS_SV_SIGNALto indicate that it is going to block the process; it then
queues the I/O request to the controller and callsSV_WAIT_SIG to wait for completion of
the request:

. . .
dl->iocb_state = IOCB_NEEDS_SV_SIGNAL;
hps_queue_iocb(hp, dl);

 . . .
SV_WAIT_SIG(hp->hps_syncvar, TTIPRI, hp->hps_lkp);

 . . .

In the interrupt routine, where the driver handles the occurrence of an IOCB completion
interrupt, the driver checks the state flag to determine whether or not a process is sleeping



Device Driver Programming

10-26

in SV_WAIT_SIG and needs to be wakened. If the flag is still set, the interrupt routine
clears it and then invokesSV_SIGNAL to wake the process:

. . .
case HPS_IOCB_COMPLETE:

. . .
if ( iocb->iocb_state & IOCB_NEEDS_SV_SIGNAL ) {

. . .
iocb->iocb_state &= ~IOCB_NEEDS_SV_SIGNAL;

. . .
SV_SIGNAL(hp->hps_syncvar, 0);

. . . }

In this case, the driver frees the IOCB at base level.

At base level, after the return fromSV_WAIT_SIG, the driver must check the state flag to
determine whether the routine returned normally as a result of the interrupt routine's call to
SV_SIGNALor returned early because it was interrupted by a signal. If the driver finds the
flag still set toIOCB_NEEDS_SV_SIGNAL, then the IOCB completion interrupt has not
occurred;SV_WAIT_SIG has returned prematurely. In this case, the driver must clear the
state flag and exit:

. . .
if (dl->iocb_state & IOCB_NEEDS_SV_SIGNAL) {

. . .
dl->iocb_state &= ~IOCB_NEEDS_SV_SIGNAL;
. . .
return(-1); }

The flag is cleared so that the interrupt routine does not attempt to signal the base level
context. The interrupt routine frees the IOCB in this case.



11
Multithreading a Device Driver

The Multithreaded, Preemptive Kernel and Device Drivers . . . . . . . . . . . . . . . . . . . 11-1
Protecting a Device Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Using the Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4

Spin Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
Basic Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Read/Write Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

Sleep Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13
Using Multiple Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Synchronization Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18



Device Driver Programming



11-1

11
Chapter 11Multithreading a Device Driver

11
11
11

This chapter describes the methods for protecting a device driver in a multiprocessor
system. It provides an introduction to the multithreaded, preemptive kernel and protection
mechanisms. It shows the procedures for using spin locks, sleep locks, and synchroniza-
tion variables to protect critical sections of code.

The Multithreaded, Preemptive Kernel and Device Drivers 11

The kernel used on the Series 6000 system is multithreaded and preemptive. Multithread-
ing the kernel permits more than one thread of execution in the kernel at one time; in other
words, it provides the ability for two or more lightweight processes (LWPs) running on sep-
arate processors to execute within the same section of kernel code simultaneously. Making
the kernel preemptive makes it possible for anLWP that is executing in kernel mode to be
forced to relinquish the CPU; this permits quick response to high-priorityLWPs.

Having a multithreaded preemptive kernel makes it necessary to use special protection
mechanisms to prevent data structures from being corrupted; for example, a common mul-
tithreading problem is protection of a linked list. When oneLWP is inserting an item in or
deleting an item from a linked list, otherLWPs must be prevented from modifying or fol-
lowing the links of the list. If anotherLWP modifies the list at the same time, the list can be
corrupted. If anotherLWP attempts to follow the linked list, it can miss a link in the list, or
if it picks up a link that is not yet initialized, it can be scanning memory that is not really a
part of the list.

Device drivers are a part of the kernel and must be multithreaded in the same manner as
any other operating system feature; that is, critical sections and shared data structures must
be protected when corruption is possible. The protection mechanisms that are available for
use in developing device drivers are spin locks, sleep locks, and event synchronization
primitives. Use of each of these types of mechanisms is explained in the “Using the Syn-
chronization Primitives”section, page 11-4.

Protecting a Device Driver 11

A device driver must have its own internal protection, or it must be marked so that it can
execute only on a single processor. When completely multithreaded, multipleLWPs can be
active within the driver at any given time. To protect a driver internally, you must be thor-
oughly familiar with the driver and its operation; you must carefully examine the follow-
ing to determine the extent of protection needed and the type of mechanism to be used:

• Sections of code around which the interrupt priority level (IPL) is raised



Device Driver Programming

11-2

• Linked lists, state fields, and other data structures used by the driver

• Global variables

• Hardware registers

As indicated in the previous section, the mechanisms that can be used are spin locks, sleep
locks, and synchronization variables.

When multithreading a driver, the first step is to check the areas of the program level code
that raise IPL. These areas are protecting device driver structures from being corrupted by
program level/interrupt level interactions. A driver's program-level code can, for example,
be adding a message to a queue while its interrupt-level code is attempting to remove a
message from the same queue. The program-level code might be similar to the following:

message_qp = message_Q;
message_qp->next = new_message_p;

The interrupt-level code might be similar to the following:

message_qp = message_Q;
message_Q = message_qp->next;

If an interrupt occurs between the two lines of code at program level and then the two lines
of code are executed at interrupt level, the new message added at program level is lost. To
prevent this problem from occurring, the queue structures can be protected by using the
LOCKandUNLOCKfacilities (see the “Spin Locks” section, p. 11-5). The program-level
code can be changed as follows:

old_ipl = LOCK(Q_lock, plhi);
message_qp = message_Q;
message_qp->next = new_message_p;
UNLOCK(Q_lock, old_ipl);

The interrupt-level code can be changed as follows:

old_ipl = LOCK(Q_lock, plhi);
message_qp = message_Q;
message_Q = message_qp->next;
UNLOCK(Q_lock, old_ipl);

By using the spin locks, you protect program level from interrupt level and interrupt level
from program level.

Any areas of code that raise the IPL to protect code must be protected via a spin lock. The
spin lock must be locked at both program and interrupt level. Simply raising the IPL is not
good enough protection because raising the IPL does not prevent an interrupt from occur-
ring on another CPU.

The next step in multithreading a driver is to look at the data structures that the driver uses.
The most common data structures that need coordination are linked lists and state fields.
Any time items are added or removed from linked lists the operation must be protected.
State fields are often bit fields that are set to indicate a current condition in the driver. The
setting and resetting of these bits is often done because of asynchronous events. Changes
to these state fields must be protected as well as checks on the state field. If the execution



Multithreading a Device Driver

11-3

of some code depends upon the current state being constant, then the lock that protects
updates to the state must be held during execution of this code.

Note that words that contain more than one state are a problem. Different bits in the same
word used for distinctly different purposes must be protected by a single lock. This is
because an update of a bit is not necessarily an interlocked operation. If different synchro-
nization locks are used for the same word, there is nothing to prevent two processors from
modifying the same word but different bits at the same time. This causes one of the
updates to this word to be lost. Note that this is also a problem when two character ele-
ments that lie in the same longword are protected by different locks.

Next check the global variables in the driver. These variables must be protected because an
LWP is no longer guaranteed to have exclusive access to a global variable. Making a global
variable into a local variable corrects the problem. If this cannot be done, then a spin lock
or sleep lock must be locked whenever the variable is expected to contain a value that was
placed there.

For some device drivers, access to the hardware registers of the device must be treated as a
critical section. This is often true for registers that can be read only once.

The driver for a device such as the HSA (HVME SCSI adapter) does not need to protect its
registers. When the HSA receives an interrupt for command complete, a register points to
the request that has just been completed. This register cannot be overwritten because fur-
ther interrupts cannot be received until another command is sent to the HSA. The program
level code of this driver cannot issue another command to the HSA as long as there is cur-
rently a command executing on the HSA. The important thing to protect here is the state of
the HSA. Is there a command currently executing on the HSA? As long as this state is
maintained correctly, this hardware register cannot be overwritten.

One of the important decisions in multithreading a driver is whether to use spin locks or
sleep locks to protect structures. Spin locks are used when the holding time of the locks is
small or when the lock must be locked at interrupt level. Sleep locks must be used when
the holding times for the locks are longer. The routines associated with spin locks and
sleep locks are presented in the sections that follow.

NOTE

For performance reasons, it is strongly recommended that you
multithread your device driver. However, for compatibility pur-
poses, the kernel allows you to configure a single-threaded device
driver so that it can be used in a multiprocessor system. This is
done by setting thecpu_bind field of theMaster file for the
device driver to the processor ID of the processor to which the
base level of the device driver must be bound. Also be sure that if
thedevflag(D1) global variable is declared in your driver, it is
not initialized with the valueD_MP.



Device Driver Programming

11-4

Using the Synchronization Primitives 11

The synchronization primitives to use in a multithreaded environment are spin locks, sleep
locks, and synchronization variables. The choice of the type of primitives to be used
depends on the way the data are accessed, the amount of contention for the data, and the
duration of the accesses.

The following sections describe these synchronization primitives and explain their usage.

It might be worthwhile to mention that there are some special compilation options with
which you must become familiar when programming with locking primitives. These com-
pilation options are used when recompiling the kernel to enforce the order by which the
locks can be nested, gather lock statistics, or use a debug version of the locking primitives.
These options are as follows:

• _LOCKTEST

This compilation option enforces the lock ordering protocol within the driver.
Drivers and modules must use hierarchy values from within a defined range. Hierar-
chy values must be chosen such that locks are acquired in order of increasing hierar-
chy number. The lock must have a hierarchy value that is strictly greater than the
hierarchy values associated with all locks currently held by the calling context. Note
that the hierarchy values specified within a DDI/DKI driver are never checked
against those of locks in the base kernel. As a result, a DDI/DKI driver can assume
that the scope for the hierarchy used is local to the driver—that is, assuming that the
driver does not call into any other DDI/DKI driver(s) with a lock held. Also, a driver
need not worry about the relationship between these values and those used in the
base kernel.

• _MPSTAT

This compilation option is used for gathering statistics. The statistics data gathered
are either performance data or debugging data. All of these data are available via
separately provided function calls.

The performance data are stored in the lock control structure itself. This includes the
number of acquisition attempts and the number of collisions. The performance data
allow a programmer to identify lock contentions and to fine tune their applications.

The debugging data are stored in a log. These data include the name of the primitive,
the operation, the name of the requesters, the disposition (resultant operation),
block, and so on. These data allow you to isolate deadlocks and race conditions.

• DEBUG

This compilation option is used to allow extra sanity checking in some locking
functions. This compilation option is necessary for enabling the spin lock hierarchy
checking and spin lock statistics gathering in the kernel. Note that this option also
enables the_LOCKTEST and_MPSTAT options.



Multithreading a Device Driver

11-5

Spin Locks 11

Spin locks are low-level, busy waiting synchronization primitives. They coordinate access
to data structures and coordinate the activities of an interrupt stream on one processor with
execution streams on other processors. They also guard critical regions that are very short
in duration (that is, less than the time that it takes to perform two context switches).

Spin locks have no mechanism for queueing waiters on a critical section. The spin lock is
simply a test and set instruction that is performed on a lock bit. If anLWP attempts to lock
a spin lock that is already locked, then theLWP does not block; instead it spins, attempting
to set the lock. Because theLWP does not block, this type of lock can be locked at interrupt
level. Obviously, it is undesirable to keep a spin lock locked for a very long period of time.
Spin locks held for long periods of time cause other lockers to consume CPU time by spin-
ning while they are waiting for the lock to become free. In general, a spin lock should not
be held for more than 20 or 30 lines of code.

Process-level code that uses spin locks must take care to raise the IPL high enough to
block all interrupt-level code that also uses the spin lock; otherwise, a processor can
deadlock itself.

NOTE

While a spin lock is held, be sure that there is no possibility that
any of the code attempts to block, causing a context switch.
Switching away from anLWP that holds a spin lock causes that
spin lock to be held for a very long time.

Spin locks are of two types: basic locks and read/write locks. The data structures associ-
ated with each type are defined insys/ksynch.h . Each of these types is described in
the sections that follow.

First, prior to using a basic lock or a read/write lock, you must define its associated lock
information structure, which is of typelkinfo_t . This is done using the
LKINFO_DECL(D5)  kernel macro:

#include <sys/ksynch.h>
#include <sys/ddi.h>

LKINFO_DECL( var, name, flags)

where:

var is the name of the lock information structure of typelkinfo_t . The name
chosen should be a unique driver prefix to distinguish it from other lock name iden-
tifiers.

nameis a character string defining a name that identifies the lock. This name should
begin with the driver prefix; it identifies the lock for the purpose of gathering statis-
tics.

flags should always be0.



Device Driver Programming

11-6

Basic Locks 11

After you have defined a basic lock’s lock information structure by using the
LKINFO_DECL(D5) macro, you must allocate and initialize the lock. This is done by
calling the calling theLOCK_ALLOC(D3) routine.

While the kernel sometimes statically allocates locks, device drivers are strongly encour-
aged to always useLOCK_ALLOCto allocate their locks. Use ofLOCK_ALLOCenhances
the portability of the driver.

#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

lock_t * LOCK_ALLOC( hierarchy, min_pl, lkinfo_p, flag)
uchar_t hierarchy;
pl_t min_pl;
lkinfo_t * lkinfo_p;
int flag;

where:

hierarchyis the hierarchy value that asserts the order in which this lock is acquired
relative to other basic and read/write locks. Acceptable hierarchy values range from
1 to 32 inclusively.

When acquiring a lock using any function other thanTRYLOCK(D3), the lock
must have a hierarchy value that is strictly greater than the hierarchy values cur-
rently held by the calling context. For example, if lock B is to be acquired uncondi-
tionally while holding lock A, then the hierarchy value associated with lock B
should be strictly greater than the hierarchy value associated with lock A. The hier-
archy values of multiple locks held at any point in time must form a strict ordering.

Further, if one or more locks are acquired at distinct priority levels, you should
define subranges of hierarchy values for each priority level and pick a value from
these subranges. For example, if M is the hierarchy value defined for any lock that
can be acquired at priority level N, then M+1 should be the minimum hierarchy
value defined for any lock that can be acquired at any priority level greater than N.

min_pl is the minimum priority level argument that asserts the minimum priority
level passed in with any attempt to acquire the lock.

The valid priority level arguments for the basic lock allocation and locking inter-
faces are listed below:

pltimeout Block functions scheduled by
itimeout(D3)  anddtimeout(D3)

pldisk Block disk device interrupts

plstr Block STREAMS interrupts

plhi Block all interrupts



Multithreading a Device Driver

11-7

Note that strictly speaking, the interrupt levels listed here are machine independent
abstractions of the hardware interrupt priority levels used by a hardware platform. In
particular, the interrupt levels defined here have no absolute value, but a relative
ordering. Setting a given priority level blocks interrupts at or below that level. The
following partial order is defined:

pltimeout  < pldisk , plstr  <= plhi .

The ordering ofpldisk andplstr relative to each other is undefined. You should
choose an interrupt level that is high enough to block out any interrupt handler that
might attempt to acquire this lock.

NOTE

Do not use theplbase priority value for themin_pl argu-
ment.Theplbase priority value is invalid because it does not
block any interrupts.

lkinfo_p is a pointer to alkinfo structure. Thelk_name component of the
lkinfo structure points to a character string defining a name that identifies the
lock. This name should begin with the driver prefix. Thelkinfo structure can be
shared only with other basic locks or read/write locks. It cannot be shared with sleep
locks.

flag specifies if the caller can sleep waiting for memory if sufficient memory is not
immediately available to allocate the synchronization variable. Ifflag is set to
KM_SLEEP, the caller sleeps if necessary until sufficient memory is available. Ifflag
is set toKM_NOSLEEP and if sufficient memory is not immediately available, the
routine does not sleep but returns immediately with an error.

Upon successful completion,LOCK_ALLOCreturns a pointer to the lock just allocated. If
KM_NOSLEEP is specified and sufficient memory is not immediately available,
LOCK_ALLOC returns aNULL  pointer.

Once the lock has been allocated, the driver can attempt to acquire the lock using the
LOCK routine:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t LOCK( lockp, pl)
lock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the basic lock to be acquired.

pl is the interrupt priority level argument to be set while the lock is held by the caller.

LOCKattempts to acquire the lock specified bylockp. If the lock is not immediately avail-
able, the caller busy waits until the lock is available.



Device Driver Programming

11-8

Upon acquiring a lock with the priority level set at the specifiedpl, LOCKreturns the pre-
vious priority level to the caller.

NOTE

Be sure that the calling context has not already acquired the speci-
fied spin lock usingLOCK because a deadlock results.

To attempt to acquire the lock without busy waiting if the lock is not immediately avail-
able, you use theTRYLOCK routine:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t TRYLOCK( lockp, pl)
lock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the basic lock to be acquired.

pl is the interrupt priority level argument to be set while the lock is held by the caller.

Upon acquiring the lock,TRYLOCKreturns the previous priority level. If the lock is not
acquired, it returns the valueinvpl  (invalid IPL).

To release a lock, you use theUNLOCK routine:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void UNLOCK( lockp, pl)
lock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the basic lock to be released.

pl is the interrupt priority level to be set after releasing the lock.

TheUNLOCK routine has no return value.

Finally, to deallocate a basic lock, you use theLOCK_DEALLOC routine:



Multithreading a Device Driver

11-9

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void LOCK_DEALLOC( lockp)
lock_t * lockp;

where:

lockp is a pointer to the basic lock to be deallocated.

TheLOCK_DEALLOC routine has no return value.

For additional information on the spin lock interfaces, refer to the corresponding system
manual pages.

Read/Write Locks 11

If the data being protected by a spin lock are more often read than written, and the write
operations are relatively short compared to the read operations, you might want to use a
read/write lock. A read/write lock allows multipleLWPs to hold the lock in read mode at
the same time but ensures that only oneLWP holds the lock in write mode. If anLWP is
writing data, no otherLWP can read or write data. If anLWP is reading the data, otherLWPs
can read the data, but noLWP can write to it.

A read/write lock is available in read mode when the lock is not held by any context or
when the lock is held by one or more readers and there are no waiting writers. A read/write
lock is available in write mode when the lock is not held by any context.

The most common usage of reader/writer locks is for protecting access to a doubly linked
list. In this case a reader is anLWP that is scanning the list, and a writer is anLWP that is
adding an item to or deleting an item from the list. Scanning the linked list can be a
lengthy operation if the list becomes very long, but adding a new item to the list is very
quick, because new items are always added to the end of the list. Much concurrency can be
gained by using a read/write lock for protection, because the lengthy scans of the linked
list can occur simultaneously and are blocked only for short durations while items are
added to or deleted from the list.

The guidelines for associating an IPL value with a read/write lock are the same as for
basic locks. The read/write lock routines are presented as follows.

Prior to using a read/write lock, you must define its associated lock information structure
by using theLKINFO_DECL(D5)  kernel macro, which is described in “Spin Locks.”

Then you must allocate and initialize the read/write lock by invoking theRW_ALLOCrou-
tine.



Device Driver Programming

11-10

#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

rwlock_t * RW_ALLOC( hierarchy, min_pl, lkinfo_p, flag)
uchar_t hierarchy;
pl_t min_pl;
lkinfo_t * lkinfo_p;
int flag;

where:

hierarchyis the hierarchy value that asserts the order in which to acquire the lock rel-
ative to other basic and read/write locks. Acceptable hierarchy values range from 1
to 32 inclusive.

When acquiring a lock using any function other thanTRYLOCK(D3), the lock
must have a hierarchy value that is strictly greater than the hierarchy values cur-
rently held by the calling context. For example, if lock B is to be acquired uncondi-
tionally while holding lock A, then the hierarchy value associated with lock B
should be strictly greater than the hierarchy value associated with lock A. The hier-
archy values of multiple locks held at any point in time must form a strict ordering.

Further, if one or more locks are acquired at distinct priority levels, you should
define subranges of hierarchy values for each priority level and pick a value from
these subranges. For example, if M is the hierarchy value defined for any lock that
can be acquired at priority level N, then M+1 should be the minimum hierarchy
value defined for any lock that can be acquired at any priority level greater than N.

min_pl is the minimum priority level argument that asserts the minimum priority
level passed in with any attempt to acquire the lock.

The valid priority level arguments for the basic lock allocation and locking inter-
faces are listed below:

pltimeout Block functions scheduled by
itimeout(D3)  anddtimeout(D3)

pldisk Block disk device interrupts

plstr Block STREAMS interrupts

plhi Block all interrupts

Note that strictly speaking, the interrupt levels listed here are machine independent
abstractions of the hardware interrupt priority levels used by a hardware platform. In
particular, the interrupt levels defined here have no absolute value, but a relative
ordering. Setting a given priority level blocks interrupts at or below that level. The
following partial order is defined:

pltimeout  < pldisk , plstr  <= plhi .

The ordering ofpldisk andplstr relative to each other is undefined. You should
choose an interrupt level that is high enough to block out any interrupt handler that
might attempt to acquire this lock.



Multithreading a Device Driver

11-11

NOTE

Do not use theplbase priority value for themin_plargument
This value is invalid because it does not block any interrupts.

lkinfo_p is a pointer to alkinfo structure. Thelk_name component of the
lkinfo structure points to a character string defining a name that identifies the
lock. This name should begin with the driver prefix. Thelkinfo structure can be
shared only with other basic locks or read/write locks. It cannot be shared with sleep
locks.

flag specifies if the caller can sleep waiting for memory if sufficient memory is not
immediately available to allocate the synchronization variable. Ifflag is set to
KM_SLEEP, the caller sleeps if necessary until sufficient memory is available. Ifflag
is set toKM_NOSLEEP and if sufficient memory is not immediately available, the
routine does not sleep but return immediately.

Upon successful completion,RW_ALLOCreturns a pointer to the lock just allocated. If
KM_NOSLEEP is specified and sufficient memory is not immediately available,RW_ALLOC
returns aNULL  pointer.

To acquire a read/write lock inread mode, invoke theRW_RDLOCK routine.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t RW_RDLOCK( lockp, pl)
rwlock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the read/write lock to be acquired.

pl is the interrupt priority level  to be set  while the lock is held by the caller.

Upon acquiring the lock, theRW_RDLOCK routine returns the previous priority level.

To try to acquire a read/write lock in read mode without causing a busy wait if the lock is
unavailable, invoke theRW_TRYRDLOCK routine.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t RW_TRYRDLOCK( lockp, pl)
rwlock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the read/write lock to be acquired.

pl  is the interrupt priority level to be set while the lock is held by the caller.



Device Driver Programming

11-12

Upon acquiring the lock, theRW_TRYRDLOCKroutine returns the previous priority level.
If the lock is not acquired, theRW_TRYRDLOCKroutine returns the valueinvpl (invalid
IPL).

To acquire a read/write lock inwrite mode, invoke theRW_WRLOCK routine.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t RW_WRLOCK( lockp, pl)
rwlock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the read/write lock to be acquired.

pl is the interrupt priority level to be set while the lock is held by the caller.

Upon acquiring the lock, theRW_WRLOCK routine returns the previous priority level.

To try to acquire a read/write lock in read mode without causing a busy wait if the lock is
unavailable, invoke theRW_TRYWRLOCK routine.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

pl_t RW_TRYWRLOCK( lockp, pl)
rwlock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the read/write lock to be acquired.

pl is the interrupt priority level to be set while the lock is held by the caller.

Upon acquiring the lock, theRW_TRYWRLOCKroutine returns the previous priority level.
If the lock is not acquired, theRW_TRYWRLOCKroutine returns the valueinvpl (invalid
IPL).

To release a read/write lock, there is a single routine: RW_UNLOCK.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void RW_UNLOCK( lockp, pl)
rwlock_t * lockp;
pl_t pl;

where:

lockp is a pointer to the read/write lock to be released.



Multithreading a Device Driver

11-13

pl is the interrupt priority level to be set after releasing the lock.

TheRW_UNLOCK routine has no return value.

Finally, to deallocate a read/write lock, you use theRW_DEALLOC routine:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void RW_DEALLOC( lockp)
rwlock_t * lockp;

where:

lockp is a pointer to the read/write lock to be deallocated.

TheRW_DEALLOC routine has no return value.

For additional information on the read/write lock interfaces, refer to the corresponding
system manual pages.

Sleep Locks 11

Sleep locks are used to provide exclusive access to a shared resource when spin locks can-
not be used. The sleep lock routines cause the callingLWP to block when the lock is not
available. These routines must be called from the base level of the device driver. Do not
use sleep locks in an interrupt service routine; use basic locks or read/write locks instead.

First, prior to using a sleep lock, you must define its associated lock information structure
which is of typelkinfo_t . This is done using theLKINFO_DECL(D5)  kernel macro:

#include <sys/ksynch.h>
#include <sys/ddi.h>

LKINFO_DECL( var, name, flags)

where:

var is the name of the lock information structure of typelkinfo_t . The name cho-
sen should use a unique driver prefix to distinguish it from other lock name identifi-
ers.

nameis a character string defining a name that identifies the lock. This name should
begin with the driver prefix and identifies the lock for the purpose of gathering sta-
tistics.

flagsis either 0 orLK_NOSTATS. LK_NOSTATSprevents statistics gathering for the
lock.

Once the sleep lock has been defined, you must allocate and initialize it using the
SLEEP_ALLOC routine:



Device Driver Programming

11-14

#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

sleep_t * SLEEP_ALLOC( arg, lkinfo_p, flag)
int arg;
lkinfo_t * lkinfo_p;
int flag;

where:

arg is an unused argument reserved for future use that must be set to0.

lkinfo_p is a pointer to alkinfo structure. Thelk_name component of the
lkinfo structure points to a character string defining a name that identifies the
lock. This name should begin with the driver prefix.

flag specifies if the caller can sleep waiting for memory if sufficient memory is
immediately available to allocate the synchronization variable. Ifflag is set to
KM_SLEEP, the caller sleeps if necessary until sufficient memory is available. Ifflag
is set toKM_NOSLEEP and if sufficient memory is not immediately available, the
routine does not sleep but returns immediately with an error.

Upon successful completion, theSLEEP_ALLOCroutine returns a pointer to the newly
allocated lock. IfKM_NOSLEEP is specified and sufficient memory is not immediately
available, theSLEEP_ALLOC routine returnsNULL .

Once a sleep lock has been allocated, the driver can attempt to acquire the lock using the
SLEEP_LOCKandSLEEP_LOCK_SIGroutines. TheSLEEP_LOCKroutine is pre-
sented as follows.

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_LOCK( lockp, priority)
sleep_t * lockp;
int priority;
pl_t pl;

where:

lockp is a pointer to the sleep lock to be acquired.

priority is a hint to the scheduling policy as to the relative priority the caller wants to
be assigned while running in the kernel after waking up. It allows the driver to tem-
porarily boost the priority of anLWP that is in the timesharing class as a reward for
voluntarily blocking itself. Validpriority values are:

pridisk Priority appropriate to disk driver

prinet Priority appropriate to network driver

pritty Priority appropriate to tty driver

pritape Priority appropriate to tape driver



Multithreading a Device Driver

11-15

prihi High priority

primed Medium priority (recommended)

prilo Low priority

Drivers can use these values to request a priority appropriate to a given type of
device or to request a priority that is high, medium or low relative to other activities
within the kernel. In general, it is recommended that you use theprimed  value.

TheSLEEP_LOCK routine has no return value.

SLEEP_LOCKattempts to acquire the lock specified bylockp. If the lock is not immedi-
ately available, the caller goes to sleep until the lock is available to it, at which point the
caller wakes up and returns with the lock held.

CAUTION

An LWP blocked inSLEEP_LOCK cannot be killed.

SLEEP_LOCKis used only when the wake up is guaranteed to occur in a short time
because the sleep is not interruptible by signals. To sleep for a longer period or when there
is some possibility that the wake up might not occur, the driver must invoke
SLEEP_LOCK_SIG. TheSLEEP_LOCK_SIG routine can be interrupted by a signal.

TheSLEEP_LOCK_SIG routine is presented as follows:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

bool_t SLEEP_LOCK_SIG( lockp, priority)
sleep_t * lockp;
int priority;

where:

lockp is a pointer to the sleep lock to be acquired.

priority is a hint to the scheduling policy as to the relative priority the caller wants to
be assigned while running in the kernel after waking-up. It allows the driver to tem-



Device Driver Programming

11-16

porarily boost the priority of anLWP which is in the timesharing class as a reward for
voluntarily blocking itself. Validpriority values are:

pridisk Priority appropriate to disk driver

prinet Priority appropriate to network driver

pritty Priority appropriate to tty driver

pritape Priority appropriate to tape driver

prihi High priority

primed Medium priority (recommended)

prilo Low priority

Drivers can use these values to request a priority appropriate to a given type of
device or to request a priority that is high, medium or low relative to other activities
within the kernel. In general, it is recommended that you use theprimed  value.

TheSLEEP_LOCK_SIGroutine returnsTRUE (a nonzero value) if the lock is successfully
acquired orFALSE (zero) if the function returns early because of a signal.

NOTE

When you useSLEEP_LOCK_SIG, you must be prepared for pre-
mature returns. Refer to the section “Blocking Primitives and Pre-
mature Returns” on page 10-25 for the procedures to use in your
driver to allow for such returns.

To query whether a sleep lock is available, use theSLEEP_LOCKAVAIL routine.

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

bool_t SLEEP_LOCKAVAIL( lockp)
sleep_t * lockp;

where:

lockp is a pointer to the sleep lock to be queried.

TheSLEEP_LOCKAVAILroutine returnsTRUE (a non zero value) if the lock is available
or FALSE (zero) if the lock is not available. Note that these returned values should be used
only with the knowledge that the state of the lock might have changed and that the value
returned might no longer be valid by the time the caller sees it.

Within anASSERT(D3) expression or within code that is conditionally compiled with
theDEBUGcompilation option, you can query whether a sleep lock is held by the caller
using theSLEEP_LOCKOWNED routine.



Multithreading a Device Driver

11-17

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

bool_t SLEEP_LOCKOWNED( lockp)
lock_t * lockp;

where:

lockp is a pointer to the sleep lock to be queried.

TheSLEEP_LOCKOWNEDroutine returnsTRUE (a non-zero value) if the lock is currently
held by the calling context orFALSE (zero) if the lock is not currently held by the calling
context.

To release a sleep lock, use theSLEEP_UNLOCK routine:

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_UNLOCK( lockp)
lock_t * lockp;

where:

lockp is a pointer to the sleep lock to be unlocked.

TheSLEEP_UNLOCK routine has no return value.

Finally, to deallocate an instance of a sleep lock, use theSLEEP_DEALLOC routine:

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_DEALLOC( lockp)
lock_t * lockp;

where:

lockp is a pointer to the sleep lock to be deallocated.

TheSLEEP_DEALLOC routine has no return value.

Sleep locks automatically support priority inheritance. This means that anLWP that suc-
cessfully locks a sleep lock executes at a priority at least as high as the priorities of all
LWPs blocked on the sleep lock. When unlocked, the lockingLWP’s priority is restored to
its original value. Priority inheritance is a means of preventing priority inversion which
could be a critical problem on real-time systems.

For additional information on the sleep lock interfaces, refer to the corresponding system
manual pages.



Device Driver Programming

11-18

Using Multiple Locks 11

If multiple LWPs are contending for the resources of the driver, it can be more efficient to
have a different lock for each data item. Efficiency is gained because access to the differ-
ent data is allowed from different processors at the same time. The trade-off is the over-
head that comes from having to make more lock and unlock calls.

Be sure to check that the order in which the locks are acquired meets the following con-
straints:

• Sleeping

When a basic or read/write lock is held, blocking locks cannot be acquired.

• Hierarchical ordering

There must be an ordering of the locks so that a sequence of locks is always
acquired in the same order and unlocked in reverse order.

To meet these constraints, determine what the order for acquisition of these locks is for
each different type of access to the shared resource. This determines the locking rules to
be used in your driver.

If it is impossible to create an ordering for a set of locks that is always followed, then a
driver can attempt to obtain a lock in the wrong order by performing the appropriate
TRYLOCKoperation (TRYLOCK, RW_TRYRDLOCK, RW_TRYWRLOCK). If the TRYLOCK
fails, then all of the locks that are currently owned must be released and then reacquired in
the correct order. Use caution when doing this, because once the locks are released, there
is no longer any guarantee about the state that these locks protect. This technique prevents
deadlocks from occurring.

Synchronization Variables 11

Synchronization variables are used to synchronizeLWPs based on the occurrence of an
event. An event can be any arbitrary condition that either has or has not occurred. A syn-
chronization variable is always associated with a basic spin lock. A synchronization vari-
able is used to wait until some event has occurred. The spin lock protects the data that
indicates that the event has or has not occurred. To be sure that the event does not occur
immediately after releasing the spin lock, the lock routines for a synchronization variable
atomically release the spin lock and block the callingLWP.

First, you must allocate and initialize a synchronization variable by using theSV_ALLOC
routine:

#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

sv_t* SV_ALLOC( flag)
int * flag;

where:



Multithreading a Device Driver

11-19

flag specifies if the caller can sleep waiting for memory if sufficient memory is not
immediately available to allocate the synchronization variable. Ifflag is set to
KM_SLEEP, the caller sleeps if necessary until sufficient memory is available. Ifflag
is set toKM_NOSLEEP and if sufficient memory is not immediately available, the
SV_ALLOC routine does not sleep but returns immediately.

Upon successful completion, theSV_ALLOCroutine returns a pointer to the newly allo-
cated synchronization variable. Ifflag is set toKM_NOSLEEP and if sufficient memory is
not immediately available, the routine returnsNULL .

There are two routines that cause anLWP to sleep on a synchronization variable:
SV_WAITandSV_WAIT_SIG. These routines behave differently if theLWP receives a
signal while sleeping. WithSV_WAIT, the caller is not interrupted by signals while sleep-
ing. With SV_WAIT_SIG, the caller can be interrupted by a signal.SV_WAITshould be
used only when the wake up is guaranteed to occur in a short time.

CAUTION

An LWP blocked inSV_WAIT cannot be killed.

If an LWP sleeps because of a call toSV_WAIT, signals do not cause theLWP to wake up.
Signals for theLWP are pending and can be processed after a call to theSV_SIGNALor
SV_BROADCAST routine wakes theLWP normally.

TheSV_WAIT routine is specified as follows:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void SV_WAIT ( svp, priority, lkp)
sv_t * svp;
int priority;
lock_t * lkp;

where:

svp is a pointer to the synchronization variable on which to sleep.

priority is a hint to the scheduler on the priority at which to schedule theLWP upon
wake up. It allows the driver to temporarily boost the priority of anLWP which is in
the timesharing class as a a reward for voluntarily blocking itself. Validpriority val-
ues are:

pridisk Priority appropriate to disk driver

prinet Priority appropriate to network driver

pritty Priority appropriate to tty driver

pritape Priority appropriate to tape driver

prihi High priority



Device Driver Programming

11-20

primed Medium priority (recommended)

prilo Low priority

Drivers can use these values to request a priority appropriate to a given type of
device or to request a priority that is high, medium or low relative to other activities
within the kernel. In general, it is recommended that you use theprimed  value.

lkp is a pointer to a spin lock which must be locked whenSV_WAIT is called. The
spin lock is released (atomically) as the callingLWP goes to sleep. No spin lock—
basic locks or read/write locks—can be held across calls to this routine.

TheSV_WAIT routine has no return value.

TheSV_WAIT_SIG routine is specified as follows:

#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

bool_t SV_WAIT_SIG( svp, priority, lkp)
sv_t * svp;
int priority;
lock_t * lkp;

where:

svp is a pointer to the synchronization variable on which to sleep.

priority is a hint to the scheduler on the priority at which to schedule theLWP upon
wake up. It allows the driver to temporarily boost the priority of anLWP which is in
the timesharing class as a a reward for voluntarily blocking itself. Validpriority val-
ues are:

pridisk Priority appropriate to disk driver

prinet Priority appropriate to network driver

pritty Priority appropriate to tty driver

pritape Priority appropriate to tape driver

prihi High priority

primed Medium priority (recommended)

prilo Low priority

Drivers can use these values to request a priority appropriate to a given type of
device or to request a priority that is high, medium or low relative to other activities
within the kernel. In general, it is recommended that you use theprimed  value.

lkp is a pointer to a spin lock which must be locked whenSV_WAIT_SIG is called.
The spin lock is released (atomically) as the callingLWP goes to sleep. No spin
lock—basic locks or read/write locks—can be held across calls to this routine.



Multithreading a Device Driver

11-21

If an LWP sleeps because of a call toSV_WAIT_SIG, signals can cause theLWP to wake
up. Job control stop signals (SIGSTOP, SIGTSTP, SIGTTIN , SIGTTOU) result in the caller’s
entering a stopped state; when continued,SV_WAIT_SIG returns normally as if theLWP

has been wakened by a call toSV_SIGNAL or SV_BROADCAST.

If the routine is interrupted by a signal other than a job control stop signal or by a job con-
trol stop signal that does not result in the caller’s stopping (because the signal has a non-
default disposition), thenSV_WAIT_SIG returns immediately—even if no call to
SV_BROADCAST or SV_SIGNAL has occurred.

SV_WAIT_SIG returnsTRUE if it returns because of a normal wake up andFALSE (non-
zero) if it returns because of an abnormal wake up caused by a signal.

NOTE

When you useSV_WAIT_SIG, you must be prepared for prema-
ture returns. Refer to “Blocking Primitives and Premature
Returns” on page 10-25 for the procedures to use in your driver to
allow for such returns.

To wake only oneLWP sleeping on a synchronization variable, use theSV_SIGNAL rou-
tine:

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SV_SIGNAL( svp, flags)
sv_t * svp;
int flags;

where:

svp is a pointer to the synchronization variable to be  signaled.

flags is a bit field for flags. No flags are currently defined for use in drivers, and the
flags argument must be set to0.

TheSV_SIGNAL routine has no return value.

EachLWP that wakes up needs to recheck the sleep condition in case some otherLWP has
been awakened first and changed this condition.

To wake up allLWPs sleeping on a synchronization variable,. use theSV_BROADCAST
routine:

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SV_BROADCAST( svp, flags)
sv_t * svp;
int flags;

where:



Device Driver Programming

11-22

svp is a pointer to the synchronization variable to be  broadcast signaled.

flags is a bit field for flags. No flags are currently defined for use in drivers, and the
flags argument must be set to0.

TheSV_BROADCAST routine has no return value.

EachLWP that wakes up needs to recheck the sleep condition in case some otherLWP has
been awakened first and changed this condition.

An example of the code for the wake up is as follows:

s = LOCK(driver.lock, pldisk)
driver.state = READY;
UNLOCK(driver.lock, s);
SV_BROADCAST(driver.lock, 0);

SV_BROADCASTcan be an expensive operation if a large number ofLWPs are sleeping on
a synchronization variable. In the example above, although all of the sleepingLWPs wake
up and check their sleep condition, only one proceeds while the others go back to sleep.
This can use a large amount of processor time. To avoid this problem, or in case you know
that only oneLWP is sleeping on the synchronization variable, use theSV_SIGNALroutine
rather than theSV_BROADCAST routine.

If no LWP is sleeping on the synchronization variable when theSV_BROADCASTor
SV_SIGNAL routine is called, the routine returns without any bad side effects.

To deallocate a synchronization variable, using theSV_DEALLOC routine:

#include <sys/ksynch.h>
#include <sys/ddi.h>

void SV_DEALLOC( svp)
sv_t * svp;

where:

svp is a pointer to the synchronization variable to be deallocated.

TheSV_DEALLOC routine has no return value.

For additional information on the synchronization variable interfaces, refer to the corre-
sponding system manuals pages.



11
 Supporting Direct Memory Access (DMA)

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
DMA into User Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
DMA into Discontiguous Physical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Building a Scatter/Gather Chain List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
24-Bit DMA Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
Direct Memory Access to Kernel Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6



Device Driver Programming



12-1

12
Chapter 12 Supporting Direct Memory Access (DMA)

12
12
12

This chapter explains how to program devices that support Direct Memory Access (DMA)
using this operating system on the Series 6000 platform. From a hardware perspective,
DMA is an optional hardware feature that is commonly supported by devices that must
transfer large amounts of data between the device and either system or bus memory. Its
chief advantage is that it allows the device to drive its own data transfer in parallel with the
processor. During the data transfers, the processors are free to perform any work that does
not require access to the same memory areas involved in the DMA transfer.

This chapter gives an overview of a typical DMA transfer on the Series 6000 platform. It
also details programming issues that you must consider when programming a DMA trans-
fer. These issues are related to the characteristics of the device as well as the hardware
platform. For each issue, this chapter provides programming advice in terms of kernel rou-
tines, device driver flags, or programming algorithms.

Overview 12

Typically, a driver starts a DMA transfer by sending a command to the DMA controller
that includes the operation to be done (read or write), the physical memory address or list
of addresses of the data, and the size of the transfer. Once started, the DMA device
performs the data transfer on behalf of the processor, which is free to perform other tasks.
The driver may be designed to force the initiating process to sleep until the DMA transfer
completes, or it may allow the process to continue running.

Typically, the device reports completion of the DMA operation by means of an interrupt.
The driver's interrupt routine has the responsibility of handling the completion status and
notifying the initiating process of the completion, either by waking up the process or by
using some other means.

DMA into User Buffers 12

One decision that a driver writer must make is whether to perform DMA operations
directly into the user's buffer or to use kernel memory along with thecopyin() and
copyout() routines. Making use of kernel memory may result in simpler driver code,
but the overhead of copying the data to and from the user's buffers may not be acceptable.

In order to perform DMA directly into the user's buffer, the driver must make sure that the
memory is locked down—that is, cannot be swapped out by the system while the DMA is
in progress. Swapping happens when the system requires real memory (RAM) but none is
available. Portions of user memory will be written to disk to free the memory for use by
other processes. When the affected process requires access to the swapped data, the



Device Driver Programming

12-2

system loads it from disk back into RAM. This activity is not under the control of the user
and may happen at any time. Memory must not be swapped out when DMA is occurring to
it for obvious reasons.

Block device drivers, which contain astrategy() entry point, do not need to worry
about this issue because the memory defined by thebuf header is already locked down
when thestrategy() routine is called. However, if the driver uses a character interface,
or if it performs DMA as a result ofioctl() calls, then the driver must handle the
locking of memory.

The current release does not provide a generally available routine to perform memory
locking. One alternative is to make use of the routinephysiock(D3) , which is designed
for use within block device drivers. This routine is frequently used in the character
read() /write() routines of a block/character device driver to convert a character I/O
request into a block I/O request, which is then delivered to the driver'sstrategy() rou-
tine. Thephysiock() routine locks down the user's buffers so that DMA operations
may take place.

A character driver may make use of this routine to call a pseudo-strategy() routine in
much the same fashion. To do this, the driver must allocate and populate auio(D4)
structure, and an associatediovec(D4) structure. These structures are used to describe
the virtual buffer tophysiock() . Theuio structure is passed tophysiock() along
with a function pointer that identifies your pseudo-strategy  routine.

NOTE

There are two versions ofphysiock() , one utilized by large
offset drivers and one utilized by small offset drivers. The selec-
tions is automatically made at compile time (that is, drivers sim-
ply invokephysiock() and compile time options take care of
pointing the namephysiock  to the correct version).

Thephysiock() routine will allocate abuf(D4) header and populate it. It will also
lock down the virtual memory described by theuio structure. It will then call your
pseudo-strategy() routine, passing a pointer to thebuf header as the only argument.
Your pseudo-strategy() routine should pull out the virtual address and byte count
from thebuf header and queue the I/O as usual. When your pseudo-strategy()
routine returns tophysiock() , it will go to sleep on an event associated with thebuf
header.

When the I/O completes, you must callbiodone(D3) to notify physiock() that the
I/O has completed. Thebiodone() routine takes the address of thebuf header as its
only argument. Oncebiodone() has been called, the sleeping context will wake up, and
physiock()  will return to your driver.

DMA into Discontiguous Physical Memory 12

Another factor to be considered is physically discontiguous transfers. While the virtual
address space assigned to a buffer will be contiguous, it may be made up of discontiguous



Supporting Direct Memory Access (DMA)

12-3

physical memory pages. If the device is capable of performing scatter/gather DMA, then
the driver should create a list of physical addresses and byte counts to define the virtual
buffer. This list is often referred to as achain list. The device will peruse this list and
perform the DMA into the proper physical memory areas. The driver, in this case, typi-
cally usesvtop(D3) for each page in the buffer. If it is determined that two consecutive
virtual pages are also physically contiguous, then the current entry in the chain list will
have its count incremented rather than adding another address/count pair to the list.

If the device cannot perform scatter/gather I/O, the driver writer has a few options. First,
you can break up the operation into individual pages by using a routine such as
dma_pageio(D3) . This routine is typically used in block device drivers but will also
work well in a character driver. Another option is to allocate physically contiguous kernel
memory by usingkmem_alloc_physcontig(D3) . This memory may then be used
for the DMA operation, along withcopyin() andcopyout() , to move the data from
and to the user's space.

Building a Scatter/Gather Chain List 12

A scatter/gather chain list is a data structure that specifies multiple physical memory areas
that comprise a single virtual memory area. Because virtual memory is constructed from
numerous physical memory pages, which are not necessarily contiguous, such a data
structure is required to perform DMA directly to and from the virtual buffer. A chain pair
consists of a physical address and a byte count. A chain list is made up of a number of
chain pairs, which are usually located in an array.

Many adapters do not support scatter/gather DMA. For these adapters, I/O must be
performed by individual DMA transfers—one for each physical memory area referenced.
There is an inherent performance penalty realized by these adapters because each transfer
requires set up and status handling.

The HSA (HVME 32-bit SCSI adapter) supports scatter/gather. It is capable of performing
DMA operations on up to 34 chain pairs stored in a single scatter/gather list. Each pair in
the list can describe a transfer of up to 65536 bytes. The MSB of the count is used as a flag
to indicate that there are more pairs left in the chain list.

Sample code illustrating the generation of a chain list for the HSA is presented below. The
hshd_virt2chain() function receives as arguments the virtual buffer address (va ),
the total length of the buffer (len ), the process requesting the I/O (proc ), and a pointer to
a data structure that contains space for the scatter/gather chain list (mcb).

For each page of the virtual buffer this routine does the following:

• Determine the physical page address usingvtop() . Add any offset
required to the physical page address.

• Determine the number of bytes being transferred from this physical page.
The count will be less than a page if an offset is required above.

• If the starting physical address is contiguous with the end of the last physi-
cal chain pair, then add this count to the count associated with the previous
chain pair. Otherwise, construct a new chain pair with this address and



Device Driver Programming

12-4

count. Also construct a new chain pair if the addition of this count to the
previous pair would result in the count exceeding the maximum permitted.

The HSA driver's implementation of the preceding pseudo-code follows. Comments
within the code explain each step of the routine.

/*
 * Convert the virtual address range [va, va+len) into the series
 * of contiguous memory areas in its physical mapping.
 */
u_int
hshd_virt2chain (va, len, proc, mcb)
caddr_t va;
u_int len;
struct proc *proc;
hshd_mcb_type *mcb;
{

int chn = 0;
paddr_t prevpa;
u_int prevbc;

/*
 * byte count of 0 is not an error
 */
if (len == 0) {

mcb->hdw.chain[0].ta = 0;
mcb->hdw.chain[0].tc = 0;
return (0);

}
do {

/*
 * get the physical address of the current
 * virtual buffer 'chunk'
 */
paddr_t pa = vtop (va, proc);

/*
 * if this address is not page aligned, then reduce
 * the associated byte count for this pair accordingly.
 * this should be true on the first address only.
 *
 * never assign more than 'len' bytes to the pair.
 */
u_int bc = min (PAGESIZE - (pa & PAGEOFFSET), len);

/*
 * if this is not the first pair, and the current
 * chunk is contiguous with the last chunk, and
 * the inclusion of this transfer would not
 * exceed the maximum byte count for a single chain
 * pair, then add the count for this chunk to the
 * last one.
 *
 * Always set the LWC_DATA_CHAIN flag indicating that
 * there are more pairs in the list.
 */
if ((chn > 0) && ((prevpa + prevbc) == pa) && ((prevbc + bc) < HSHD_MAXBC)) {

prevbc += bc;
mcb->hdw.chain[chn-1].tc = prevbc | LWC_DATA_CHAIN;

}



Supporting Direct Memory Access (DMA)

12-5

else {
/*
 * we must add another chain pair
 *
 * return an error if there are too many discontiguous
 * memory areas to fit in an HSA data chain.
 */
if (chn >= HSHD_MAXCHAIN)

return (IMERR_XFER_TOO_LONG);

/*
 * construct a new chain pair here
 * always set the LWC_DATA_CHAIN flag indicating
 * that there are more pairs in the list.
 */
mcb->hdw.chain[chn].ta = pa;
mcb->hdw.chain[chn].tc = bc | LWC_DATA_CHAIN;

/*
 * point to the next chain pair
 * and remember the last physical address/bc from
 * this pair.
 */
chn++;
prevpa = pa;
prevbc = bc;

}

/*
 * increment the virtual buffer pointer and decrement
 * the total length indicator
 */
va += bc;
len -= bc;

} while (len > 0);

/*
 * on the way out, turn off the LWC_DATA_CHAIN
 * bit on the last pair in the list.
 * we are guaranteed that there will ALWAYS be
 * at least 1 chain on the list (chn >= 1)
 */

        mcb->hdw.chain[chn-1].tc &= ~LWC_DATA_CHAIN;

/*
 * return success
 */
return (0);

}

24-Bit DMA Devices 12

If the device uses a 32-bit DMA controller, it will be able to address any area of physical
memory on the Series 6000 platform. However, if the device provides only a 24-bit DMA
controller, the user or kernel area involved in the DMA transfer will not be accessible if
the area’s physical memory address is greater than 16 MB. A statically allocated kernel
buffer may be the best solution in this case.



Device Driver Programming

12-6

Direct Memory Access to Kernel Space 12

Because kernel memory is never paged out, the driver writer needs only to handle virtual
to physical mapping and construction of data chain lists in order to perform DMA using
this memory.



12
Loadable Modules

The DLM Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Loadable Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
The Difference between Static Modules and Loadable Modules. . . . . . . . . . . . 12-2
Overview of the Load Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
Overview of the Unload Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
The Difference between a Demand Load and an Auto Load . . . . . . . . . . . . . . . 12-3

Demand Load  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
Auto Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
Demand Unload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Auto Unload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

Making Modules Loadable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Coding a Wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5

Wrapper Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Wrapper Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Wrapper Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Sample Wrapper Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7

Packaging a Loadable Module for Installation. . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Master File Definitions for Loadable Modules . . . . . . . . . . . . . . . . . . . . . . 12-10
System File Definitions for Loadable Modules. . . . . . . . . . . . . . . . . . . . . . 12-11
Mtune File Definitions for Loadable Modules . . . . . . . . . . . . . . . . . . . . . . 12-11

Installing and Configuring a Loadable Module . . . . . . . . . . . . . . . . . . . . . . . . . 12-12
Managing Loadable Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12

Loading the Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12
Querying the Module's Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13
Modifying the DLM Search Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13
Unloading the Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14

Debugging a Loadable Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14
DLM Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14
Dynamic Symbols and kdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14



Device Driver Programming



13-1

13
Chapter 13Loadable Modules

13
13
13

The Dynamically Loadable Modules (DLM) feature allows you to add a device driver (or
other kernel module) to a running system without rebooting the system or rebuilding the
kernel.

The DLM feature

• reduces time spent on driver development by streamlining the driver instal-
lation process

• makes it easier for users to install drivers from other vendors

• improves system availability by allowing drivers to be configured into the
kernel while the system is running

• conserves system resources by unloading infrequently used drivers when
they are not needed (when needed in the system, DLM loads the drivers
from disk)

• gives users the ability to load and unload drivers on demand

• gives the kernel the ability to load and unload drivers automatically

• requires drivers that are going to be configured into the system as loadable
modules to be converted to loadable form

The discussion of DLM that follows contains two parts.

The first part provides an overview of the DLM feature from the driver writer's perspec-
tive. Among other things, this part explains how DLM creates a kernel that is different
from the statically configured kernel you might be accustomed to working with. It also
describes the different ways loadable modules can be loaded and unloaded, and provides
an overview of how the DLM loading and unloading mechanism works. This background
information should prove useful to you when you have to perform tasks such as debugging
your loadable driver.

The second part explains how to convert your non-loadable driver to be a loadable driver.
This part presents information you need to write the load/unload code that lets DLM ini-
tialize and de-initialize the module. It also tells you how to install your driver as a load-
able driver, how to configure your loadable driver into a running system, and how to load
it.  Information about debugging a loadable driver is also provided.



Device Driver Programming

13-2

The DLM Mechanism 13

Loadable Module Types 13

Since this book is about device drivers, this chapter focuses on loadable device drivers.
However, you should be aware that the DLM feature supports loading and unloading of a
variety of kernel module types.

Types of modules that can be loaded include

• device drivers (block, character, STREAMS and pseudo)

• high-level drivers (HDRV)

• STREAMS modules

• file systems

• exec modules

• miscellaneous modules—for example, modules containing code for sup-
port routines shared among multiple loadable modules which are not
required in the statically configured kernel

Although the discussion focuses on device drivers, the information being presented in this
chapter applies—in a general way—to all loadable module types.

The Difference between Static Modules and Loadable Modules 13

With DLM, some modules continue to be linked to the kernel in the traditional manner.
Kernel modules that are configured this way are called static modules. A static module is,
by definition, non-loadable. That is, the module remains linked into the kernel at all times
because either it is always required in the system (like the boot hard disk driver), or it is
used so frequently or consumes so few resources (like the user terminal pseudo-device
driver) that it makes sense to keep the module continuously configured.

Other modules—modules that are not always required, are used infrequently, or consume
large amounts of resources—can be configured so they can be included or excluded from
the kernel dynamically, without a system shutdown and reboot. These modules are called
loadable modules.

Loadable modules are also maintained as individual object files, but they are not statically
linked to the kernel. Instead, they are linked into the kernel when they are needed and
unlinked when they are no longer in-use. Floppy disk drivers and RAM disk drivers are
two examples of kernel modules that are typically configured as loadable modules.



Loadable Modules

13-3

Overview of the Load Process 13

When a loadable module needs to be added to the system, the DLM mechanism reads the
module's loadable image on disk and copies the module into dynamically allocated kernel
memory.

Once the module is in memory, DLM relocates the module's symbols and resolves any ref-
erences the module makes to external symbols. DLM then executes special code in the
module (called “wrapper” code) that enables the module to initialize itself dynamically.

When module initialization is complete, DLM executes code specific to the loadable mod-
ule type.  This code logically connects the module to the rest of the kernel.

Overview of the Unload Process 13

The unload process undoes what was done during the load process.

First, the DLM mechanism executes code specific to the loadable module type that logi-
cally disconnects the module from the rest of the kernel. Once the module is discon-
nected, DLM then executes the module-supplied wrapper code that enables the module to
clean up for termination. When clean-up is complete, DLM releases the memory allo-
cated for the module.

The Difference between a Demand Load and an Auto Load 13

Two types of events can cause a module to be loaded or unloaded by the DLM mecha-
nism: a demand-load/unload request or an auto-load/unload event.

Demand Load 13

A demand load is a user request, made using themodadmin(1M) command, to add a
loadable module to the running system.

If the module depends on other loadable modules and these modules are not currently
loaded, DLM automatically loads these modules during the load process.

Auto Load 13

An auto load occurs when the kernel determines that the functionality provided by a par-
ticular module is required to perform some task. For example, the kernel would call DLM
to auto load a loadable device driver on the firstopen of any of the driver's configured
devices. A loadable STREAMS module would be auto loaded on the firstI_PUSH of the
module. During an auto load, DLM also loads any modules that the module being loaded
depends upon, as it does during a demand load.



Device Driver Programming

13-4

NOTE

Loadable high-level drivers (HDRV) cannot be auto loaded.
HDRV drivers can, however, be demand loaded using the
modadmin command, or demand loaded byinit(1M) through
the idmodload(1M)  command during a system reboot.

Demand Unload 13

A demand unload is a user request, made using themodadmin(1M) command, to
remove a loadable module from the running system.

If the module is not being used when the request is made, and if no other loaded module
depends on the module, DLM unloads it. If the module is being used, DLM does not
unload the module.

Auto Unload 13

The auto-unload daemon wakes up periodically to unload any modules that have become
candidates for unloading. Modules become candidates for auto unloading when they are
inactive, they have not been accessed for some predetermined amount of time, and no
other loadable modules depend on them.

For example, a loadable device driver would become a candidate for auto unloading on the
last close of all its configured devices, and a loadable STREAMS module would
become a candidate for auto unloading on its lastI_POP. The amount of time that must
elapse before inactive modules are considered candidates for auto unloading is controlled
by the value of the global tunable parameterDEF_UNLOAD_DELAY. Individual modules
can override the value of the global auto-unload delay by specifying their own auto-unload
delay value in their Mtune(4) files, asprefix_UNLOAD_DELAY.

NOTE

On a demand unload request, the auto-unload delay parameter
value is ignored.

If the attempt to auto unload a module is successful, the memory allocated for the module
is reclaimed. Unloading continues until all unloadable candidates are processed.

NOTE

Modules that are demand loaded cannot be auto unloaded. If a
demand-loaded module is no longer needed in the system, it must
be demand unloaded. If the demand unload failed, the module
auto unloads later.



Loadable Modules

13-5

Making Modules Loadable 13

The following sections explain how to convert your non-loadable driver to be a loadable
driver.

Coding a Wrapper 13

The first step in converting a non-loadable driver to a loadable driver is writing some
special initialization code called a “wrapper.”

Each loadable module is required to supply the DLM mechanism with a wrapper. The
wrapper “wraps” a module's initialization and termination routines with special code that
enables DLM to logically connect and disconnect the module to and from the kernel “on
the fly” while the system is running.

The wrapper consists of function definitions and initialized data structures.

Wrapper Functions 13

For a device driver, the wrapper functions can include

prefix_load The_load entry point is called by the DLM mechanism once the
driver has been loaded into memory and link edited into the ker-
nel. The_load routine handles any initialization tasks the driver
must perform prior to being logically connected to the kernel.
Typical initialization tasks performed from_load include
acquiring private memory for the driver, initializing devices and
data structures, and installing device interrupts. This entry point is
optional, and is described on the_load(D2)  manual page.

The mod_drvattach routine can be called by the driver's
_load routine to add the driver's interrupts to the running system.
Since interrupts are enabled upon return frommod_drvattach ,
you should make sure your driver's_load routine calls itsinit
routine prior to callingmod_drvattach , and calls itsstart
routine after callingmod_drvattach . This routine is only
required if the driver uses interrupts, and is described on the
mod_drvattach(D3)  manual page.

prefix_unload The_unload entry point is called by the DLM mechanism once
the driver has been logically disconnected from the kernel. The
_unload routine handles any clean-up tasks the driver must
perform prior to being removed from the system. Typical clean-up
tasks performed from_unload include releasing private memory
acquired by the driver, removing device interrupts, and canceling
any outstandingtimeout(D3) or bufcall(D3) requests
made by the module. This entry point is optional, and is described
on the_unload(D2)  manual page.



Device Driver Programming

13-6

Themod_drvdetach routine is called by the driver's_unload
routine to disable and remove the driver's interrupts from the
running system. This routine is only called if the driver uses inter-
rupts, and is described on themod_drvdetach(D3) manual
page.

prefixhalt The halt entry point is called by the DLM mechanism. If the
driver is loaded at the time the system is shut down, DLM calls the
driver'shalt routine to shut down the driver when thehalt rou-
tines for the statically configured kernel modules are called. If you
are converting a static driver to make it loadable, you probably can
use your static driver'shalt routine in the loadable version of the
driver. This entry point is optional, and is described on the
halt(D2) manual page. Only device drivers and hardware con-
trollers might need this entry. Other module types do not need it.

Wrapper Data Structures 13

The wrapper data structures are initialized by the DLM mechanism using values taken
from your driver's configuration files. These structures provide information needed during
loading and unloading—such as the values needed to populate your driver's device switch
table entries for the major device numbers it supports.

Note that your driver does not need to use any of the wrapper data structures directly, and
your driver's wrapper needs only to point to these structures.

Wrapper Macros 13

To aid you in generating a wrapper for your loadable driver (or other loadable module
type), DLM provides a set of macros insys/moddefs.h .  The macros are of the form:

type(prefix, load, unload, halt, description);

The keywordtype identifies the type of wrapper to be generated.  Valid types are

MOD_DRV_WRAPPER generates wrappers for device drivers, including block
drivers, character drivers, STREAMS drivers and pseudo
drivers

MOD_HDRV_WRAPPER generates wrappers for any driver type that does not
require switch table entries, but does need to attach and
detach interrupts

MOD_STR_WRAPPER generates wrappers for STREAMS modules

MOD_FS_WRAPPER generates wrappers for file systems

MOD_MISC_WRAPPER generates wrappers for miscellaneous modules

MOD_EXEC_WRAPPER generates wrappers for exec modules



Loadable Modules

13-7

NOTE

A DLM can contain onlyone wrapper macro definition.

Note that onlyMOD_DRV_WRAPPERandMOD_HDRV_WRAPPERmodule types have the
halt argument; all other wrappers have only the remaining four arguments,prefix, load,
unload,anddescription. For non-driver modules, the keywordhalt is omitted from the
wrapper macro coding.

The keywordprefixspecifies the driver's prefix, as defined in the driver'sMaster(4) file,
and described on theprefix(D1) manual page. The keywordsload, unloadandhalt
specify the names of the driver's_load routine,_unload routine, and (if the driver has
one) itshalt  routine.

The keyworddescription supplies a character string used to identify the driver.

Sample Wrapper Code 13

The following coding examples show some typical wrappers for the different loadable
module types. Note that all loadable modules must include<sys/moddefs.h> in their
wrapper definitions.

Screen 13-1 shows a sample wrapper for a device driver.

Screen 13-1.  Device Driver Wrapper Coding Example

#include <sys/moddefs.h>

#define DRVNAME “hps - High Performance Serial Driver”

STATIC int hps_load(), hps_unload();

MOD_DRV_WRAPPER(hps, hps_load, hps_unload, NULL, DRVNAME);

STATIC int
hps_load()
{
int status;

hpsinit();
status = mod_drvattach(&hps_attach_info);
if (status == -1)

return (EBUSY);
hpsstart();

return(0);
}

STATIC int
hps_unload()
{

mod_drvdetach(&hps_attach_info);
        .
        .
        .

return(0);
}



Device Driver Programming

13-8

Screen 13-2 shows a sample wrapper for a high level (HDRV) driver.

Screen 13-2.  High Level Driver Wrapper Coding Example

Screen 13-3 shows a sample wrapper for a STREAMS module. Notice that the macro def-
inition for this non-driver module does not include the argument for ahalt routine. Also,
there is no need for the_load  and_unload  routines.

Screen 13-3.  STREAMS Module Wrapper Coding Example

#include <sys/moddefs.h>

#define DRVNAME “xyz - High-Level Driver”

STATIC int xyz_load(), xyz_unload();
int xyzinit();
void xyzstart();

MOD_HDRV_WRAPPER(xyz, xyz_load, xyz_unload, NULL, DRVNAME);

        .
        .
        .

STATIC int
xyz_load(c)
int c;
{
int status;
        .
        .
        .

if( xyzinit()) {
return( ENODEV );

}
status = mod_drvattach( &xyz_attach_info );
if (status == -1)

return (EBUSY);
xyzstart();
return(0);

}

STATIC int
xyz_unload()
{

mod_drvdetach(&xyz_attach_info);
}

#include <sys/moddefs.h>

MOD_STR_WRAPPER(isoc, NULL, NULL, “isoc - ISC socket emulation”);



Loadable Modules

13-9

Screen 13-4 shows a sample wrapper for a file system module. Notice that this file system
module doesn't need to do any clean-up when it is unloaded, so its wrapper defines aNULL
_unload  routine.

Screen 13-4.  File System Module Wrapper Coding Example

Screen 13-5 shows a sample wrapper for a miscellaneous module. Notice that, once
loaded, this module wants to remain loaded, so its_unload routine always returns
EBUSY.

Screen 13-5.  Miscellaneous Module Wrapper Coding Example

#include<sys/moddefs.h>

STATIC int s5_load(void);

MOD_FS_WRAPPER(s5, s5_load, NULL, “Loadable s5 FS Type”);
 .
        .
        .

STATIC int
s5_load(void)
{

inoinit();

bzero((caddr_t)&s5fshead, sizeof(s5fshead));
s5fshead.f_freelist = &s5ifreelist;
s5fshead.f_inode_cleanup = s5_cleanup;
s5fshead.f_maxpages = 1;
s5fshead.f_isize = sizeof (struct inode);
s5fshead.f_max = ninode;

fs_ipoolinit(&s5fshead);
return 0;

}

#include<sys/moddefs.h>

STATICintclis_load(), clis_unload();

MOD_MISC_WRAPPER(clis, clis_load, clis_unload, “clist - character io”);

        .
        .
        .
STATIC int
clis_load()
{
        .
        .
        .

cinit();
return(0);

}

STATIC int
clis_unload()
{

/*
 * This module can not be unloaded.
 */
return(EBUSY);

}



Device Driver Programming

13-10

Packaging a Loadable Module for Installation 13

Dynamically Loadable Modules under PowerUX are compiled as shared objects. The
shared object format gives the DLM implementation the advantages of position indepen-
dent code and easier module relocation when the DLM is dynamically loaded and linked
into the kernel.

To compile shared objects, certain compiler and linker options must be specified. Most of
these additional options have been hidden from the developer. However, the following
compiler option and its related side effects must be dealt with when building aDriver.o
that is to be, or has previously been, compiled as a DLM.

• When a kernel driver is to be compiled as a DLM, the-Zpic C compiler
option must be used in the driver’s make file in order to compile all the files
that are to be included in the DLM’sDriver.o  file.

• If the -Zpic option was not used to build all of the object files that are
included in the DLM’sDriver.o file, the DLM module does not stati-
cally link properly at the DLM link time. Similarly, static kernel drives that
were compiled with the-Zpic option do not properly link into the kernel
at kernel link time.

• Therefore, when changing aDriver.o from a DLM to a driver that is
statically linked into the kernel, all the*.o files that make up that driver
must be removed, and the-Zpic option must be removed from the driver’s
make file before recompiling the driver.

• Similarly, when changing an existing statically linked kernel driver to a
DLM driver, all the *.o files of that driver must be removed, and the
-Zpic option must be added to the driver’s make file before recompiling
the driver.

This section—and the sections on installation and configuration that follow—describe
procedures that are specific to loadable modules. For information about the installation
tools and procedures for both loadable modules and static modules, refer to the chapter
Chapter 14 (“Driver Installation and Tuning”).

Master File Definitions for Loadable Modules 13

Loadable drivers can define two optional lines of configuration data in theMaster com-
ponent of their Driver Software Package (DSP):

$depend specifies the loadable modules on which the driver depends

$modtype defines a character string that identifies the driver type in error
messages

If your loadable driver references symbols defined in other loadable modules, you must
supply DLM with the names of these modules so it knows to load them before it loads
your driver. You define the modules to DLM by listing them on the$depend line of your
driver'sMaster file. You can specify all of the module names (separated by white space)
on a single$depend line. You can also specify them individually, on multiple$depend
lines.



Loadable Modules

13-11

The$modtype line in theMaster file lets you define a character string that helps iden-
tify a driver in error messages. This string can be a maximum of 40 characters long,
including all white spaces.

For a description of theMaster  file format, refer to theMaster(4)  manual page.

System File Definitions for Loadable Modules 13

To be configured into a running system, all loadable drivers must identify themselves as
loadable drivers in theSystem component of their DSP. TheSystem file entry required
for loadable drivers is:

$loadable instructs theidbuild(1M) command to configure the driver
into the system as a loadable driver

If you want to configure your driver as a loadable driver, you must define a$loadable
line in the driver'sSystem file that specifies the name of your driver. This line identifies
your driver as a loadable driver type.

Note also that, in the future, if you want to statically link your loadable driver into the ker-
nel, you need to comment out the driver's$loadable line by inserting the character # in
column one.

For a description of theSystem  file format, refer to theSystem(4) manual page.

CAUTION

Loadable modules that are shipped with your system cannot be
configured as static modules. Because of limitations involving the
static linking of PIC-based (Position-Independent Code) object by
the PowerUX C linker/loader, a loadable module’s PIC-based
Driver.o file cannot be statically configured or linked into a
kernel. It is recommended that younot comment out the
$loadable option in any shipped loadable module’s
/etc/conf/sdevice.d /xxx file, wherexxx represents the
name of the driver. The reason is that you cannot rebuild the ker-
nel.

The sameCAUTION applies to loadable modules that you develop locally. If you develop
a loadable module and you then want to configure and link your driver as a static module,
you must rebuild the module without specifying the-Zlink=dynamic and the-Zpic
C compiler options. In addition, you must remember to comment out the$loadable
option in the driver’sxxx.cf/System file (wherexxx represents the name of the driver)
prior to running the/etc/conf/bin/idinstall  utility for the driver.

Mtune File Definitions for Loadable Modules 13

Loadable drivers can override the kernel's global auto-unload delay parameter values by
supplying their own values in theMtune  component of their DSPs.



Device Driver Programming

13-12

The global auto-unload delay values are defined as:

DEF_UNLOAD_DELAY        60     0     3600

This says that, by default, any loadable module becomes a candidate for auto unloading
when the module has not been accessed for 60 seconds. If your driver wants to override
the kernel's default auto-unload delay value, you can specify aPREFIX_UNLOAD_DELAY
value in your driver'sMtune  component.

The symbolic name of the driver's unload delay tunable must begin with the driver's
PREFIX in full caps, asPREFIX_UNLOAD_DELAY.

Installing and Configuring a Loadable Module 13

Loadable modules are installed and tuned in much the same way as other modules. Refer
to Chapter 14 (“Driver Installation and Tuning”) for more information.

Once your loadable driver is installed, the next step is to configure it into the system using
the idbuild(1M ) command.

There are two ways you can configure your loadable driver usingidbuild : a deferred
build and an immediate build. If you don't want to configure your driver into the system
that is currently running, you can invokeidbuild with no options, and your driver is
configured on the next reboot. If you do want to configure your loadable driver into the
running system, you invokeidbuild with the -M option. This option configures your
loadable driver into the system immediately, without a reboot.

When no options are given, theidbuild command does not rebuild the kernel. It simply
sets a rebuild flag and exits. The next time the system is rebooted, the reboot process
rebuilds the kernel and reconfigures all modules flagged as loadable.

With the -M option, idbuild configures your loadable driver into the running system
immediately, so you don't have to wait for a reboot to be able to load it. Some of the tasks
the-M option performs to configure your loadable driver include placing the driver's load-
able image in the/etc/conf/mod.d directory, and creating the necessary nodes in the
/dev directory. If your DSP contains anInit component,idbuild adds and activates
your driver'sinittab entries. idbuild also registers your driver with the kernel to
make it available to the rest of the system.

For more information, see theidbuild(1M)  manual page.

Managing Loadable Modules 13

Loading the Module 13

Once your loadable driver is configured into the kernel, you are ready to load it using the
modadmin(1M ) command.



Loadable Modules

13-13

The -l option instructsmodadmin to load a loadable module into the running system.
For example, the command

modadmin -l lp

loads a line printer driver namedlp .

If the lp driver references symbols in other loadable modules (as defined in the$depend
line in its Master file), and some or all of these modules are not already loaded,
modadmin loads them along with thelp driver. When loading completes,modadmin
prints (onstdout ) an integermodule-id used to identify driverlp .

Querying the Module's Status 13

Once you have loaded your driver, you can view status information about the driver using
the-Q, -q , -S , or -s  options.  For example, the command

modadmin -Q lp

requests status for thelp  driver by specifying its module name, and the command

modadmin -q module-id

requests status for thelp  driver by specifying themodule-idreturned by the-l option.

Information returned by the-Q and-q options includes the driver's auto-unload delay
value, its hold count (the number of holding put on the driver), its dependent count (the
number of loadable module depends on the driver), and the pathname to its object file on
disk.

The-S and-s options are used alone withmodadmin , and request full and abbreviated
status for all modules currently loaded, respectively.

Modifying the DLM Search Path 13

If you have placed your driver's loadable image somewhere other than in the default direc-
tory /etc/conf/mod.d , you need to give DLM the pathname to this location using the
modadmin  command with the-d  option before you attempt to load your driver.

For example, if you had installed thelp driver on a remote server in a directory named
/nfs/mod.d , you would use the command

modadmin -d /nfs/mod.d

to prepend the directory/nfs/mod.d to the search path DLM uses to locate loadable
modules on disk.

Or, you can specify the full pathname to the loadable module when loading with the-l
option.  For example,

modadmin -l /ufs/mod.d/lp



Device Driver Programming

13-14

Unloading the Module 13

The -u and-U options instructmodadmin to unload a module from the running system.
For example, the command

modadmin -U  lp

unloads thelp  driver by specifying its module name, and the command

modadmin -u module-id

unloads thelp  driver by specifying themodule-idreturned by the-l  option.

If lp is currently in-use (that is, its hold count is not equal to 0), or if another loaded mod-
ule references symbols inlp (that is, its dependent count is not equal to 0), the request to
unload thelp driver fails. If this occurs, DLM makes the module a candidate for subse-
quent auto unload.

For a complete description of themodadmin command line options, refer to the
modadmin(1M) manual page.

Debugging a Loadable Module 13

DLM Error Messages 13

DLM error messages are written to the kernel'sputbuf message buffer; some of the mes-
sages are also written to the console. When a module fails to load and no detailed error
message is displayed on the console, you can often determine the cause of the error by
printing the messages in theputbuf .

This buffer can be examined while in the kernel debuggerkdb by dumping its contents.
For information aboutkdb , refer to the kdb(1M)  manual page.

Dynamic Symbols and kdb 13

As a consequence of the DLM feature, a dynamic symbol table is now maintained in
kernel address space. The dynamic symbol table contains all global symbols defined in the
static kernel—plus all global symbols defined in all currently loaded modules. The
contents of the dynamic symbol table change as modules are loaded and unloaded; when a
module is loaded, its symbolic information is added to the table, and when the module is
unloaded, its symbolic information is deleted.

Note that the symbols defined in loadable modules are not known tokdb until they have
been successfully relocated and resolved during loading. When debugging routines called
during a DLM load operation (such as_load , init or start ), it is useful to have
access to the module's symbols as soon as possible.

The best way to do this inkdb is to break upon return from the DLM routine
mod_obj_load() in modld() , and then single step until the symbol availability flag is
set (about 10 instructions). Once available, the loadable module's symbols can be accessed
in the same manner as you would access any other kernel symbol.

For information about the dynamic symbol table, refer to thegetksym(2) manual page.



14
Driver Installation and Tuning

Using idtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1
idtools Utilities and Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

idbuild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
idcheck  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
idinstall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
idmkinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
idmknod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
idspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
idtune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5

The Driver Software Package (DSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Overview of DSP Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7
DSP Component Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8

Sadapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8
Driver.o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
Mtune  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12
Rc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12
Sassign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13
Sd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-13
Space.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14

Packaging the Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
postinstall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16
preremove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17

Installing a Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-18
Removing a Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19

DSP Commands and Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
Installing a DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
Updating a DSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Modifying a Kernel Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Removing a DSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
Building a New Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21
Emergency Recovery (New Kernel Does Not Boot)  . . . . . . . . . . . . . . . . . . . . . 14-21
Documenting Your Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22



Device Driver Programming



14-1

14
Chapter 14Driver Installation and Tuning

14
14
14

For device driver writers, installation means different things. If you are installing a driver
for a piece of hardware, for example, you'll have some hardware-related installation proce-
dures to follow. When you install the driver you've written on your computer for the first
time, you probably are installing the driver without the installation scripts recommended
for customer use. When you do create the device driver package for customers, installa-
tion takes on a different meaning.

This chapter discusses how to install device drivers using Installable Driver Tools (also
known as idtools) and Driver Software Packages (DSPs). Tuning and configuring is also
covered, concentrating mainly on those details specific to device drivers, and on features
new for this release of the UNIX system. This chapter also describes the idtools and tun-
able parameter commands that are used with device drivers.

For more information about software packaging, refer toSystem Administration Volume 1.

Using idtools 14

Device drivers (and other types of kernel modules) are packaged, installed, and configured
into the system using a collection of configuration files, commands, and scripts known as
the Installable Driver Tools, or idtools. (They have also been known as the Installable
Driver/Tunable Parameter (ID/TP) scheme and as the Installable Device Tools.)

It is important to note that the idtools has automated much of what used to be manual edit-
ing of driver configuration files. There are several benefits to automating this process,
among them being decreased chances of total system failure because a single file has been
lost or corrupted, fewer problems when installing a new driver, and a much simpler pro-
cess for removing installed drivers.

Although you might create the configuration file without using idtools, once the file
becomes part of a device driver, everything you do with the file from then on—from
installing it, to rebuilding the UNIX system kernel, to removing the driver from the sys-
tem—should all be done using idtools.

Detailed information on each of the idtools commands can be found in the Section 1M
manual pages in theCommand Reference.

idtools Utilities and Commands 14

In a driver add-on package, thepostinstall script executesidcheck , idtune ,
idinstall , andidbuild to install the package and rebuild the kernel. Manual pages



Device Driver Programming

14-2

for these commands are provided in theCommand Reference.Details about the DSP com-
ponent files (such as theDriver.o , Master , and so on) are covered later in this chapter.

idbuild 14

idbuild builds a UNIX system base kernel and/or configures loadable kernel modules
using the current system configuration in$OBJ/etc/conf .

NOTE

$OBJ is a shell environment variable that you must set and export.
It must expand to a UNIX pathname of the directory in which
/etc/conf directory can be found. For example, if the complete
pathname for/etc/conf is /usr/local/etc/conf you
need to addexport OBJ=/usr/local  to your environment.

Building a UNIX system kernel consists of three steps.

1. Configuration tables and symbols, and module lists are generated from the
configuration data files.

2. Configuration-dependent files are compiled, and then are linked together
with all of the configured kernel and device driver object modules.

3. If the loadable kernel module feature or a kernel debugger is enabled, ker-
nel symbol table information is attached to the kernel.

The kernel is, by default, placed in$OBJ/etc/conf/cf.d/unix .

If the kernel build is successful and$OBJ is null or / , idbuild sets a flag to instruct the
system shutdown/reboot sequence to replace the standard kernel in/stand/unix with
the new kernel. Then, another flag is set to cause the environment (device special files,
/etc/inittab  and so on) to be reconfigured accordingly.

If one or more loadable kernel modules are specified with the-M option, idbuild con-
figures only the specified loadable kernel modules and puts them into the
$OBJ/etc/conf/mod.d directory. Otherwise a UNIX system base kernel is rebuilt
with all the loadable modules reconfigured into the$OBJ/etc/conf/modnew.d
directory, which is changed to/etc/conf/mod.d at the next system reboot if$OBJ is
null or /  (see modadmin(1M) ).

If a loadable module has already been loaded, you can either unload the module and then
useidbuild with the -M option, or useidbuild without the-M option and reboot the
system. (This assumes that$OBJ is null or / ). If you attempt to use the-M option for a
module already loaded,idbuild  fails.

When loadable kernel modules are configured with the-M option, idbuild also creates
the necessary nodes in the/dev directory, adding and activating/etc/inittab entries
if any Init file is associated with the modules, and registering the modules to the running
kernel. This makes them available for dynamic loading without requiring a system reboot.



Driver Installation and Tuning

14-3

Base kernel rebuilds are usually needed after a statically linked kernel module is installed,
when any static module is removed, or when system tunable parameters are modified.

If you executeidbuild without any options and if the environment variable$OBJ is
null or / , a flag is set and the kernel rebuild is deferred to next system reboot.

idcheck 14

The idcheck command is used to obtain selected information about the system configu-
ration. Theidcheck command is designed to help driver writers determine whether a
particular driver package is already installed.

The options available for theidcheck command enable you to select which item to
check for, but it is the-p module-nameoption which checks for the existence of a particu-
lar DSP's modules.idcheck returns a numeric value depending on which components it
finds, or0 if no components are found.

For complete information about theidcheck command, refer to theidcheck(1M)
manual page.

idinstall 14

idinstall is called by a package installation script or removal script to add (-a), delete
(-d), update (-u), or get (-g or -G) device driver/kernel module configuration data.

idinstall expects to find driver/module component files in the current directory.
When components are installed or updated with-a or -u option, they are copied into sub-
directories of the/etc/conf directory and then deleted from the current directory,
unless the-k  flag is used to keep them.

NOTE

The Driver.o component is, by default, symbolically linked
instead of copied. The-C  option is provided to force a copy.

In the simplest case of installing a new DSP, the command syntax used by the DSP's
Install script should be/etc/conf/bin/idinstall -a module-name. In this case the
command requires and installs the DSPDriver.o , Master , andSystem components,
and optionally installs other components, includingSpace.c , Stubs.c , Node, Init ,
Rc, Sd, Modstub.o , Sassign , andMtune if those files are present in the current direc-
tory.

The Driver.o , Modstub.o , Space.c , andStubs.c components are moved to a
directory named/etc/conf/pack.d/ module-name. The remaining components are
stored in directories under/etc/conf , which are organized by component type, in files
named module-name. Fo r example , theNode fi l e wou ld be moved to
/e tc /conf /node.d/ module-name, the Master fi l e moved to
/etc/conf/mdevice.d/ module-name, and theSystem fi le moved to
/etc/conf/sdevice.d/ module-name.



Device Driver Programming

14-4

NOTE

The exact pathnames of installed files in/etc/conf can change
in future releases. These files should be accessed only by using
idinstall , and should never be accessed directly; this is neces-
sary to ensure they work in the future.

idinstall -a  requires that the module specified is not currently installed.

idinstall -u module-nameperforms an Update DSP (that is, one that replaces an
existing device driver component) to be installed. It overlays the files of the old DSP with
the files of the new DSP.idinstall -u requires that the module specified is currently
installed.

When the-a or -u options are used, unless the-e option is used as well,idinstall
attempts to verify that enough free disk space is available to start the reconfiguration
process. This is done by calling theidspace command. idinstall fails if there is
not enough space and exits with a non-zero return code.

After you install or remove a module withidinstall , you must useidbuild to have
the change take effect.

idmkinit 14

idmkinit reconstructs/etc/inittab from theInit files in /etc/conf/init.d .
The newinittab is normally placed in the/etc/conf/cf.d directory, although this
can be changed through the-o  option.

In thesysinit state during the next system reboot after a kernel reconfiguration, the
idmkinit command is called automatically (byidmkenv ) to establish the correct
/etc/inittab for the running (newly-built) kernel.idmkinit is also called by
idbuild when loadable kernel module configuration is requested.idmkinit can be
executed as a user level command to test a modification ofinittab before a DSP is
actually built. It is also useful in installation scripts that do not reconfigure the kernel, but
which need to createinittab entries. In this case, theinittab generated by
idmkinit must be copied to/etc/inittab , and aninit q command must be run
for the new entry to take effect.

idmknod 14

idmknod reconstructs nodes (block and character special device files) in/dev and its
subdirectories, based on theNode files for currently configured modules (those with at
least oneY in their System files). Any nodes for devices with anr flag set in the
characteristicsfields of their Master file are left unchanged. The boot devices
/dev/root , /dev/rroot , /dev/swap , /dev/rswap are also left unchanged. All
other nodes are removed or created as needed to exactly match the configuredNode files.

Any needed subdirectories are created automatically. Subdirectories which become empty
as a result of node removal are removed as well.

All other files in the/dev  directory tree are left unchanged, including symbolic links.



Driver Installation and Tuning

14-5

On the next system reboot after a kernel reconfiguration, insysinit state, theidmknod
command is run automatically (byidmkenv ) to establish the correct representation of
device nodes in the/dev directory tree for the running kernel.idmknod (with the -M
option) is also called byidbuild when loadable kernel module configuration is
requested.idmknod can be executed as a user level command to test modification of the
/dev directory before a DSP is actually built. It is also useful in installation scripts that
do not reconfigure the kernel, but which need to create/dev  entries.

idspace 14

idspace checks whether sufficient free space exists to perform a kernel reconfiguration
(seeidbuild ). By default,idspace checks the number of available disk blocks and
inodes in the file systems:/  and, if it exists,/tmp .

The default tests performed byidspace  are

• Verify that the root file system (/ ) has 400 blocks more than the size of the
current/stand/unix . This verifies that a device driver being added to
the current/stand/unix can be built and placed in the root file system.
idspace also checks to ensure that 100 inodes exist in the root directory.

• Determine whether a/tmp file system exists. If it does exist,idspace
checks whether 100 free blocks and 25 inodes are available in the/tmp file
system. As with the test for the/usr file system, if the/tmp file system
does not exist,idspace does not report an error, because files created in
/tmp by the reconfiguration process are created in the root file system, and
space requirements are covered by theidspace test of the root file sys-
tem.

Note that this function checks whether there is enough space to perform a reconfiguration,
not whether there are enough free blocks and inodes to copy the DSP files from the instal-
lation media to the hard disk.

idtune 14

idtune sets or gets the value of an existing tunable parameter.idtune is called by a
package installation or removal script; it can also be invoked directly as a user-level com-
mand. New tunable parameters must be installed usingidinstall(1M) and a DSP
Mtune  or Autotune  file before they can be accessed usingidtune .

NOTE

Existing tunable parameter values must be modified using the
idtune  command.

The idtune command with no options or with-f or -m is used to change the value of a
parameter.



Device Driver Programming

14-6

By default, if the parameter has already been tuned previously, you are asked to confirm
the change with the message

Tunable Parameter parm is currently set to old_value in
  /etc/conf/cf.d/stune
Is it OK to change it to value? (y/n)

If you answery, the change is made. Otherwise, the tunable parameter is not changed, and
the following message is displayed

parm left at old_value.

However, if you use the-f (force) option, the change is always made and no messages are
reported.

If you use the-m (minimum) option, and the current value is greater than the desired
value, no change is made and no messages are reported.

If you use the-c (current) option of theidtune command, the change applies to both
stune andstune.current ; otherwise, only the tunable parameter instune is
affected. stune.current contains the values currently being used by the running
kernel;stune contains the values used the next time the system is rebooted and the ker-
nel rebuilt. Since any change made to thestune.current file affects all the loadable
kernel modules configured thereafter, it is very easy to introduce inconsistencies between
the currently running kernel and the new loadable kernel modules. Therefore, you should
be extremely careful when using the-c  option.

If you are modifying system tunable parameters as part of a device driver or application
add-on package, you might want to change parameter values without prompting the user
for confirmation. Yourpostinstall script could override the existing value using the
-f or -m options. However, you must be careful not to invalidate a tunable parameter
modified earlier by the user or another add-on package.

Any attempt to set a parameter to a value outside the valid minimum/maximum (as given
in theMtune  file) range is reported as an error, even when using the -f  or -m options.

The UNIX system kernel must be rebuilt (usingidbuild ) and the system rebooted for
any changes to tunable parameter values to take effect.

The Driver Software Package (DSP) 14

A Driver Software Package (DSP) is a set of files which define and describe an installable
module, such as a device driver, to the idtools. It consists of a driver object module, instal-
lation and removal scripts, and device-specific system configuration, initialization, and
shutdown files.  (Some of these files are optional and are not included in every DSP.)

DSPs are usually installed as part of a software package (seeSystem Administration Vol-
ume 1 for more information).  A software package can contain more than one DSP.

The software package is usually on a tape. To install the package, the user inserts the
media in the drive and runs thepkgadd(1) command. This executes a script file in the
software package, which performs all the operations needed to copy all the object and con-



Driver Installation and Tuning

14-7

figuration files from the installation media to the hard disk of the system, installs any DSPs
usingidinstall , then the UNIX system kernel reconfigures and builds.

What this means to you, as the device driver programmer, is that writing the driver is only
part of the job. You also need to create the configuration files and write the package instal-
lation and removal scripts. The package needs to be tested, to make sure it can be installed
and removed, as well as to ensure that it operates correctly when installed.

Overview of DSP Components 14

A DSP for a device driver typically consists of the following components. Some are
required, others are optional; this distinction is noted in Table 14-1.

• The driver module object file,Driver.o

• The configuration files forMaster(4) , System(4) , Autotune(4) ,
Ftab(4) , Mtune(4) , Node(4) , Rc(4) , Sassign(4) , Sd(4) ,
Space.c(4) , andStubs.c(4)

• Modstub.o  for stub-loaded loadable modules.

The component files comprising the DSP are summarized in Table 14-1. In this table, the
termmodule-namerefers to a file or directory that takes its name from the name of the
driver being installed. For the format of specific configuration files, you should refer to
the appropriate Section 4 manual page.

Table 14-1.  Components of Driver Software Package (DSP)

DSP
Module

Purpose File Affected in/etc/conf

Driver.o Required driver object file to be configured into
kernel

pack.d/ module-name/Driver.o

Master Required generic driver configuration data mdevice.d/ module-name

System Required system-specific driver configuration
data

sdevice.d/ module-name

Sadapters Required system-specific hardware configura-
tion data

sadapters.d/kernel

Autotune Optional autotuning parameter definitions autotune.d/ module-name

Ftab Optional function table specifications ftab.d/ module-name

Init Optionalinittab  entry data init.d/ module-name

Mtune Optional tunable parameter definitions mtune.d/ module-name

Node Optional/dev  device node data node.d/ module-name

Rc Optional system startup script rc.d/ module-name

Sassign Optional system logical device name assign-
ments

sassign.d/ module-name



Device Driver Programming

14-8

DSP Component Files 14

Following are each of the component files that make up the typical DSP. Where possible,
an example has been included to show you what the component might look like. Some are
generic, while others are specific. Note that very few DSPs include all of the possible
components.

For more information on the files and file format described here, refer to the Section 4
manual pages. For more details about software packages in general, refer toSystem
Administration Volume 1

Sadapters 14

When a new driver has associated hardware, an entry for the new hardware must be
appended to the Sadapters fi l e tha t res ides in the
/etc/conf/sadapters.d/kernel .

The purpose of this file is to identify each type of adapter in the system and describe its
hardware characteristics. These characteristics are the adapter type, logical number, bus
type (HVME or VME), interrupt type, slot number, standard I/O address, and bus I/O
address. For additional information, refer to theSadapters(4)  manual page.

This file must be accessed directly. Note that the kernel must be rebuilt and the system
rebooted for the new assignment to take effect.

A sampleSadapters entry for the SYSTECH High Performance Serial (HPS) control-
ler device is presented as follows:

Sd Optional system shutdown script sd.d/ module-name

Space.c Optional driver data structure allocations and
initializations

pack.d/ module-name/space.c

Stubs.c Optional stubs for symbols defined in a driver
that are not installed

pack.d/ module-name/stubs.c

Modstub.o Optional stub object file for loadable module pack.d/ module-name/Modstub.o

Table 14-1.  Components of Driver Software Package (DSP) (Cont.)

DSP
Module

Purpose File Affected in/etc/conf

# Adptr Logical Bus  Intr  Slot Standard   Bus
# Name  Adptr # Type Type  No.  I/O Addr1  I/O Addr2
# ----- ------- ---- ----  ---- ---------  ---------
hps      0      hvme intr  -    e0140000   0



Driver Installation and Tuning

14-9

Driver.o 14

A required component, theDriver.o component is the driver object module that is to be
configured into the kernel. This object file should be compiled using the C programming
language.

Master 14

A required component, theMaster file describes a kernel module for configuration into
the system. TheSystem file contains the configuration information for the individual
kernel modules that are actually to be included in the next UNIX system kernel built (see
System(4) ).

When theMaster component of a module's DSP is installed,idinstall stores the
module'sMaster file information in /etc/conf/mdevice.d/ module-name, where
the filemodule-name is the name of the driver module being installed.

Packages should never accessMaster files in /etc/conf directly; they should use the
idinstall  andidcheck  commands instead.

Master  files contain lines of the form:

$version version-number
$dversion DDI-version-number
$entry entry-point-list
$depend module-name-list
$modtype loadable-module-type-name
module-name prefix characteristics order bmaj cmaj

Blank lines and lines beginning with# or *  are considered comments and are ignored.

Following is an exampleMaster  file for a generic tape driver calledgt .

If the b flag is set and thek flag is not set in the characteristics (chars ) field, idin-
stall(1M) automatically assigns block major numbers for the device. If both theb and
thek flags are set in thechars field, thebmaj field value is used as the block major num-
ber.

For complete information about theMaster file format, refer to theMaster(4)
manual page.

System 14

A required component, theSystem file contains information needed to incorporate a par-
ticular kernel module into the next UNIX system configuration. General configuration
information about the module type is described in theMaster file. When theSystem

$version 1
$entry  open close read write ioctlsize strategy print
#module_name  prefix  chars  order bmaj  cmaj
gt            gt      Tkbc   0     103   103



Device Driver Programming

14-10

component of a DSP is installed,idinstall stores the module'sSystem file informa-
tion in /etc/conf/sdevice.d/ module-name, where the filemodule-nameis the name
of the module being installed.

Packages should never accessSystem files in /etc/conf directly; they should use the
idinstall  andidcheck  commands instead.

System  files contain lines of the form:

$version version-number
$loadable module-name
module-name configure unit

Blank lines and lines beginning with# or *  are considered comments and are ignored.

Following is an exampleSystem  file for thegt  (generic) tape driver.

TheY in the configure field indicates toidbuild(1M) that the modulegt is to be con-
figured into the system.

For complete information about theSystem file format, refer to theSystem(4) manual
page.

Init 14

An optional component, theInit file contains information used by theidmkinit
command to construct a module's/etc/inittab entry. When theInit component of
a module's DSP is installed,idinstall stores the module'sInit file information in
/etc/conf/init.d/ module-name, where the filemodule-nameis the name of the
module being installed.

Packages should never accessInit files in /etc/conf directly; they should use the
idinstall  command instead.

Init  files contain line consisting of one of the following three forms:

action:process
rstate:action:process
id:rstate:action:process

All fields are positional and must be separated by colons. Blank lines and line beginning
with # or *  are considered comments and are ignored.

Lines of the first form should be used for most entries. When presented with a line of this
form, idmkinit :

1. Copies theaction  andprocess  field to theinittab  entry.

$version 1
$loadable gt
gt    Y       0



Driver Installation and Tuning

14-11

2. Generates a validid field value (called a tag) and prepends it to the entry.

3. Generates anrstate field with a value of 2, and adds it to the entry, fol-
lowing theid  field.

Lines of the second form should be used when anrstate value other than2 must be
specified. When presented with a line of this form,idmkinit generates only theid field
value and prepends it to the entry.

Lines of the third form should be used with caution. When presented with a line of this
form, idmkinit copies the entry to theinittab file verbatim. It is recommended that
DSPs avoid specifying lines of this form because, if more than one DSP or add-on applica-
tion specifies the sameid field, idmkinit creates multiple inittab entries containing this
id value. When theinit program attempts to process theinittab entries with the
sameid , it fails with an error condition.

Note thatidmkinit determines which of the three forms is being used by searching each
line for a validaction  keyword.  Validaction  values are:

boot
bootwait
initdefault
off
once
ondemand
powerfail
powerwait
respawn
sysinit
wait

For complete information about theInit file format, refer to theInit(4) manual page.

Mtune 14

An optional component, theMtune file contains definitions of tunable parameters, includ-
ing default values, for a kernel module type.

When theMtune component of a DSP is installed,idinstall stores the module's
Mtune file information in/etc/conf/mtune.d/ module-name, where the filemodule-
name is the name of the module being installed.

Packages should never accessMtune files in /etc/conf directly; they should use the
idinstall  andidtune  commands instead.

Following is an exampleMtune  file for kma (Kernel Memory Allocation).



Device Driver Programming

14-12

For complete information about theMtune file format, refer to theMtune(4) manual
page.

Node 14

An optional component, theNode file contains definitions used by theidmknod(1M)
command to create the device nodes (block and character special files) associated with a
device driver module.

When theNode component of a module's DSP is installed,idinstall stores the
driver'sNode file information in /etc/conf/node.d/ module-name, wheremodule-
name is the name of the driver being installed.

Packages should never accessNode files in /etc/conf directly; they should use the
idinstall  command instead.

Following is an exampleNode file for gentty , the controlling-terminal pseudo-device
(/dev/tty ).

For complete information about theNode file format, refer to the Node(4) manual
page.

Rc 14

An optional component, theRc file is an optional file that executes when the system is
booted to initialize an installed kernel module. Normally, this is a shell script (see
sh(1) ).

When theRc component of a module's DSP is installed,idinstall stores the module's
Rc file in /etc/conf/rc.d/ module-name, wheremodule-nameis the name of the mod-
ule being installed.

Packages should never accessRc files in /etc/conf directly; they should use the
idinstall  command instead.

* KMA Parameters  -------------------------------
* KMAGBTIME        -- # seconds btw giveback runs

KMAGBTIME 30 5 2400
* KMA_PAGEOUT_POOL -- # bytes reserved for pageout daemon (inc. overhead)

KMA_PAGEOUT_POOL 0x1000 0 0x100000

gentty  tty     c       0       2       2       666     1



Driver Installation and Tuning

14-13

The contents of the/etc/conf/rc.d directory are linked to/etc/idrc.d whenever
a new configuration of the kernel is first booted. On this initial reboot, and on all subse-
quent reboots, the module'sRc file is invoked upon enteringinit level 2 (see
init(1M) ).

Following is an exampleRc file for pts :

Sassign 14

An optional component, theSassign file give system administrators the ability to assign
specific actual devices to logical device names used by the module. At present,Sassign
supports only block devices and the special device nameconsole .

If the system administrator wants to assign a different actual device to perform a function,
the administrator remaps the logical device name for that function to a specific configured
device in theSassign file. Note that the kernel must be rebuilt and rebooted for the new
assignment to take effect.

Following is an exampleSassign  file for the kernel module:

For complete information about theSassign file format, refer to theSassign(4)
manual page.

Sd 14

An optional component,Sd is a file that executes when the system is shut down to perform
any cleanup required for an installed kernel module. Normally, this is a shell script (see
sh(1) ).

When theSd component of a module's DSP is installed,idinstall stores the module's
Sd file in /etc/conf/sd.d/ module-name, wheremodule-nameis the name of the mod-
ule being installed.

if [ -c  /dev/pts000 ]
then
   exit
fi
cd /dev/pts
for i in *
do
   NUM=`echo $i | awk '{printf(“%.3d”,$1)}'`
   ln $i /dev/pts${NUM} >> /dev/null 2>&1
done

* Device variable assignments for the base kernel.
root    gd    0
console cons  0



Device Driver Programming

14-14

Packages should never accessSd files in /etc/conf directly; they should use the
idinstall  command instead.

The contents of the/etc/conf/sd.d directory are linked toetc/idsd.d whenever a
new configuration of the kernel is first booted. On this initial reboot, and on all subsequent
reboots, the module'sSd file is invoked upon enteringinit level 0, 5, or 6 (see
init(1M) ).

Space.c 14

An optional component, theSpace.c file contains storage allocations and initializations
of data structures associated with a kernel module, when the size or initial value of the
data structures depend on configurable parameters, such as the number of subdevices con-
figured for a particular device or tunable parameter. For example, theSpace.c file gives
a driver the ability to allocate storage only for the subdevices being configured, by refer-
encing symbolic constants defined in theconfig.h file. Theconfig.h file is a tempo-
rary file created during the system reconfiguration process and made available in the
include path whenSpace.c  files are compiled.

When theSpace.c component of a module's DSP is installed,idinstall stores the
module'sSpace.c file in /etc/conf/pack.d/ module-name/space.c, wheremodule-
name is the name of the module being installed.

Packages should never accessSpace.c files in /etc/conf directly; they should use the
idinstall  command instead.

Following is an exampleSpace.c  file for thehps  driver.

For complete information about theSpace.c file format, refer to theSpace.c(4)
manual page.

#include <sys/types.h>
#include <config.h>
#include <sys/ksynch.h>
#include <sys/strtty.h>
#include <sys/serial.h>
#include <sys/adapter.h>
#include <sys/hps.h>
#include <sys/termios.h>
#include <sys/termiox.h>

/* Group assignments of statically/binary configurable
 * data to the global data structure for the hps driver.
 * Arrange for remaining fields to start out zeroed.
 */

struct hps_conf hps_global = {
        (CS8 | CREAD| HUPCL | B9600), /* cflag - initial t_cflag */
        IGNPAR, /* iflag - initial t_iflag */
        0, /* hflag - initial x_hflag */
        HPS_CMAJOR_0, /* c_major - major dev# from Master*/
        0 /* hps_id - set up consinit */
};
int hpsmajor = HPS_CMAJOR_0;   /* assigned major number for this driver   */



Driver Installation and Tuning

14-15

Packaging the Driver 14

For complete information on the system packaging tools, refer toSystem Administration
Volume 1and the applicable Section 4 manual pages for the DSP component files. How-
ever, following is a brief summary of what is required to create software packages contain-
ing drivers, presented here to provide a better context for understanding.

To help create theprototype file, the pkgproto command can take command line
arguments to scan a development directory structure and generate theprototype file.
The prototype file generated bypkgproto , however, lists the components in the
directory structure used on the development machine; therefore, it is installed into the
same directories on the user's system.

To package a driver, put all of the component files into the directories specified in the
prototype file and use thepkgmk command.pkgmk uses theprototype and
pkginfo  files to create a file called pkgmap(4)  and creates the software package.

Thepkgtrans(1)  command copies a software package to the installation media.

The remainder of this section contains examples and guidelines for the use of packaging
scripts to install DSPs.

prototype 14

The package'sprototype file should install the DSP component files as class “volatile”
in the /tmp directory. Then, thepostinstall script, when executed, shouldcd to that
directory before executingidinstall  to add the package to the system.



Device Driver Programming

14-16

Following is an example of aprototype  file for a driver add-on package.

For more information, refer to the prototype(4) manual page.

postinstall 14

The following steps should be performed in apostinstall  script to install a DSP:

1. Change directory to/tmp/xyzzy , where the DSP files were installed.

2. Executeidinstall -a and pass it the DSP name. This creates the
needed directories and moves the DSP contents to the appropriate loca-
tions. If theidinstall -a  fails, the package was already installed.

3. If the DSP has already been installed,idinstall -u command is used
to update the package, using the files from the DSP.

NOTE

DSPs should always use theidinstall -P option. This way
all the files installed are recorded in the contents file.

4. Run theidbuild command without any options to create a new UNIX
system kernel when the system is rebooted.

5. removef  any/tmp  files installed.

i pkginfo
i postinstall
i preremove

!default 644 root sys

d none  /tmp???
d none  /tmp/xyzzy

#
# These files are installed by the idinstall command in the postinstall script
#
v none/tmp/xyzzy/Driver.o=/etc/conf/pack.d/xyzzy/Driver.o
v none/tmp/xyzzy/Space.c=/etc/conf/pack.d/xyzzy/space.c
v none/tmp/xyzzy/Master=/etc/conf/mdevice.d/xyzzy
v none/tmp/xyzzy/System=/etc/conf/sdevice.d/xyzzy

#
# These files are installed by the postinstall shell script
#
v none/tmp/loadmods=/newdrivers/xyzzy/loadmods
v none/tmp/xyzzy/disk.cfg=/etc/conf/pack.d/xyzzy/disk.cfg

#
# This file is installed by the pkgadd command
#
f none/usr/include/sys/xyzzy.h



Driver Installation and Tuning

14-17

When writing apostinstall script, you should make liberal use ofecho and
message commands to tell the user what is going on. You should also make sure to exit
with the appropriate return value based on a successful or unsuccessful installation.

Following is an examplepostinstall  script for a driver add-on package.

preremove 14

The following steps should be performed in apreremove  script to remove a DSP:

1. Useidcheck to make sure the DSP to be removed exists on the system. If
not, the script should exit and display an error message.

2. Run idinstall -d and pass it the DSP name. This removes the DSP
module from/etc/conf .

NOTE

DSPs should always use theidinstall -P option. This way
all the files installed are recorded in the contents file.

do_install () {

  ${CONFBIN}/idinstall -P  ${pkgname} -a  ${1} > ${ERR} 2>&1
  RET=$?
  if [ ${RET} != 0 ]
  then
    ${CONFBIN}/idinstall -P  $pkgname} -u  ${1} > ${ERR} 2>&1
    RET=$?
  fi

  if [ ${RET} != 0 ]
  then
    message “The installation cannot be completed due to an error in \
    the driver installation during the installation of the ${1} module \
    of the ${NAME}.  The file ${ERR} contains the errors.”
      exit ${FAILURE}
  fi
  cp disk.cfg /etc/conf/pack.d/${1}
}

FAILURE=1# fatal error
DRIVER=xyzzy
CONFDIR=/etc/conf
CONFBIN=${CONFDIR}/bin
ERR=/tmp/err.out

for MODULE in ${DRIVER}
do
  cd /tmp/${MODULE}
  do_install ${MODULE}
done

cat /tmp/loadmods >> /etc/loadmods            /* HBA only */

${CONFBIN}/idbuild >/dev/null 2>&1

installf -f  $PKGINST

removef ${PKGINST} /tmp/loadmods /tmp/${DRIVER} >/dev/null 2>&1
removef -f  ${PKGINST} >/dev/null 2>&1



Device Driver Programming

14-18

3. Invoke idbuild without any options to cause the kernel to be rebuilt
when the system is rebooted.

Following is an examplepreremove  script for a driver add-on package.

Installing a Package 14

A user installing a package containing a DSP usually finds the process very simple. From
the user perspective, a typical installation proceeds as follows:

1. The user searches fortape1 in the/etc/device.tab file. If it is miss-
ing, the user definestape1 in the device database. Seeputdev(1M) for
information about how to add a device entry to the device database.

2. The user runs thepkgadd command with the-d deviceoption, where
devicespecifies the tape drive from which the package is to be installed; for
example,device could betape1 .

3. A prompt asks the user to insert the tape in the drive.

4. A second prompt displays, asking the user which package is to be installed
or whether to install all packages on the installation media.

5. The package is installed, a process which can take several minutes or
longer, depending on the package. This process usually does not require
any user intervention.

6. A message is displayed signaling success or failure of the installation.

7. A prompt asks the user whether another package is to be installed. If so,
this process is repeated.

8. When all desired packages have been installed, a message is displayed, tell-
ing the user to reboot the system to complete the installation process.

CONFDIR=/etc/conf
CONFBIN=${CONFDIR}/bin
DRIVER=xyzzy

for MODULE in ${DRIVER}
do
  ${CONFBIN}/idcheck -p  ${MODULE}
  RES=“$?“
  if
    [ “${RES}“ -ne  “100” -a  “${RES}“ -ne  “0” ]
  then
    ${CONFBIN}/idinstall -P  ${pkgname} -d  ${MODULE} 2>> /tmp/${MODULE}.err
  fi
done

${CONFBIN}/idbuild >/dev/null 2>&1

exit 0



Driver Installation and Tuning

14-19

Removing a Package 14

As shown above, the installation process is relatively simple and straightforward from the
user's viewpoint. Removing a package is even easier.

1. The user executes thepkgrm  command.

2. A prompt asks the user which package to remove.

3. Thepreremove script deletes all the files and commands associated with
the package, calling theidinstall -d  command.

4. A prompt is displayed, instructing the user to reboot the system to com-
plete the package removal.

DSP Commands and Procedures 14

The four most important idtools commands for DSPs areidcheck , idinstall ,
idbuild , andidtune .

For example, thepostinstall script should callidcheck to see whether the DSP has
already been installed. Then, the script runsidinstall , either with the-a option to
install the DSP or with the-u option to update an existing DSP, andidtune can then be
used to tune some kernel tunables. Finally, thepostinstall calls idbuild to build a
new UNIX system base kernel and/or configure loadable modules.

Thepreremove script, used to remove a DSP from the system, also usesidcheck to
see whether the DSP exists (there is no point in attempting to remove a DSP that is not
there). Then, theidinstall command is run using the-d option; this deletes the com-
ponent files relating to the DSP. (Sometimes theStubs.c needs to be kept; refer to
idinstall(1M) to see how to do this.) Next,idtune can be used to adjust the value
of some kernel tunables. Lastly, the script calls theidbuild command to build a new
kernel, without the DSP, and/or to remove configuration data relating to the DSP.

Installing a DSP 14

To install a DSP, thepostinstall script needs to call theidinstall command with
the-a  option. An example command for installing a DSP follows:

idinstall -P pkgname-a module-name

In this example,pkgnameis the name of the package to be installed andmodule-namerep-
resents the name of the DSP. Unless the-e option is also specified,idinstall performs
a check to see whether there is enough free disk space to start the configuration process,
calling idspace  to do this.

For complete informat ion about theid instal l command, refer to the
idinstall(1M)  manual page.



Device Driver Programming

14-20

Updating a DSP 14

If a check for the existence of the DSP (usingidcheck ) turns up positive, a
postinstall script should use theidinstall update option. This is assuming that it
makes sense to update the DSP, and in any event, you should require a positive verifica-
tion, or at least give the user the option of aborting, before updating an existing DSP.

The following examples update a DSP:

idinstall -P pkgname-u module-name

The command overwrites all the files of the original DSP with files of the new DSP,
requiring that themodule-namespecified is currently installed. This command requires
that the module specified is currently installed.

For complete informat ion about theid instal l command, refer to the
idnstall(1M)  manual page.

Modifying a Kernel Parameter 14

The idtune command is used to modify system-tunable parameter. If the driver package
you are building requires modifying a parameter value, you should use theidtune com-
mand only.

NOTE

Package scripts should never access/etc/conf/mtune.d or
/etc/conf/cf.d/stune files directly; only theidinstall
andidtune  commands should be used.

The idtune command takes individual system parameters, verifies that the new value is
within the upper and lower bounds specified inMtune , searches thestune file, and mod-
ifies an existing value or adds the parameter tostune  if not defined.

By default, parameters tuned usingidtune do not take effect until the entire kernel is
rebuilt and rebooted. Any change made using theidtune command with the-c option
affects all the loadable kernel modules subsequently configured into the running system.

Removing a DSP 14

To remove a DSP from the system, apreremove script needs to call theidinstall
command with the-d  option. An example command follows.

idinstall -P pkgname-d module-name

In the example,pkgnameis the name of the package andmodule-nameis the name of the
DSP to be removed. Once executed, all files and commands associated with the DSP are



Driver Installation and Tuning

14-21

removed. Anidbuild is required to reconfigure the kernel once the DSP has been
removed.

Building a New Kernel 14

A new kernel needs to be built when installing or removing a DSP, after all of the DSP
component modules (for example,Master , System , Init , and so on) have been
installed or removed from the appropriate locations. It is usually a good idea to rebuild and
reboot after a DSP update, as well. Theidbuild command builds a UNIX system base
kernel and/or configures loadable kernel modules using the current system configuration
in /etc/conf .

When adding or removing a DSP through thepostinstall or preremove scripts, you
might want to use theidbuild -B command to build a new kernel immediately,
although if installing several packages at once, you probably do not want to rebuild the
kernel until after all the DSPs are installed. Then, the system is rebooted using the new
UNIX system kernel in/stand/unix , with the old kernel saved asunix.old and all
the old loadable modules saved under/etc/conf.unix.old if there is enough disk
space available.

When loadable modules are to be added, you use the-M module-nameoption, repeating
the option on the command line as many times as needed to configure all the loadable
modules. This configures the loadable module immediately.

Emergency Recovery (New Kernel Does Not Boot) 14

It is possible that the kernel fails to boot after adding or removing DSPs if they contain a
serious bug. This can be due to acmn_err call of typeCE_PANICthat you put in your
driver, or some other system problem. If this happens, you should reset the system and
boot the original kernel, which would be saved in/stand/unix.old if there was
enough disk space available to make the copy. To do this, reset your machine, and use the
p boot 1. console processor command to select the “request unix name” option during
bring up, as shown in the boot-up scripts in Chapter 15, “Driver Testing and Debugging.”
When the boot prompt displays, type “unix.old ” or whatever name you might have
used for a back-up copy of the kernel.

Once reinstalled, the system should boot normally with a standard foundation kernel. Your
new driver and any other drivers you had installed on your system are not included in the
kernel, even though they might display in thepkginfo output. To fix this, remove your
driver and executeidbuild . If that fails, remove and reinstall all of the packages.

This procedure can also be useful if other system files are damaged inadvertently while
debugging your driver. There are several reasons why your system can fail to boot prop-
erly or not let you log in after it has booted. For example, a corrupted password or
inittab  could prevent console logins.

Obviously, user logins you have added to/etc/passwd and other system changes you
have made since installing the original base system are lost if you overwrite the corrupted
file with the default file. A better solution is to make regular, scheduled backups of your
hard disk, especially for critical system configuration files.



Device Driver Programming

14-22

Documenting Your Driver Installation 14

If you are developing a DSP to be installed by users who might not be familiar with the
implications of reconfiguration, some words of caution might be worthwhile.

• Although experience has shown little difficulty in installing and removing a
variety of device drivers, there is the possibility that you might have diffi-
culty booting the system. The cause of this probably would be due to some
fault in the added driver. If this occurs, you might have to restore the UNIX
system kernel from the saved version.

• Do not halt the system during installation. Although interruption protection
is built into the idtools scheme, total protection against a reboot during an
installation can never be completely foolproof.

• Use thedf command in your script or advise your users to rundf to deter-
mine the free disk space before doing the installation. If there is not enough
space to install the DSP, tell the user how much space needs to be freed up.
If you require the users to check for themselves, tell them how many free
blocks are needed to install the DSP.

• Similarly, if your script exits becauseidspace has revealed that there is
not enough space to reconfigure the kernel, tell the user how many blocks
are needed.

• Advise the user not to have any background processes running that con-
sume free disk space while a reconfiguration is underway. For example,
avoid runninguucp  during an installation.



15
Driver Testing and Debugging

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1
Preparing a Driver for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

General Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Putting Debug Statements in a Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Installing a Driver for Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

Emergency Recovery (New Kernel Does Not Boot). . . . . . . . . . . . . . . . . . 15-4
Common Driver Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5

Coding Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Installation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Data Structure Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Timing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Corrupted Interrupt Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Accessing Critical Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Overuse of Local Driver Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Incorrect DMA Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

Driver Debugging Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7
Using the Console Processor and Setting Breakpoints. . . . . . . . . . . . . . . . . . . . 15-7

Booting Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9
Shutdown and Reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9

System Panic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12
Breakpoints in the Initialization Phase. . . . . . . . . . . . . . . . . . . . . . . . . 15-14

Using crash to Debug a Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-16
Saving the Core Image of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-16
Initializing crash on the Memory Dump . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17
Using crash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17
Using crash Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18

Kernel Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18
Entering kdb from a Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19
System Panics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19



Device Driver Programming



15-1

15
Chapter 15Driver Testing and Debugging

15
15
15

Introduction 15

Testing a device driver consists of installing the driver on a working system and attempt-
ing to try all of its functions under a variety of operating conditions. Debugging a driver is
largely a process of analyzing the code to determine what could have caused a given
problem. The UNIX system includes some tools that can help, but because the driver oper-
ates at the kernel level, these tools can only provide limited information.

This chapter describes the tools that are available for testing and debugging the installed
driver and explains how to use them. This chapter also discusses some of the common
errors in drivers and some of the symptoms that can identify each.

During the first phases of test, remember that your driver code is probably not perfect, and
that bugs in the driver code can panic or damage the system, even parts of the system that
seem unrelated to the driver. Testing should be done when no other users are on the system
and all production data files are backed up. Alternatively, testing could be performed on a
restricted use system setup specifically for the purpose of testing drivers.

You should test the functionality of the driver as you write it. It is useful to install and test
the driver as soon as the initialization routines and theread /write routines are opera-
tional. This testing could involve writing a short program that only reads and writes to the
device to ensure that you can get into the device. When all the routines for the driver are
written, you should install the hardware for full functionality testing.

The UNIX system provides tools to help you, such ascrash(1M) , which is used either
for a post-mortem analysis after a system failure or for interactive monitoring of the driver.

Preparing a Driver for Debugging 15

The process of testing driver functionality is piecemeal: you have to take small pieces of
your driver and test them individually, building up to the implementation of your complete
driver.

Driver routines should be written and debugged in the following order:

1. init(D2) , start(D2)

2. open(D2) , close(D2)

3. intr(D2) interrupt routines



Device Driver Programming

15-2

4. ioctl(D2) , read(D2) , write(D2) and/or strategy(D2) and
print(D2)

When the driver seems to be functioning properly under normal conditions, begin testing
the error logs by provoking failures. For instance, take a tape or disk off-line while a
read/write operation is going.

After you are comfortable that both the hardware and software behaves as it should during
error situations, it is time to concentrate on formal performance testing.

General Guidelines 15

CAUTION

Before trying to install or debug the driver, back up all files in
your file system(s). Drivers can cause serious problems with disk
sanity should an unanticipated problem occur.

Compile your driver and produce an up-to-date listing and an object file. The following
conventions must be observed:

• Ensure that all yourcmn_err(D3) calls direct output to at least the
putbuf memory array. (putbuf defaults to a maximum size of 10,000
bytes.)

• Compile your driver without the optimizer, with the-g  option enabled.

• Use thepr(1) command with the-n option to produce a listing of the
source code with line numbers. Alternatively,list can be used to pull line
number information out of the driver object file.

• Use dis(1) to produce a disassembly listing. This is useful to have on
hand, even though you get the same information using thecrash dis
command.

Using the instructions described earlier in this book, install your driver. If the UNIX
system does not come up, divide your driver into separate sections and install each part
separately until you find the problem. Fix the problem and install the driver.

After the driver is installed, useidbuild(1M)  to create the/stand/unix  file.

Putting Debug Statements in a Driver 15

Use thecmn_err(D3) function to put debugging comments in the driver code; when the
driver executes, you can use these to tell what part of the driver is executing. The
cmn_err function is similar to theprintf(3S) system call but it executes from inside
the kernel.

cmn_err statements for debugging should be written to theputbuf where they can be
viewed usingcrash . Because they are written by the kernel, they cannot be redirected to



Driver Testing and Debugging

15-3

a file or to a remote terminal. You can also writecmn_err statements to the console, but
massive amounts of statements to the console severely slows system speed.

Calculations andcmn_err statements that are for debugging and other testing should be
coded within conditional compiler statements in the driver. This saves you the task of
removing extraneous code when you release the driver for production, and makes that
debugging code readily available should you need to troubleshoot the driver after it is in
the field. You can provide separate code for different types of testing to which the driver is
subjected. For instance, you might useTEST for functionality testing,PERFONfor mini-
mal performance testing, andFULLPERFfor full performance monitoring. Each of the
testing options is then defined in the code as either0 (turned off) or1 (turned on), as illus-
trated below.

Note that minimal performance monitoring is turned off, which is appropriate because full
performance monitoring is turned on.

Debug code is then enclosed within#if TEST and#endif . When the code is compiled
with the-DTEST option, the test code executes.

The testing procedure can be refined further by using flags within the conditionally-com-
piled code. Then, whenTEST is turned on, you can specify the exact sort of testing
without recompiling and reinstalling the driver. The flags should use the driver prefix. For
instance, the following code sets three flags for testing theintr(D2) interrupt routine,
thestrategy(D2) routine, and driver performance:

#if TEST
int xx_intpr = 1;
int xx_stratpr = 1;
int xx_perfpr = 1;
#else
int xx_intpr = 0;
int xx_stratpr = 0;
int xx_perfpr = 0;
#endif

You can change the flags by recompiling and reinstalling the driver, or you can change
them in the running system either with a kernel debugger or by writing a small program to
usegetksym(2)  and/dev/kmem .

/* TEST = 1 for functionality testing
*/
#define TEST 1
/*
* PERFON = 1 for minimal performance monitoring
*/
#define PERFON 0
/*
* FULLPERF = 1 for full performance monitoring
*/
#define FULLPERF 1



Device Driver Programming

15-4

Installing a Driver for Testing 15

Many of the steps that follow require you to modify files and directories owned by root.
You must therefore be logged in as root or execute with the appropriate privileges to
develop and debug device drivers.

1. First of all, it would be a good idea to make a copy of your current UNIX
operating system kernel before reconfiguring the system. The backup is
made automatically by theidbuild command saving the kernel as
/stand/unix.old (if there is enough disk space), but it is still a good
idea to have a “pre-driver test” backup kernel, because the second and sub-
sequent executions ofidbuild overwrites the previously saved
/stand/unix.old .

2. Create the requiredMaster and System files (these are described in
Chapter 14 (“Driver Installation and Tuning”)), and put them along with
yourDriver.o  device driver module into the/tmp  directory.

3. You can also create theMtune , Node and other optional DSP component
files if needed. However, if possible, you should test your driver first in as
simple an environment as possible.

4. Change directory (cd ) to /tmp , and use theidinstall -a command
to install the new driver.

5. Use theidbuild command (with the appropriate options, depending on
whether or not your device driver is to be loadable or static) to rebuild the
UNIX system kernel.

6. If you get errors, correct them and repeat the above step. If the kernel built
correctly, a new UNIX system image is created. Runningshutdown -i 0
or in i t 6 causes the system tobe automat ica l ly copied to
/stand/unix . On the next boot, the new kernel executes, and upon
enteringinit state 2, the new device nodes,inittab entries, and so
on, is installed.

When the system comes up, test your driver.

Emergency Recovery (New Kernel Does Not Boot) 15

There is a possibility that the kernel fails to boot if your driver contains a serious bug. This
can be due to acmn_err(D3) call with CE_PANICthat you put in your driver, or some
other system problem. If this happens, you should reset your system and boot your origi-
nal kernel that you, hopefully, saved as recommended above. To do this, reset your
machine, and use the “p boot 1. ” console processor command to select the “request
unix name ” option during boot. When the boot prompt displays, type the name of a
backup copy of the kernel (for example,/stand/unix.old ). If this fails or you have
not saved a copy of the kernel, typeunix.generic . This is a default unix.kernel that is
installed with the system. It should be present unless it has been removed.



Driver Testing and Debugging

15-5

Common Driver Problems 15

Following is a discussion of some common driver bugs, with possible symptoms. These
should be used only as suggestions. Each driver is unique and can have unique bugs.

Coding Problems 15

Simple coding problems usually show up when you try to compile the driver. In general,
these are similar to coding problems for any C program, such as failure to#include nec-
essary header files, define all data structures, or properly delineate comment lines. Specific
coding errors unique to driver code include the following:

• #ifdef -related problems, such as not providing for certain combinations

• inadequate handling of error cases

• failure to usevolatile  where necessary

Memory-mapped device registers must be declaredvolatile so the compiler knows the
values might change outside of program control. Otherwise, it might cache the values in
local registers and not see changes in hardware state.

Installation Problems 15

Installation problems refer to problems that prevent a system boot with your device con-
figured. If the system won't boot, first try to boot it without the driver to verify that the
driver is the problem. Some driver problems that prevent a system boot include:

• Errors in theinit or start routine. You can check that the initialization
routine is being entered by inserting an unconditionalcmn_err statement
at the beginning of the routine.

• Null pointer dereferences or other use of improperly initialized pointers.

Data Structure Problems 15

A driver can corrupt the kernel data structures. If the driver is setting or clearing the wrong
bits in a device register, awrite operation can put bad data on the device and aread
operation can put bad data anywhere in the kernel. Such errors can affect other drivers on
the system. Finding this bug involves painstaking walk-throughs of the code. Look for a
place where perhaps a pointer is freed (or never set) before the driver tries to access it, or
places where the code forgets to check a flag before accessing a certain structure. Other
symptoms of data structure problems are panics due to kernel data access exceptions or
misaligned data access exceptions. This can usually be traced to use of an illegal pointer.



Device Driver Programming

15-6

Timing Errors 15

Timing errors occur when the driver code executes too quickly or too slowly for the device
being driven. For instance, the driver might read a status register on a device too soon after
sending the device a command. The device might not have had time to update the status
register, so the status register is perceived by the driver to be all0 bits when, in fact, the
device might just be slow in posting the correct status register setting.

When testing the driver, it is useful to verify that a simple, single interrupt is being han-
dled properly. After this is confirmed, you should check that the interrupt handler can han-
dle a number of interrupts that happen at almost the same time.

Corrupted Interrupt Stack 15

If a driver's interrupt handler runs at an execution level lower than the corresponding IPL
for the device, the processing of one interrupt can be interrupted by a second interrupt
from the same device. This seriously corrupts the interrupt stack, which can cause the sys-
tem to panic with a stack fault or kernel address fault. Sometimes, however, it only causes
random operational irregularities, which can make this a difficult problem to detect. You
can identify this problem by looking at the interrupt stack in the system dump. If it is cor-
rupted, check the execution level of the driver's interrupt-handling routine.

Accessing Critical Data 15

Check the driver code for data structures that are accessible to both the base and interrupt
levels of the driver. Ensure that any section of the base-level code that accesses such struc-
tures cannot be interrupted during that access by using the appropriatespl(D3)
function.

Overuse of Local Driver Storage 15

If the driver routines use large amounts of local (automatic) storage, they can exceed the
bounds of the kernel stack, which in turn panics the system.

Incorrect DMA Address Mapping 15

Failure to set up address mapping for DMA transfers correctly is another common mis-
take. On aread operation, a bad address map can cause data to be placed in the wrong
location in the main store, overwriting whatever is there including, for example, a portion
of the operating system text.

To check for this, write a simple user program that writes data to all possible memory
locations (including shared memory, stack, and text) and then reads it back and compares



Driver Testing and Debugging

15-7

the input and output. As soon as any one of these operations fails, you should reboot the
system immediately to ensure that kernel memory is sane.

Driver Debugging Techniques 15

This section describes the key facilities that are available to help you debug a driver. These
include the console processor,crash(1M) , kdb(1) , andcmn_err(D3) . Use of these
facilities is explained in the sections that follow.

Using the Console Processor and Setting Breakpoints 15

The console processor (hereinafter referred to as CP) can be used to do breakpoint debug-
ging of the device driver. This section highlights only the CP features that are applicable to
debugging. For further information, see theHN6200or HN6800 Console Reference Man-
ual.

In order to use the CP to debug, an assembler listing of the driver is needed (use the–S
option when invokingcc to compile the driver). Some skill is involved in mapping the
assembler code to the original C code; this develops with experience. In addition, the
virtual address of the beginning of the driver is needed. This address can be obtained by
runningkdb  against the kernel object file.

Note that the console processors have built–in symbolic capabilities. See theHN6200or
HN6800 Console Reference Manual for details.

The normal procedure to use when setting breakpoints is as follows:

• The system is booted.

• The CP~i or ~h command is used to halt all the CPUs. To use one of these
commands, type the following:

<carriage return>~i

or

<carriage return>~h

(Pressing the console wakeup button achieves the same result.)

• Breakpoints are set as desired using the CPb command.

• The CPr  command is used to start the system running again.

• Test cases that execute the breakpointed instructions are run.

• When a breakpoint is hit, other CP commands are used to examine the reg-
isters and memory. Execution resumes with ther  command.



Device Driver Programming

15-8

• If a system panic is repetitively occurring in a section of driver code, a
breakpoint can be set beforehand in that code in order to halt the processor
and examine the machine state before the kernel panic code is executed.

If you want to set a breakpoint during system boot, the following proce-
dure is used:

• Before booting the system (CPfb or fr /bootcommand), set bit 8 in pro-
cessor register boot (CP commandp boot 100).

• After the boot program loads the kernel, the processor halts twice––once in
the physical memory mode before virtual memory (hereinafter referred to
as VM) is enabled and then again after VM is enabled. Breakpoints can be
set at this time using virtual addresses. The CPr command is used to
resume execution.

Although reading the entireHN6200 Console Reference Manualis highly recommended,
knowledge of the following commands facilitate most driver debugging tasks:

Table 15-1.  Console Processor Commands

Command Meaning

a ASCII dump

b breakpoint manipulation

bk clear breakpoint

bt set traced breakpoints

d dump hex

di disassemble memory

e examine/change memory

g general purpose register examine/change

p processor register display/modify

qa query address

qs query stack

qv query virtual address translation

r execute run

rr run to return address

s search memory

z single step

? help



Driver Testing and Debugging

15-9

Understanding thep command of the console processor debugging commands is essential
to booting the system and debugging the device driver. The hexadecimal values that are
beneficial to use with thep command for processor register boot are as follows:

Booting Scenarios 15

Several situations can occur while trying to boot a kernel for a device driver. The sections
that follow contain scenarios that demonstrate the commands to use and the results that
can be expected when using the boot options and console processor debugging commands.
“Shutdown and Reboot” contains a scenario that shows how to shut down the system and
bring it up again with a new kernel. “System Panic” contains a scenario that shows what
happens when a system panic occurs. “Breakpoints in the Initialization Phase” shows how
breakpoints can be set in theinit(D2)  andstart(D2)  routines.

In these scenarios, note that the # sign is the shell prompt for the superuser. The #> prompt
indicates that the console processor is ready for a new command.

Shutdown and Reboot 15

The following scenario demonstrates how to take down the machine and bring up the new
kernel that is to be tested on the machine. It also shows the nature of the output that results
from using the console processor debugging commands.

# /etc/conf/bin/idbuild -B

        The UNIX Operating System kernel will be rebuilt now.

        This will take some time. Please wait.

        Root for this process is /

        The UNIX Operating System kernel has been rebuilt.

#

# cd /

# /sbin/shutdown -g0 -i0 -y

Shutdown started.    Fri Feb 17 13:13:22 EST 1995

Table 15-2.  Important Parameters to the p Console Processor Command

Value Meaning

1 Requests file name for boot. Asks user to specify the program to load.

2 Boots the operating system to single–user mode.

80 Debug option (load symbol table)

100 Load and then halt twice––once before enabling VM and once after
enabling VM.



Device Driver Programming

15-10

#

#

INIT: :New run level: 0

The system is coming down.  Please wait.

CPU 0 halted

001fea24 [001fea24] pause_self+60% 48000000 b pause_self+60

CPU 1 halted

001fe9a0 [001fe9a0] reboot+34    % 3c600053 lis r3,0x53

#0>p boot

   boot = 00000882 82.

#0>fb

Reset Backplane

Initialize Interrupts

Set Run Mode

   CPU 0   CPU 1

dsk(a,0,0,0)/.

dsk(a,0,0,0)/boot

NH Boot Loader

Boot

: /stand/unix

3011036+629040+1806412 start 0xE000

symbol table loaded

NightHawk Power_UNIX Release 2.1

egl0 at VME address FFFF0800

pg0 at VME address FFFF0200

rtc0 at address 9C000000

00:

00: The system is coming up.  Please wait.

00:

00: hsa: Adapter 8 configured in slot 10.

00:    SCSI  disk  @ID 0 on hsa adapter 8.

00: hsa: Adapter 9 configured in slot 11.

00:    SCSI  disk  @ID 0 on hsa adapter 9.

00:     hs8 scsi id 0: Generic Fujitsu settings established.

Checking root filesystem

Node: betsy

Checking /var filesystem

INIT: :option: boot to single user mode.

INIT: :SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,

(or give root password for Single User Mode):

Entering Single User Mode

#

# ~i

CPU 0 halted

00134844 [00134844] constildecmd+dc% 38600001 li r3,0x1

CPU 1 halted



Driver Testing and Debugging

15-11

001baf5c [001baf5c] idle+84      % 80700014 lwz r3,0x14(r16)

#0>

#0>b gdread

#0>r

# dd if=/dev/rusr of=/dev/null count=1

CPU 1 breakpoint

001247ec [001247ec] gdread       %*3821ffb0 subi r1,r1,0x50

CPU 0 halted

001baf5c [001baf5c] idle+84      % 80700014 lwz r3,0x14(r16)

#1>

#1>g

(CPU 1 halted)

     pc = 001247ec     r1 = 029c4190     lr = 000c6908    msr = 00009032

     cr = 43200000    ctr = 001247ec    ipl = 00           r0 = 00000003

     r2 = 00000000     r3 = 01980002     r4 = 029c4280     r5 = 01c82500

     r6 = 001247ec     r7 = 00000000     r8 = 00000001     r9 = 00000001

    r10 = 2f44e976    r11 = 00000b90    r12 = 2f44e976    r13 = 000c689c

    r14 = 004f2d28    r15 = 004f2d28    r16 = 029c4280    r17 = 0178e304

    r18 = 029c4300    r19 = 01c82500    r20 = 0178e300    r21 = 01980002

    r22 = 00000000    r23 = 0000000c    r24 = 20012010    r25 = 1000f148

    r26 = 0000d030    r27 = 00000000    r28 = 00000000    r29 = deadbeef

    r30 = 00000003    r31 = 2ff7ed50

     f0 = 0000000000000000     f1 = 0000000000000000     f2 = 0000000000000000

     f3 = 0000000000000000     f4 = 0000000000000000     f5 = 0000000000000000

     f6 = 0000000000000000     f7 = 0000000000000000     f8 = 0000000000000000

     f9 = 0000000000000000    f10 = 0000000000000000    f11 = 0000000000000000

    f12 = 0000000000000000    f13 = 0000000000000000    f14 = 0000000000000000

    f15 = 0000000000000000    f16 = 0000000000000000    f17 = 0000000000000000

    f18 = 0000000000000000    f19 = 0000000000000000    f20 = 0000000000000000

    f21 = 0000000000000000    f22 = 0000000000000000    f23 = 0000000000000000

    f24 = 0000000000000000    f25 = 0000000000000000    f26 = 0000000000000000

    f27 = 0000000000000000    f28 = 0000000000000000    f29 = 0000000000000000

    f30 = 0000000000000000    f31 = 0000000000000000

#1>

#1>di %

001247ec [001247ec] gdread       %*3821ffb0 subi r1,r1,0x50

001247f0 [001247f0] gdread+4       92010040 stw r16,0x40(r1)

001247f4 [001247f4] gdread+8       92210044 stw r17,0x44(r1)

001247f8 [001247f8] gdread+c       7da802a6 mflr r13

001247fc [001247fc] gdread+10      91a10058 stw r13,0x58(r1)

00124800 [00124800] gdread+14      7c701b78 or r16,r3,r3

00124804 [00124804] gdread+18      7c912378 or r17,r4,r4

00124808 [00124808] gdread+1c      48000095 bl gdsize

0012480c [0012480c] gdread+20      7c671b78 or r7,r3,r3

00124810 [00124810] gdread+24      3c600012 lis r3,0x12

00124814 [00124814] gdread+28      606349c0 ori r3,r3,0x49c0

00124818 [00124818] gdread+2c      38800000 li r4,0x0

0012481c [0012481c] gdread+30      7e058378 or r5,r16,r16

00124820 [00124820] gdread+34      38c00001 li r6,0x1

00124824 [00124824] gdread+38      7e288b78 or r8,r17,r17

00124828 [00124828] gdread+3c      4bfae089 bl physiock

#1>

#1>b gdread+1c

#1>r



Device Driver Programming

15-12

CPU 1 breakpoint

00124808 [00124808] gdread+1c    %*48000095 bl gdsize

CPU 0 halted

001baf5c [001baf5c] idle+84      % 80700014 lwz r3,0x14(r16)

#1>

#1>qs

   sp     --------- KERNEL STACK ---------

029c4140  gdread() at 124808(gdread+1c)

029c4190  spec_read() at c6908(spec_read+248)

029c4210  read() at 469bc(read+1ac)

029c42a0  systrap() at 204728(systrap+378)

029c4400  process_trapret() at 20bdb8(process_trapret)

#1>

System Panic 15

The scenario presented in this section shows the probable result of a bug in the device
driver that is being tested. Normally a system panic, which causes memory to be dumped,
occurs. You can later analyze the dump by using/usr/sbin/crash (see
crash(1M) ).

Note that if a breakpoint is set in the panic routine, the fault can be analyzed directly
before a dump occurs. This procedure can be quicker than dumping, rebooting, and then
analyzing the crash.

00:

00: PANIC: kernel-mode address fault on kernel address 0x00000060

00:

00:

00: Dumping to dev 01980001 (d_dump=00126404)

00:   Memory extent 0 to byte offset 0x04DC0000

00:

00: gd0 (hsa8 drive 0) : Resetting controller

00: dump succeeded

#0>fb

Reset Backplane

Initialize Interrupts

Set Run Mode

   CPU 0   CPU 1

dsk(a,0,0,0)/.

dsk(a,0,0,0)/boot

NH Boot Loader

Boot

: /stand/unix

2997340+626016+2768732 start 0xE000

symbol table loaded

NightHawk Power_UNIX Release 2.1

egl0 at VME address FFFF0800

pg0 at VME address FFFF0200

rtc0 at address 9C000000

00:

00: The system is coming up.  Please wait.



Driver Testing and Debugging

15-13

00:

00: hsa: Adapter 8 configured in slot 10.

00:    SCSI  disk  @ID 0 on hsa adapter 8.

00: hsa: Adapter 9 configured in slot 11.

00:    SCSI  disk  @ID 0 on hsa adapter 9.

00:     hs8 scsi id 0: Generic Fujitsu settings established.

Checking root filesystem

997 files, 54883 used, 15396 free

(2356 frags, 1630 blocks, 3.4% fragmentation)

/dev/rroot FILE SYSTEM STATE SET TO OKAY

***** FILE SYSTEM WAS MODIFIED *****

Node: betsy

Checking /var filesystem

275 files, 22943 used, 70736 free

(416 frags, 8790 blocks, 0.4% fragmentation)

/dev/rvar FILE SYSTEM STATE SET TO OKAY

***** FILE SYSTEM WAS MODIFIED *****

Checking file systems:

/dev/rusr: 858 files, 64028 used, 170195 free

(875 frags, 21165 blocks, 0.4% fragmentation)

UX:ufs fsck: WARNING: /dev/rusr: /dev/rusr FILE SYSTEM STATE SET TO OKAY

File system check complete.

savecore: System went down at Fri Feb 17 13:53:03 1995

savecore: Copying /stand/unix to /var/crashfiles/unix.0

savecore: Saving memory dump to /var/crashfiles/vmcore.0

savecore: Saved 9945088 bytes of dump to /var/crashfiles/vmcore.0

The system is ready.

The system's name is unix

Welcome to Night_Hawk Power_UNIX Release 2.1

Console Login: root

Last login: Fri Feb 17 11:35:23 on console

# cd /var/crashfiles

# crash -d vmcore.0 -n unix.0

dumpfile = vmcore.0, namelist = unix.0, outfile = stdout

Engine: 0 Procslot: 30 Lwpslot: 0

> panic ! more

System Messages:

PANIC: kernel-mode address fault on kernel address 0x00000060

Dumping to dev 01980001 (d_dump=00126404)

   Memory extent 0 to byte offset 0x04DC0000

gd0 (hsa8 drive 0) : Resetting controller

dump succeeded

> trace ! more



Device Driver Programming

15-14

STACK TRACE FOR PROCESS 30 LWP 0:

xcmn_panic+0x64             ()                         sp:058cc100 ret:002ade28

xcmn_err+0x160              ()                         sp:058cbe80 ret:000469ec

cmn_err+0x58                ()                         sp:058cbf00 ret:002ade28

kpageflt+0x268              ()                         sp:058cbf60 ret:000469ec

trap+0xe8c                  ()                         sp:058cbf90 ret:001f30c8

Xexcept+0x140               ()                         sp:058cbfa0 ret:002ba928

TRAP TO Xexcept+0x100

REGISTER VALUES:

  TYPE:        c        IPL: 20028d9c       srr0: 100228f8       srr1:     f130

 dsisr:        0        dar:        0         r0:        3         r1: 2ff7ed88

    r2:        0         r3:        0         r4: 2002820c         r5:       80

    r6:        7         r7:        1         r8: 20030000         r9:        0

   r10: 20030000        r11: 20020000        r12: 2002bdd4        r13: 10013a18

   r14:        0        r15: 10013b8c        r16: 200281f0        r17: 2002820c

   r18: 2ff7ef5c        r19:        0        r20:        0        r21:        0

   r22:        0        r23:        0        r24: 20028d9c        r25: deadbeef

   r26:        0        r27:        0        r28:        0        r29:        0

   r30:        0        r31:        0         lr: 10013b8c        ctr: 1001a390

    cr: 42224000        xer:        6     VECTOR:       48       RHAI:     1030

strread+0x344               ()                         sp:058cc100 ret:002ade28

spec_read+0x218             ()                         sp:058cc190 ret:000469ec

read+0x1ac                  ()                         sp:058cc210 ret:001f30c8

systrap+0x378               ()                         sp:058cc2a0 ret:002ba928

process_trapret             ()                         sp:058cc310

TRAP TO process_trapret

REGISTER VALUES:

  TYPE:        c        IPL: 20028d9c       srr0: 100228f8       srr1:     f130

 dsisr:        0        dar:        0         r0:        3         r1: 2ff7ed88

    r2:        0         r3:        0         r4: 2002820c         r5:       80

    r6:        7         r7:        1         r8: 20030000         r9:        0

   r10: 20030000        r11: 20020000        r12: 2002bdd4        r13: 10013a18

   r14:        0        r15: 10013b8c        r16: 200281f0        r17: 2002820c

   r18: 2ff7ef5c        r19:        0        r20:        0        r21:        0

   r22:        0        r23:        0        r24: 20028d9c        r25: deadbeef

   r26:        0        r27:        0        r28:        0        r29:        0

   r30:        0        r31:        0         lr: 10013b8c        ctr: 1001a390

    cr: 42224000        xer:        6     VECTOR:       48       RHAI:     1030

RETURN TO USER MODE

>

Breakpoints in the Initialization Phase 15

Breakpoints can be set in the device driver’sinit  andstart  routines.

#0>p boot 182.

   boot = 00000000 182.

#0>fb

Reset Backplane

Initialize Interrupts

Set Run Mode



Driver Testing and Debugging

15-15

   CPU 0   CPU 1

dsk(a,0,0,0)/.

dsk(a,0,0,0)/boot

NH Boot Loader

Boot

: /stand/unix

2997340+626016+2768732 start 0xE000

symbol table loaded

Load-Only option set (VM NOT enabled).

CPU 0 halted

00788598 ____debug_line+141838% 3821ff10 subi r1,r1,0xf0

#0>r

Load-Only option set (VM enabled).

CPU 0 halted

001efff4 [001efff4] sysinit+54   % 48000459 bl conf_proc

#0>

#0>b gdinit

#0>r

NightHawk Power_UNIX Release 2.1

egl0 at VME address FFFF0800

pg0 at VME address FFFF0200

rtc0 at address 9C000000

CPU 0 breakpoint

00112110 [00112110] gdinit       % 3821ffa0 subi r1,r1,0x60

#0>z.

CPU 0 branch instruction trace

00112114 [00112114] gdinit+4     % 92010050 stw r16,0x50(r1)

#0>z

CPU 0 branch instruction trace

00112118 [00112118] gdinit+8     % 92210054 stw r17,0x54(r1)

#0>z

CPU 0 branch instruction trace

0011211c [0011211c] gdinit+c     % 92410058 stw r18,0x58(r1)

#0>z

CPU 0 branch instruction trace

00112120 [00112120] gdinit+10    % 7da802a6 mflr r13

#0>z

CPU 0 branch instruction trace

00112124 [00112124] gdinit+14    % 91a10068 stw r13,0x68(r1)

#0>z

CPU 0 branch instruction trace

00112128 [00112128] gdinit+18    % 3c600043 lis r3,0x43

#0>z

CPU 0 branch instruction trace

0011212c [0011212c] gdinit+1c    % 8063c908 lwz r3,0xffffc908(r3)

#0>

#0>qs

   sp     --------- KERNEL STACK ---------

ffd042c8  gdinit() at 11212c(gdinit+1c)

ffd04328  conf_ioinit() at c281c(conf_ioinit+54)

ffd04378  sysinit() at 1f0080(sysinit+e0)

ffd043c8  start() at e104(start+104)



Device Driver Programming

15-16

#0>

#0>bk all

#0>r

00:

00: The system is coming up.  Please wait.

00:

00: hsa: Adapter 8 configured in slot 10.

00:    SCSI  disk  @ID 0 on hsa adapter 8.

00: hsa: Adapter 9 configured in slot 11.

00:    SCSI  disk  @ID 0 on hsa adapter 9.

00:     hs8 scsi id 0: Generic Fujitsu settings established.

Checking root filesystem

Node: betsy

Checking /var filesystem

INIT: :option: boot to single user mode.

INIT: :SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,

(or give root password for Single User Mode):

Using crash to Debug a Driver 15

Thecrash(1M) utility allows you to analyze how your driver interacts with the core
image of the operating system. It is most frequently used in postmortem analysis of a
system panic, but can also be run on an active system. The output fromcrash can help
you identify such driver errors as corrupted data structures and pointers to the wrong
address. Its shortcoming as a debugging tool is that it is difficult to freeze the core image at
exactly the point where the error occurred; even if the error causes a system panic, the core
image might be far beyond the point of actual error. This is especially true when debug-
ging an intelligent board, because an autonomous intelligent controller continues process-
ing even though you have halted kernel-level processing on the main memory. Moreover,
for intelligent boards, thecrash  dump cannot get at the onboard data structures.

NOTE

Using thecrash command requires a thorough knowledge of
assembler, of reading core dumps, and of systems programming
concepts. The need to know assembler cannot be overemphasized.
Thecrash output is displayed in assembler mnemonics and as
strings of hex numbers that must be translated into address loca-
tions, stack frames, and memory offsets.

Saving the Core Image of Memory 15

To runcrash as a postmortem analysis on a panicked system, you must save the core
image of memory before rebooting the system and have a copy of the bootable kernel
image (/stand/unix  file) that was running.



Driver Testing and Debugging

15-17

The system automatically saves the dump image when it detects an improper shutdown.
By default, when entering multi-user mode, the memory image and the kernel image are
saved to/var/crashfiles .

NOTE

To reduce the amount of memory to be copied to disk at a system
crash, you can reduce the amount of RAM used by the system by
using theMAXPMEMtunable parameter. This parameter is set in
the/etc/conf/mtune.d/kernel  file.

Initializing crash on the Memory Dump 15

To runcrash on the core image of memory at the time the system panicked, you must
have saved the core image before rebooting and the file containing the kernel bootable
image (/stand/unix  file by default) that was running at the time of the crash.

If the bootable kernel image is named something other than/stand/unix (either
because it was named something else at the time of the panic or because you copied it to
another name after the panic), use the-n option or the second positional parameter to
specify that file name. If you want the output ofcrash to be written to a file rather than
your terminal (standard output), use the-w option with the name of the file. Note that the
output of a specificcrash command can be redirected to a file even if you do not use the
-w  in thecrash  command line.

Using crash Functions 15

Thecrash session begins by reporting thedumpfile, namelist, andoutfilebeing used, fol-
lowed by thecrash prompt (>). Requests in thecrash session have the following stan-
dard format

command [argument...]

wherecommandis one of the supported commands ofcrash andargumentincludes any
qualifying data relevant to the requested command. Use theq command to end thecrash
session.

See the crash(1M) manual page for a list of supported commands. Note that, while
mostcrash commands are common to all computers, each system also has unique
commands that relate to specific devices supported on that machine.

Following is a list ofcrash  commands often useful when debugging a driver.

dis Disassemble from a starting address. Use this information to trace
code flow. However, you have to mentally convert the resulting
assembler code to C programming language statements.

od List memory. Use this command when you suspect that the stack
is corrupted, or to list the contents of memory at a certain address.
If you are listing the contents of the stack, you have to manually
find the boundaries of each stack entry, calledstack frames. To get



Device Driver Programming

15-18

the starting address of the stack, list the registers with thepanic
command.

proc List the process table. Use this information to obtain the process
slot number of the process that panicked the system.

stack Dump the stack. Use this information to determine the size of the
stack frame. Ifstack returns information that you suspect is cor-
rupted, useproc to get a list of process table slots and then use
stack  on each individual slot entry.

stat List system statistics. Use this information to display the reason a
panic occurred. Thepanic command gives the same information
asstat , plus registers, stack, and trace data.

trace Print kernel stack trace. Use this information to determine which
functions were executed in the stack or in an individual process
table slot entry.

Using crash Commands 15

When a panic occurs, capture the core memory image and produce a file that you can use
with crash . Whencrash executes, a “>” command line prompt is displayed. The fol-
lowing sequence of commands are frequently used to analyze the problem.

stat list reason for the crash

proc list the process table to see which process initiated the panic

stack  or trace list the last processes on the stack

dis trace the execution of a set of instructions

Kernel Debugger 15

An extremely useful tool for debugging device drivers is the kernel debugger (also known
askdb ). Refer to thekdb(1M ) manual page in the system administration reference
manual for more details and a complete list of commands for thekdb  utility.

kdb can set breakpoints, display kernel stack traces and various kernel structures, and
modify the contents of memory, I/O, and registers. The debugger supports basic arithmetic
operations, conditional execution, variables, and macros.kdb does conversions from a
kernel symbol name to its virtual address, from a virtual address to the value at that
address, and from a virtual address to the name of the nearest kernel symbol. You have a
choice of different numeric bases, address spaces, and operand sizes.kdb can be used to
reference global symbols that are inside of DLMs (Dynamically Loaded Modules) and set
breakpoints inside of DLM modules using routine names and offsets (a feature not avail-
able via the console processor).

To use the debugger, you must first configure it into the kernel. Then you can invoke the
debugger by using thekdb command or thesyscx (DEBUGGER) system call, or by enter-
ing the sequenceCTRL-~-k (from the console only). In addition,kdb is entered auto-



Driver Testing and Debugging

15-19

matically under various conditions, such as panics and breakpoint traps. Any time the
kdb>> prompt displays, you are in the debugger. I/O is performed through the console or
a serial terminal.

To exit the debugger, pressCTRL-d or q.

When you exit and re-enter the debugger, its state is preserved, including the contents of
the value stack.

kdb is an extremely powerful tool, and should be used carefully to avoid accidental cor-
ruption of kernel data structures, which could lead to a system crash.kdb has few provi-
sions for preventing programmer error.

NOTE

The kernel debugger is not meant for debugging user programs.
Use an appropriate user-level debugger, such asadb(1), for
that purpose.

kdb  must exist in your kernel before you can use it (just like any device driver).

kdb prints and accepts address inputs symbolically, using kernel procedure and variable
names instead of hexadecimal numbers, but you must load the debugger with the kernel's
symbols after the debugger itself has been installed into the kernel. You can do this by
using theunixsyms command, which loads the symbols into the kernel executable file
after building it and before booting it. Normally, this is done automatically for you by
idbuild(1M) .

Entering kdb from a Driver 15

If you are debugging a device driver or another part of the kernel, you can directly invoke
the kernel debugger by including the following code in your driver:

#include <sys/systm.h>

(*call_demon) (DR_OTHER, NO_FRAME);

This mechanism cannot be used for debugging early kernel startup code or driverinit
routines, since the debugger cannot be used until itsinit routine,kdb_init , has been
called.

System Panics 15

If you expect that the driver could enter a state that is invalid, the driver can halt the system
using thecmn_err(D3) function with a panic flag set. For example, if the driver expects
one of three specific cases in a switch statement, the driver can add a fourth default case
that calls thecmn_err() function. The system dumps an image of memory for later



Device Driver Programming

15-20

analysis. If the error is recoverable, the driver should not panic the system. An example of
panicking usingcmn_err()  is:

cmn_err(CE_PANIC, \
"Your system has panicked, DEV_NAME error!");



16
Special Considerations

Device Drivers and Real Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1
Device Drivers and VME Bus Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

Additional Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
Device Drivers and Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4

System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
Design and Implementation Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5



Device Driver Programming



16-1

16
Chapter 16Special Considerations

16
16
16

This chapter describes the special factors that you must consider when developing a
device driver for a real-time production environment. It also provides an overview of the
security issues that affect development of a device driver for the PowerUX kernel.

Device Drivers and Real Time 16

The length of an interrupt routine is very important in a real-time system because an
interrupt routine cannot be preempted to execute a high-priority task. Lengthy interrupt
routines directly affect the process dispatch latency of the CPU to which the interrupt is
assigned. The length of time that interrupts are blocked by raising a processor’s interrupt
priority level (IPL) is also important to a real-time system. When interrupts are blocked,
the currently running process cannot be preempted. As a result, the process dispatch
latency on the CPU on which IPL is raised is affected. The termprocess dispatch latency
denotes the time that elapses from the occurrence of an external event, which is signified
by an interrupt, until the process that is waiting for that external event executes its first
instruction in user mode.

If you are using a device driver in a real-time production environment, you should
minimize the amount of work that is performed at interrupt level. Generally, a device’s
interrupt routine can interact with the device to perform the following types of tasks:

• Acknowledge the interrupt.

• Save data received from the device for subsequent transfer to a user.

• Initiate a device operation that was waiting for completion of the previous
operation.

A device’s interrupt routine shouldnot perform the following types of tasks:

• Copy data from one internal buffer to another.

• Replenish internal buffers for the device.

• Replenish other resources used by the device.

Such tasks as these should be performed at program level. You can, for example, design a
device driver so that buffers for the device are allocated at program level and maintained
on a free list that is internal to the driver. When a process performs read or write
operations, the driver checks the free list to determine whether or not the number of
buffers available is sufficient for incoming interrupt traffic. The interrupt routine can thus
avoid making calls to such kernel buffer allocation routines askmem_alloc(D3) .

The most important consideration in designing a device driver for use in a real-time
production environment is the length of time that interrupts have to be blocked—interrupts



Device Driver Programming

16-2

should not be blocked for long periods of time. A device driver that is written for a con-
ventional UNIX kernel can block interrupts for long periods of time without causing prob-
lems. Because a conventional UNIX kernel cannot be preempted while executing in kernel
mode, blocking interrupts is detrimental only to device throughput. Device interrupts can
be blocked for a very long time before throughput is affected.

If device drivers arenot multithreaded but are instead dedicated to a processor, the proces-
sor that is specified shouldnot be a shielded processor.

Because you must multithread the device driver to allow multiple users on different
processors to access a device simultaneously, the driver’s critical sections are protected
with spin locks (basic locks and read/write locks), sleep locks, or synchronization vari-
ables. When you use a spin lock, however, you must provide additional protection by rais-
ing the IPL. If a spin lock is locked only at program level, IPL must be raised to prevent a
context switch from occurring. If a context switch were allowed while a spin lock was
held, the hold time on the spin lock would be quite long and could cause other CPUs to
spin for long periods of time while trying to acquire the spin lock. If a spin lock is to be
locked at interrupt level, you must ensure that a process that locks the spin lock at program
level raises the processor IPL to a level that is high enough to block out the interrupt while
the lock is held. Doing so prevents the interrupt-handling routine from spinning forever
while attempting to lock the spin lock that is locked at program level.

Generally, a device driver should need to raise IPL only while a spin lock is held. It might
also need to raise IPL to ensure that a section of code executes without being interrupted,
but such instances are rare.

Whenever possible, use sleep locks. However, these locks cannot be used in interrupt rou-
tines.

It is also important to assign the interrupt(s) generated by the device that is controlled by
the driver to a CPU on which critical, high-priority tasks are not running. You can assign
an interrupt to a particular CPU by modifying the file/etc/conf/mtune.d/pin on
the release system. This file contains the pin to CPU assignments. The changes to the file
do not come into effect until the kernel is rebuilt and the system rebooted.

Device Drivers and VME Bus Errors 16

Applications typically make use of devices that are located on the VME bus. In the event
that any of these VME devices or their corresponding device drivers cause a VME bus
error, the kernel usually panics.

In a simulation or production environment, or even in a development environment where
frequent system reboots are not productive, these kernel panics are not desirable.

As an alternative to kernel panics, theiobus_err(2) system service can be used to
register, catch, and obtain status on VME bus errors, while usually avoiding kernel panics.
(Some VME bus errors are considered non-recoverable by the kernel, and therefore, these
types of VME bus errors still result in kernel panics.)

Typically, whether the VME device of interest has a kernel or user-level device driver, an
application program typically callsiobus_err(2) at system start-up time, usually via a



Special Considerations

16-3

system start-up script, to register itself to catch a range of VME addresses. If a VME bus
error occurs within this registered range of VME addresses, then a user-specified signal is
sent to that process. It is up to the signal handler to decide what action should be taken in
order to correct the situation, such as resetting the device, re-issuing a command to the
device, or even shutting the simulation and/or system down.

The usual coding sequence for usingiobus_err(2)  is to:

1. Setup a signal handler, usingsigaction(2) , to catch the signal used for
VME bus error notifications.

The sample code uses SIGUSR1 as the bus error notification signal below:

int status;
struct sigaction act;
act.sa_sigaction = sigcatcher; /* signal routine */
status = sigaction(SIGUSR1, &act,

(struct sigaction*)Null;

2. Register to catch a range of VME bus errors, using theIO_REGcommand
on aniobus_err(2) system service call, and passing the signal number
that is to be used for bus error notification. (The process can catch any and
all VME bus errors in the system by specifying a starting address of 0, and
a length of -1 (0xfffffff f)).

The sample code below registers to catch VME bus errors starting at
address 0xc1010000 and ending at address 0xc1010ffff:

int status;
paddr_t base_addr = 0xc1010000; /* starting vme
physical address */
size_t length = 0x1000;          /* 4k length */

struct sigevent sig_event;

status = iobus_error(IO_REG, VME, base_addr,
length, (void*)&sig_event);

3. In the signal handler, additional information can be obtained about the
VME bus error by callingiobus_error(2) with the IO_INFO com-
mand.

For example:

int status;
paddr_t base_addr = 0xc1010000;
size_t length = 0x1000;
struct iobus_info info;

status = iobus_err(IO_INFO, VME, base_addr, length,
(void *)&info);

Note that the values forbase_addrandlengthshould be exactly the same as
those previously specified on theIO_REG iobus_err(2) system ser-
vice call; otherwise, this call fails.



Device Driver Programming

16-4

4. Based on the state of the device and the information from theIO_INFO
iobus_err(2) call, the signal handler should decide what action to
take, such as resetting the device, re-issuing the command, shutting down
the simulation, etc.

Additional Considerations 16

On some systems, a VME bus error warning signal is sent to any process registered to
catch a VME bus error, regardless of which range of VME addresses that process is regis-
tered to catch. This is because some platforms cannot accurately or reliably determine the
physical VME address location of the bus error.

It should also be mentioned that the information returned on theIO_INFO
iobus_err(2) call is platform-specific. See theiobus_err(2) man page for more
information about theiobus_err(2)  functionality, including platform specifics.

Device Drivers and Security 16

One of the design objectives of the PowerUX kernel is to conform to the criteria published
in the DOD Trusted Computer System Evaluation Criteria(hereinafter referred to as
TCSEC). Specifically, the PowerUX kernel must meet all security criteria necessary to
attain a B2 security rating.

The sections that follow introduce the main functional requirements of the PowerUX ker-
nel for a B2 security rating and show the effect of those requirements on the design and
implementation of the file system and device drivers. It is strongly recommended that you
become familiar with these requirements and with the guidelines for meeting them.

System Requirements 16

One of the most important security requirements imposed on the kernel is to prevent the
possibility that a user can see any data that previously have been used or owned by another
process. This is to protect system resources from being used to disclose user data in
violation of the system’s security policy.

To meet this requirement, the system must conform to anobject reusepolicy, which can be
paraphrased from theTCSECas follows: no information produced by a prior running
process is to be available to any other process by means of access to a shared system
resource that has been released to the system—that is, anmbuf , a global data structure,
and so on. This is usually accomplished by zero-filling a resource upon deallocation or
reallocation to another process.

In addition to this object reuse policy, the system must enforce security access restrictions
and audit all security-relevant events for the secure operation of the system. You must
become familiar with such other functional requirements as Covert Storage Channels and



Special Considerations

16-5

labeling of imported or exported data. For a description of these and related issues, refer to
the TCSEC.

Design and Implementation Issues 16

The file system is designed to implement overall system requirements for device protec-
tion, naming, access control, and auditing. Device driver files must be marked with appro-
priate system MAC (Mandatory Access Control) and DAC (Discretionary Access Control)
access permissions. Additionally, device files can have ranges of access levels (secret, top
secret, and so on) associated with them in the Device Database (DDB) to restrict user
accesses. Those DDB entries are created with theadmalloc(1M) command. Finally, the
file system audits system security events upon such system calls asopen(2) and
access(2) . For more information about general file system security, refer to theAudit
Trail Administration manual.

Although most of the security issues are carried out by other parts of the system, there are
some implementation guidelines to which all device drivers must conform in order to meet
system security requirements. They are as follows:

• Device drivers must check for unexpected use of the kernel privilege.

• Device drivers must make audit calls for any security-relevant events. See
theAudit Trail Administrationmanual and theTCSECfor additional infor-
mation.

• If a device driver allocates kernel buffers to store user data transferred to
the user process’s virtual address space, it must meet the object reuse
requirement. This requirement is met by zero-filling resources such as
memory buffers either when they are freed or before they are reallocated
fo r use by ano ther p rocess . The kerne l suppor t rou t ine
kmem_zalloc(D3)  zero-fills the memory buffers that it allocates.



Device Driver Programming

16-6



17
Writing a User-Level Device Driver

Understanding a User-Level Device Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
What Is a User-Level Device Driver?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
What Are the Advantages and Disadvantages of a User-Level Driver?. . . . . . . 17-2
Which Types of Devices Are Candidates for a User-Level Driver?. . . . . . . . . . 17-3
What Affects the Complexity of a User-Level Device Driver? . . . . . . . . . . . . . 17-3

Programmed I/O versus Direct Memory Access Devices. . . . . . . . . . . . . . 17-3
Single-User Drivers versus Multiuser Drivers  . . . . . . . . . . . . . . . . . . . . . . 17-4
Polling Support versus Interrupt Support . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4

Understanding the Components of a User-Level Driver . . . . . . . . . . . . . . . . . . . . . . 17-4
Overview of Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5

Shared Memory Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6
User I/O Buffer Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7

Overview of User-Level Device Driver Routines. . . . . . . . . . . . . . . . . . . . . . . . 17-9
Overview of Interrupt-Handling Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11
Overview of Synchronization Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-12
Overview of Error Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-13
Overview of the Device Configuration Program . . . . . . . . . . . . . . . . . . . . . . . . 17-14

Understanding Operating System Support for a User-Level Driver . . . . . . . . . . . . . 17-15
The userdma(2) System Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-15
The udbufalloc(3X) Library Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-16
The udbuffree(3X) Library Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17
The atexit(3C) Library Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17
The uderror(3X) Library Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-18
The spl Support Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19
Process Synchronization Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19

Busy-Wait Mutual Exclusion Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20
Rescheduling Control Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20
The Server System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-21

The User-Level Interrupt Library Routines and Utility . . . . . . . . . . . . . . . . . . . 17-22
The vme_address(3C) Library Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23

Developing the Driver’s I/O Service Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23
The open Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23
The Asynchronous I/O Support Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-25

The aread Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-26
The awrite Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-27
The acheck Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-28
The await Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-29

Control Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30
The close Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-31

Developing the Driver’s Interrupt Service Routine . . . . . . . . . . . . . . . . . . . . . . . . . . 17-34
Connecting a User-Level Interrupt Process and Interrupt Vector. . . . . . . . . . . . 17-34
User-Level Interrupts and Memory Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36
Use of Local Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36
Constraints on Interrupt-Handling Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-37

Developing the Device Configuration Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-38
Create Shared Memory Regions and Initialize the Device. . . . . . . . . . . . . . . . . 17-39
Reset the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-40



Device Driver Programming

Create a User-Level Interrupt Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-40
Provide Debug and Status Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41
Restore the Device to its Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41

Debugging the Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41



17-1

17
Chapter 17Writing a User-Level Device Driver

This chapter provides an overview of user-level device drivers. It describes the
components that make up a user-level driver and explores the issues that are involved in
developing one. It provides an introduction to the operating system support for user-level
drivers. It explains the procedures for developing the driver routines and a configuration
program for the device controlled by the driver. It also describes some of the techniques
that you can use to debug a user-level driver.

NOTE

It is intended that this chapter be used by personnel inside and
outside Concurrent Computer Corporation. As a result, require-
ments that apply only to user-level device drivers written by Con-
current Computer Corporation personnel are noted throughout.

Understanding a User-Level Device Driver 17

The PowerUX operating system provides support for user-level device drivers. User-level
device drivers provide an alternative, low-overhead means of performing I/O operations.
This section explains what a user-level device driver is and what its advantages and disad-
vantages are. It also describes the types of devices that are candidates for a user-level
driver.

What Is a User-Level Device Driver? 17

A user-level device driver consists of a header file and a library of routines that allow a
user application program to perform I/O and control operations for a particular device
directly from user level without entering the kernel. Direct access to the device is achieved
by mapping the (H)VME addresses associated with the device’s hardware registers onto
the user’s virtual address space.

A user-level device driver might be accompanied by a device configuration program that at
boot time, performs device initialization procedures, sets up shared memory regions
required by the driver, and, if applicable, initializes a device interrupt handler. User-level
device drivers written by Concurrent Computer Corporation personnel must have a device
configuration program.



Device Driver Programming

17-2

What Are the Advantages and Disadvantages of a User-Level Driver? 17

The chief advantage of a user-level device driver is that it provides a low-overhead method
of performing I/O operations. Without a user-level device driver, you must use system
calls to perform I/O operations--a procedure that is costly in terms of time and overhead.
A system call involves crossing the user-kernel boundary and several layers of kernel rou-
tines before finally calling the device driver routine associated with the particular system
call. After the kernel device driver performs the bulk of the work required for completion
of the requested I/O operation, the same path must be traced back through the various
layers to exit the kernel. A user-level device driver provides a means of performing I/O
operations without having to enter and exit the kernel.

Other advantages of a user-level device driver include the following:

• It provides faster access to the I/O and control functions of a device.

• It does not require that the kernel be modified or rebooted.

• It can permit I/O operations to be performed directly to a user process’s
data region.

• It can be designed to provide an interface to the device that is similar to the
system call interface.

• It can be implemented by using much of the same program code that is
used in a kernel device driver.

• It is developed by using interfaces that shall continue to be supported in
subsequent releases of the operating system. (Kernel device drivers use
internal kernel routines that are subject to modification with subsequent
releases of the operating system.)

One of the major disadvantages of a user-level device driver is that the user interface is not
uniform for all devices. Other disadvantages of a user-level device driver include the
following:

• It uses features of the operating system that hinder portability of the user-
level device driver.

• Calls to its routines do not comply with existing standards.

• It does not effectively restrict read and write access to a device that it
controls.

• It provides no protection for malicious or incorrect use of the user
interfaces and system resources (for example, system memory, system reg-
isters, and the I/O subsystem).

• It requires that the user application initialize the buffers before calling the
driver’s I/O routines.

• It requires that you have certain privileges to access a device that it
controls. To perform some functions, you must have theP_PLOCK,
P_SHMBIND, or, if applicable, theP_USERINT privilege.

• The user must ensure that a kernel device driver cannot be used
simultaneously to access a device controlled by the user-level driver.



Writing a User-Level Device Driver

17-3

Because of these limitations, it is intended that a user-level device driver be used only by
applications that execute in a controlled environment and have strict real-time
performance requirements.

Which Types of Devices Are Candidates for a User-Level Driver? 17

The types of devices that are candidates for development of a user-level device driver are
as follows:

• Devices that must be used by application programs that require minimal
overhead in accessing the device.

• Devices that require much application control over device registers or
control functions. If a kernel driver were used to control such a device, an
application program would be required to make manyioctl system calls
to access the device’s registers.

• Devices that are needed to perform a great deal of raw I/O (for example, a
serial line port, a raw storage device, and a communication channel). These
types of devices typically perform DMA transfers between the device and
physical memory.

What Affects the Complexity of a User-Level Device Driver? 17

The complexity of a user-level device driver varies according to the nature and capabilities
of the device that it controls and the extent to which it supports the capabilities of the
device. Some of the factors that affect the complexity of a user-level driver are as follows:

• Whether the device is a programmed I/O device or a DMA (Direct Memory
Access) device

• Whether the driver supports single-user or multiuser access to the device

• Whether the driver supports only polling or provides interrupt support

The extent to which each of these factors affects the complexity of the driver is described
in the sections that follow.

Programmed I/O versus Direct Memory Access Devices 17

Developing a user-level device driver for a programmed I/O device is simpler than
developing one for a DMA device. A programmed I/O device does not directly access
physical memory. Instead, the device supplies data to the CPU only when the CPU reads
the data directly from a device register. Data read from a programmed I/O device can be
placed in the user’s I/O buffer via the buffer’s virtual address, which is supplied on a call
to the driver’sread routine. With DMA devices, the application’s I/O buffer must be
locked in physical memory, and the physical location of that buffer must be supplied on a
call to the driver’sread routine. The manner in which an application’s I/O buffer is
handled for DMA devices is described in “User I/O Buffer Descriptor” on page 17-7.



Device Driver Programming

17-4

Single-User Drivers versus Multiuser Drivers 17

Developing a user-level device driver that allows only one lightweight process to access a
device at a time is much simpler than developing a driver that permits multiple lightweight
processes to access a device simultaneously. The reason is that there is little need to
synchronize access to the device, its associated driver, and shared resources when access is
limited to a single lightweight process.

Note that a user-level device driver that is opened by a multithreaded program (a program
that contains multiple lightweight processes) must provide synchronization to protect
against access by more than one lightweight process although only one lightweight
process has actually opened the device. The reason is that all lightweight processes in the
process share the same address space, and thus all lightweight processes have equal access
to the memory that is associated with the device.

Single-user user-level device drivers written by Concurrent Computer Corporation
personnel should use the appropriate synchronization tools to ensure that access to a
device controlled by the driver is limited to a single lightweight process at a time. Single-
user user-level drivers written by others might not need to use such synchronization tools
if assured that only one lightweight process in an application ever attempts to open a
device controlled by the driver.

Guidelines for addressing synchronization issues in user-level drivers that allow multiple
processes to open a device are provided in “Overview of Synchronization Issues” on page
17-12. Synchronization tools are described in “Process Synchronization Tools” on page
17-19.

Polling Support versus Interrupt Support 17

Although the device controlled by a user-level device driver generates interrupts, you can
design the driver to support only polling. If you do so, an application that uses the user-
level driver cannot block waiting for completion of an I/O operation but must, instead,
issue asynchronous I/O requests and then check for their completion. If you design the
user-level driver to provide interrupt support, you increase the complexity of the driver
because synchronization of accesses to shared data by a user-level interrupt-handling
routine and programs executing at user level is more complicated. An overview of
interrupt-handling issues is provided in “Overview of Interrupt-Handling Issues” on page
17-11. An explanation of the synchronization issues that apply to an interrupt-driven user-
level device driver is presented in “Overview of Synchronization Issues” on page 17-12.

Understanding the Components of a User-Level Driver 17

The components of a user-level device driver can include particular types of data
structures; driver library routines that support I/O or control operations and handle
interrupts generated by the device; and a device configuration program that performs
initialization procedures for devices controlled by the driver. These components are
required for user-level device drivers written by Concurrent Computer Corporation
personnel; they are optional for others. An overview of the data structures that can be
defined is provided in “Overview of Data Structures” on page 17-5. An overview of the



Writing a User-Level Device Driver

17-5

different types of driver routines that can be provided is presented in “Overview of User-
Level Device Driver Routines” on page 17-9; the standard error codes that can be returned
by the driver routines are described in “Overview of Error Returns” on page 17-13. An
overview of the device configuration program is provided in “Overview of the Device
Configuration Program” on page 17-14. Interrupt-handling and synchronization issues that
affect development of the components of a user-level device driver are discussed in “Over-
view of Interrupt-Handling Issues” on page 17-11 and “Overview of Synchronization
Issues” on page 17-12.

A user-level device driver that enables you to access a DR11W emulator directly from
user space is available as a separate product from Concurrent Computer Corporation.
Some of the examples used in this chapter are drawn from the DR11W user-level driver.

Overview of Data Structures 17

User-level device drivers can require that you define certain types of data structures.
“Shared Memory Regions” on page 17-6 describes the types of shared memory regions
that can be created. “User I/O Buffer Descriptor” on page 17-7 describes the user I/O
buffer descriptor that can be supplied on calls to user-level driver I/O routines.

In writing a user-level device driver, you should take into account two types of data:
private data and shared data. Private data are relevant only to the currently running
process; they are maintained in the currently running process’s data region. If a process
opens a device controlled by a user-level driver for debugging purposes, for example, the
flag that indicates that the device has been opened in debug mode is private data. Other
examples of private data include a device descriptor, pointers to shared user-level driver
data, and information about the currently running process (the process’s PID, for
example). Private data can be accessed or modified only by the currently running process.
Shared data are relevant to all processes that are using a particular device; they are
maintained in shared memory regions that can be accessed by all processes that open the
device. Such data include the current status of the driver (that is, whether or not the device
has been opened) and the current status of an I/O operation (for example, whether or not a
DMA transfer is in progress). If a device controlled by a user-level driver is performing a
DMA operation, for example, the flag that indicates that the device is busy is shared data--
it must be accessible to all processes that want to initiate a DMA operation. Shared data
can be modified by concurrently or sequentially executing user applications and if
applicable, by a user-level interrupt routine.

Distinguishing between private and shared data is important for synchronization purposes.
A user-level driver can modify private data without regard for other processes. To modify
shared data, it must synchronize with other processes that have access to that data. An
overview of synchronization issues is presented in “Overview of Synchronization Issues”
on page 17-12.

Note that a device driver that supports multithreaded applications must be aware that all
memory is shared by all lightweight processes; therefore, there are no data that are private
from the other lightweight processes in the process.



Device Driver Programming

17-6

Shared Memory Regions 17

Shared memory regions are needed to provide access to a device’s registers and to provide
access to driver-related status information that must be shared by multiple processes. Two
shared memory regions are required for each device controller--a device register region
and a driver status region. The shared memory regions created for a particular controller
are used by all of the user processes that perform I/0 to the controller. Processes’ access to
the shared memory regions must be synchronized.

To provide access to a controller’s registers, you can define a structure that describes the
registers in the user-level driver’s header file. The configuration program for the device
should create a shared memory region for the registers and bind it to the physical location
of the registers in (H)VME space. This shared memory region is hereinafter referred to as
thedevice register region.

The data structure for the DR11W emulator’s registers, which is defined in the DR11W
user-level driver’s header file, is presented as an example:

/*

 * DR11W emulator’s registers

 */

typedef volatile struct dr11w_registers {

unsigned short r_cr_sr;/* CR when written; SR when read */

unsigned short r_data;/* DMA data register (input/output) */

unsigned char r_modifier;/* VME address modifier */

unsigned char r_vector;/* interrupt vector register */

unsigned short r_pcr;/* pulse command register (PCR) */

unsigned char r_unused1[10];

unsigned short r_dma_addr_lo;/* low word of DMA addr (write only) */

unsigned short r_dma_range_lo;/* low word of DMA range (xfer) count */

unsigned short ro_dma_addr_lo;/* low word of DMA addr (read only) */

unsigned char r_unused2[2];

unsigned short r_dma_addr_hi;/* high word of DMA addr (write only) */

unsigned short r_dma_range_hi;/* high byte of DMA range (xfer) count */

unsigned short ro_dma_addr_hi;/* high word of DMA addr (read only) */

} DR11W_REGISTERS;

To provide access to driver status information, you can define a structure to contain such
information in the user-level device driver’s header file. You can then ensure that the
device configuration program creates a shared memory region for the driver status
information. This shared memory region is hereinafter referred to as thedriver status
region.

The data structure for the DR11W emulator driver status information, which is defined in
the DR11W user-level driver’s header file, is presented as an example:

typedef volatile struct dr11w_shared {

int owner_pid; /* use owner_pid to mark device opened */

u_int ienb:1; /* flag to mark interrupts enabled */

u_int initial_ienb:1:/* previous status of ienb before

driver */

u_int debug_mode:1; /* flag to mark in debug mode */

u_int initialized:1; /* flag says device has been

initialized */

int shared_id; /* IPC id for status region */



Writing a User-Level Device Driver

17-7

int register_id; /* IPC id for register region */

unsigned int register_offset;/* register offset into shared memory */

unsigned short ivct; /* interrupt vector for interrupt

routine */

unsigned short initial_ivct; /* old interrupt vector */

unsigned short vme_modifier; /* vme modifier */

unsigned short initial_vme_modifier; /* old vme modifier */

int device_spl; /* spl level requested for interrupts */

int spl_level; /* spl level to use for spin-locks */

dr11w_modes_t modes; /* the dma mode to use for I/O */

struct spin_mutex device_lock;/* the driver lock */

int intr_pid; /* the pid of the interrupt routine */

int intr_status; /* error value for interrupt status */

int intr_function; /* driver specific error status */

int intr_errno; /* errno associated with interrupt

status */

struct dr11w_waitdatadma; /* DMA status structures */

struct dr11w_waitdataattn; /* ATTN interrupt status

structures */

unsigned int tmp_int; /* temporary storage for the

interrupt routine */

unsigned short tmp_short1; /* temporary storage for the

interrupt routine */

unsigned short tmp_short2; /* temporary storage for the

interrupt routine */

int filler[4];

} DR11W_SHARED;

The user-level driver’sopen routine should attach both the device register region and the
driver status region to the program’s virtual address space and if necessary, lock the
regions in physical memory. These regions must be locked in physical memory if they
shall be accessed under the protection of a spin lock or if a user-level interrupt-handling
routine is used.

An overview of the device configuration program is provided in “Overview of the Device
Configuration Program” on page 17-14, and procedures for developing it are explained in
“Developing the Device Configuration Program” on page 17-38. Procedures for
developing the driver’sopen routines are explained in “The open Routine” on page
17-23.

User I/O Buffer Descriptor 17

The user-level driver library routines that are used to perform I/O operations to and from a
buffer in the user’s virtual address space often require physical addresses to describe the
buffer. Although the I/O buffer seems to be a contiguous stream of bytes to the user, it can
actually be scattered among areas of physical memory that are not contiguous.

Some devices are not capable of performing DMA transfers to memory that is not
contiguous. If the application’s I/O buffer is larger than a page, it is recommended that
you ensure that the I/O buffer is bound to a contiguous section of physical memory by
performing the following steps:



Device Driver Programming

17-8

1. Define a reserved section of physical memory by initializing the
res_sects[]  array in the/etc/conf/pack.d/mm/space.c  file.

The size of the section that you reserve should be bound by the size of the
largest single data transfer that can be made by using the particular DMA
device or the size of the largest single transfer that the application makes.

2. Create a region of shared memory, and bind it to the reserved section of
physical memory by using the/usr/sbin/shmconfig(1M)
command. Completing this step provides a user-level process access to the
reserved memory.

3. Obtain the shared memory identifier associated with the shared memory
region.

Procedures for completing each of these steps are explained in detail in thePowerUX Pro-
gramming Guide. After these steps have been performed, a user application can attach the
shared memory region to its virtual address space and use the region as an I/O buffer.

A user-level device driver can require that the application’s I/O buffer be contained within
a single page. You can ensure that the I/O buffer fits within a page by using the
valloc(3C) library routine to allocate memory that begins on a page boundary and by
limiting the size of the buffer to less than the size of a page (for information on the
valloc(3C)  library routine, refer to the corresponding system manual page).

Theudbuf_t structure has been defined to describe the layout in physical memory of the
user’s I/O buffer. For user-level device drivers written by Concurrent Computer Corpora-
tion personnel, routines that perform I/O operations are required to use this structure to
describe the buffer where I/O is to be performed. The user creates audbuf_t structure by
supplying the virtual address and length of the I/O buffer on a cal l to the
udbufalloc(3X ) routine. This routine is described in “The userdma(2) System Call”
on page 17-15.

Theudbuf_t  structure is defined in the file <userdrive.h > as follows:

typedef struct udbuf{
char *virtual_addr;
int  length;
int flags;
int nfrags;
struct dmavec *dma_vec;

} udbuf_t;

The fields in the structure are described as follows:

virtual_addr a pointer to the virtual address of the user’s I/O buffer

length the length in bytes of the buffer pointed to byvirtual_addr

flags the control flags that have been passed toudbufalloc(3X)

nfrags the number of physical buffer fragments described by the array
pointed to bydma_vec

dma_vec a pointer to an array ofdmavec structures that describe the
physical location of the buffer. These structures are created when



Writing a User-Level Device Driver

17-9

you use theuserdma(2) system call to prepare a buffer for
DMA transfers.

The dmavec structure has been defined to describe a physical buffer fragment. This
structure is defined in the file <sys/mman.h > as follows:

struct dmavec {
       unsigned int dma_paddr;
       unsigned int dma_plen;
};

The fields in the structure are described as follows:

dma_paddr the physical address of the buffer fragment

dma_plen the length in bytes of the buffer fragment

Overview of User-Level Device Driver Routines 17

The types of library routines that compose a user-level device driver depend upon the
nature of the device being controlled by the driver. They can include anopen and a
close routine, anaread routine, anawrite routine, one or more control routines, an
interrupt-handling routine, and other routines that are specific to the device. A controller
that performs serial line communications, for example, requires anopen , a close , an
aread , anawrite , and, perhaps, some control routines. An (H)VME reflective memory
board, on the other hand, requires only anopen , aclose , and some control routines. In
either case, if the controller generates interrupts, a user-level interrupt-handling routine
can be required.

A user-level driver’s routines can be classified according to whether they provide
noncritical or critical services. Noncritical services include allocation of resources and
initialization of the device to be used. Critical services include those that provide access to
the device. A driver’s initialization routines provide noncritical services. They perform
such functions as attaching shared memory regions, initializing a user’s data buffers for
DMA operations, and performing device initialization and reset services. Because
initialization routines use system calls to perform their functions, they are slow, and they
incur the overhead of kernel entry. A driver’s I/O and control routines provide critical
services. They perform such functions as initiating a device I/O request, handling inter-
rupts, and providing support for polling or waiting for I/O completion. I/O and control
routines are fast, deterministic routines that do not use system calls to perform their
functions.

A distinction is made between noncritical and critical services in an effort to help the user
determine the appropriate time in an application to invoke a user-level device driver’s
routines. To perform some I/O operations, certain kernel services must be used--those for
locking pages in memory, translating virtual addresses to physical addresses, and so on.
These services cannot be performed at user level. Because one of the objectives of a user-
level driver is to provide a means for avoiding entry into the kernel, such services as these
should be performed once as a part of initialization procedures--at a time when the
application is not bound by timing constraints. The noncritical routines that can be called
at this time are the user-level driver’sopen andclose routines. The critical routines that
can be called when the application is running under strict timing constraints are the user-
level driver’saread , awrite , acheck , await , control, and interrupt routines.



Device Driver Programming

17-10

Generally a user-level device driver performs I/O asynchronously rather than
synchronously. The reason is that asynchronous I/O operations require the least amount of
overhead. Blocking for synchronous I/O operations requires a process to enter the kernel;
entering the kernel defeats the purpose of providing a user-level device driver. A user-level
driver usually provides routines for initiating an asynchronous I/O request and checking
the status of an asynchronous I/O operation.

The names of a user-level device driver’s routines have a common format:

xx_name

The prefixxx represents a character string identifying the device that the driver controls.
This prefix should uniquely identify the device. For user-level device drivers written by
Concurrent Computer Corporation personnel, the prefix should be the device name as
documented in Section 7 of the system manual pages. Thenameidentifies the type of rou-
tine (for example,open , close , aread , awrite , or other routine specific to the
device).

Example names from the user-level device driver for the DR11W emulator are as follows:

dr11w_open
dr11w_close
dr11w_aread
dr11w_set_modes
dr11w_get_modes
dr11w_intr

The types of routines that a user-level driver might include are briefly described as
follows:

xx_open open the device in preparation for I/O

xx_close close the device

xx_aread perform an asynchronous read of data from the device

xx_awrite perform an asynchronous write of data to the device

xx_acheck obtain the completion status of an asynchronous I/O operation

xx_await wait for completion of an asynchronous I/O operation

xx_control perform a particular device control operation

xx_intr process an interrupt generated by the device

A standard interface has been defined for theopen , close , aread , awrite , acheck ,
await , andcontrol routines. This interface is described in detail in “Developing the
Driver’s I/O Service Routines” on page 17-23. The user-level driver interrupt service
routine is described in “Developing the Driver’s Interrupt Service Routine” on page
17-34.



Writing a User-Level Device Driver

17-11

Overview of Interrupt-Handling Issues 17

A user-level driver can be written to support only polling and provide no interrupt support.
If you write a user-level driver of this type, you can use two methods to allow I/O requests
to be sent to the driver:

1. Permit the application using the driver to send only one I/O request to the
driver at a time.

2. Permit the application using the driver to send multiple I/O requests to the
driver, and require the application to issue anacheck call until acheck
returns an I/O completion status.

When the driver cannot immediately process an I/O request, it adds the
request to a queue. Whenacheck returns a status indicating that the
current I/O request is complete, it frees the queue entry for the completed
request, checks the queue of pending requests, and issues the next I/O
request.

With either of these methods, the throughput to the device is less than the throughput
obtained with an interrupt-driven user-level driver. A user-level driver that supports only
polling requires the application to issue the next request--either directly (as with the first
method) or indirectly (as with the second method).

A user-level device driver can also be interrupt-driven. In this case, polling can still be
supported via theacheck call. A user-level driver that is interrupt-driven can provide
better throughput to the device than a driver that supports only polling. The reason is that
the interrupt can be used to drive servicing of the next device request. When a user-level
driver that is designed to allow a user to send multiple I/O requests to the driver cannot
immediately process an I/O request, it adds the request to a queue. When the current
device request completes, an interrupt is sent. The interrupt routine checks the queue and
initiates the next device request.

Interrupt support is also required if a user-level driver allows the application to block
waiting for the completion of an I/O request (await ). In this case, the interrupt routine
must wake any processes that are waiting for completion of the I/O request.

Using interrupts to drive a user-level device driver adds complexity to the driver because
accesses to shared data that are accessed at both program level and interrupt level must be
synchronized. To handle interrupts, a user-level driver can use the operating system’s
support for user-level interrupt routines. This support allows a user-level process to
connect a routine to an interrupt vector for the interrupt generated by a device. The
connected interrupt routine is run at user-level and has full access to the shared memory
structures of the user-level driver.

An overview of the operating system support for user-level interrupt routines is provided
in “The User-Level Interrupt Library Routines and Utility” on page 17-22. Procedures for
developing the user-level driver’s interrupt routine are explained in “Developing the
Driver’s Interrupt Service Routine” on page 17-34.



Device Driver Programming

17-12

Overview of Synchronization Issues 17

During development of a user-level device driver, you must address a number of
synchronization issues. These include synchronization of processes’ access to the device
register region and the driver status region described in “Overview of Data Structures” on
page 17-5 and synchronization of a user-level interrupt process’s access to the driver status
region with other processes’ access to that region. Guidelines for addressing these issues
are presented in the paragraphs that follow.

You must ensure that access to structures in the driver status region that can be accessed
and modified by more than one lightweight process or process is synchronized. Ensuring
exclusive access to the device does not provide sufficient protection. The reason is that a
user process can open the device and then make afork(2) system call--thereby granting
another process access to the device. A multithreaded application has multiple lightweight
processes, which all have access to the device. In some environments, it is acceptable to
require that an application that uses a user-level device driver not invokefork(2) . It
might also be acceptable to ignore inter-process synchronization by requiring that only
one process open the device. This approach isnot acceptable for user-level device drivers
written by Concurrent Computer Corporation personnel, however. The synchronization
tools that you can use to protect the driver status region adequately are spin locks and
semaphores. These tools are described in “Process Synchronization Tools” on page 17-19.

Some devices do not function properly if more than one process has access to the device
registers at a time. To use the real-time clock (rtc(7) ), for example, a process must
write a command to one register and read the results of that command from another
register. If more than one process has access to the registers, the results that are read might
not be the expected ones.

You must determine whether or not you need to guarantee exclusive access to the registers
of the device controlled by the user-level driver. If you need to synchronize processes’
access to the registers, you can, in most cases, use a spin lock to do so. If the spin lock is
not to be locked at interrupt level, then you must set the processor IPL (interrupt priority
level) toPLSWTCH (as defined in/usr/include/sys/ipl.h ), to prevent preemption
of the running process while the lock is held. You can modify the IPL from user level by
using thespl support routines. These routines are described in “The spl Support Rou-
tines” on page 17-19. You can also use a rescheduling variable, theresched_cntl(2)
system call, and theresched_lock macro to prevent preemption. These tools are
described in “Process Synchronization Tools” on page 17-19. You should use them with
caution, however, because the user application program might also be using them.

If you are incorporating a user-level interrupt routine in your driver, the synchronization
issues are more complex. You cannot use semaphores to protect a structure at interrupt
level because it is illegal to block in an interrupt routine. Youcan use spin locks at
interrupt level. If a spin lock is to be locked at interrupt level, you must ensure that a
process that locks the spin lock at program level raises the processor IPL to a level that is
high enough to block out the interrupt while the lock is held. Doing so prevents the
interrupt-handling routine from spinning forever while attempting to lock the spin lock
that is locked at program level. You should not lock a spin lock or raise the IPL for a long
period of time. You shouldnot call kernel services while a spin lock is held or while the
IPL is raised. You must unlock the spin lock before lowering the IPL.

There are other synchronization issues related to use of a user-level interrupt routine that
are explained in “Developing the Driver’s Interrupt Service Routine” on page 17-34. They
involve use of theserver_block(2) andserver_wake1(2) system calls. An



Writing a User-Level Device Driver

17-13

overview of these system calls is provided in “Process Synchronization Tools” on page
17-19.

Overview of Error Returns 17

User-level device driver routines return a successful completion code, or they return an
error code directly instead of usingerrno .

A set of standard error codes that can be used by user-level device drivers is defined in the
file <userdriv.h >. An error message that corresponds to each error code is also
defined. User-level device drivers written by Concurrent Computer Corporation personnel
must use these error codes. Other user-level drivers are not required to use them. The error
codes and corresponding error messages are presented in Table 16-1.

Table 16-1.  User-Level Device Driver Error Codes and Messages

Symbolic Name Message

EUD_NOERROR no error

EUD_PERM permission denied

EUD_SHMID shared memory identifier not found

EUD_SHMAT shared memory attach failed

EUD_INTR interrupted

EUD_IO i/o error (hardware failure)

EUD_SHMCTL shared memory control function failed

EUD_INIT device not initialized

EUD_SHMBIND shared memory bind failed

EUD_BADD bad device pointer

EUD_DEVMODE invalid device mode

EUD_BUFFER invalid user buffer

EUD_NOMEM dynamic memory allocation failed

EUD_ACCES no access

EUD_FAULT user-level device driver fault

EUD_TRANSMODE invalid data transfer mode

EUD_BUSY device busy

EUD_CREAT shared memory create failed

EUD_DRIVER user-level driver specific error

EUD_NODEV no device found

EUD_SPLMAP SPL error

EUD_IVECT unable to allocate interrupt vectors



Device Driver Programming

17-14

Overview of the Device Configuration Program 17

User-level device drivers written by Concurrent Computer Corporation personnel must
include a device configuration program for the device controlled by the driver. The
primary purpose of this program is to perform system-wide initialization procedures that
are required for use of the device. Following completion of the initialization procedures,
users should be able to open and use the device. Major capabilities of the device
configuration program are as follows:

• Create the shared memory regions to be attached on a call to the driver’s
open  routine.

• Initialize the device and reset it.

• Create a user-level interrupt process, if appropriate.

• Provide debug and status information.

• Restore the device to its initial state.

Procedures for developing the device configuration program are explained in detail in
“Developing the Device Configuration Program” on page 17-38.

EUD_INVAL invalid argument or parameter

EUD_IENB interrupts have been enabled

EUD_INTRFAILED unable to create interrupt routine

EUD_ICONNECT unable to connect/disconnect interrupt routine

EUD_IENBFAILED failed to enable interrupts

EUD_MEMLOCK unable to lock driver text pages

EUD_NOINTR no interrupt routine available

EUD_IOREQ too many I/O requests

EUD_SHMLOCK unable to lock driver shared memory regions

EUD_RESOURCE resource unavailable

EUD_WOULDBLOCK process would block

EUD_INPROGRESS data transfer in progress

EUD_ALREADY request already completed

Table 16-1.  User-Level Device Driver Error Codes and Messages (Cont.)

Symbolic Name Message



Writing a User-Level Device Driver

17-15

Understanding Operating System Support for a User-Level
Driver 17

Operating system support for writing and using a user-level device driver consists of
system calls, library routines, and process synchronization tools. This section describes
these forms of support and explains how they are used.

Theuserdma(2) system call allows you to prepare a buffer for DMA transfers; it is
described in “The userdma(2) System Call” on page 17-15. Theudbufalloc(3X) and
theudbuffree(3X) library routines are the interface touserdma ; they enable you to
create and remove a user-level buffer descriptor. Use of these routines is explained in
“The udbufalloc(3X) Library Routine” on page 17-16 and “The udbuffree(3X) Library
Routine” on page 17-17, respectively.

The atexit(3C) library routine allows you to register a function to be executed by
exit() . Use of this routine is explained in “The atexit(3C) Library Routine” on page
17-17.

The uderror(3X) library routine allows you to print user-level device driver error
messages. Use of this routine is explained in “The uderror(3X) Library Routine” on page
17-18.

Thespl support routines enable you to raise and lower a processor’s interrupt priority
level from user level. They are described in “The spl Support Routines” on page 17-19.

Process synchronization tools provide solutions to the problems associated with
synchronizing processes’ access to data in shared memory. They are described in “Process
Synchronization Tools” on page 17-19.

The user-level interrupt library routines,iconnect(3C) and ienable(3C) , allow
you to define a connection between a user-level interrupt process and an interrupt vector
and to enable that connection. Theuistat(1) utility allows you to display information
about interrupt vector connections, disconnect a connected interrupt process, and free an
interrupt vector. The library routines and the utility are described in “The User-Level
Interrupt Library Routines and Utility” on page 17-22.

Thevme_address(3C) library routine allows you to obtain a 32-bit physical address
for a specif ied device’s A16 or A24 VME address. It is described in “The
vme_address(3C) Library Routine” on page 17-23.

The userdma(2) System Call 17

Theuserdma system call allows you to use an I/O controller’s DMA capabilities directly
from user mode. It prepares an I/O buffer located in a user process’s virtual address space
for DMA transfers.

Standard DMA hardware operates at the physical memory level; it bypasses memory
management units and sometimes data caches. To be able to perform DMA transfers to or
from the virtual address space of an application program, the following requirements must
be met:



Device Driver Programming

17-16

• The application’s buffer must be locked in physical memory; that is, the
buffer must be resident, and the virtual to physical mappings must not be
allowed to change.

• The application must know the physical location of the buffer.

• CPU access and I/O access to the buffer must be coherent.

• The virtual pages containing the buffer must be marked “used” and for
DMA read operations, “modified.”

Theuserdma(2) system call enables you to ensure that all of these requirements are
met.

It is important to note that it is not necessary to calluserdma(2) directly from an
application program that is using a user-level device driver.Userdma is invoked by the
udbufalloc(3X) routine, which a user process calls to create theudbuf_t structure
that is used by most user-level driver I/O routines (see “The udbufalloc(3X) Library Rou-
tine” on page 17-16 for an explanation of this routine). Because a call touserdma(2)
requires entry into the kernel, you should avoid invokinguserdma(2) from a user-level
driver’s time-critical I/O routines.

Procedures for using theuserdma(2) system call are fully explained in thePowerUX
Programming Guide. Reference information is provided in the corresponding system
manual page.

The udbufalloc(3X) Library Routine 17

Theudbufalloc library routine allows a user process to allocate audbuf_t structure
and prepare a user I/O buffer for DMA operations. Theudbuf_t structure describes the
layout in physical memory of an I/O buffer in the process’s virtual address space. The I/O
routines of user-level device drivers written by Concurrent Computer Corporation
personnel are required to use theudbuf_t structure to pass the address of the buffer
where I/0 is to be performed.

NOTE

The udbufalloc routine invokes theuserdma(2) system
call. As a result, to use this routine, the calling process must have
the P_PLOCKprivilege. (For information onuserdma(2) , see
“The userdma(2) System Call” on page 17-15.)

The specifications required for using theudbufalloc  routine are as follows:

udbuf_t *udbufalloc( buffer, size, userdma_flags)

char * buffer;
int size;
int userdma_flags;

Arguments are defined as follows:



Writing a User-Level Device Driver

17-17

buffer a pointer to an I/O buffer in the user’s virtual address space

size the size of the I/O buffer in bytes

userdma_flags the control flags that specify the types of I/O operations to be
performed using the buffer. The flags that can be specified are as
follows:

USERDMA_READ indicates that the buffer is to be used to
read from the device

USERDMA_WRITE indicates that the buffer is to be used to
write to the device

These flags are used to maintain cache coherence in an
architecture-independent fashion; they are the same as those
specified on aUSERDMA_LOCK userdma(2) system call. Refer
to thePowerUX Programming Guideor theuserdma(2) sys-
tem manual page for additional information.

If no errors occur, theudbufalloc routine returns a pointer to audbuf_t structure. It
returns the null pointer if the amount of memory available is not sufficient to allocate the
buffer descriptor or if the attempt to lock the user’s I/O buffer in memory fails;errno is
set to indicate the error. Refer to theudbufalloc(3X) system manual page for a listing
of the types of errors that can occur.

The udbuffree(3X) Library Routine 17

Theudbuffree library routine allows a user process to remove theudbuf_t structure
that has been allocated on a call toudbufalloc(3X) , remove the binding of the user’s
I/O buffer to physical memory, and restore the original cache modes.

The specifications required for using theudbufalloc  routine are as follows:

void  *udbuffree( udbuf)

udbuf_t * udbuf;

The argument is defined as follows:

udbuf a pointer to audbuf_t structure, which has been returned on a previous call
to theudbufalloc(3X)  routine

Theudbuffree(3X) routine does not return a value. For reference information on this
routine, refer to theudbufalloc(3X)  system manual page.

The atexit(3C) Library Routine 17

Theatexit library routine allows you to register a pointer to a function that you want to
be executed by theexit(3C) routine. You can useatexit to register up to 32



Device Driver Programming

17-18

functions. The order in which the functions are executed is the reverse of the order in
which they are registered with a call toatexit .

You might want to use theatexit routine to ensure that a call is made to the driver
routine that is responsible for cleaning up opened devices and freeing all allocated
resources. If a user program that opens a device controlled by the user-level driver aborts,
the driver’sclose routine is never called; other processes’ attempts to open the device
fail. It is recommended thatatexit be invoked on the first call to the driver’sopen
routine (see “The open Routine” on page 17-23 for an explanation of the procedures for
developing this routine) or on a call to a driver initialization routine.

The specifications required for using theatexit  routine are as follows:

int atexit( function)

void (* function)();

The argument is defined as follows:

function a pointer to a function returning typevoid

If no errors occur, theatexit routine returns a value of0; otherwise, it returns a value of
-1. For reference information on this routine, refer to theatexit(3C) system manual
page.

The uderror(3X) Library Routine 17

Theuderror routine enables you to write a message describing an error code returned
by a user-level device driver routine to the standard error. It can be used by a user-level
driver or by an application program that is using a user-level driver.

The specifications required for using theuderror  routine are as follows:

#include <userdriv.h>

void  uderror( error, s)

int error;
char * s;

extern  char  *ud_errmsg[];

extern  int  udmaxerr;

The arguments are defined as follows:

error a user-level device driver error code that has been returned by a user-level
driver routine. Codes that can be returned are defined in the fi le
<userdriv.h >.

s a pointer to a descriptive character string that is to be written to the standard
error along with the error message corresponding to the specified error code. It



Writing a User-Level Device Driver

17-19

is suggested that the string indicate the name of the routine that has produced
the error.

The uderror routine writes the following to the standard error: the specified string,
followed by a colon, a space, a brief error message corresponding to the specified error
code, and a newline. Examples of the call and resulting output are as follows:

uderror(EUD_MEMLOCK,”lock_driver_pages”);

"lock_driver_pages: unable to lock driver text pages"

An array of pointers to the error messages associated with the user-level device driver
error codes,ud_errmsg , is defined and initialized in the file <userdriv.h >. You can
index theud_errmsg array by using a user-level device driver error code. The variable
udmaxerr  contains the highest message number that can be used to index the array.

For reference information on theuderror(3X ) routine, refer to the corresponding sys-
tem manual page.

The spl Support Routines 17

A set of C library routines enables you to raise and lower a processor’s interrupt priority
level from user level. You can modify the IPL by binding the physical address of the IPL
register to a process’s virtual address space and then writing directly to the hardware regis-
ter. The routines and macro are briefly described as follows:

spl_map map the physical address of the IPL register
or processor level register to a process’s vir-
tual address space

spl_request set the processor IPL to a specified level

spl_request_macro set the processor IPL to a specified level

spl_unmap unmap the IPL register or processor level
register with anspl_map  call

Thespl support routines are used to synchronize processes’ access to device registers,
synchronize processes’ access to shared data that can be modified at program and interrupt
level, and prevent rescheduling while a spin lock is locked.

Procedures for using the routines and the related macro are fully explained in thePow-
erUX Real-Time Guide; reference information is provided in the corresponding system
manual pages.

Process Synchronization Tools 17

A set of real-time process synchronization tools has been developed to provide solutions
to the problems associated with synchronizing cooperating processes’ access to data in
shared memory. They include tools for controlling a process’s vulnerability to
rescheduling, serializing processes’ access to critical sections with busy-wait mutual



Device Driver Programming

17-20

exclusion mechanisms, and coordinating client-server interaction among processes.
Descriptions of the tools that are pertinent to development of a user-level device driver are
provided in the sections that follow.

Busy-Wait Mutual Exclusion Tools 17

PowerUX busy-wait mutual exclusion tools include a low-overhead busy-wait mutual
exclusion variable and a corresponding set of macros. The busy-wait mutual exclusion
variable is a data structure known as a spin lock. This variable is defined in the file
<sys/lwp_synch.h >. The spin lock has two states: locked and unlocked. When initial-
ized, the spin lock is in the unlocked state. If you want to use spin locks to coordinate
access to shared resources, you must allocate them in your application program and locate
them in a shared memory region.

The busy-wait mutual exclusion macros allow you to initialize, lock, and unlock spin
locks and determine whether or not a particular spin lock is locked. These macros are
briefly described as follows:

spin_init initialize a spin lock to the unlocked state

spin_trylock attempt to lock a specified spin lock

spin_unlock unlock a specified spin lock

spin_islock determine whether or not a specified spin lock is locked

You can use spin locks to synchronize processes’ access to the device register region and
the driver status region and to synchronize processes’ access to shared data that can be
modified at program and interrupt level.

Procedures for using the busy-wait mutual exclusion variable and the macros are fully
explained in thePowerUX Real-Time Guide. An example program that illustrates their use
is p rov ided . Refe rence in fo rmat ion on the macros is p rov ided in the
spin_trylock(2)  system manual page.

Rescheduling Control Tools 17

To use busy-wait mutual exclusion effectively, lock hold times must be small and
predictable. Rescheduling and signal handling are major sources of unpredictability. If a
context switch occurs or a signal is received while a process is running with a spin lock
held, the hold time on the spin lock increases dramatically. To provide you with the means
to control rescheduling and signal handling, a rescheduling variable has been developed.
A rescheduling variable is a data structure that controls a single thread’s vulnerability to
rescheduling. This variable is defined in the file <sys/lwp_synch.h >. You allocate the
variable in your application, notify the kernel of its location, and manipulate it directly
from your application to disable and re-enable rescheduling. While rescheduling is
disabled, quantum expirations, preemptions, and certain types of signals are held.

The resched_cntl(2) system call enables you to perform a variety of operations
specific to the rescheduling variable. These include initializing a rescheduling variable,
informing the kernel of its location, obtaining its location, and setting a limit on the length
of time that rescheduling can be deferred. A set of rescheduling macros enables you to dis-



Writing a User-Level Device Driver

17-21

able and re-enable rescheduling and to determine the number of rescheduling locks in
effect. These macros are briefly described as follows:

resched_lock increment the number of rescheduling locks held by the calling
thread, and disable rescheduling

resched_unlock decrement the number of rescheduling locks held by the calling
thread. If the resulting number of rescheduling locks is zero,
rescheduling is re-enabled.

resched_nlocks return the number of rescheduling locks currently held by the
calling thread

Procedures for using rescheduling variables, theresched_cntl(2) system call, and
the rescheduling control macros are fully explained in thePowerUX Real-Time Guide.
Reference information on the system call is provided in the corresponding system manual
page.

You can use the rescheduling control tools in a user-level driver to prevent preemption of
the running process while a spin lock is locked at program level if the spin lock is not to be
locked at interrupt level.

The Server System Calls 17

PowerUX condition synchronization tools are based on the idea of a client-server relation-
ship between cooperating threads. Aclient thread is one that requests service from another
thread. Aserverthread is one that satisfies a client’s request for service. A set of client
system calls has been developed to enable you to manipulate threads acting as clients. A
set of server system calls has been developed to enable you to manipulate threads acting as
servers. The server calls can also be viewed simply as providing a very fast means of
blocking a process until another process decides to unblock it.

The server system calls are used by user-level interrupt routines. They can be used for
other synchronization purposes by a user-level device driver and by an application
program that is using a user-level driver. They are briefly described as follows:

server_block block the calling thread only if no wake-up request has occurred
since the last return fromserver_block

server_wake1 wake a single server that is blocked in theserver_block
system call; if the specified server is not blocked in this call, the
wake-up request is appl ied to the server’s next cal l to
server_block

server_wakevec wake a group of servers that are blocked in theserver_block
system call; if a specified server is not blocked in this call, the
wake-up request is appl ied to the server’s next cal l to
server_block

Procedures for using the server system calls are fully explained in thePowerUX Real-
Time Guide. Reference information is provided in theserver_block(2) system man-
ual page.



Device Driver Programming

17-22

Procedures for using theserver_block and theserver_wake1 system calls in a
user-level driver’s interrupt routine are explained in “Developing the Driver’s Interrupt
Service Routine” on page 17-34.

The User-Level Interrupt Library Routines and Utility 17

The PowerUX andSecure/PowerUX operating systems provide the support necessary to
allow a process to connect a routine to an interrupt vector for the interrupt generated by a
selected device and to enable the connection. When a process defines an interrupt vector
connection, it specifies the number of the interrupt vector to which it is connecting and the
address of a user interrupt-handling routine to execute upon each occurrence of the con-
nected interrupt. When a process enables the connection to an interrupt vector, it blocks in
the kernel; it no longer executes at normal program level. It executes only at interrupt
level--executing the specified interrupt-handling routine when the connected interrupt
becomes active. The interrupt-handling routine can reference any memory location that is
in the virtual address space of this process.

The process that defines and enables an interrupt vector connection is hereinafter referred
to as theuser-level interrupt process. The routine that is executed each time the connected
interrupt occurs is hereinafter referred to as theinterrupt-handling routine. Several
constraints are imposed on the user-level interrupt process and on the user-level interrupt-
handling routine. These constraints are described in thePowerUX Real-Time Guide.

A user-level interrupt process defines and enables an interrupt vector connection by using
the iconnect(3C) and theienable(3C) library routines. Theiconnect(3C )
library routine can also be used to allocate and free interrupt vectors and to disconnect a
user-level interrupt process from an interrupt vector. Theuistat(1) utility allows you
to (1) display user-level interrupt vector connections that have been defined on your
system, (2) remove interrupt vector connection definitions, and (3) disconnect user-level
interrupt processes for which a connection has been enabled.

The user-level interrupt routine facility is optional. To configure a kernel with user-level
interrupt support enabled, modify theui file in the /etc/conf/sdevice.d directory.
Set theconfigure field in theui file to Y, and build a kernel with theidbuild(1M)
utility. Refer to theidbuild(1M)  system manual page for details.

An overview of user-level interrupt routines and a detailed explanation of the procedures
for using them are provided in thePowerUX Real-Time Guide. Reference information on
the iconnect(3C) and theienable(3C) library routines and theuistat(1) util-
ity is provided in the corresponding system manual pages.

If you are writing a user-level device driver that handles interrupts generated by the device
that the driver controls, you must use the operating system’s support for user-level
interrupt routines. Procedures for developing a user-level device driver’s interrupt service
routine using this support are explained in detail in “Developing the Driver’s Interrupt Ser-
vice Routine” on page 17-34.



Writing a User-Level Device Driver

17-23

The vme_address(3C) Library Routine 17

Thevme_address(3C) routine enables you to obtain a 32-bit physical address for an
A16 or an A24 (H)VME address generated by a particular device. A 32-bit physical
address is required when you use theshmbind(2) system call or theshmconfig(1M)
command to bind a shared memory region to a section of physical (H)VME memory. You
might find this routine particularly helpful when you are writing a user-level device driver
and need to bind a shared memory region to the physical address of the (H)VME board.

Use ofvme_address(3C) is explained in thePowerUX Real-Time Guide; reference
information is provided in the corresponding system manual page.

Developing the Driver’s I/O Service Routines 17

A standard interface has been defined for a user-level device driver’sopen , close ,
aread , awrite , acheck , await , and control routines. The standard interface for each
of these routines is described in the sections that follow. User-level device drivers written
by Concurrent Computer Corporation personnel must adhere to the standard interfaces.
The following information is provided for each type of routine.

• A description of the routine and implementation guidelines

• The C specification

• Detailed descriptions of each parameter

• The return value

Theopen routine is described in “The open Routine” on page 17-23. The asynchronous
I/O support routines are described in “The Asynchronous I/O Support Routines” on page
17-25. The control functions are described in “Control Functions” on page 17-30. The
close  routine is described in “The close Routine” on page 17-31.

The open Routine 17

The driver’sopen routine allows a user process to open a device in preparation for I/O or
control operations. It is responsible for performing any initialization that is necessary to
use the device. It attaches the driver status region and the device register region to the
calling process’s virtual address space. To perform these functions, theopen routine
must make the following calls for each region:

ftok(3C) to obtain an IPC key that is based on the path name of the device
and a character that uniquely identifies a group of cooperating
processes. Note thatftok returns the same key for linked files
when it is called with the same path name and identifier; it returns
different keys when called with the same path name and different
identifiers.



Device Driver Programming

17-24

shmget(2 ) to obtain the shared memory identifier for the region

shmat(2) to attach the shared memory region to the process’s virtual address
space

It is recommended that on the first call to the driver’sopen routine, theatexit(3C)
routine be called to register an internal driver routine to close open devices when a process
exits. Procedures for using theatexit(3C) routine are explained in “The atexit(3C)
Library Routine” on page 17-17.

If access to the device for which you are writing a user-level driver must be restricted to a
single process at a time, you must use theopen routine to enforce this restriction. In such
cases, it is especially important that you also guarantee that the device is closed if a
process that has opened it terminates unexpectedly.

Specification

int xx_open( dev_desc, path, flags, arg)

int        * dev_desc;
char       * path;
int flags;
dev_struct * arg;

Parameters

dev_desc a pointer to the location to which an identifier for the opened device is
returned. This identifier is allocated by the user-level device driver. Generally
dev_desc is a pointer to a structure that uniquely identifies the device.

path a pointer to the path name of the device special file associated with the device

flags driver status flags. The flags that can be specified are as follows:

UD_FORCE indicates that the specified device is to be opened although
it has already been exclusively opened by another process.

It is intended that you use this flagonly during the
development of a user-level device driver. User-level drivers
do not have the same clean-up capability that kernel drivers
do when a device is closed after a user program aborts. If
the close procedure associated with an exclusive open of the
device has not been properly completed, the device is hung.
Setting this bit allows a process to open the device, clean up
the global data structures associated with the device, and
make the device usable again.

UD_EXCL indicates that access to the specified device is to be granted
exclusively to the calling process

UD_DEBUG indicates that the specified device is to be opened for
debugging purposes

arg a pointer to a structure that is specific to the specified device



Writing a User-Level Device Driver

17-25

Return Value

The driver’sopen routine returnsEUD_NOERROR if the device is successfully opened.
Otherwise, it returns a user-level device driver error code (see “Overview of the Device
Configuration Program” on page 17-14 for a listing of the error codes as defined in
<userdriv.h >).

Example specification and pseudo code for a user-level driver’sopen routine are
presented as follows:

int

dev_open(dev_desc, pathname, flags, arg)

int *dev_desc;

char *pathname;

int flags, arg;

{

     Allocate a device descriptor.

     Attach the driver’s shared memory and device register region.

     Synchronize access to the device driver (Should it be exclusive?)

     Perform any necessary device initialization.

     Return a device descriptor to the user.

     Return success status.

}

The Asynchronous I/O Support Routines 17

To obtain good throughput to a device, it is recommended that you design the user-level
driver to allow a user process to initiate multiple asynchronous I/O operations. If you do,
the I/O completion routine can schedule the next I/O request as soon as the previous
request has been completed. The number of pending I/O requests that is allowed is
determined by the writer of the driver. When that number is exceeded, the driver should
return the EUD_IOREQ error. If the driver allows only one I/O request to be initiated at a
time, it should also return the EUD_IOREQ error when a user process initiates a second
request.

In most cases, you should avoid intermediate buffering of data in a user-level driver.
Buffering requires copying of data, and copying adds more overhead than is considered
acceptable. The type of device for which you are writing a driver determines whether or
not you must buffer data. Some devices provide data to be read only on user request (the
DR11W emulator, for example); others provide unsolicited data (a serial line controller,
for example). The first type does not require buffering of data; the second does.

For a DMA device that does no intermediate buffering, the driver’s read and write inter-
faces require the user to supply a description of the physical location to which the DMA
transfer is to be directed. The user provides this description by supplying the location of a
udbuf_t structure on a call to the driver’saread or awrite routine (see “User I/O
Buffer Descriptor” on page 17-7 for a description of this structure).



Device Driver Programming

17-26

For an I/O device that performs programmed I/O or a user-level device driver that does
intermediate buffer copying, the user-level driver does not need to use physical addresses
to describe the user’s I/O buffer. In such cases, the I/O routines of user-level drivers
written by Concurrent Computer Corporation personnel are still required to accept a
udbuf_t structure to describe the I/O buffer; however, only the virtual address portion of
the structure is used. Other user-level device drivers are not required to use theudbuf_t
structure in such cases.

The aread andawrite routines allow an application to indicate whether or not the
status of an I/O operation is important. When the application asks for status information, it
must check the status of the I/O operation until the I/O completion status is returned. The
writer of a user-level driver must maintain status foraread or awrite operations until
the I/O completion status is returned. If the application indicates that status information is
not important, the user-level driver should discard status or allow it to be overwritten as
soon as the I/O operation is complete.

The asynchronous I/O support routines includearead , awrite , acheck , andawait .
They are described in the sections that follow.

The aread Routine 17

The driver’saread routine allows a user process to perform an asynchronous read of data
from a particular device.

Specification

int xx_aread( dev_desc, buff_desc, count, req_id)

int dev_desc;
udbuf_t * buff_desc;
int count;
int     * req_id;

Parameters

dev_desc the identifier for the device from which data are to be read. This identifier is
returned by the driver’sopen  routine.

buff_desc a pointer to the user I/O buffer that describes the physical locations into which
data are to be read

count the number of bytes to be read

req_id a pointer to the location to which the request identifier of the asynchronous
read operation is returned. The user process can use this identifier to obtain the
status of the operation. Ifreq_idcontains a null pointer, information about the
status of the request isnot maintained. Ifreq_idcontains a pointer, the user-
level driver provides an identifier that the application must use to check the
status of the read request. (See “The acheck Routine” on page 17-28 and “The
await Routine” on page 17-29 for an explanation of theacheck andawait
user-level driver routines. These routines can be supplied to allow users to
check the status of an asynchronous I/O request.)



Writing a User-Level Device Driver

17-27

Return Value

The driver’saread routine returnsEUD_NOERROR if the operation is successfully
queued. It returns the appropriate user-level device driver error code if an error occurs (see
“Overview of the Device Configuration Program” on page 17-14 for a listing of the error
codes as defined in <userdriv.h >).

Example specification and pseudo code for a user-level driver’saread routine are
presented as follows:

int

dev_aread(dev_desc, udbuf, count, req_id)

int dev_desc;

udbuf_t *udbuf;

int count, *req_id;

{

    Verify device is ready for I/O and routine arguments are valid.

    Allocate an I/O request data structure (the I/O request data structure

    is internal to the user-level device driver and is used to hold the

    status of this request).

    Write physical address of the user buffer to the device’s address

    register.

    Write the transfer count to the device’s count register.

    Mark the I/O request active.

    Initiate the I/O request.

    Provide an identifier for the request to the caller.

    Return success status.

}

The awrite Routine 17

The driver’sawrite routine allows a user process to perform an asynchronous write of
data to the device.

Specification

int xx_awrite( dev_desc, buff_desc, count, req_id)

int dev_desc;
udbuf_t * buff_desc;
int count;
int     * req_id;



Device Driver Programming

17-28

Parameters

dev_desc the identifier for the device to which data are to be written. This identifier is
returned by the driver’sopen  routine.

buff_desc a pointer to the user I/O buffer that describes the physical locations from
which data are to be written

count the number of bytes to be written

req_id a pointer to the location to which the request identifier of the asynchronous
write operation is returned. The user process can use this identifier to obtain
the status of the operation. Ifreq_idcontains a null pointer, information about
the status of the request isnot maintained. Ifreq_idcontains a pointer, the
user-level driver provides an identifier that the application must use to check
the status of the write request. (See “The acheck Routine” on page 17-28 and
“The await Routine” on page 17-29 for an explanation of theacheck and
await user-level driver routines. These routines can be supplied to allow
users to check the status of an asynchronous I/O request.)

Return Value

The driver’sawrite routine returnsEUD_NOERROR if the operation is successfully
queued. It returns the appropriate user-level device driver error code if an error occurs (see
“Overview of the Device Configuration Program” on page 17-14 for a listing of the error
codes as defined in <userdriv.h >).

The acheck Routine 17

The driver’sacheck routine allows a user process to obtain the status of an asynchronous
I/O operation. It is called if the user process wants to poll rather than wait for completion
of an I/O request.

Specification

int xx_acheck( dev_desc, req_id, count)

int dev_desc;
int req_id;
int * count;

Parameters

dev_desc the identifier for the device for which the asynchronous I/O operation is being
performed. This identifier is returned by the driver’sopen  routine.

req_id the request identifier of the asynchronous I/O operation for which the status is
being requested. This identifier is returned by the driver if a pointer is supplied
on a call to the driver’saread  or awrite  routine.

count a pointer to the location to which the number of bytes transferred by the
specified I/O operation is returned



Writing a User-Level Device Driver

17-29

Return Value

The driver’sacheck routine returnsEUD_NOERROR if the specified asynchronous I/O
operation has been completed. It returnsEUD_INPROGRESS if the operation has not been
completed (see “Overview of the Device Configuration Program” on page 17-14 for a
listing of the error codes as defined in <userdriv.h >).

Example specification and pseudo code for a user-level driver’sacheck routine are
presented as follows:

int

dev_acheck(dev_desc, req_id, count)

int dev_desc;

int req_id;

int *count;

{

    Get I/O request data structure associated with the req_id.

    IF interrupts not enabled

         Check device for completion status.

         IF not complete THEN return I/O IN PROGRESS error.

         Calculate transfer count and place it in the count parameter.

    ELSE

         Check the request data structure to see if the

              request has completed.

         IF not complete THEN return I/O IN PROGRESS error.

         Get transfer count from request data structure and

              place it in the count parameter.

    ENDIF

    Free I/O request data structure.

    Return success status.

}

The await Routine 17

The driver’sawait routine allows a user process to wait for a pending asynchronous I/O
operation to be completed. To support anawait routine, you need to have interrupt
support. Typically theawait routine blocks via a call toserver_block(2) ; the
interrupt-handling routine wakes waiters via a call toserver_wake1(2) or
server_wakevec(2) . (See theserver_block(2) system manual page for
information on handling timeouts and signals while waiting for an I/O operation to com-
plete.)

Specification

int xx_await( dev_desc, req_id, count)

int dev_desc;
int req_id;
int * count;



Device Driver Programming

17-30

Parameters

dev_desc the identifier for the device to or from which the asynchronous I/O operation
is being performed. This identifier is allocated on a call to the driver’sopen
routine.

req_id the request identifier of the asynchronous I/O operation for which the process
is waiting. This identifier is allocated by the driver if a pointer is supplied on a
call to the driver’saread  or awrite  routine.

count a pointer to the location to which the number of bytes transferred by the
specified I/O operation is returned

Return Value

The driver’sawait routine returnsEUD_NOERROR when the specified asynchronous I/O
operation has been completed.

Example specification and pseudo code for a user-level driver’sawait routine are
presented as follows:

int

dev_await(dev_desc, req_id, count)

int dev_desc;

int req_id;

int *count;

{

    Get I/O request data structure associated with the req_id.

    IF interrupts not enabled THEN return an error code.

    LOOP WHILE I/O not done or error has not occurred

        block until wakened by interrupt.

    ENDLOOP

    Get transfer count from request data structure and

        place it in the count parameter.

    Free I/O request data structure.

    Return success status.

}

Control Functions 17

The driver’s control functions allow a user process to control a device in ways that are
specific to the device. Some of the control functions of the user-level device driver for the
DR11W emulator, for example, allow a user process to set or obtain the value of the DMA
transfer mode associated with a particulardr11w , send a GO signal to the attached device
and enable DMA transfers, or query the values of the registers associated with a particular
dr11w .



Writing a User-Level Device Driver

17-31

A general purpose control function similar to theioctl routine used by kernel device
drivers has not been defined. The control functions that are required for a user-level driver
are specific to the device.

If you are developing a user-level driver for use as an alternative to a kernel device driver,
it is suggested that you derive the names of control functions from the names of the
ioctl commands that have been defined in the kernel driver. Names of control functions
of the user-level driver for the DR11W emulator, for example, includedr11w_dump ,
dr11w_get_modes , anddr11w_set_modes . Note that each control function must
have a unique name that identifies the control operation that is being performed. It is also
suggested that you use the same data structures and flags that the kernel device driver uses
in its control functions.

Specification

int xx_control ( dev_desc, arg)

int dev_desc;
struct xx_data_t * arg;

Parameters

dev_desc the identifier for the device for which the control operation is being
performed. This identifier is returned by the driver’sopen  routine.

arg a pointer to a device-specific argument. The format of this argument is specific
to the device and to the operation that is being performed.

Return Value

The driver’s control functions returnEUD_NOERROR when a control operation has been
successfully completed. They return the appropriate user-level device driver error code if
an error occurs (see “Overview of the Device Configuration Program” on page 17-14 for a
listing of the error codes as defined in <userdriv.h >).

The close Routine 17

The driver’sclose routine allows a user process to close a device that has been opened in
preparation for I/O or control operations. It is responsible for undoing the operations
performed by theopen routine. Theclose routine does not return until pending I/O
operations have been completed.

Some of the functions that theclose  routine should perform include the following:

• Detaching the driver status and device register regions and other shared
memory regions that were attached when the device was opened

• Detaching a shared memory region that has been bound to the physical
address of the IPL or the processor level register on a cal l to
spl_map(3X)



Device Driver Programming

17-32

• Ensuring that all I/O operations have been completed

This function is especially important for a device that uses DMA because
the process might exit after theclose and a pending DMA could over-
write the memory of a different process.

The device identifier allocated by the driver shouldnot be used after theclose routine
has been invoked. A user-level device driver has no way to prevent access to the device
after theclose  call; unauthorized access to the device can produce unexpected results.

You must carefully consider whether the user-level driver handles the occurrence of a
fork(2) system call after a user process has opened a device controlled by the driver. If
a user process were to make afork(2) system call after opening the device, the child
and the parent processes would share access to the opened device and the user-level
device driver. The reason is that parent and child processes share access to attached shared
memory regions and all of the user-level driver routines. After the call tofork(2) , two
processes have access to the device, but it seems to the user-level device driver that only
one process has access. The driver’sclose routine is responsible for freeing driver
resources that are allocated to a process that has opened the device. It is very difficult to
determine when these resources can be freed if a process that has opened the device can
subsequently invokefork(2) .

There are two techniques for determining when you can free driver resources. One
technique is to make an IPC_STATshmctl(2) system call in the driver’sclose
routine. The IPC_STAT command allows you to determine how many processes are
associated with the device’s shared memory regions. The other technique is to obtain the
running process’s lightweight process identifier (LWP ID) and compare it with the LWP
ID of the l igh twe igh t p rocess tha t opened the dev ice . (See the
_lwp_global_self(2) system manual page for more information about LWP IDs.
This LWP ID can be stored in the private data area that is described in “Overview of Data
Structures” on page 17-5). It is suggested that you consider limiting access to the device to
the parent process. If you do not design the driver to handle a call tofork(2) after the
device has been opened, it is very important that you provide documentation that warns
users of the consequences.

Specification

int xx_close( dev_desc)

int dev_desc;

Parameter

dev_desc the identifier for the device for which the close operation is being performed

Return Value

The driver’s close routine returnsEUD_NOERROR if the close operation has been success-
fully completed. It returns the appropriate user-level device driver error code if an error
occurs (see “Overview of the Device Configuration Program” on page 17-14 for a listing
of the error codes as defined in <userdriv.h >).



Writing a User-Level Device Driver

17-33

Example specification and pseudo code for a user-level driver’sclose routine is
presented as follows:

int

dev_close(dev_desc)

int dev_desc;

{

    Wait for all pending I/O operations to complete.

    Free the device descriptor.

    Detach the driver’s shared memory and device register regions.

    Mark the device closed.

    Return success status.

}



Device Driver Programming

17-34

Developing the Driver’s Interrupt Service Routine 17

To develop a user-level driver routine that services interrupts generated by a device
controlled by the driver, you must use the operating system’s support for user-level
interrupt routines as described in “The User-Level Interrupt Library Routines and Utility”
on page 17-22.

Remember, the user-level interrupt routine facility is optional. To configure a kernel with
user-level interrupt support enabled, modify theui file in the /etc/conf/sdevice.d
directory. Set theconfigure field in the ui file to Y, and build a kernel with the
idbuild(1M)  utility. Refer to theidbuild(1M)  system manual page for details.

It is recommended that you carefully review the documentation on user-level interrupt
routines that is located in thePowerUX Real-Time Guideprior to beginning the develop-
ment of the driver’s interrupt routines.

To use the system’s user-level interrupt routine facility, you can develop a driver interrupt
initialization routine that invokesfork(2) to create a user-level interrupt process. The
user-level interrupt process defines and enables a connection to an interrupt vector
generated by the device that the user-level driver controls. You must also develop a driver
interrupt-handling routine that executes each time the connected interrupt occurs. The
driver interrupt initialization routine should be called by the device configuration program
when the-i option is specified (procedures for developing the device configuration
program are explained in “Developing the Device Configuration Program” on page
17-38).

To develop the driver’s user-level interrupt process, you must take into consideration the
constraints that are imposed on that process. A complete discussion of those constraints is
provided in thePowerUX Real-Time Guide. Some of the most significant ones are sum-
marized as follows:

• A single-threaded user-level interrupt process can define a connection to
only one interrupt vector at a time. A multithreaded process can connect to
one or more interrupt vectors at a time by using a separate bound thread for
each interrupt vector connection.

• Only one user-level interrupt process can define a connection to a particular
interrupt vector at a time.

• Prior to enabling an interrupt connection, a user-level interrupt process
must lock into memory portions of its virtual address space referenced by
the interrupt-handling routine. Exceptions that occur during execution of
the interrupt-handling routine are fatal.

Connecting a User-Level Interrupt Process and Interrupt Vector 17

To define and enable a connection between a user-level interrupt process and an interrupt
vector, you must perform a series of steps. These steps are fully explained in thePowerUX
Real-Time Guide. They are summarized as follows:



Writing a User-Level Device Driver

17-35

1. Provide for communication between the user-level interrupt process and
other processes to which the driver is linked by attaching the driver status
and device register regions and other shared memory regions as
appropriate.

2. Determine the interrupt vector to which the user-level interrupt process
connects. You can do so by using one of the following methods:

• If the device controlled by the user-level driver has a kernel device
driver that supports theIOCTLVECNUM ioctl command, use the
ioctl  system call, and specify theIOCTLVECNUM command.

Kernel device drivers for the following devices support this
command: high-speed data enhanced device (hsde ), real-time clock
(rtc ), and edge-triggered interrupts (eti ).

• If the device controlled by the user-level driver allows its interrupt
vector number to be programmed and doesnot have a kernel device
driver that supports theIOCTLVECNUM ioctl command, use the
ICON_IVEC iconnect library routine to allocate an interrupt vector.

Note that after using this method to allocate an interrupt vector, you
must program the device so that it interrupts at that vector.

• If the device controlled by the user-level driver interrupts at a fixed
vector number and doesnot have a kernel device driver that supports
the IOCTLVECNUM ioctl(2) command, you must reserve an
interrupt vector by modifying the interrupt vector table associated
with your machine. On Series 6000 systems, it is contained in the
/etc/conf/cf.d/ivt.s  file.

3. Set up an interrupt connection structure, and define a connection between
the user-level interrupt process and the interrupt vector.

The interrupt connection structure is defined in the header fi le
<sys/iconnect.h >. The ic_vector field of this structure contains
the number of the interrupt vector to be connected to the user-level
interrupt process. Theic_routine field of this structure contains the
virtual address of the process’s interrupt-handling routine.

Use anICON_CONN iconnect(3C) library routine call to define the
connection. Note that to use theICON_CONNcommand, the calling process
or thread must have theP_USERINT privilege.

4. Lock the necessary portions of the user-level interrupt process’s virtual
address space in physical memory. (See “User-Level Interrupts and Mem-
ory Locking” on page 17-36 for details.)

5. Enable the user-level interrupt process’s interrupt vector connection. Use
the ienable(3C)  library routine call to do so.

Note that the user-level interrupt process does not return from this call
unless an error occurs during theienable(3C) library routine call or
another process disconnects it from the interrupt vector. Theienable
library routine call places the calling process in a blocked state in the
kernel and then enables the process’s interrupt vector connection. While



Device Driver Programming

17-36

the process is in this state, all signals are ignored. The process no longer
executes at normal program level. Each time the connected interrupt
becomes active, the CPU that is receiving the interrupt switches to the
context of the connected interrupt process within the kernel. The kernel
then jumps to the beginning of the interrupt-handling routine with the
connected interrupt still active. Although the connected interrupt is active,
the process executes in user mode rather than kernel mode; all of the
process’s virtual address space previously locked into physical memory is
accessible.

User-Level Interrupts and Memory Locking 17

Any memory location that is accessed from a user-level interrupt routine must be locked in
memory. If a page fault occurs while at interrupt level because of an access to a non-
resident memory location, the system halts. The application can either lock all the memory
of the user-level interrupt process or selectively lock only the pages that are referenced by
the user-level interrupt routine. If selective locking is used (seeuserdma(2) ), the
following memory accesses must be considered:

• The instructions of the user-level interrupt routine.

• Any shared regions which are referenced by the user-level interrupt
routine.

• The memory used for the user-level interrupt routine's stack.

• The C library's interrupt stub which is executed prior to the interrupt
routine. Note that theiconnect(3C) call supports a function code
(ICON_LOCK) for locking this section of code.

Use of Local Memory 17

If you want to use local memory with user-level interrupt processes on a Series 6000
system with more than one CPU board, you must follow the procedure that is explained in
the paragraphs that follow. A complete discussion of the issues related to the use of local
memory with user-level interrupt processes is provided in thePowerUX Real-Time Guide.

If a process binds some portion of its address space to local memory and then issues the
iconnect(3C) andienable(3C) calls in order to connect to an interrupt, the CPU
that processes the interrupt might not be located on the same CPU board where the
process's address space bindings were created. In this case, some of the local memory
references that were not previously remote might now become remote memory references.
Similarly, some of the previously remote local memory references might now no longer be
remote references. In these cases, data incoherences can occur when the user-level
interrupt process references these portions of its address space.

Note that remote memory references are not an issue on Series 6000 systems that have
only one processor board.



Writing a User-Level Device Driver

17-37

For those user-level interrupt applications that want to bind some portion of their address
space to local memory on a Series 6000 system that has more than one CPU board, the
following steps must be taken in order to prevent data incoherences.

1. Determine which CPU is receiving the interrupt to which you want to
connect the user-level interrupt process.

You can do so by using one of the following methods: (1) use the
intstat(1M) utility, or (2) invoke thempadvise(3C) library routine
from a program and specify theMPA_CPU_INTVECor theMPA_CPU_VMELEV

command. (For (H)VME interrupts, use theMPA_CPU_VMELEV command;
for other interrupts, use theMPA_CPU_INTVECcommand.) For additional
information, refer to theintstat(1M) andmpadvise(3C) system
manual pages.

2. Set the process's CPU bias to include, at most, those CPUs that reside on
the same processor board where the interrupt is received.

You can do so by using thempadvise(3C) library routine and
specifying theMPA_CPU_LMEM andMPA_PRC_SETBIASor MPA_PRC_SETRUN

commands as explained in the corresponding system manual page.

3. If desirable, create one or more shared memory regions that are bound to
local memory.

You can do so by us ing theshmget (2 ) sys tem ca l l , the
shmdefine(1) utility, or the shmconfig(1M) utility as explained in
thePowerUX Programming Guide.

Constraints on Interrupt-Handling Routines 17

To develop the driver’s interrupt-handling routine, you must take into consideration the
constraints that are imposed on that routine. A complete discussion of those constraints is
provided in thePowerUX Real-Time Guide. Some of the most significant ones are sum-
marized as follows:

• One parameter is passed to a user-level interrupt-handling routine: the
value that is specified in theic_value field of the icon_conn structure
supplied on theiconnect(3C) call that defines the connection between
the user-level interrupt process and an interrupt vector. The interrupt-
handling routine is entered in user mode with the connected interrupt still
active.

• An interrupt-handling routine can reference any memory location that is in
the virtual address space of the user-level interrupt process--including
VME I/0 memory space to which the process’s virtual address space has
previously been bound. Portions of the user-level interrupt process’s
address space that are referenced by the interrupt-handling routine must
have been locked into physical memory prior to enabling the interrupt vec-
tor connection.

• Any type of exception (page fault, floating point exception, and so on) is
fatal during execution of an interrupt-handling routine. In the PowerUX



Device Driver Programming

17-38

and theSecure/PowerUXkernels, the exception-handling code checks for
interrupt-handling routines.

• An interrupt-handling routine can make only two system calls:
server_wake1(2) andserver_wakevec(2) . These calls enable
the calling process to wake one or more processes that are blocked in the
server_block(2) system call (see “The Server System Calls” on page
17-21 for a description of these calls). Certain limitations apply to an
interrupt-handling routine’s use of these calls.

• An interrupt-handling routine can call other routines, but it must eventually
exit via an explicit or implicit return from inside the routine whose address
is specified in theic_routine field of the icon_conn structure
supplied on theiconnect(3C)  library routine call.

• Because the interrupt-handling routine executes at interrupt level, you
cannot use such user-level debuggers asadb , dbx , andgdb to debug it;
however, you can use the console processor to obtain some debugging
capability for this routine. Guidelines for debugging the interrupt-handling
routine are provided in the PowerUX Real-Time Guide.

If you use theserver_wake1(2) or theserver_wakevec(2) system call in the
user-level driver’s interrupt-handling routine to wake a process that is blocked in the
server_block(2) system call, you must ensure that the interrupt-handling routine
and the routine that callsserver_block synchronize execution through the use of some
element of shared data. If, for example, the driver’s interrupt-handling routine services I/O
completion interrupts, a process that wants to wait for completion of an I/O operation can
check a flag that indicates whether or not the operation has been completed. If it finds that
the flag has not been set, it blocks until the operation has been completed. When an I/O
completion interrupt occurs, the interrupt-handling routine sets the flag and wakes the
waiting process. Theserver system calls are described in “Understanding Operating
System Support for a User-Level Driver” on page 17-15. Procedures for using them are
explained in detail in thePowerUX Real-Time Guide. Example programs that illustrate
their use are provided.

Developing the Device Configuration Program 17

User-level device drivers written by Concurrent Computer Corporation personnel must
provide a configuration program for the device that is controlled by the user-level driver.
This program is to be invoked from the system’s/etc/rc2.d and /etc/dinit.d
scripts. (See therc2(1M) anddinit(1M) system manual pages for details.) The
purpose of a configuration program is to provide device driver initialization at system boot
time. A configuration program can also provide some basic utility functions that are help-
ful to users. Such functions include reset and debug.

The device configuration program has a set of standard options. The functions associated
with each option are described as follows:

-c create the shared memory regions required by the driver, and initialize the
device

-r reset the device



Writing a User-Level Device Driver

17-39

-i create the user-level interrupt process

-d display debug and status information

-x remove the user-level device driver’s association with the device, and restore
the device to its initial state

These functions are performed for each device for which a valid device special file name is
specified as an argument to the program. The-c option is required of all user-level
drivers. The-i option is required of a user-level driver that supports interrupt-driven I/O.
The other options are recommended but not required. Each option is described in greater
detail in the sections that follow.

Create Shared Memory Regions and Initialize the Device 17

The -c option tells the device configuration program to create the structures required to
open a user-level driver for a specified device. It creates the shared memory regions that
are attached on a call to the driver’sopen  routine.

The arguments that are specified with the-c option are a device name and the physical
address of the device that is to be associated with the name. The device name must be a
valid device path name. The following example shows how to specify the-c option to the
configuration program for the DR11W emulator:

dr11wconfig -c /dev/dr11w0 0xffff9500 /dev/dr11w1 0xffff9520

If you are using a device that contains control registers at one address and a pool of
memory at another, you must design the configuration program to accept all of the
necessary device addresses. The following example shows how to specify the-c option to
the configuration program for such a device:

abcconfig -c /dev/abc0 0xffff0000 0xe0000000

To support the-c option, the device configuration program must perform the following
functions:

1. Create and initialize a driver status region for maintaining device and driver
status information.

Use ftok to obtain a key that is based on the path name of the device.
(Note that this assumes that a file exists on the system corresponding to the
name of the device.) Use theshmget(2) andshmat(2) system calls to
create and attach the shared memory region.

2. Create a device register region, and bind it to the location of the device’s
registers in I/O memory.

Useftok to obtain a key that is based on the path name of the device. Use
shmget(2) to create the register region,shmbind(2) to bind it to the
physical location of the registers, andshmat(2) to attach it. Note that to
useshmbind , the calling process or thread must haveP_SHMBIND

privilege.



Device Driver Programming

17-40

3. Initialize global data structures that contain information about a particular
device, and initialize synchronization primitives.

4. Initialize and reset the device.

For information on the use offtok and theshmget , shmbind , andshmat system calls,
refer to thePowerUX Programming Guideand to thestdipc(3C) , shmget(2) ,
shmbind(2) , andshmat(2)  system manual pages.

Reset the Device 17

To support the-r option, the device configuration program must perform the following
functions:

• Reset the device.

• Restore device and driver status information to the values to which it was
initialized atopen  time.

The reset option allows a user to reset the device if it is hung because a user process has
terminated abnormally and has not cleaned up the global data structures associated with
the device.

Note that a user process might have the device open when a reset is performed. The
operation of such a process becomes undefined. The-r option is intended to perform a
hard reset; a process that has the device open should be terminated. A soft reset can be
provided as a control function that is available to a user application.

Create a User-Level Interrupt Process 17

You need to provide the-i option only if you are writing a user-level driver that handles
interrupts. To support the-i option, the device configuration program must perform the
following functions:

• Create the user-level interrupt process with access to the driver status and
device register regions.

• Connect to the interrupt vector.

• Lock the interrupt-handling routine’s text, stack, and data regions in
memory.

• Enable the interrupt vector connection.

Procedures for developing the user-level interrupt process are explained in detail in
“Developing the Driver’s Interrupt Service Routine” on page 17-34.



Writing a User-Level Device Driver

17-41

Provide Debug and Status Information 17

You might want to provide the-d option to facilitate debugging. To support the-d
option, the device configuration program displays the values that the device register
region and the driver status region contain. The type of information that you choose to
provide depends upon the nature of the device and the driver.

Restore the Device to its Initial State 17

The purposes of the-x option are (1) to destroy the user-level device driver’s association
with a device and (2) to restore the device to its initial state as defined by the kernel device
driver. To support the-x option, the device configuration program must perform the
following functions:

• Disconnect the user-level interrupt process from the interrupt vector, and
remove the defined interrupt vector connection, if applicable.

Use theICON_DISC iconnect(3C) library routine call to perform this
function. The program must have theP_USERINT privilege.

• Detach and remove the driver status and device register regions.

• Remove global data structures that contain information about a particular
device and the locations of its driver status and device register regions.

• Restore important device registers to their initial state (for example,
interrupt vectors, interrupt-enabled flags, and so on).

Debugging the Driver 17

You can debug most components of a user-level device driver by using one of the standard
user-level debuggers:adb(1) , gdb(1) , or NightView(1) . You cannot use one of
these debuggers to debug the interrupt-handling routine, however, because it executes at
interrupt level; you can, instead, use the console processor to obtain some debugging
capability for this routine (refer to thePowerUX Real-Time Guidefor an explanation of
the procedures for debugging the interrupt-handling routine).

A debugger usesptrace(2) to access memory in the debugged process. If you use a
debugger to examine memory that is mapped to I/O memory addresses, you can cause the
system to panic. (For information on theptrace(2) system call, refer to the
corresponding system manual page.)

When you are developing and debugging a user-level device driver, it is recommended that
you use the following techniques:

• Debug a user-level driver on a single-user system because it is possible for
the driver to cause the system to crash.

• Keep the work in the interrupt-handling routine to a minimum.



Device Driver Programming

17-42

• Useprintf  throughout your code.

• Maintain event statistics and trace information. Maintain a trace buffer in
shared memory, and write a tool to display your trace buffer.

• Use logic analyzers (for example, an oscilloscope, a VMEbus analyzer, a
character communication analyzer) to determine whether or not data are
being correctly transferred from the device.



A-1

A
Appendix AExample PCI User-Level Device Driver

1
1
1

This appendix contains an example of a user-level device driver for a National Instruments
PCI DIO-96 card.

/*
 *  Copyright (C) 1999 Concurrent Computer Corporation
 *  All rights reserved
 *
 * PCIex.c
 *
 * Sample very simple user level driver for National Instruments
 *  PCI DIO-96 card.
 *
 * Turns a LED on and off at two second intervals for two minutes.
 *
 * The Anode of LED is connected to pin 47 and the Cathode is
 *  connected to 510 ohm resistor which is connected to pin 49,
 *  which is +5 volts.
 *
 * The default power on state for the parallel port will be tristate
 *     which result in a off LED state.
 *
 * The manual for this card is available at following Web site.
 *
 *      http://www.natlinst.com/manuals/
 *
 * User must have super user privledges to run.
 *
 * To compile use  the following string.
 *
 *       cc -F -lud -o PCIex PCIex.c
 */

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/ipl.h>
#include <sys/ipc.h>
#include <sys/signal.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <sys/ioacc.h>

#include <userdriv.h>
#include <sys/pci.h>



Device Driver Programming

A-2

#include <sys/bridge.h>
#include <sys/pci_info.h>

extern int shmctl();
extern int shmdt();
extern int errno;

#defineMAX_PCI_BUS     64/* typical max pci buses (very large system) */
#define MAX_PCI_DEV32/* max pci devs per bus */

#define NATL_INSTR0x1093/* vendor id for National instruments */
#define DIO96 0x0160/* device id for National instruments dio96 */

/* DIO96 register definition is not swapped for accesses, */
/* because of the PowerPC address invariant translation */
/* keeps byte oriented strings addressed in the same order */

typedef volatile struct dio96_device_reg {/* base addr 1 defs */

struct i82C55 {
    u_charport_A;/* port A read/write */
    u_char port_B;/* port B read/write */
    u_charport_C;/* port C read/write */
    u_char config_reg;/* configuration register */
} ppi_A, ppi_B, ppi_C, ppi_D;

struct i8253 {
    u_char counter_0;/* counter 0 */
    u_char counter_1;/* counter 1 */
    u_charresrvd;/* reserved */
    u_charconfig_reg;/* configuration register */
} tc_A;

u_char int_control_1;/* interrupt control reg 1 */
u_char int_control_2;/* interrupt control reg 2 */
u_char int_clear_reg;/* interrupt clear register */
u_char  resrvd;

} DIO96_t;

/***********************************************************************
 *   Search the bus for the vendor/device/function ID and return the
 *   "PCI_TAG" of this device (see pci_info.h)
 *
 *   tag to start bus search from. Can be the
 *   vid PCI vendor id to match.
 *   didPCI device id to match.
 *   func function # to match . (most devices only function 0)
 *
 *   returns tag for device, if successful, otherwise returns -1.
 *
 ***********************************************************************/
u_long
pci_get_devtag(pci_tag_t tag, u_short vid, u_short did, u_char func )
{



Example PCI User-Level Device Driver

A-3

   int bus,dev;
   PCI_DWORD dev_vend_id;

   bus = PCITAG_BUSNUM(tag);
   dev = PCITAG_DEVNUM(tag)+1;
   for (; bus <= MAX_PCI_BUS; bus++) {
      for (; dev <= MAX_PCI_DEV; dev ++) {
         unsigned short devid,vendid;

         tag = PCI_MAKE_TAG(bus,dev,func);
         dev_vend_id = pci_cfg_read(tag, PCI_ID0_REG);
         vendid = dev_vend_id & 0x0000ffff;
         devid  = dev_vend_id >> 16;

         if (vendid == 0xffff) {
            continue;
         }
         else  {

            /* Is it the vendor id/dev id of this device? */
            if( (vendid == vid) && (devid == did) ) {
               return(tag);
            }
         } /* End if vendid */
      } /* End for dev */
      dev = 0;
   } /* End for bus */
   return(-1);
} /* End pci_get_devtag */

main()
{

int x, rc; /* return code */
pci_tag_t tag;/* tag for 1st DIO-96 card */
pci_spc_t bar0, bar1;/* returned PCI base address mappings */

/* shared memory ids */
int bar0_shm_id, bar1_shm_id;
DIO96_t *dio_regs;/* pointer to dio regs */
char *  PCImite;/* pointer to PCI mite registers */

bar0.len = bar1.len = 0; /* clear returned lengths up front */

bar1_shm_id = NULL;
dio_regs = NULL;
rc = 0; /* default to no error */

/* Find PCI device */
if ((tag=pci_get_devtag(PCI_MAKE_TAG(0,0,0),NATL_INSTR, DIO96,0))== -1) {
    fprintf(stderr, "PCIex: unable for find DIO96 card \n");
    exit(1);
}

/* map base address 0 */
if (pci_cfgspc_alloc(tag, PCI_BASE_ADDR0, &bar0) != 0) {
    rc = errno;



Device Driver Programming

A-4

    perror("PCIud - unable to alloc DIO Base address 0 (PCImite) ");
    goto hot_swap_only;
}

/* map base address 1 */
if (pci_cfgspc_alloc(tag, PCI_BASE_ADDR1, &bar1) != 0) {
    rc = errno;
    perror("PCIud - unable to alloc DIO Base address 1 ");
    goto hot_swap_only;
}

/* activate PCI IO and MEM decodes */
if (pci_cfg_cmd(tag, PCI_CMD_MEM , PCI_ENABLE) != 0) {
    rc = errno;
    perror("PCIud - unable to set cmd register ");
    goto hot_swap_only;
}

/* Base Address 0 .. PCImite interface Asic */
/* get properly sized shm_id */

if ((bar0_shm_id =
 shmget(IPC_PRIVATE, bar0.len, IPC_CREAT|SHM_NCACHE)) < 0) {

    rc = errno;
    bar1_shm_id = NULL;
    perror("PCIud - unable to get shared memory map ");
    goto error_exit;
}

/* bind phys address of PCI dev to shm_id */
if (shmbind(bar0_shm_id, bar0.cpu_addr) == -1) {
    rc = errno;
    perror("PCIud - unable to bind PCI base address 0 ");
    goto error_exit;
}

/* map the PCI memory space into process */
/* virtual memory */

PCImite = (char *) shmat(bar0_shm_id, 0, 0);
if ((int) PCImite == -1) {
    rc = errno;
    dio_regs = NULL;
    perror("PCIud - unable attach PCI base address 0 ");
    goto error_exit;
}

/* special setup here for PCImite Asic */
BUS_PUTLR(PCImite + 0xc0, (bar1.pci_addr & 0xfffff000) | 0x80);

/* Base Address 1.. 82C55, 8253 and int cntrl */
/* get properly sized shm_id */

if ((bar1_shm_id =
 shmget(IPC_PRIVATE, bar1.len, IPC_CREAT|SHM_NCACHE)) < 0) {

    rc = errno;
    bar1_shm_id = NULL;
    perror("PCIud - unable to get shared memory map ");



Example PCI User-Level Device Driver

A-5

    goto error_exit;
}

/* bind phys address of PCI dev to shm_id */
if (shmbind(bar1_shm_id, bar1.cpu_addr) == -1) {
    rc = errno;
    perror("PCIud - unable to bind PCI base address 1 ");
    goto error_exit;
}

/* map the PCI memory space into process */
/* virtual memory */

dio_regs = (DIO96_t *) shmat(bar1_shm_id, 0, 0);
if ((int) dio_regs == -1) {
    rc = errno;
    dio_regs = NULL;
    perror("PCIud - unable attach PCI base address 1 ");
    goto error_exit;
}

fprintf(stdout,"Toggling Parallel Port APA0 output port\n");

/* start accessing PCI device */
/* macros from ioacc.h */
/* config 8255 port A for outputs */

BUS_PUTC(&(dio_regs->ppi_A.config_reg), 0x80);
for (x = 0; x<60; x++) {

/* set port A outputs low state (LED ON)*/
    BUS_PUTC(&(dio_regs->ppi_A.port_A), 0xfe);
    sleep(2);/* sleep 1 to 2 seconds */

/* set port A outputs to high state (LED OFF)*/
    BUS_PUTC(&(dio_regs->ppi_A.port_A), 0xff);
    sleep(2);/* sleep 1 to 2 seconds */
}

BUS_PUTC(&(dio_regs->ppi_A.port_A), 0xff); /* LED off */

error_exit:
pci_cfg_cmd(tag, PCI_CMD_MEM, PCI_DISABLE); /* disable PCI device */

/* release resources for BAR 1 */
if (dio_regs != NULL) {/* check if BAR virt addr set */
    shmdt((const void *) dio_regs);/* free virt map for BAR1 */
    dio_regs = NULL;
}

if (bar1_shm_id != NULL) {/* check if shmid valid */
    shmctl(bar1_shm_id, IPC_RMID, NULL);/* yes, free it */
    bar1_shm_id = NULL;
}

/* release resources for BAR 0 */
if (PCImite != NULL) {/* check if BAR virt addr set */
    shmdt((const void *) PCImite);/* free virt map for BAR1 */
    PCImite = NULL;



Device Driver Programming

A-6

}

if (bar0_shm_id != NULL) {/* check if shmid valid */
    shmctl(bar0_shm_id, IPC_RMID, NULL);/* yes, free it */
    bar1_shm_id = NULL;
}
exit(rc);

hot_swap_only:
pci_cfg_cmd(tag, PCI_CMD_MEM, PCI_DISABLE); /* disable PCI device */
if (bar1.len) /* see  */
    if (pci_cfgspc_free(tag, PCI_BASE_ADDR1, &bar1) != 0) {
        perror("PCIud - unable to free DIO Base address 1 ");

bar1.len = 0;
    }

if (bar0.len)
    if (pci_cfgspc_free(tag, PCI_BASE_ADDR0, &bar0) != 0) {
        perror("PCIud - unable to free DIO Base address 0 ");

bar0.len = 0;
    }
exit(rc);

}



Glossary-1

Glossary

2
2
2

adapter

A hardware set which connects one or more device controllers to the computer system.

alignment

The position in memory of a unit of data, such as a word or half-word, on an integral
boundary. A data unit is properly aligned if its address is evenly divisible by the data
unit's size in bytes. For example, a word is correctly aligned if its address is divisible by
four.  A half-word is aligned if its address is divisible by two.

asm macro

The macro that defines system functions used to improve driver execution speed. They are
assembler language code sections (instead of C code).

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asynchro-
nous event. A signal can occur when something in the system fails, but it is not known
when the failure will occur.

asynchronous I/O operation

An I/O operation that does not of itself cause the caller to be blocked from further use of
the CPU. This implies that the caller and the I/O operation may be running concurrently.

asynchronous I/O completion

An asynchronous read or write operation is completed when a corresponding synchronous
read or write would have completed and any associated status fields have been updated.

base level

The code that synchronously interacts with a user program. The driver's initialization and
switch table entry point routines constitute the base level. Compareinterrupt
level .

block and character interface

A collection of driver routines, kernel functions, and data structures that provide a stan-
dard interface for writing block and character drivers.



Device Driver Programming

Glossary-2

block data transfer

The method of transferring data in units (blocks) between a block device such as a mag-
netic tape drive or disk drive and a user program.

block device

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code.  Comparecharacter device .

block driver

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for example, thebuf structure). One driver
is written for each major number employed by block devices.

block I/O

A data transfer method used by drivers for block access devices. Block I/O uses the sys-
tem buffer cache as an intermediate data storage area between user memory and the
device.

block

The basic unit of data for I/O access. A block is measured in bytes. The size of a block
differs between computers, file system sizes, or devices.

boot device

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

bootable object file

A file that is created and used to build a new version of the operating system.

bootstrap

The process of bringing up the operating system by its own action. The first few instruc-
tions load the rest of the operating system into the computer.

boot

The process of starting the operating system. The boot process consists of self-configura-
tion and system initialization.

buffer

A staging area for input-output (I/O) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a mem-
ory array that contains data from the disk and a buffer header that identifies the buffer.



Glossary

Glossary-3

cache

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

character device

A device, such as a terminal or printer, that conveys data character by character. Compare
block device .

character driver

The driver that conveys data character by character between the device and the user pro-
gram. Character drivers are usually written for use with terminals, printers, and network
devices, although block devices, such as tapes and disks, also support character access.

character I/O

The process of reading and writing to/from a terminal.

clone driver

A software driver used by STREAMS drivers to select an unused minor device number, so
that the user process does not need to specify it.

connection mode

A circuit-oriented mode of transfer in which data is passed from one user to another over
an established connection in a sequenced manner.

connection release

The phase in connection mode that terminates a previously established data link connec-
tion.

connectionless mode

A mode of transfer in which data is passed from one user to another in self-contained units
with no logical relationship required among the units.

control and status register (CSR)

Memory locations providing communication between the device and the driver. The driver
sends control information to the CSR, and the device reports its current status to it.

controller

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the



Device Driver Programming

Glossary-4

device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

critical code

A section of code is critical if execution of arbitrary interrupt handlers could result in con-
sistency problems. The kernel raises the processor execution level to prevent interrupts
during a critical code section.

cyclic redundancy check (CRC)

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.

data structure

The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

data terminal ready (DTR)

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

data transfer

The phase in connection and connectionless modes that supports the transfer of data
between two DLS users.

DDI/DKI

The Device Driver Interface and the Driver-Kernel Interface specify the interactions
between a device driver or STREAMS module and the rest of the UNIX System V kernel.

demand paging

A memory management system that allows unused portions of a program to be stored tem-
porarily on disk to make room for urgently needed information in main memory. With
demand paging, the virtual size of a process can exceed the amount of physical memory
available in a system.

device number

The value used by the operating system to name a device. The device number contains the
major number and the minor number.



Glossary

Glossary-5

device switch table

The kernel table constructed during automatic configuration that contains the address of
each driver entry point routine (for example,open(D2) , close(D2) , strat-
egy(D2) ).

dev_t

The C programming language data type declaration that is used to store the driver major
and the minor device numbers.

diagnostic

A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

downstream

The direction of STREAMS messages flowing through a write queue from the user pro-
cess to the driver.

DRAM

Dynamic Random Access Memory.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver routines

Seeroutines .

driver

The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.

DSAP

Destination Service Access Point

error correction code (ECC)

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

EDLIDU

Expedited Data Link Interface Data Unit



Device Driver Programming

Glossary-6

FDDI

Fiber Distributed Data Interface.

function

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls
and library routines in a user-level program.

initialization entry points

Driver initialization routines that are executed during system initialization (for example,
init(D2), start(D2) ).

interface

The set of data structures and functions supported by the UNIX kernel to be used by
device drivers.

interprocess communication (IPC)

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

interrupt level

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of
the device, and passes control to the appropriate interrupt routine.

interrupt priority level (IPL)

The interrupt priority level at which the device requests that the CPU call an interrupt pro-
cess. This priority can be overridden in the driver's interrupt routine for critical sections of
code with thespln(D3) function.

interrupt vector

Interrupts from a device are sent to the device's interrupt vector, activating the interrupt
entry point for the device.

IP

The Internet Protocol, RFC 791, is the heart of the TCP/IP. IP provides the basic packet
delivery service on which TCP/IP networks are built.

ISO

International Organization for Standardization



Glossary

Glossary-7

kernel buffer cache

A set of buffers used to minimize the number of times a block-type device must be
accessed.

lightweight process

A lightweight process or LWP is the set of data and interfaces at user level that provide
support for the threads abstraction.

loadable module

A kernel module (such as a device driver) that can be added to a running system without
rebooting the system or rebuilding the kernel.

low water mark

The point at which more data is requested from a terminal because the amount of data
being processed in the character lists has fallen creating room for more. It also applies to
STREAMS queues regarding flow control.

MAC

Media Access Control, a sub-layer of the data link layer for media specific data link func-
tions.

memory management

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

message block

A STREAMS message is made up of one or more message blocks. A message block is
referenced by a pointer to amblk_t structure, which in turn points to the data block
(dblk_t ) structure and the data buffer.

message

All information flowing in a stream, including transferred data, control information, queue
flushing, errors and signals. The information is referenced by a pointer to amblk_t
structure.

modem

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.



Device Driver Programming

Glossary-8

module

A STREAMS module consists of two relatedqueue structures, one each for upstream
and downstream messages. One or more modules may be pushed onto a stream between
the stream head and the driver, usually to implement and isolate a line discipline or a com-
munication protocol.  virtual to physical memory.

outstanding asynchronous I/O request

A request that has not yet completed or a request that has completed but whose corre-
sponding control block has not yet been returned to the caller via a call toaiopoll() ,
aiocancel() , or as an argument to a notification handler.

panic

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a
message is displayed on the console to indicate the cause of the problem.

PDU

Protocol Data Unit

PowerPC 604 TM

The third implementation of the PowerPC family of microprocessors currently under
development. PowerPC 604 is used by Motorola Inc. under license by IBM.

prefix

A character name that uniquely identifies a driver's routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be given theramd prefix.
If it is a block driver, the routines areramdopen , ramdclose , ramdsize , ramd-
strategy , andramdprint .

priority message

STREAMS messages that must move through the stream quickly are classified as priority
messages. They are placed at the head of the queue for processing by thesrv(D2) rou-
tine.

queue

A data structure, the central node of a collection of structures and routines, which makes
up half of a STREAMS module or driver. Each module or driver is made up of one queue
each for upstream and downstream messages.  Location:stream.h .

random I/O

I/O operations to the same file that specify absolute file offsets.



Glossary

Glossary-9

raw I/O

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

raw mode

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

read queue

The half of a STREAMS module or driver that passes messages upstream.

routines

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines.  The entry-point routines are accessed through system tables.

SAP

Service Access Point, conceptually the “point” at which a layer in the OSI model make its
services available to the layer above it.

SBC

Single Board Computer - Motorola MVME1604 (PowerPC 604).

SCSI driver interface (SDI)

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

SDU

Service Data Unit

semantic processing

Semantic processing entails input validation of the characters received from a character
device.

sequential I/O

I/O operations to the same file descriptor that specify that the I/O should begin at the “cur-
rent” file offset.



Device Driver Programming

Glossary-10

small computer system interface (SCSI)

The American National Standards Institute (ANSI) approved interface for supporting spe-
cific peripheral devices.

special device file

The file that identifies the device's access type (block or character), the external major and
minor numbers of the device, the device name used by user-level programs, and security
control (owner, group, and access permissions) for the device.

stream end

The stream end is the component of a stream farthest from the user process, providing the
interface to the device.  It contains pointers to driver (rather than module) routines.

stream head

Every stream has a stream head, which is inserted by the STREAMS subsystem. It is the
component of a stream closest to the user process. The stream head processes
STREAMS-related system calls and performs the transfer of data between user and kernel
space.

STREAMS

A kernel subsystem used to build a stream, which is a modular, full-duplex data path
between a device and a user process.

stream

A linked list of kernel data structures providing a full-duplex data path between a user pro-
cess and a device or pseudo-device.

switch table entry points

Driver routines that are activated throughbdevsw  or cdevsw  tables.

switch table

The operating system maintains switch tables for devices and STREAMS modules. These
tables hold pointers to entry point routines for character and block drivers and are acti-
vated by I/O system calls.

system initialization

The routines from the driver code and the information from the configuration files that ini-
tialize the system (including device drivers).

TCP

Transmission Control Protocol, a connection oriented transport in the Internet suite



Glossary

Glossary-11

thread

An abstraction of the concept of execution in a shared address space. A sequence of
instructions that are executed as an independent entity and are scheduled by system soft-
ware.

unbuffered I/O

I/O that bypasses the file system cache for the purpose of increasing I/O performance for
some applications.

upstream

The direction of STREAMS messages flowing through a read queue from the driver to the
user process.

user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user programs and the kernel. Drivers execute in the kernel, and the user pro-
grams that interact with drivers execute in the user program area. This space is also
referred to as user data area.

volume table of contents (VTOC)

Lists the beginning and ending points of the disk partitions specified by the system admin-
istrator for a given disk.

write queue

The half of a STREAMS module or driver that passes messages downstream.



Device Driver Programming

Glossary-12



Index-1

A

acheck  routine  17-28
adapter  structure  9-9, 10-9
address assignment and configuration 4-8, 5-8, 6-8, 7-10
address management routines  9-15
address modifier  4-5, 5-6, 6-5, 7-7, 10-2
address types  4-5, 5-5, 6-5, 7-7
aread  routine  17-26
asynchronous I/O support  17-25
atexit  routine  17-17
await  routine  17-29
awrite  routine  17-27

B

badaddr  routine  9-15, 10-9
basic locks  9-17, 11-6
bdevsw  table  2-3, 2-8-2-10
biodone  routine  12-2
board installation  10-4
btop  routine  9-15
btopr  routine  9-16
building a new kernel  14-21
bus arbitration  4-9, 5-9, 6-9, 7-11
bus request levels  4-9, 5-9, 6-9, 7-11
bus time out  4-8, 5-7, 6-7, 7-9
buses  4-3, 5-3, 6-3, 7-4
busy-wait mutual exclusion tools  17-20
byte ordering and alignment  4-4, 5-4, 6-4, 7-6, 8-5

C

cdevsw  structure  9-5
cdevsw  table  2-3, 2-8-2-10, 9-5
character interface  2-6
chpoll  routine  10-18
close  routine  10-13, 17-31
cmn_err  routine  9-21
console processor  10-5, 15-9

copyin  routine  12-3
copyout  routine  12-3
crash  utility  15-16
cred  structure  9-7
Critical code  Glossary-4

D

data chaining  10-3
data transfer routines  9-16
data types  4-3, 5-4, 6-3, 7-5
debug  routines  9-21
debugging drivers

adb  17-41
cmn_err  routine  15-2
console processor  15-7
crash  utility  15-16
gdb  17-41
how to  17-41
NightView  17-41
user-level  17-41

delay  routine  9-20
device

DMA  17-3
initial state restoral  17-41
initialization  17-39
programmed I/O  17-3
reset  17-40

device commands  10-2
device configuration modes  10-1
device configuration program  17-14

development  17-38
device driver initialization

dynamically-linked driver  10-9
statically-linked driver  10-8

device installation and testing  10-3
device modes  10-1
device register region  17-6
device registers  10-2
device_t  structure  9-12
dinit  command  17-38
direct memory access (DMA)  10-2, 15-6
dis(1)  command  15-2

Index



Device Driver Programming

Index-2

DLM  13-2
DMA device  17-3
dma_pageio(D3)  routine  12-3
DR11W user-level driver  17-30
Driver

user-level  17-1
driver

configuration  2-10, 9-2, 9-9, 10-9, 10-20, 14-6-
14-22

data structures  10-7
DR11W  17-30
entry points  2-7

I/O  10-7

initialization  2-8, 10-7

interrupt  2-10, 10-7
header file  10-7
I/O service routines  10-10
initialization routines  10-8
installation  2-10, 14-6-14-22
interfaces  2-6

block and character interface  2-6

STREAMS interface  2-6
interrupt service routine  10-20
interrupt support  17-4
local routines  10-22
multi-user  17-4
packaging  13-10, 14-15-14-18
polling support  17-4
single-user  17-4
source file  10-8
status region  17-6, 17-41
testing and debugging  15-1-15-20

Driver Software Package (DSP)  14-6-14-22
installing  14-18, 14-19
removing  14-19, 14-20
updating  14-20

drv_hztousec  routine  9-20
drv_usectohz  routine  9-20
drv_usecwait  routine  9-20, 10-9
dtimeout  routine  9-19
dynamic symbols  13-14

E

errdead  command  10-24
errdemon   10-24
error handling  13-14
error reporting facility  10-24
errorstop  command  10-24
errpt  command  10-24
event synchronization primitives  9-18, 10-25

F

ftok  routine  17-23

G

getksym(2)  system call  13-14

H

halt  routine  13-6
hardware devices  2-5
HBA driver  13-8
header file  17-8
header files  9-4, 15-5
HVME addressing  4-4, 17-1

I

I/O
asynchronous  17-25

I/O service routines  10-10
iconnect  routine  17-22, 17-35, 17-41
idbuild  command  17-22, 17-34
idbuild  utility  13-11, 13-12, 14-2, 15-4
idcheck  utility  14-3
idinstall  utility  14-3
idmkinit  utility  14-4
idmknod  utility  14-4
idmodload(1M)  command  13-4
idspace  file  14-5
idtools (Installable Driver Tools)  14-1-14-6
idtune  command  14-20
idtune  file  14-5
ienable  routine  17-22, 17-35
Init  file  14-10
init  routine  10-9, 15-5
init_ivct  routine  9-20
initialization routines  10-8
interrupt lines  4-11, 5-10, 6-10, 7-11
interrupt priorities  4-11, 5-10, 6-10, 7-12
interrupt process  17-34
interrupt service routine

user-level driver  17-34
interrupt service routines  10-20
interrupt support  17-4, 17-11
interrupt vector 4-12, 5-11, 5-12, 6-11, 7-12, 7-13, 9-20,



Index

Index-3

10-20, 17-34, 17-40
interrupt-handling routine

constraints  17-37
interrupts  2-3, 15-6
intr  routine  10-21
iobus_err  6-8, 7-9
ioctl  macros  9-12
ioctl  routine  10-17
iomem_alloc  routine  9-15
iovec  structure  9-7
itimeout  routine  9-19
ivec_alloc  routine  9-20, 10-9
ivec_alloc_group  routine  9-20
ivec_free  routine  9-20
ivec_free_group  routine  9-20
ivec_init  routine  10-9

K

kdb  utility  13-14, 15-19
kernel I/O structure  9-1
kernel support routines  9-12
kmem_alloc  routine  9-14, 10-9
kmem_alloc_physcontig(D3)  routine  12-3
kmem_free  routine  9-14
kvtoppid  routine  10-20

L

LKINFO_DECL macro  11-5, 11-13
_load  routine  13-5
loadable modules  13-1-13-14

configuration  13-12
debugging  13-14
dynamic symbols  13-14
entry points  13-5
error messages  13-14
load process  13-3
loading  13-3
Master  file definitions  13-10
Mtune  file definitions  13-11
packaging  13-10
querying status  13-13
System  file definitions  13-11
types  13-2
unload process  13-3
unloading  13-4
wrapper code  13-5

Local memory  4-3, 6-3, 7-4
LOCK routine  9-17, 11-7

LOCK_ALLOC routine  9-17, 11-6
LOCK_DEALLOC routine  9-17, 11-9
locking memory  17-36
locks

basic  9-17, 11-6
read/write  9-17, 11-9
sleep  9-18, 11-13

logchanlerr  routine  10-24

M

major number  2-7
Master  file  2-11, 9-6, 10-9, 14-9, 15-4
mdevice.d  file  2-11
memory  4-3, 5-3, 6-3, 7-4
memory access routines  9-15
memory allocation and management routines  9-13
memory allocation routines  9-13
memory locking  12-1, 12-2, 17-36
minor number  2-7
mod.d  file  13-13
MOD_DRV_WRAPPER macro  13-6
mod_drvattach  routine  13-5
mod_drvdetach  routine  13-6
MOD_EXEC_WRAPPER macro  13-6
MOD_FS_WRAPPER macro  13-6
MOD_HDRV_WRAPPER macro  13-6
MOD_MISC_WRAPPER macro  13-6
mod_obj_load  routine  13-14
MOD_STR_WRAPPER macro  13-6
modadmin(1M)  command  13-3, 13-4
modifying a kernel parameter  14-20
Mtune  file  14-11
multithreading  11-1
multi-user driver  17-4
mutual exclusion tools  17-20

N

Node file  14-12

O

open  routine  10-11, 17-23
operating system support  17-15



Device Driver Programming

Index-4

P

parallel execution  2-3
physiock  routine  12-2
physmap  routine  10-9
physmap_alloc  routine  9-15
physmap_free  routine  9-15
phystoppid  routine  10-20
pkgadd  command  14-18
pkginfo  files  14-15
pkgmap file  14-15
pkgmk command  14-15
pkgproto  command  14-15
pkgrm  command  14-19
pkgtrans  command  14-15
pollhead  structure  10-19
polling support  17-4
pollwakeup  routine  10-19
postinstall  script  14-15, 14-16
preremove  script  14-17
process synchronization tools  17-19
processor board  4-2, 5-1, 6-1, 7-4
processor priority level adjustment routines  9-18
programmed I/O  10-23
programmed I/O device  17-3
prototype  file  14-15
ptob  routine  9-16
ptrace  system call  17-41

R

Rc file  14-12
rc2  command  17-38
read  routine  10-14, 15-5
read/write locks  9-17, 11-9
real-time issues  16-1-16-2
resched_cntl  system call  17-20
resched_lock  macro  17-21
resched_nlocks  macro  17-21
resched_unlock  macro  17-21
rescheduling control tools  17-20
rmalloc  routine  9-14
rmallocmap  routine  9-14
rmfree  routine  9-14
rmfreemap  routine  9-14
RW_ALLOC routine  9-17, 11-9, 11-10
RW_DEALLOC routine  9-17, 11-13
RW_RDLOCK routine  9-17, 11-11
RW_TRYRDLOCK routine  9-17, 11-11
RW_TRYWRLOCK routine  9-17, 11-12
RW_UNLOCK routine  9-17, 11-12

RW_WRLOCK routine  9-17, 11-12

S

Sadapters  file  9-9, 10-9, 10-20, 14-8
Sassign  file  14-13
scatter/gather I/O  10-3, 12-3
Sd file  14-13
sdevice  file  2-12
security issues  16-4-16-5
server_block  system call  17-21
server_wake1  system call  17-21
server_wakevec  system call  17-21
shared memory regions  17-6

creation  17-39
shmat  system call  17-24
shmconfig command  17-8
shmget  system call  17-24
single-user driver  17-4
sleep locks  9-18, 11-13
SLEEP_ALLOC routine  9-18, 11-14
SLEEP_DEALLOC routine  9-18, 11-17
SLEEP_LOCK routine  9-18, 11-14
SLEEP_LOCK_SIG routine  9-18, 11-15
SLEEP_LOCKAVAIL routine  9-18, 11-16
SLEEP_LOCKOWNED routine  9-18, 11-17
SLEEP_TRYLOCK routine  9-18
SLEEP_UNLOCK routine  9-18, 11-17
software devices  2-5
Space.c  file  14-14
spin locks  11-5
spin_int  macro  17-20
spin_islock  macro  17-20
spin_trylock  macro  17-20
spin_unlock  macro  17-20
spl_map  routine  17-19
spl_request  routine  17-19
spl_request_macro  macro  17-19
spl_unmap  routine  17-19
spl0  routine  9-19
spl8  routine  9-19
splbase  routine  9-19
spldisk  function  9-19
splhi  routine  9-19
spln  routine  9-19
splstr  routine  9-19
spltimeout  routine  9-19
spltty  routine  9-19
splx  routine  9-19
start  routine  15-5
status information  17-6, 17-41
strategy  routine  12-2



Index

Index-5

SV_ALLOC routine  9-18, 11-18
SV_BROADCAST routine  9-18
SV_DEALLOC routine  9-18, 11-22
SV_SIGNAL routine  9-18, 11-21
SV_WAIT routine  9-18, 11-19
SV_WAIT_SIG routine  9-18, 11-20
switch table entry points  2-8
synchronization issues  17-12
synchronization primitives  9-17-9-18, 11-3-11-4
synchronization tools  17-19
synchronization variables  9-18, 11-18
system buses  4-3, 5-3, 6-3, 7-4
system data structures  9-3
System  file  2-12, 14-9, 15-4
system header files  2-12

T

timeout  routine  9-19
timing and timeout routines  9-19
tools

busy-wait mutual exclusion  17-20
rescheduling control  17-20
synchronization  17-19

transfer width support  4-5, 5-5, 6-5, 7-7
TRYLOCK routine  9-17, 11-8

U

udbuffree  routine  17-17
uderror  routine  17-18
uio  structure  9-7
uiomove  routine  9-16
uistat  command  17-15, 17-22
_unload  routine  13-5
UNLOCK routine  9-17, 11-8
untimeout  routine  9-19
ureadc  routine  9-16
userbufalloc  routine  17-16
userdma  system call  17-15, 17-36
User-level driver

DR11W  17-30
user-level driver  17-1

advantages  17-2
control functions  17-30
data structures  17-5
device configuration program  17-14, 17-38
disadvantages  17-2
error returns  17-13
I/O buffer  17-7

interrupt service routine  17-34
interrupt support  17-4, 17-11
multi-user  17-4
operating system support  17-15
polling support  17-11
routines  17-9
shared memory regions  17-6, 17-39
single-user  17-4
synchronization issues  17-12

user-level interrupt
process creation  17-40

user-level interrupt process  17-34
User-level interrupt routines

Using local memory  17-37
user-level interrupt routines  17-22
user-level interrupt utility  17-22
userr-level driver

polling support  17-4
uwritec  routine  9-16

V

VME addressing  5-5, 6-4
vme_address  routine  17-23
vtop  routine  9-16, 12-3

W

wrapper
code for a loadable module  13-5
data structures  13-6
functions  13-5
macros  13-6

write  routine  10-16, 15-5



Device Driver Programming

Index-6






	Device Driver Programming
	Preface
	Contents
	Introduction
	Focus of Manual
	Overview of the Driver Development Effort
	Writing a New Device Driver
	Porting an Existing Device Driver

	Organization of Manual
	Supporting Documentation

	Understanding Device Drivers
	What Is a Device Driver?
	Application Programs Versus Drivers
	Structure
	Parallel Execution
	Interrupts
	Driver As Part of the Kernel

	Types of Devices
	Hardware Devices
	Software Devices

	Types of Device Driver Interfaces
	Block and Character Interfaces
	STREAMS Interface

	Major and Minor Numbers
	Major Numbers
	Minor Numbers

	Driver Entry Points and Kernel Utilities
	Entry Points
	Initialization Entry Points
	Switch Table Entry Points
	Interrupt Entry Points

	Kernel Support Routines

	Driver Environment
	Installation and Configuration
	Master, System, and Sadapters Files
	Master File
	System File
	Sadapters File

	Driver Header Files

	Driver Development

	The PCI Environment
	Introduction
	PCI Variants and Form Factors
	Big Vs Little Endian Issues
	RISC Vs CISC CPU Processor Issues
	Types of PCI Resources
	Configuration Space
	Base Address Registers(BAR)
	Decode into I/O Space
	Decode into Memory Space

	ROM Base Address Registers(BAR)
	Decode into Memory Space
	Interrupts
	System Memory and PCI bus Master Devices

	Effects of PCI to PCI Bridges

	PowerMax OS Support
	Finding the Correct Adapter Structure
	Accessing the Configuration Space Registers
	Getting/Releasing the Base Address Register Assignments
	Determining the Kernel Virtual Address of PCI Base Address Register
	Accessing PCI Device Registers and Memory Space Though Kernel Virtual Maps
	Determining PCI Memory Address of Particular System Memory Location
	Attaching and Releasing a PCI Interrupt Vector Assigned to a PCI Slot/Function


	Series 6000 Hardware Environment
	System Overview
	Processor Board
	Caches

	Memory
	Buses
	Data Types
	Byte-Ordering and Alignment

	(H)VME Addressing
	Transfer Width Support
	Address Types
	Address Modifiers
	HVME Address Ranges
	VME Address Ranges
	(H)VME Devices as (H)VME Bus Slaves
	(H)VME Devices as Bus Masters

	Bus Time-Out
	VME Device Address Assignment and Configuration

	Bus Arbitration
	Bus Request Levels
	Configuring Devices Without BR0


	Interrupt Request Levels and Priorities
	Interrupt Lines (Levels)

	Interrupt Vector Generation and Configuration

	Power Hawk 610 Hardware Environment
	System Overview
	Processor Board
	Caches

	Memory
	Buses
	Timers
	Interrupts
	Data Types
	Byte-Ordering and Alignment

	VME Addressing
	Transfer Width Support
	Address Types
	Address Modifiers
	VME Address Ranges
	VME Devices as VME Bus Slaves
	VME Devices as Bus Masters

	Bus Time-Out
	VME Device Address Assignment and Configuration

	Bus Arbitration
	Bus Request Levels

	Interrupt Request Levels and Priorities
	Interrupt Lines (Levels)

	Interrupt Vector Generation and Configuration
	VME to PCI Address Decode

	PowerMAXION Hardware Environment
	System Overview
	Processor Board
	Caches

	Memory
	Buses
	Data Types
	Byte-Ordering and Alignment

	VME Addressing
	Transfer Width Support
	Address Types
	Address Modifiers
	VME Address Ranges
	VME Devices as VME Bus Slaves
	VME Devices as Bus Masters

	Bus Time-Out
	VME Device Address Assignment and Configuration

	Bus Arbitration
	Bus Request Levels

	Interrupt Request Levels and Priorities
	Interrupt Lines (Levels)

	Interrupt Vector Generation and Configuration

	Power Hawk 620/640 Hardware Environment
	System Overview
	Processor Board
	Memory
	Buses
	Timers
	Interrupts
	Data Types
	Byte-Ordering and Alignment

	VME Addressing
	Transfer Width Support
	Address Types
	Address Modifiers
	VME Address Ranges
	VME Devices as VME Bus Slaves
	VME Devices as Bus Masters

	Bus Time-Out
	VME Device Address Assignment and Configuration

	Bus Arbitration
	Bus Request Levels

	Interrupt Request Levels and Priorities
	Interrupt Lines (Levels)

	Interrupt Vector Generation and Configuration
	PCI Address Decode

	Motorola MCP750 Hardware Environment
	SYSTEM OVERVIEW
	PROCESSOR BOARD
	MEMORY
	BUSSES
	TIMERS
	INTERRUPTS
	DATA TYPES
	BYTE-ORDERING AND ALIGNMENT
	Byte-Ordering and Alignment


	Understanding the Kernel Environment
	Overview of the Kernel I/O Structure and Flow of Control
	Overview of Source Directories and Files
	System Data Structures
	Data Types
	Header Files
	The cdevsw Structure
	The cred Structure
	The iovec and uio Structures
	The adapter Structure
	The device Structure

	Kernel Support Routines
	Ioctl Macros
	Memory Allocation and Management Routines
	Memory Access Routines
	Address Management Routines
	Data Transfer Routines
	Synchronization Routines
	Spin Locks
	Sleep Locks
	Event Synchronization Primitives

	Processor Priority Level Adjustment Routines
	Timing and Timeout Routines
	Interrupt Vector Routines
	Debug Routines
	Small vs. Large Offset Drivers


	Developing a Device Driver
	Understanding the Device
	Device Modes
	Configuration Modes
	Device Registers
	Command Sequences
	DMA Support
	Programmed I/O Support
	Data Chaining Support

	Installing and Testing the Device
	Installing the Device
	Using the Console Processor to Probe the Device
	Validating Slave Address Configurations with the Console Processor
	Validating Master Address Configurations with the Console Processor


	Understanding the Major Components of a Device Driver
	Initialization Routines
	I/O Service Routines
	Interrupt Service Routines

	Developing the Driver Header File and Data Structures
	Developing the Driver Source File
	Initialization Routines
	The Init Routine
	The Start Routine

	I/O Service Routines
	The Open Routine
	The Close Routine
	The Read Routine
	The Write Routine
	The Ioctl Routine
	The Chpoll Routine
	The Mmap Routine

	Interrupt Service Routines
	The Intr Routine

	Local Routines
	Error Handling
	Blocking Primitives and Signals
	Blocking Primitives and Premature Returns


	Multithreading a Device Driver
	The Multithreaded, Preemptive Kernel and Device Drivers
	Protecting a Device Driver
	Using the Synchronization Primitives
	Spin Locks
	Basic Locks
	Read/Write Locks

	Sleep Locks
	Using Multiple Locks
	Synchronization Variables


	Supporting Direct Memory Access (DMA)
	Overview
	DMA into User Buffers
	DMA into Discontiguous Physical Memory
	Building a Scatter/Gather Chain List
	24-Bit DMA Devices
	Direct Memory Access to Kernel Space

	Loadable Modules
	The DLM Mechanism
	Loadable Module Types
	The Difference between Static Modules and Loadable Modules
	Overview of the Load Process
	Overview of the Unload Process
	The Difference between a Demand Load and an Auto Load
	Demand Load
	Auto Load
	Demand Unload
	Auto Unload


	Making Modules Loadable
	Coding a Wrapper
	Wrapper Functions
	Wrapper Data Structures
	Wrapper Macros
	Sample Wrapper Code

	Packaging a Loadable Module for Installation
	Master File Definitions for Loadable Modules
	System File Definitions for Loadable Modules
	Mtune File Definitions for Loadable Modules

	Installing and Configuring a Loadable Module
	Managing Loadable Modules
	Loading the Module
	Querying the Module's Status
	Modifying the DLM Search Path
	Unloading the Module

	Debugging a Loadable Module
	DLM Error Messages
	Dynamic Symbols and kdb



	Driver Installation and Tuning
	Using idtools
	idtools Utilities and Commands
	idbuild
	idcheck
	idinstall
	idmkinit
	idmknod
	idspace
	idtune


	The Driver Software Package (DSP)
	Overview of DSP Components
	DSP Component Files
	Sadapters
	Driver.o
	Master
	System
	Init
	Mtune
	Node
	Rc
	Sassign
	Sd
	Space.c

	Packaging the Driver
	prototype
	postinstall
	preremove

	Installing a Package
	Removing a Package

	DSP Commands and Procedures
	Installing a DSP
	Updating a DSP
	Modifying a Kernel Parameter
	Removing a DSP
	Building a New Kernel
	Emergency Recovery (New Kernel Does Not Boot)
	Documenting Your Driver Installation


	Driver Testing and Debugging
	Introduction
	Preparing a Driver for Debugging
	General Guidelines
	Putting Debug Statements in a Driver
	Installing a Driver for Testing
	Emergency Recovery (New Kernel Does Not Boot)


	Common Driver Problems
	Coding Problems
	Installation Problems
	Data Structure Problems
	Timing Errors
	Corrupted Interrupt Stack
	Accessing Critical Data
	Overuse of Local Driver Storage
	Incorrect DMA Address Mapping

	Driver Debugging Techniques
	Using the Console Processor and Setting Breakpoints
	Booting Scenarios
	Shutdown and Reboot
	System Panic
	Breakpoints in the Initialization Phase


	Using crash to Debug a Driver
	Saving the Core Image of Memory
	Initializing crash on the Memory Dump
	Using crash Functions
	Using crash Commands

	Kernel Debugger
	Entering kdb from a Driver
	System Panics


	Special Considerations
	Device Drivers and Real Time
	Device Drivers and VME Bus Errors
	Additional Considerations

	Device Drivers and Security
	System Requirements
	Design and Implementation Issues


	Writing a User-Level Device Driver
	Understanding a User-Level Device Driver
	What Is a User-Level Device Driver?
	What Are the Advantages and Disadvantages of a User-Level Driver?
	Which Types of Devices Are Candidates for a User-Level Driver?
	What Affects the Complexity of a User-Level Device Driver?
	Programmed I/O versus Direct Memory Access Devices
	Single-User Drivers versus Multiuser Drivers
	Polling Support versus Interrupt Support


	Understanding the Components of a User-Level Driver
	Overview of Data Structures
	Shared Memory Regions
	User I/O Buffer Descriptor

	Overview of User-Level Device Driver Routines
	Overview of Interrupt-Handling Issues
	Overview of Synchronization Issues
	Overview of Error Returns
	Overview of the Device Configuration Program

	Understanding Operating System Support for a User-Level Driver
	The userdma(2) System Call
	The udbufalloc(3X) Library Routine
	The udbuffree(3X) Library Routine
	The atexit(3C) Library Routine
	The uderror(3X) Library Routine
	The spl Support Routines
	Process Synchronization Tools
	Busy-Wait Mutual Exclusion Tools
	Rescheduling Control Tools
	The Server System Calls

	The User-Level Interrupt Library Routines and Utility
	The vme_address(3C) Library Routine

	Developing the Driver’s I/O Service Routines
	The open Routine
	The Asynchronous I/O Support Routines
	The aread Routine
	The awrite Routine
	The acheck Routine
	The await Routine

	Control Functions
	The close Routine

	Developing the Driver’s Interrupt Service Routine
	Connecting a User-Level Interrupt Process and Interrupt Vector
	User-Level Interrupts and Memory Locking
	Use of Local Memory
	Constraints on Interrupt-Handling Routines

	Developing the Device Configuration Program
	Create Shared Memory Regions and Initialize the Device
	Reset the Device
	Create a User-Level Interrupt Process
	Provide Debug and Status Information
	Restore the Device to its Initial State

	Debugging the Driver

	A
	Example PCI User-Level Device Driver
	Glossary
	Index

