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Preface

Scope of Manual

This manual provides a programming guide for the PowerMAX OS STREAMS facility. It
contains reference information and procedures for developing operating system communi-
cation services.

Structure of Manual

This manual consists of eleven chapters, a glossary, and an index. A brief description of
the chapters is presented as follows:

• Chapter 1 provides an introduction to the manual and an overview of the
STREAMS facility. It describes STREAMS components and highlights the
main benefits of STREAMS.

• Chapter 2 explains the STREAMS-related system call interface.

• Chapter 3 provides additional information on the STREAMS I/O structure
and data flow and contrasts it with the conventional character I/O mecha-
nism.

• Chapter 4 describes theput  andservice  procedures and provides an
asynchronous protocol Stream example.

• Chapter 5 describes the STREAMS message structure and message queues
and priorities. It explains the procedures and interfaces for sending mes-
sages.

• Chapter 6 provides an overview of STREAMS modules and drivers,
explains theioctl  mechanism, and describes the device driver/driver-ker-
nel interfaces (DDI/DKI) and the STREAMS interface. It also explains
how to configure the system for STREAMS modules and drivers.

• Chapter 7 explains how to develop STREAMS modules.

• Chapter 8 explains how to develop STREAMS drivers.

• Chapter 9 explains how STREAMS multiplexing configurations are cre-
ated and discusses multiplexing drivers.

• Chapter 10 describes the STREAMS-based Transport Provider Interface
(TPI).

• Chapter 11 describes the STREAMS-based Data Link Provider Interface
(DLPI).

The glossary contains definitions of technical terms that are important to understanding
the concepts presented in this book.
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The index contains an alphabetical reference to key terms and concepts and numbers of
pages where they occur in text.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear initalic type. Special terms may also appear initalic.

list bold User input appears inlist bold  type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear inlist bold  type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears inlist  type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

Referenced Publications

The following publications are referenced in this document:

0890425 Device Driver Programming

On line Command Reference

On line Operating System API Reference

On line System Files and Devices Reference

On line Device Driver Reference
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Chapter 1Introduction to STREAMS
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1

Introduction 1

STREAMS Modules and Drivers describes everything you need to know about the
STREAMS tool set so that you can develop PowerMAX OS operating system communi-
cation services. It is part of theDevice Driver Programming series of manuals which
includes:

• Device Driver Programming

• Device Driver Reference (on-line only)

It contains chapters regarding the following components of the STREAMS interface:

• System Calls

• Input/Output operations

• Processing Routines

• STREAMS Messages and Message Types

• Modules and Drivers

• Multiplexing

In addition, it contains chapters about how STREAMS works with the following ISO-stan-
dard protocols:

• Transport Provider Interface

• Data Link Provider Interface

A comprehensive glossary covering all of the terms found in theDevice Driver Program-
ming manual set is also included.

References 1

This book occasionally refers to other books, notably the reference manuals. The refer-
ence manuals are providedonly in on-line form.

• Command Reference (Section 1)

• Operating System API Reference (Sections 2 and 3)

• Windowing System API Reference (Section 3 windowing functions)
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• System Files and Devices Reference (Section 4, 5, and 7)

• Device Driver Reference (Sections D1 - D5)

These books contain the manual pages for the various commands, system calls, library
functions, file contents, and devices. Within each book, manual pages are grouped numer-
ically by section numbers. Within a section, the pages are sorted alphabetically, without
regard to the letter that follows the section number. For example, the manual pages for
Sections 3C, 3E, 3I, 3M, 3N, 3S, 3W, and 3X are all sorted together within Section 3 in the
Operating System API Reference.

Manual pages are referred to with the function name showing first in constant width font,
followed by the section number appearing in parentheses in normal font. For example, the
Executable and Linking Format Library (ELF) manual page appears aself(3E) .

TheCommand Reference, Operating System API Reference, andSystem Files and Devices
Reference are foundation documents which describe formally and comprehensively every
feature of the PowerMAX OS system and are a recommended supplement to this book.

Notation Conventions 1

The following conventions are observed in this book:

• Computer input and output appear inconstant width  type. Substitut-
able values appear initalic type:

$ cc file.c file.c file.c

The dollar sign is the default system prompt for the ordinary user. There is an
implied RETURN at the end of each command. When a command extends beyond
the width of the page, the break is marked with a backslash and an indented second
line:

$ cc -L ../archives -L ../mylibs file1.c file2.c file3.c \
file4.c -l foo

Of course, a command that extends beyond the width of your terminal screen will
wrap around. You should use the backslash only if you enter the command exactly
as we show it.

• In cases where you are expected to enter a control character, the character
is shown as, for example,control_d or ^d. Either form means that you
press thed key while holding down theCTRL key.

• A number in parentheses following a command or function name refers to
the section of the reference manuals where the command or function is
described. For example,cc(1) , means that thecc  command is described
in Section 1 of the reference manuals. The sections which are in each book
are listed earlier, under “References.”
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Overview of STREAMS 1

STREAMS is a general, flexible facility and a set of tools for development of PowerMAX
OS system communication services. It supports the implementation of services ranging
from complete networking protocol suites to individual device drivers. STREAMS defines
standard interfaces for character input/output within the kernel, and between the kernel
and the rest of the PowerMAX OS system. The associated mechanism is simple and open-
ended. It consists of a set of system calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable development and easy
integration of high-performance network services and their components. STREAMS does
not impose any specific network architecture. The STREAMS user interface is upwardly
compatible with the character I/O user level functions such asopen , close , read ,
write , andioctl .

A Stream is a full-duplex processing and data transfer path between a STREAMS driver in
kernel space and a process in user space. See Figure 1-1. In the kernel, a Stream is con-
structed by connecting a “Stream head,” a “driver,” and zero or more “modules” between
the Stream head and driver. TheStream headis the end of the Stream nearest to the user
process. All system calls made by a user level process on a Stream are processed by the
Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe is a full-duplex (bidirectional)
data transfer path in the kernel. It implements a connection between the kernel and one or
more user processes and also shares properties of STREAMS-based devices.

A STREAMS driver may be a device driver that provides the services of an external I/O
device, or a software driver, commonly referred to as a pseudo-device driver. The driver
typically handles data transfer between the kernel and the device and does little or no pro-
cessing of data other than conversion between data structures used by the STREAMS
mechanism and data structures that the device understands.

A STREAMS module represents processing functions to be performed on data flowing on
the Stream. The module is a defined set of kernel-level routines and data structures used to
process data, status, and control information. Data processing may involve changing the
way the data is represented, adding or deleting header and trailer information to data,
and/or packetizing and depacketizing data. Status and control information includes signals
and input/output control information. Each module is self-contained and functionally iso-
lated from any other component in the Stream except its two neighboring components.
The module is not a required component in STREAMS, whereas the driver is, except in a
STREAMS-based pipe where only the Stream head is required.

The STREAMS module communicates with its neighbors by passing “messages.” One or
more modules may be inserted into a Stream between the Stream head and driver to per-
form intermediate processing of messages as they pass between the Stream head and
driver. STREAMS modules aredynamically interconnected in a Stream by a user process.
No kernel programming, assembly, or link editing is required to create the interconnec-
tion.
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Figure 1-1.  Simple STREAMs

Figure 1-2.  STREAMS-based Pipe

STREAMS uses queue structures to keep information about given instances of a pushed
module or opened STREAMS device. Aqueue is a data structure that contains status
information, a pointer to routines for processing messages, and pointers for administering
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the Stream. Queues are always allocated inpairs; one queue for the “read-side” and the
other for the “write-side.” There is one queue pair for each driver and module, and the
Stream head. The pair of queues is allocated whenever the Stream is opened or the module
is pushed (added) onto the Stream.

Data is passed between a driver and the Stream head and between modules in the form of
messages. Amessage is a set of data structures used to pass data, status, and control infor-
mation between user processes, modules, and drivers. Messages that are passed from the
Stream head toward the driver or from the process to the device, are said to traveldown-
stream (also calledwrite-side). Similarly, messages passed in the other direction, from the
device to the process or from the driver to the Stream head, travelupstream (also called
read-side).

A STREAMS message is made up of one or more “message blocks.” Eachblock consists
of a header, a data block, and a data buffer. The Stream head transfers data between the
data space of a user process and STREAMS kernel data space. Data to be sent to a driver
from a user process is packaged into STREAMS messages and passed downstream. When
a message containing data arrives at the Stream head from downstream, the message is
processed by the Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain message types
sent upstream may cause the Stream head to perform specific actions, such as sending a
signal to a user process. Other message types are intended to carry information within a
Stream and are not directly seen by a user process.

Basic Stream Operations 1

This section describes the basic set of operations for manipulating STREAMS entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has one or
more nodes associated with it in the file system, and it is accessed using theopen  system
call. Typically, each file system node corresponds to a separate minor device for that
driver. Opening different minor devices of a driver causes separate Streams to be con-
nected between a user process and the driver. The file descriptor returned by theopen  call
is used for further access to the Stream. If the same minor device is opened more than
once, only one Stream is created; the firstopen  call creates the Stream, and subsequent
open  calls return a file descriptor that references that Stream. Each process that opens the
same minor device shares the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using thewrite  sys-
tem call and receive data from the device using theread  system call. Access to
STREAMS drivers usingread  andwrite  is compatible with the traditional character
I/O mechanism.

Theclose  system call closes a device and dismantles the associated Stream when the last
open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the user pro-
gram interacts with a communications device that provides point-to-point data transfer
between two computers. Data written to the device transmitted over the communications
line, and data arriving on the line can be retrieved by reading from the device.
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In the example,/dev/comm/01  identifies a minor device of the communications device
driver. When this file is opened, the system recognizes the device as a STREAMS device
and connects a Stream to the driver. Figure 1-3 shows the state of the Stream following the
call toopen .

Figure 1-3.  Stream to Communication Driver

This example illustrates a user reading data from the communications device and then
writing the input back out to the same device. In short, this program echoes all input back
over the communications line. The example assumes that a user sends data from the other
side of the communications line. The program reads up to 1024 bytes at a time, and then
writes the number of bytes just read.

#include <fcntl.h>

main()
{

char buf[1024];
int fd, count;

if ((fd = open(“/dev/comm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

while ((count = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, count) != count) {

perror(“write failed”);
break;

}
}
exit(0);

}
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The read  call returns the available data, which may contain fewer than 1024 bytes. If no
data is currently available at the Stream head, theread  call blocks until data arrive.

Similarly, thewrite  call attempts to sendcount bytes to/dev/comm/01 . However,
STREAMS implements a flow control mechanism that prevents a user from exhausting
system resources by flooding a device driver with data.

Flow control controls the rate of message transfer among the modules, drivers, Stream
head, and processes. Flow control is local to each Stream and is advisory (voluntary). It
limits the number of characters that can be queued for processing at any queue in a
Stream. It also limits buffers and related processing at any queue and in any one Stream.
However, it does not consider buffer pool levels or buffer usage in other Streams. Flow
control is not applied to high-priority messages.

If the Stream exerts flow control on the user, thewrite  call blocks until flow control is
relieved. The call does not return until it has sentcount bytes to the device.exit , which is
called to terminate the user process, also closes all open files, and thereby dismantling the
Stream in this example.

STREAMS components 1

This section gives an overview of the STREAMS components and discusses how these
components interact with each other. A more detailed description of each STREAMS
component is given later.

Queues 1

A queue is aninterface between a STREAMS driver or module and the rest of the Stream.
Queues are always allocated as an adjacent pair. The queue with the lower address in the
pair is a read queue, and the queue with the higher address is used for the write queue.

A queue'sservice routine is invoked toprocess messages on the queue. It usually removes
successive messages from the queue, processes them, and calls the “put”  routine of the
next module in the Stream to give the processed message to the next queue.

A queue'sput routine is invoked by the preceding queue'sput and/orservice routine toadd
a message to the current queue. If a module does not need to enqueue messages, itsput
routine can call the neighboring queue'sput routine.

Each queue also has a pointer to an “open” and “close” routine. Theopen routine of a
driver is called when the driver is first opened and on every successive open of the Stream.
Theclose routine of the driver is called when the last reference to the Stream is given up
and the Stream is dismantled. Theopen routine of a module is called when the module is
first pushed on the Stream and on every successive open of the Stream. Theclose routine
of the module is called when the module is popped (removed) off the Stream.
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Messages 1

All input and output under STREAMS is based on messages. The objects passed between
STREAMS modules are pointers to messages. All STREAMS messages use two data
structures (msgb anddatab ) to refer to the message data. These data structures describe
the type of the message and contain pointers to the data of the message, as well as other
information. Messages are sent through a Stream by successive calls to theput  procedure
of each module or driver in the Stream.

Message Types 1

All STREAMS messages are assigned message types to indicate their intended use by
modules and drivers and to determine their handling by the Stream head. A driver or mod-
ule can assign most types to a message it generates, and a module can modify a message
type during processing. The Stream head converts certain system calls to specified mes-
sage types and sends them downstream. It responds to other calls by copying the contents
of certain message types that were sent upstream.

Most message types are internal to STREAMS and can only be passed from one
STREAMS component to another. A few message types, for exampleM_DATA,
M_PROTO, andM_PCPROTO, can also be passed between a Stream and user processes.
M_DATA messages carry data within a Stream and between a Stream and a user process.
M_PROTO or M_PCPROTO messages carry both data and control information.

Figure 1-4 shows that a STREAMS message consists of one or more linked message
blocks that are attached to the first message block of the same message.

Figure 1-4.  A Message

Messages can exist stand-alone, as in Figure 1-4, when the message is being processed by
a procedure. Alternately, a message can await processing on a linked list of messages,
called a message queue. In Figure 1-5, Message 2 is linked to Message 1.
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Figure 1-5.  Messages on a Message Queue

When a message is on a queue, the first block of the message contains links to preceding
and succeeding messages on the same message queue, in addition to the link to the second
block of the message (if present). The message queue head and tail are contained in the
queue.

STREAMS utility routines enable developers to manipulate messages and message
queues.

Message Queuing Priority 1

In certain cases, messages containing urgent information (such as a break or alarm condi-
tions) must pass through the Stream quickly. To accommodate these cases, STREAMS
provides multiple classes of message queuing priority. All messages have an associated
priority field. Normal (ordinary) messages have a priority of zero. Priority messages have
a priority greater than zero. High-priority messages are high-priority by virtue of their
message type. The priority field in high-priority messages is unused and should always be
set to zero. STREAMS prevents high priority messages from being blocked by flow con-
trol and causes aservice  procedure to process them ahead of all ordinary messages on
the queue. This results in the high priority message transiting each module with minimal
delay.
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Non-priority, ordinary messages are placed at the end of the queue following all other
messages in the queue. Priority messages can be either high priority or priority band mes-
sages. High-priority messages are placed at the head of the queue but after any other high-
priority messages already in the queue. Priority band messages that enable support of
urgent, expedited data are placed in the queue after high-priority messages but before ordi-
nary messages.

Message priority is defined by the message type; once a message is created, its priority
cannot be changed. Certain message types come in equivalent high priority/ordinary pairs
(for example,M_PCPROTO andM_PROTO), so that a module or device driver can choose
between the two priorities when sending information.

Modules 1

A module performs intermediate transformations on messages passing between a Stream
head and a driver. There may be zero or more modules in a Stream (zero when the driver
performs all the required character and device processing).

Each module is constructed from a pair of queue structures (seeAu/Ad  andBu/Bd  in
Figure 1-6). One queue performs functions on messages passing upstream through the
module (Au andBu). The other set (Ad andBd) performs another set of functions on
downstream messages.

Each queue in a module generally has distinct functions, that is, unrelated processing pro-
cedures and data. The queues operate independently andAu will not know if a message
passes throughAd unlessAd is programmed to inform it. Messages and data can be shared
only if the developer specifically programs the module functions to perform the sharing.

Each queue connects to the adjacent queue in the direction of message flow (for example,
Au to Bu or Bd to Ad). In addition, within a module, a queue can readily locate its mate
and access its messages and data.
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Figure 1-6.  Detailed Stream

Each queue in a module points to messages, processing procedures, and data as follows:

• Messages — These are dynamically attached to the queue on a linked list
(the message queue, seeAd andBu in Figure 1-6) as they pass through the
module.

• Processing procedures — aput  procedure processes messages and must
be incorporated in each queue. An optionalservice  procedure can also
be incorporated. According to their function, the procedures can send mes-

161630

Queue
"Bu"

Queue
"Bd"

User
Process

User Space

Kernel Space

Queue
"Au"

Queue
"Ad"

Message
"Bu"

Message
"Ad"

Stream
Head

Queue
Pair

Driver
Routine

External
Interface

Stream
End

Upstream

Downstream

Module
B

Module
A

Driver



STREAMS Modules and Drivers

1-12

sages upstream and/or downstream, and can also modify the private data in
their module.

• Data — developers may use a private field in the queue to reference private
data structures (for example, state information and translation tables).

In general, each queue in a module has a distinct set of all these elements.

Drivers 1

STREAMS device drivers are an initial part of a Stream. They are structurally similar to
STREAMS modules. The call interfaces to driver routines are identical to the interfaces
used for modules.

Three significant differences exist between modules and drivers. A driver must be able to
handle interrupts from the device, a driver can have multiple Streams connected to it, and
a driver is initialized/de-initialized usingopen  andclose , whereas a module is initial-
ized/de-initialized usingI_PUSH ioctl  andI_POP ioctl .

Drivers and modules can pass signals, error codes, and return values to processes using
message types provided for that purpose.

Multiplexing 1

Earlier, Streams were described as linear connections of modules, where each invocation
of a module is connected to at most one upstream module and one downstream module.
While this configuration is suitable for many applications, others require the ability to
multiplex Streams in a variety of configurations. Typical examples are terminal window
facilities, and internetworking protocols (which might route data over several subnet-
works).

Figure 1-7 shows an example of a multiplexor that multiplexes data from several upper
Streams over a single lower Stream. An upper Stream is one that is upstream from a multi-
plexor, and a lower Stream is one that is downstream from a multiplexor. A terminal win-
dowing facility might be implemented in this fashion, where each upper Stream is associ-
ated with a separate window.
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Figure 1-7.  Many-to-One Multiplexor

Figure 1-8 shows a second type of multiplexor that might route data from a single upper
Stream to one of several lower Streams. An internetworking protocol could take this form,
where each lower Stream links the protocol to a different physical network.

Figure 1-8.  One-to-Many Multiplexor

Figure 1-9 shows a third type of multiplexor that might route data from one of many upper
Streams to one of many lower Streams.
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Figure 1-9.  Many-to-Many Multiplexor

The STREAMS mechanism supports the multiplexing of Streams through special pseudo-
device drivers. Using a linking facility, users can dynamically build, maintain, and dis-
mantle multiplexed Stream configurations. Simple configurations like the ones shown in
Figure 1-7 and Figure 1-9 can be further combined to form complex, multilevel multi-
plexed Stream configurations.

STREAMS multiplexing configurations are created in the kernel by interconnecting multi-
ple Streams. Conceptually, there are two kinds of multiplexors: upper and lower multi-
plexors. Lower multiplexors have multiple lower Streams between device drivers and the
multiplexor, and upper multiplexors have multiple upper Streams between user processes
and the multiplexor.

Figure 1-10 is an example of the multiplexor configuration that typically occurs where
internetworking functions are included in the system. This configuration contains three
hardware device drivers. The IP (Internet Protocol) is a multiplexor.

The IP multiplexor switches messages among the lower Streams or sends them upstream
to user processes in the system. In this example, the multiplexor expects to see the same
interface downstream to Module 1, Module 2, and Driver 3.
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Figure 1-10.  Internet Multiplexing Stream

Figure 1-10 depicts the IP multiplexor as part of a larger configuration. The multiplexor
configuration, shown in the dashed rectangle, generally has an upper multiplexor and addi-
tional modules. Multiplexors can also be cascaded below the IP multiplexor driver if the
device drivers are replaced by multiplexor drivers.

Figure 1-11 shows a multiplexor configuration where the multiplexor (or multiplexing
driver) routes messages between the lower Stream and one upper Stream. This Stream per-
forms X.25 multiplexing to multiple independent Switched Virtual Circuit (SVC) and Per-
manent Virtual Circuit (PVC) user processes. Upper multiplexors are a specific applica-
tion of standard STREAMS facilities that support multiple minor devices in a device
driver. This figure also shows that more complex configurations can be built by having one
or more multiplexed drivers below and multiple modules above an upper multiplexor.
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Developers can choose either upper or lower multiplexing, or both, when designing their
applications. For example, a window multiplexor would have a similar configuration to the
X.25 configuration of Figure 1-11, with a window driver replacing the Packet Layer, a tty
driver replacing the driver XYZ, and the child processes of the terminal process replacing
the user processes. Although the X.25 and window multiplexing Streams have similar
configurations, their multiplexor drivers would differ significantly. The IP multiplexor in
Figure 1-10 has a different configuration than the X.25 multiplexor, and the driver would
implement its own set of processing and routing requirements in each configuration.

Figure 1-11.  X.25 Multiplexing Stream

In addition to upper and lower multiplexors, you can create more complex configurations
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general purpose multi-
plexor drivers. Instead, STREAMS provides a general purpose multiplexing facility,
which allows users to set up the intermodule/driver plumbing to create multiplexor config-
urations of generally unlimited interconnection.
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Benefits of STREAMS 1

STREAMS provides the following benefits:

• A flexible, portable, and reusable set of tools for development of
PowerMAX OS system communication services.

• Easy creation of modules that offer standard data communications services
and the ability to manipulate those modules on a Stream.

• From user level, modules can be dynamically selected and interconnected;
kernel programming, assembly, and link editing are not required to create
the interconnection.

STREAMS also greatly simplifies the user interface for languages that have complex input
and output requirements.

Standardized Service Interfaces 1

STREAMS simplifies the creation of modules that present a service interface to any
neighboring application program, module, or device driver. A service interface is defined
at the boundary between two neighbors. In STREAMS, a service interface is a specified
set of messages and the rules that allow passage of these messages across the boundary. A
module that implements a service interface receives a message from a neighbor and
responds with an appropriate action (for example, sends back a request to retransmit)
based on the specific message received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However, rational
sequences are generally constructed by connecting modules with compatible protocol ser-
vice interfaces. For example, a module that implements an X.25 protocol layer, presents a
protocol service interface at its input and output sides. See Figure 1-12. In this example,
other modules should only be connected to the input and output side if they have the com-
patible X.25 service interface.

Manipulating Modules 1

STREAMS provides the capabilities to manipulate modules from the user level, to inter-
change modules with common service interfaces, and to change the service interface to a
STREAMS user process. These capabilities yield further benefits when implementing net-
working services and protocols, including:

• User level programs can be independent of underlying protocols and physi-
cal communication media.

• Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

• Higher level services can be created by selecting and connecting lower
level services and protocols.
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The following examples show the benefits of STREAMS capabilities for creating service
interfaces and manipulating modules. These examples are only illustrations and do not
necessarily reflect real situations.

Protocol Portability 1

Figure 1-12 shows how the same X.25 protocol module can be used with different drivers
on different machines by implementing compatible service interfaces. The X.25 protocol
module interfaces are Connection Oriented Network Service (CONS) and Link Access
Protocol - Balanced (LAPB).

Figure 1-12.  X.25 Multiplexing Stream

Protocol Substitution 1

Alternate protocol modules (and device drivers) can be interchanged on the same machine
if they are implemented to an equivalent service interface.

Protocol Migration 1

Figure 1-13 illustrates how STREAMS can move functions between kernel software and
front-end firmware. A common downstream service interface allows the transport protocol
module to be independent of the number or type of modules below. The same transport
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module connects without change to either an X.25 module or X.25 driver that has the same
service interface.

By shifting functions between software and firmware, developers can produce cost effec-
tive, functionally equivalent systems over a wide range of configurations. They can rapidly
incorporate technological advances. The same transport protocol module can be used on a
lower capacity machine, where economics may preclude the use of front-end hardware,
and also on a larger scale system where a front-end is economically justified.

Figure 1-13.  Protocol Migration

Module Reusability 1

Figure 1-14 shows the same canonical module (for example, one that provides delete and
kill processing on character strings) reused in two different Streams. This module is typi-
cally implemented as a filter, with no downstream service interface. In both cases, a tty
interface is presented to the Stream's user process because the module is nearest to the
Stream head.
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Figure 1-14.  Module Reusability
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Chapter 2STREAMS System Calls

2
2
2

Introduction 2

This chapter shows how to build, use, and dismantle a Stream using STREAMS-related
systems calls. It also contains a section on STREAMS construction.

General and STREAMS-specific system calls provide the user level facilities required to
implement application programs. This system call interface is upwardly compatible with
the traditional character I/O facilities. Theopen(2)  system call recognizes a STREAMS
file and creates a Stream to the specified driver. A user process can receive and send data
on STREAMS files usingread(2)  andwrite(2)  in the same manner as with tradi-
tional character files. Theioctl(2)  system call enables users to perform functions spe-
cific to a particular device. STREAMSioctl  commands (seestreamio(7 )) support a
variety of functions for accessing and controlling streams. The lastclose(2)  in a
Stream dismantles a Stream.

In addition to the traditionalioctl  commands and system calls, there are other system
calls used by STREAMS. Thepoll(2)  system call enables a user to poll multiple
Streams for various events. Theputmsg(2)  andgetmsg(2)  system calls enable users
to send and receive STREAMS messages, and are suitable for interacting with STREAMS
modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of modules and
drivers. The Stream head handles most system calls so that the related processing does not
have to be incorporated in a module or driver.

STREAMS System Calls 2

A STREAMS device responds to the standard character I/O system calls, such as
read(2)  andwrite(2) , by turning the request into a message. This feature ensures
that STREAMS devices may be accessed from the user level in the same manner as non-
STREAMS character devices. However, additional system calls provide other capabilities.

The STREAMS-related system calls are as follows:

open(2) Open a Stream

close(2) Close a Stream

read(2) Read data from a Stream

write(2) Write data to a Stream
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ioctl(2) Control a Stream

getmsg(2) Receive a message at the Stream head

putmsg(2 ) Send a message downstream

poll(2) Notify the application program when selected events occur on a
Stream

pipe(2) Create a channel that provides a communication path between
multiple processes

getmsg and putmsg 2

The putmsg(2)  andgetmsg(2) system calls enable a user process to send and
receive STREAMS messages, in the same form the messages have in kernel modules and
drivers.read(2)  and write(2)  are not designed to include the message boundaries
necessary to encode messages.

The advantage of this capability is that a user process, as well as a STREAMS module or
driver, can implement a service interface.

poll 2

Thepoll(2) system call allows a user process to monitor a number of streams to detect
expected I/O events. Such events might be the availability of a device for writing, input
data arriving from a device, a hangup occurring, an error being detected, or the arrival of a
priority message. Seepoll(2)  for more information.

STREAM Construction 2

STREAMS builds a Stream as a linked list of kernel resident data structures. The list is
created as a set of linked queue pairs. The first queue pair is the head of the Stream and the
second queue pair is the end of the Stream. The end of the Stream represents a device
driver, pseudo device driver, or the other end of a STREAMS-based pipe. Kernel routines
interface with the Stream head to perform operations on the Stream. Figure 2-1 depicts the
upstream (read) and downstream (write) portions of the Stream. Queue H2 is the upstream
half of the Stream head and Queue H1 is the downstream half of the Stream head. Queue
E2 is the upstream half of the Stream end and Queue E1 is the downstream half of the
Stream end.
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Figure 2-1.  Upstream and Downstream Stream Construction

At the same relative location in each queue is the address of the entry point, a procedure to
process any message received by that queue. The procedure for Queues H1 and H2 pro-
cess messages sent to the Stream head. The procedure for Queues E1 and E2, process mes-
sages received by the other end of the Stream, the Stream end (tail). Messages move from
one end to the other, from one queue to the next linked queue, as the procedure specified
by that queue is executed.

Figure 2-2 shows the data structures forming each queue:queue , qinit , qband ,
module_info , andmodule_stat . Theqband  structures have information for each
priority band in the queue. Thequeue  data structure contains various modifiable values
for that queue. Theqinit  structure contains a pointer to the processing procedures, the
module_info  structure contains initial limit values, and themodule_stat  structure is
used for statistics gathering. Each queue in the queue pair contains a different set of these
data structures. There is aqueue , qinit , module_info , andmodule_stat  data
structure for the upstream portion of the queue pair and a set of data structures for the
downstream portion of the pair. In some situations, a queue pair may share some or all the
data structures. For example, there may be a separateqinit  structure for each queue in
the pair and onemodule_stat  structure that represents both queues in the pair. These
data structures are described in theDevice Driver Reference.
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Figure 2-2.  Stream Queue Relationship

Figure 2-2 shows two neighboring queue pairs with links (solid vertical arrows) in both
directions. When a module is pushed onto a Stream, STREAMS creates a queue pair and
links each queue in the pair to its neighboring queue in the upstream and downstream
direction. The linkage allows each queue to locate its next neighbor. This relation is imple-
mented between adjacent queue pairs by theq_next  pointer. Within a queue pair, each
queue  locates its mate (see dashed arrows in Figure 2-2) by use of STREAMS utilities,
because there is no pointer between the twoqueue s. The existence of the Stream head
and Stream end is known to the queue procedures only as destinations towards which mes-
sages are sent.

Opening a STREAMS Device File 2

One way to build a Stream is to open (seeopen(2) ) a STREAMS-based driver file as
shown in Figure 2-3. All entry points into the driver are defined by thestreamtab  struc-
ture for that driver. Thestreamtab  structure has a format as follows:
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The streamtab  structure defines a module or driver.st_rdinit  points to the read
qinit  structure for the driver andst_wrinit  points to the driver's writeqinit  struc-
ture.st_muxrinit  andst_muxwinit  point to the lower read and writeqinit  struc-
tures if the driver is a multiplexor driver.

If the open  call is the initial file open, a Stream is created. (There is one Stream per
major/minor device pair.) First, an entry is allocated in the user's file table and avnode  is
created to represent the opened file. The file table entry is initialized to point to the allo-
catedvnode  (seef_vnode  in Figure 2-3) and thevnode  is initialized to specify a file of
type character special.

Second, a Stream header is created from anstdata  data structure and a Stream head is
created from a pair ofqueue  structures. The content ofstdata  andqueue  are initial-
ized with predetermined values, including the Stream head processing procedures.

The snode  contains the file system dependent information. It is associated with the
vnode  representing the device. Thes_commonvp field of thesnode  points to the com-
mon devicevnode . Thevnode  field, v_data , contains a pointer to thesnode . Instead
of maintaining a pointer to thevnode , thesnode  contains thevnode  as an element. The
scavenged  field of stdata  is initialized to point to the allocatedvnode . The
v_stream  field of thevnode  data structure is initialized to point to the Stream header;
thus, there is a forward and backward pointer between the Stream header and thevnode .
There is one Stream header per Stream. Theheader  is used by STREAMS while per-
forming operations on the Stream. In the downstream portion of the Stream, the Stream
header points to the downstream half of the Stream head queue pair. Similarly, the
upstream portion of the Stream terminates at the Stream header, because the upstream half
of the Stream head queue pair points to theheader . Figure 2-3 shows that from the
Stream header onward, a Stream is built of linked queue pairs.

struct streamtab {
struct qinit *st_rdinit;
struct qinit *st_wrinit;
struct qinit *st_muxrinit;
struct qinit *st_muxwinit;

};
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Figure 2-3.  Opened STREAMS-Based Driver

Next, aqueue  structure pair is allocated for the driver. Thequeue  limits are initialized to
those values specified in the correspondingmodule_info  structure. Thequeue  pro-
cessing routines are initialized to those specified by the correspondingqinit  structure.
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Then, theq_next  values are set so that the Stream head writequeue  points to the driver
write queue  and the driver readqueue  points to the Stream head readqueue . The
q_next  values at the ends of the Stream are set to null. Finally, the driveropen  proce-
dure (located using its readqinit  structure) is called.

If this is the initial open of this Stream, the driveropen  routine is called. If modules have
been specified to be autopushed, they are pushed immediately after the driveropen .
When a Stream is already open, furtheropen s of the same Stream result in calls to the
open  procedures of all pushable modules and the driveropen . Note that this is done in
the reverse order from the initial Streamopen . In other words, the initialopen  processes
from the Stream end to the Stream head, while lateropen s process from the Stream head
to the Stream end.

Creating a STREAMS-based Pipe 2

In addition to opening a STREAMS-based driver, a Stream can be created by creating a
pipe (see pipe(2) ). Because pipes are not character devices, STREAMS creates and
initializes astreamtab  structure for each end of the pipe. As with modules and drivers,
thestreamtab  structure defines the pipe. Thest_rdinit , however, points to the read
qinit  structure for the Stream head and not for a driver. Similarly, thest_wrinit
points to the Stream head's writeqinit  structure and not to a driver. Thest_muxrinit
andst_muxwinit  are initialized toNULL because a pipe cannot be a multiplexor driver.

When thepipe  system call is executed, two Streams are created. STREAMS follows the
procedures similar to those of opening a driver; however, duplicate data structures are cre-
ated. Two entries are allocated in the user's file table and twovnodes  are created to repre-
sent each end of the pipe, as shown in Figure 2-4. The file table entries are initialized to
point to the allocatedvnode s and eachvnode  is initialized to specify a file of typeFIFO .

Next, two Stream headers are created fromstdata  data structures and two Stream heads
are created from two pairs ofqueue  structures. The content ofstdata  andqueue  are
initialized with the same values for all pipes.

Each Stream header represents one end of the pipe, and it points to the downstream half of
each Stream head queue pair. Unlike STREAMS-based devices, however, the downstream
portion of the Stream terminates at the upstream portion of the other Stream.
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Figure 2-4.  Creating STREAMS-Based Pipe

The q_next  values are set so that the Stream head writequeue  points to the Stream
head readqueue  on the other side. Theq_next  values for the Stream head's readqueue
points to null because it terminates the Stream.

Adding and Removing Modules 2

As part of building a Stream, a module can be added (pushed) with anioctl I_PUSH
(seestreamio(7) ) system call. The push inserts a module beneath the Stream head.
Because of the similarity of STREAMS components, the push operation is similar to the
driveropen . First, the address of theqinit  structure for the module is obtained.

Next, STREAMS allocates a pair ofqueue  structures and initializes their contents as in
the driveropen .

Then,q_next  values are set and modified so that the module is interposed between the
Stream head and its neighbor immediately downstream. Finally, the moduleopen  proce-
dure (located usingqinit ) is called.
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Each push of a module is independent, even in the same Stream. If the same module is
pushed more than once on a Stream, there will be multiple occurrences of that module in
the Stream. The total number of pushable modules that may be contained on any one
Stream is limited by the kernel parameterNSTRPUSH.

An ioctl I_POP  (seestreamio(7) ) system call removes (pops) the module immedi-
ately below the Stream head. The pop calls the moduleclose  procedure. On return from
the moduleclose , any messages left on the module's message queues are freed (deallo-
cated). Then, STREAMS connects the Stream head to the component previously below
the popped module and deallocates the module'squeue  pair.I_PUSH andI_POP enable
a user process to alter dynamically the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed and a new one inserted
below the Stream head. Then the original module can be pushed back after the new mod-
ule has been pushed.

Closing the Stream 2

The lastclose  to a STREAMS file dismantles the Stream. Dismantling consists of pop-
ping any modules on the Stream and closing the driver. Before a module is popped, the
close  may delay to allow any messages on the write message queue of the module to be
drained by module processing. Similarly, before the driver is closed, theclose  may delay
to allow any messages on the write message queue of the driver to be drained by driver
processing. IfO_NDELAY (or O_NONBLOCK) (seeopen(2) ) is clear,close  waits up to
15 seconds for each module to drain and up to 15 seconds for the driver to drain. If
O_NDELAY (or O_NONBLOCK) is set, the pop is performed immediately and the driver is
closed without delay. Messages can remain queued, for example, if flow control is inhibit-
ing execution of the write queueservice  procedure. When all modules are popped and
any wait for the driver to drain is completed, the driverclose  routine is called. On return
from the driverclose , any messages left on the driver's queues are freed, and thequeue
andstdata  structures are deallocated.

NOTE

STREAMS frees only the messages contained on a message
queue. Any message or data structures used internally by the
driver or module must be freed by the driver or moduleclose
procedure.

Finally, the user's file table entry and thevnode  are deallocated and the file is closed.

Stream Construction Example 2

Screen 2-1 and Screen 2-2 extend the previous communications device echoing example
shown in “Basic Stream Operations” in “Introduction,” by inserting a module in the
Stream. The (hypothetical) module in this example can convert (change case, delete,
and/or duplicate) selected alphabetic characters.
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Inserting Modules 2

An advantage of STREAMS over the traditional character I/O mechanism stems from the
ability to insert various modules into a Stream to process and manipulate data that pass
between a user process and the driver. In the example, the character conversion module is
passed a command and a corresponding string of characters by the user. All data passing
through the module are inspected for instances of characters in this string; the operation
identified by the command is performed on all matching characters. The necessary decla-
rations for this program are shown in Screen 2-1:

Screen 2-1.  Inserting a Module into a STREAM

The first step is to establish a Stream to the communications driver and insert the character
conversion module. The following sequence of system calls accomplishes the following
display:

The I_PUSH ioctl  call directs the Stream head to insert the character conversion mod-
ule between the driver and the Stream head, creating the Stream shown in Figure 2-5. As
with drivers, this module resides in the kernel and must have been configured into the sys-
tem before it was booted, unless the system has an autoload capability.

#include <string.h>
#include <fcntl.h>
#include <stropts.h>

#define BUFLEN 1024

/*
 * These defines would typically be
 * found in a header file for the module
 */
#define XCASE 1 /* change alphabetic case of char */
#define DELETE 2 /* delete char */
#define DUPLICATE 3 /* duplicate char */

main()
{

char buf[BUFLEN];
int fd, count;
struct strioctl strioctl;

if ((fd = open(“/dev/comm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

if (ioctl(fd, I_PUSH, “chconv”) < 0) {
perror(“ioctl I_PUSH failed”);
exit(2);

}
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Figure 2-5.  Case Converter Module

An important difference between STREAMS drivers and modules is illustrated here. Driv-
ers are accessed through a node or nodes in the file system and may be opened just like
any other device. Modules, on the other hand, do not occupy a file system node. Instead,
they are identified through a separate naming convention, and are inserted into a Stream
usingI_PUSH. The name of a module is defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First-Out
(LIFO) order. Therefore, if a second module was pushed onto this Stream, it would be
inserted between the Stream head and the character conversion module.

Module and Driver Control 2

The next step in this example is to pass the commands and corresponding strings to the
character conversion module. This can be done by issuingioctl  calls to the character
conversion shown in Screen 2-2:
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Screen 2-2.  Module and Driver Control

ioctl  requests are issued to STREAMS drivers and modules indirectly, using theI_STR
ioctl  call (seestreamio(7) ). The argument toI_STR  must be a pointer to astri-
octl  structure, which specifies the request to be made to a module or driver. This struc-
ture is defined instropts.h  and has the following format:

whereic_cmd  identifies the command intended for a module or driver,ic_timout
specifies the number of seconds anI_STR  request should wait for an acknowledgment
before timing out,echelon  is the number of bytes of data to accompany the request, and
ic_dp  points to that data.

In the example, two separate commands are sent to the character conversion module. The
first setsic_cmd  to the commandXCASE and sends as data the string “AEIOU”; it con-
verts all uppercase vowels in data passing through the module to lowercase. The second
setsic_cmd  to the commandDELETE and sends as data the string “xX”; it deletes all
occurrences of the characters ‘x’ and ‘X’ from data passing through the module. For each
command, the value ofic_timout  is set to zero, which specifies the system default tim-
eout value of 15 seconds. Theic_dp  field points to the beginning of the data for each
command;ic_len  is set to the length of the data.

I_STR  is intercepted by the Stream head, which packages it into a message, using infor-
mation contained in thestrioctl  structure, and sends the message downstream. Any
module that does not understand the command inic_cmd  passes the message further
downstream. The request will be processed by the module or driver closest to the Stream

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;
strioctl.ic_timout = 0;/* default timeout (15 sec) */
strioctl.ic_dp = “AEIOU”;
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I_STR failed”);
exit(3);

}

/* delete all instances of the chars 'x' and 'X' */
strioctl.ic_cmd = DELETE;
strioctl.ic_dp = “xX”;
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I_STR failed”);
exit(4);

}

struct strioctl {
int ic_cmd; /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data argument */
char * ic_dp; /* ptr to data argument */

};
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head that understands the command specified byic_cmd . Theioctl  call will block up
to ic_timout  seconds, waiting for the target module or driver to respond with either a
positive or negative acknowledgment message. If an acknowledgment is not received in
ic_timout  seconds, theioctl  call will fail.

NOTE

Only oneI_STR  request can be active on a Stream at one time.
Further requests will block until the activeI_STR  request is
acknowledged and the system call completes.

Thestrioctl  structure is also used to retrieve the results, if any, of anI_STR  request.
If data is returned by the target module or driver,ic_dp  must point to a buffer large
enough to hold that data, andic_len  will be set on return to show the amount of data
returned.

The remainder of this example is identical to the example earlier in this chapter:

Note that the character conversion processing was realized with no change to the commu-
nications driver.

Theexit  system call dismantles the Stream before terminating the process. The charac-
ter conversion module is removed from the Stream automatically when it is closed. Alter-
natively, modules may be removed from a Stream using theI_POP ioctl  call described
in streamio(7) . This call removes the topmost module on the Stream, and enables a
user process to alter the configuration of a Stream dynamically, by popping modules as
needed.

A few of the importantioctl  requests supported by STREAMS have been discussed.
Several other requests are available to support operations such as determining if a given
module exists on the Stream, or flushing the data on a Stream. These requests are
described fully instreamio(7) .

while ((count = read(fd, buf, BUFLEN)) > 0) {
if (write(fd, buf, count) != count) {

perror(“write failed”);
break;

}
}
exit(0);

}
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Introduction 3

This chapter provides an overview of the STREAMS subsystem, and is intended to high-
light the principal differences between STREAMS and standard UNIX® System V block
and character device drivers. This includes:

• background information on what advantages STREAMS has over the stan-
dard character I/O mechanism

• a general overview of the components of a STREAMS implementation,
and how they work together

• a summary of the most important differences between STREAMS and non-
STREAMS drivers

The STREAMS Subsystem 3

The STREAMS subsystem was added to the UNIX operating system to respond to the
shortcomings of the character I/O mechanism. It overcame these drawbacks by providing
the building blocks for implementing robust, modular data connections for a wide variety
of hardware configurations.

The STREAMS subsystem is made up of the following three components:

• system calls, some of which are unique to STREAMS and some of which
are also used by other types of devices. See the “STREAMS System Calls”
chapter for more information.

• standard kernel functions (sometimes called primitives) used along with
other Block and Character Interface (BCI) functions to write drivers and
modules

• kernel resources (for example, the STREAMS scheduler) responsible for
managing and maintaining streams

In this chapter, STREAMS always refers to this system, which makes it possible to build
and use an individual stream. As with other types of devices, a user process communicates
with a STREAMS device through system calls. However, opening and communicating
with a STREAMS device differs in several ways:

• A user process can select from available modules to build the stream. This
feature enhances the portability and reusability of code.
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• STREAMS-specific system calls (getmsg(2)  andputmsg(2))  pro-
vide a user process with the ability to receive and send STREAMS mes-
sages in the same form as they are passed between kernel modules and
drivers.

• Thepoll(2)  system call makes it possible for a user process to monitor
several streams for input or output.

Modularity 3

A user process may build a customized stream using specialioctl(2)  commands to
push modules onto a basic stream (consisting only of the stream head and a driver). Mod-
ules added to a stream may perform, for example, canonical processing or they may
implement a communication protocol. By breaking out functionality into modules, the
driver itself can be kept simple and flexible, and modules can be mixed and matched, as
needed.

Modules can also be reused by different streams, decreasing the size of code included in
the kernel.

Messages 3

An essential concept in STREAMS programming is themessage. All transferred data,
control information, queue flushing, errors, and signals are transformed into messages in a
stream. By imposing this uniformity on all information flowing in a stream, STREAMS
can use a standard set of kernel functions and structures for moving and processing mes-
sages. To distinguish the different types of information typically passed between devices
and processes, STREAMS classifies messages according to two main criteria: message
contents type and message priority.

Message Contents Type 3

Messages are eitherdata or control type messages. Some examples of control messages
areM_IOCTL (generated in response toioctl(2) system calls),M_SIG (sent upstream
to post a signal to a process), andM_DELAY (to request a real-time delay).

Three message types are classified as data messages:M_DATA (which contain only data)
andM_PROTO, andM_PCPROTO (which contain some control information in addition to
data). The STREAMS function datamsg(D3)  is used to test a message to see if it is a
data message. Several other functions depend on this distinction:flushq(D3) , put-
nextctl(D3) , putnextctl1(D3) .
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Message Priority 3

Messages are further classified asordinary (also called normal) orpriority also called
(high priority). Normally, messages are passed from module to module by calling theput
routine of a module with a pointer to the message as an argument. The module places ordi-
nary messages on its own message queue where it remains until scheduled for processing.
Ordinary messages are defined as those subject to the STREAMS flow control mecha-
nisms, and are processed in the order in which they were placed on the message queues.

Some messages, for example,error  andnak  (negative acknowledgment) messages must
move through the system quickly and so are designated priority messages. These mes-
sages are always placed at the head of the queue of messages waiting to be processed.
When the queue'sservice  routine is called, priority messages are processed before all
ordinary messages.

Message Structure 3

To ensure uniformity in the passing of messages in a stream, all messages share a common
structure. A message consists of at least one instance of each of the following three con-
structs:

• The message block structure (defined as typemblk_t ) contains next and
previous pointers (for message queue formation), pointers to the beginning
and end of the data, and a pointer to a continuation block (for messages
requiring more than one block), and a pointer to a data block (dblk_t ).

• The data block structure (defined as typedblk_t ) includes fields identify-
ing the message type, pointers marking the data boundaries, and a count of
the number of messages pointing to this data block.

• The data itself, delineated by fields in thedblk_t  structure.

For most operations, a message is treated as a unit and is referenced by a pointer to its
mblk_t  structure. See “STREAMS Messages” for more information.

Structure Declarations 3

Three STREAMS structures must be declared for a driver to be correctly installed on a
PowerMAX OS system. First, amodule_info  structure must be declared and populated
with information about the queue to be created. Normally, there will be one instance of the
structure for both the read and write sides of the driver, but, if they have identical require-
ments, they may share amodule_info  structure, as shown here.

static struct
module_info spminfo = {0, “sp”, 0, INFPSZ, 5120, 1024};

The six members of themodule_info  structure are: the identification number, the name,
the maximum and minimum packet sizes, and the high and low water marks.
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In the above example, no identification number is assigned0, the name issp , and no
effective minimum and maximum packet sizes are specified (the minimum is0 and the
maximum is set to aninfinitely large constant (INFPSZ)). The high and low water marks
(5120 and 1024, respectively) are for flow control. The specified numbers are compared
against a weighted byte count of all messages held on a message queue.

The second required structure is theqinit(D4) structure. Again, oneqinit  structure
is required for each side of the queue. When a stream is opened, the system allocates the
required queue structures for the driver, and loads the driver entry point addresses from the
qinit  structures, which must contain non-NULL entries for all routines to be included in
the driver, as shown:

    static struct qinit rinit=
{sprput,NULL,spopen, spclose,NULL, &spminfo,NULL};

    static struct qinit winit=
{NULL,NULL,NULL, NULL, NULL, &spminfo,NULL};

The seven members of theqinit  structure are: theput  routine, theservice  routine,
theopen  routine, theclose  routine, theadmin  routine (reserved for future expansion),
and the addresses of themodule_info  and themodule_stat  structures.

The third required structure,streamtab , is pointed to by thecdevsw  table, and con-
tains addresses of the read and writeqinit  structures.

struct streamtab spinfo= {&rinit, &winit, NULL, NULL};

For multiplexing drivers, a set of upper and lowerqinit  structures are required, and
therefore thestreamtab  structure contains four entries, which are shown as follows:

    struct streamtab spinfo= {&urinit, &uwinit, &lrinit,
 &lwinit};

STREAMS Entry Points 3

This section outlines each of the entry points that may be included in a STREAMS module
or driver. The inclusion of a particular routine depends on the functionality required. For
example, theCLONE driver (described later in this section) has only anopen  routine. The
emphasis of this section is on how drivers, not modules, use these routines. Much of the
information applies to modules as well.

Open Routine 3

When a STREAMS device is opened (with theopen(2) system call), the subsystem
uses thecdevsw structure to identify the device type, and creates a stream consisting of
the stream head and the driver. The driver'sopen  routine is then executed. Though similar
to a non-STREAMS driveropen , the STREAMS routine has a different syntax. Thedev
andflag arguments are the same as in the standard driveropen , although some of theflag
values do not apply to STREAMS devices. The other two arguments are
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• q, a pointer to the queue structure, which in turn, contains a pointer to the
qinit  structure which points to the driver'sopen  routine.

• sflag, the streamopen  flag, which has a value of0 for a normal driver
open,MODOPEN for a normal module open, orCLONEOPEN if the CLONE
driver is used. TheCLONE driver is discussed in the next section.

The driver must return0 if it is successful, or an appropriateerrno  value if it is not.

The only entry points that can communicate with the user level in a stream are theopen
andclose  routines. Only these two routines can sleep (at a priority less thanPZERO), but
must explicitly return to the driver routine if a signal is received. They may also access the
user  structure.

Theopen  andclose  routines must be specified in the read queue of the driver.

Theopen  routine may be used to initialize a private driver data structure, pointed to by
theq_ptr  member of the queue structure. Seeopen(D2)  for more information about
opening STREAMS drivers.

The CLONE Driver 3

When the value ofsflag has been set toCLONEOPEN, theCLONE driver is invoked. The
CLONE driver has been provided to select a minor device number (that is, an unused
stream). Without theCLONE driver, user processes would have to make anioctl(2)
call to search through a driver's minor devices for an unused one. To eliminate this require-
ment, STREAMS allows a driver to be implemented as acloneable device. TheCLONE
driver removes the need to search for an unused stream.

Networking applications may sometimes require a separate stream for each communica-
tion channel. Because the user process needs a minor device number but is not concerned
about the particular number, theCLONE driver is used to make the selection.

TheCLONE driver consists of only anopen  routine. The minor portion of the device num-
ber passed to theCLONE driver is actually the major number of the cloneable device. The
CLONE driver looks for the cloneable device in thecdevsw . Seeclone(7)  andDevice
Driver Programming for more details.

The driveropen  routine must first test thesflag to see if it has been set to a value ofCLO-
NEOPEN. If it has, the driver searches for the first unused minor device number, up to
devcnt  (the maximum number of streams this device may support). An example is
shown here.

case CLONEOPEN:
   for (dev=0; dev < devcnt; dev++);

The value ofdevcnt  is derived from the#DEV field of themaster.d  file during the
configuration process. The code shown then searches through the table until it finds the
first open minor device, and returns that value.
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Message Processing 3

Theput  andservice  routines represent the two basic ways a STREAMS module or
driver processes messages. Theput  routine bypasses the flow control mechanism alto-
gether, providing the fastest possible throughput.srv  (service) routines are subject to
flow control by the scheduler. A driver that must wait for output to complete before send-
ing another message should use the scheduling mechanism.

Whether a driver has aput  routine, asrv  routine, or both depends on the processing the
driver must perform. For a module, which has at least a driver downstream and the stream
head upstream,put  andsrv  procedures may be appropriate for both queue of the mod-
ule. However, a driver does not normally need to have a writeservice  routine, because
it is not passing messages to another queue.

The flexibility of STREAMS makes it almost impossible to establish rigid rules about
which routines a driver should include. The next two sections show some of the typical
processing done by theput  andsrv  routines.

put Routine 3

The pseudo-code example shown below is a generic write queueput  routine for a driver.
It illustrates the basic structure used by many drivers.

Screen 3-1.  Pseudo-Code for a put Routine

The main task of this routine is to detect the incoming message's type, and then use a
switch  statement to process each type. The next five subsections illustrate how different
message types are typically handled.

1      xxwput(q, mp)
2      queue_t *q;
3      mblk_t *mp;
4      {
5          switch ( message typ e) {
6
7          case M_FLUSH:
8              flush specified queues
9              send flush message upstream
10              free message block
11
12         case M_IOCTL:
13             if recognizable command type
14                  handle
15             else
16                  send M_IOCNAK message upstream
17
18         case M_DATA:
19             output data to device
20
21         default:
22             send error message upstream
23       )
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Each line of the pseudo-code will be expanded into C language statements illustrating how
the functionality is implemented.

put Routine: Switch on Message Type 3

The message type of a STREAMS message is stored in thedb_type  field of the data
block (dblk_t ) structure of the message. Ifmp is a pointer to the message block, the type
can be referenced with the following statement:

switch (mp->b_datap->db_type)

This line corresponds to line 5 in Screen 3-1.

put Routine: Flush Handling 3

Drivers must flush messages queues when either theFLUSHR (flush the read queue) or
FLUSHW (flush the write queue) bits have been set.

Screen 3-2.  put Routine Example of Flush Handling

In line 1, the first byte of the message (mp->b_rptr ) is tested to see ifFLUSHW is set. If
it is, the flushq(D3) function is called to remove messages from queueq. The
FLUSHDATA flag removes only data messages;FLUSHALL would also remove control
messages.

If the FLUSHR bit is also set (line 2), messages destined for the user process are flushed.
TheRD(D3)  macro (line 3) is used to access the mate queue ofq. TheFLUSHW bit is then
cleared (line 4) and the message is sent upstream (line 5). In line 8 thefreemsg(D3)
function deallocates the memory used by the message and data blocks.

put Routine: I/O Control Commands 3

The stream head interpretsI_STR  type ioctl(2)  commands and constructsM_IOCTL
messages from them. Processing depends on the driver and type of message. If the mes-
sage type is not recognized, the driver should send a negative acknowledgment message
back upstream, as shown here.

1            if (*mp->b_rptr & FLUSHW) flushq(q, FLUSHDATA);
2            if (*mp->b_rptr & FLUSHR) {
3                   flushq(RD(q), FLUSHDATA);
4                   *mp->rptr &=  FLUSHW;
5                   qreply(q, mp);
6                   return;
7            }
8            freemsg(mp);
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Screen 3-3.  put Routine Example of I/O Control Command Handling

Using the same message buffer as the incoming message, the driver changes the incoming
message into a message of typeM_IOCNAK and sends the negative acknowledgment back
upstream via qreply() .

put Routine: Data Output 3

M_DATA messages may represent the normal type of data for output to the device. Pro-
cessing may occur in line, or more likely, in a subordinate routine that is called to handle
the actual output.

Data messages also may be enqueued for processing by thesrv  (service) procedure with
the putq(D3)  function, as shown in the example.

putq ( q, mp);

The arguments to the function are the pointer to the queue to be enabled (q) and a pointer
to the message to be enqueued (mp).

put Routine: Error Detection 3

The default case is included to catch all unrecognized message types received by the
driver.

Screen 3-4.  put Routine Example of Default Error Handling

In the same way as the negative acknowledgment was sent upstream, an error message
(M_ERROR) is sent to the user process.

mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);
return;

mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_datap->db_base;
*mp->b_rptr = EPROTO;
mp->b_wptr = mp->b_rptr+1;
qreply(q, mp);
return;
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Service Routine 3

The service routine is called by the STREAMS scheduler to process messages linked to
the queue. The scheduler calls service routines for all active queue in FIFO order.

Service routines are typically included in modules rather than in drivers, and a driver's
downstream (write) queue generally does not need one. On the upstream side, some driv-
ers may simply discard data if unable to pass it to the next queue. If this approach is inap-
propriate, the driver's read queue may include aservice routine, as shown in this
pseudo-code example.

Screen 3-5.  Pseudo-Code for Service Routine

The rest of this section shows how a driver typically handles read-side messages. As was
done in theput  routine example, C language fragments corresponding to the pseudo-code
will be presented.

Service Routine: Retrieve Message 3

Thegetq(D3)  function attempts to retrieve the next message on the queue.

while (mp = getq(q))

Service Routine: Check for Blocking 3

The upstream queue must be tested with thecanputnext(D3)  function to see if the
message may be passed to the nextput  procedure.

if (!canputnext(q->q_next))

Service Routine: Return Message to Queue 3

Theputbq(D3) function places the message back on the queue, and awaits a successful
canputnext  call. All priority messages are placed ahead of ordinary messages.

putbq ( q, mp)

1     xxrsrv(q)
2     queue_t *q;
3     {
4          while (more messages on queue)
5              retrieve next message
6              if (next queue is full)
7                 put back on queue
8              else
9                 process message
10                send to next queue
11    }
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The message pointed at bymp is placed at the beginning of the message queue pointed at
by q.

Service Routine: Forward Message 3

Theputnext(D3)  macro passes the messages to theput  procedure of the next queue
upstream, but only aftercanputnext  has succeeded.

putnext ( q, mp)

mp is a pointer to the message to be sent, andq is a pointer to the sending (not the next, or
receiving) queue.

Close Routine 3

Like theopen  routine, theclose  routine is specified in the read queue of the driver. The
argument to theclose  routine is a pointer to the queue.

Typically, theclose  routine of a STREAMS driver performs the following functions:

• clears the fields in private driver data structures by setting them toNULL

• flushes messages from both queue (read and write) associated with the
driver, using theflushq(D3)  function

• sends anM_HANGUP message to notify connected processes that the stream
is being dismantled

• frees allocated message blocks with thefreemsg(D3)  function
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Introduction 4

Theput  andservice  procedures in the queue are routines that process messages as
they transit the queue. The processing is generally performed according to the message
type and can result in a modified message, new message(s), or no message. A resultant
message, if any, is generally sent in the same direction in which it was received by the
queue, but may be sent in either direction. Typically, eachput  procedure places messages
on its queue as they arrive, for later processing by theservice  procedure.

A queue will always contain aput  procedure and may also contain an associatedser-
vice  procedure. Having both aput  andservice  procedure in a queue enables
STREAMS to provide the rapid response and the queuing required in multiuser systems.

Theservice  andput  routines pointed at by a queue, and the queues themselves, are not
associated with any process. These routines may not sleep if they cannot continue process-
ing, but must instead return. Any information about the current status of the queue must be
saved by the routine before returning.

Put Procedure 4

A put  procedure is the queue routine that receives messages from the preceding queue in
the Stream. Messages are passed between queues by a procedure in one queue calling the
put  procedure contained in the following queue. A call to theput  procedure in the
appropriate direction is the only way to pass messages between STREAMS components.
There is usually a separateput  procedure for the read and write queues because of the
full-duplex operation of most Streams. However, there can be a singleput  procedure
shared between both the read and write queues.

Theput  procedure allows rapid response to certain data and events, such as echoing of
input characters. It has higher priority than any scheduledservice  procedure and is
associated with immediate, as opposed to deferred, processing of a message.

Theput  procedure executes before theservice  procedure for any given message.

In a multiprocessor system, both procedures could be running simultaneously.

Each STREAMS component accesses the adjacentput  procedure indirectly using the
DDI functions (for example,putnext ).
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NOTE

Under no circumstances may a driver or module directly call other
driver or module routines, includingput  andservice  routines.
All calls are indirect. See theDevice Driver Reference for further
information.

For example, consider thatmodA, modB, andmodC are three consecutive components in a
Stream, withmodC connected to the Stream head. IfmodA receives a message to be sent
upstream,modA processes that message and callsmodB's readput  procedure, which pro-
cesses it and callsmodC's readput  procedure, which in turn processes it and calls the
Stream head's readput  procedure. Thus, the message is passed along the Stream in one
continuous processing sequence. This sequence completes the entire processing in a short
time with low overhead (subroutine calls). On the other hand, if this sequence is lengthy
and the processing is implemented on a multiuser system, then this way of processing may
be good for this Stream but may be harmful for others. Streams may have to wait too long
to get their turn, because eachput  procedure is called from the preceding one, and the
kernel stack (or interrupt stack) grows with each function call. The possibility of running
off the stack exists, causing a system panic or producing indeterminate results.

NOTE

Because STREAMS modules in general do not know which mod-
ules they are connected to,put  routines cannot depend on a mes-
sage being handled solely byput  routines at the stream head or in
the driver. Any modules along the Stream may choose to queue
the message and process it with a service routine.

Service Procedure 4

In addition to theput  procedure, aservice  procedure may be contained in each queue
to allow deferred processing of messages. If a queue has both aput  and aservice  pro-
cedure, message processing is generally divided between both procedures. Theput  pro-
cedure is always called first, from a preceding queue. After completing its part of the mes-
sage processing, it arranges for theservice  procedure to be called by passing the
message to theputq  routine.putq  does two things: it places the message on the message
queue of the queue and schedules the queue service procedure for deferred execution.
Whenputq  returns to theput  procedure, the procedure can return or continue to process
messages. Some time later, theservice  procedure is automatically called by the
STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the PowerMAX OS system pro-
cess scheduler. The scheduler calls eachservice  procedure of the scheduled queues one
at a time in a FIFO manner.

The scheduling of queueservice  routines is machine-dependent.

STREAMS utilities deliver the messages to the processingservice  routine in the FIFO
sequence within each priority class (high priority, priority band, ordinary), because the
service  procedure is unaware of the message priority and simply receives the next mes-
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sage. Theservice  routine receives control in the order it was scheduled. When the
service  routine receives control, it may encounter multiple messages on its message
queue. This buildup can occur if there is a long interval between the time a message is
queued by aput  procedure and the time that the STREAMS scheduler calls the associ-
atedservice  routine. In this interval, multiple calls to theput  procedure can cause mul-
tiple messages to build up. Theservice  procedure always processes all messages on its
message queue unless prevented by flow control.

Terminal output and input erase and kill processing, for example, is typically performed in
a service  procedure because this type of processing does not have to be as timely as
echoing. Aservice  procedure also allows processing time to be more evenly spread
among multiple Streams. As with theput  procedure, there can be a separateservice
procedure for each queue in a STREAMS component or a single procedure used by both
the read and write queues.

Asynchronous Protocol Stream Example 4

In the following example, the system supports different kinds of asynchronous terminals,
each logging in on its own port. The port hardware is limited in function; for example, it
detects and reports line and modem status, but does not check parity.

Communications software support for these terminals is provided using a STREAMS-
based asynchronous protocol. The protocol includes a variety of options that are set when
a user dials in to log on. The options are determined by a STREAMS user process,get-
strm , which analyzes data sent to it through a series of dialogs (prompts and responses)
between the process and the terminal user.

The process sets the terminal options for the duration of the connection by pushing mod-
ules onto the Stream or by sending control messages to cause changes in modules (or in
the device driver) already on the Stream. The options supported include

• ASCII or EBCDIC character codes

• For ASCII code, the parity (odd, even or none)

• Echo or not echo input characters

• Canonical input and output processing or transparent (raw) character han-
dling

These options are set with the following modules:

CHARPROC Provides input character processing functions, including dynami-
cally settable (using control messages passed to the module) char-
acter echo and parity checking. The module's default settings are
to echo characters and not check character parity.

CANONPROC Performs canonical processing on ASCII characters upstream and
downstream (note that this performs some processing in a way
different from the conventional UNIX system character I/O tty
subsystem).
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ASCEBC Translates EBCDIC code to ASCII upstream and ASCII to
EBCDIC downstream.

At system initialization, a user process,getstrm , is created for each tty port.getstrm
opens a Stream to its port and pushes theCHARPROC module onto the Stream by an
ioctl I_PUSH  command. Then, the process issues agetmsg  system call to the Stream
and sleeps until a message reaches the Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one pushable module,CHAR-
PROC. The device driver is a limited function raw tty driver connected to a limited-func-
tion communication port. The driver and port transparently transmit and receive one
unbuffered character at a time.

Figure 4-1.  Idle Stream Configuration for Example

After receiving initial input from a tty port,getstrm  establishes a connection with the
terminal, analyzes the option requests, verifies them, and issues STREAMS system calls
to set the options. After setting up the options,getstrm  creates a user application pro-
cess. Later, when the user terminates that application,getstrm  restores the Stream to its
idle state by similar system calls.

Figure 4-2 continues the example and associates kernel operations with user-level system
calls. As a result of initializing operations and pushing a module, the Stream for port one
has the following configuration:

getstrm

CHARPROC
Module

Stream Head
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Figure 4-2.  Operational Stream for Example

As mentioned before, the upstream queue is also referred to as the read queue reflecting
the message flow direction. Correspondingly, downstream is referred to as the write queue.

Read-Side Processing 4

In our example, read-side processing consists of driver processing,CHARPROC process-
ing, andCANONPROC processing.

Driver Processing 4

The user process has been blocked on thegetmsg(2)  system call while waiting for a
message to reach the Stream head, and the device driver independently waits for input of a
character from the port hardware or for a message from upstream. After receiving an input
character interrupt from the port, the driver places the associated character in anM_DATA

CANONPROC
Module

CHARPROC
Module

Stream Head

readwrite
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TTY
Device Driver
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message, allocated previously. Then, the driver sends the message to theCHARPROC
module by callingCHARPROC's upstreamput  procedure. On return fromCHARPROC, the
driver calls theallocb  utility routine to get another message for the next character.

CHARPROC 4

CHARPROC has bothput  andservice  procedures on its read-side. In the example, the
other queues in the modules also have both procedures, as shown in Figure 4-3.

Figure 4-3.  Module Put and Service Procedures

When the driver callsCHARPROC's read queueput  procedure, the procedure checks pri-
vate data flags in the queue. In this example, the flags indicate that echoing is to be per-
formed.

NOTE

Echoing is optional for this example and the port hardware can not
automatically echo.
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(service)

(put) (service)

write read

(put)

(service)

(put)

CHARPROC
Module

CANONPROC
Module

(service)

(put)



STREAMS Processing Routines

4-7

CHARPROC causes the echo to be transmitted back to the terminal by first copying the
message with a STREAMS utility routine. Then,CHARPROC uses another utility routine
to obtain the address of its own write queue. Finally, theCHARPROC readput  procedure
uses another utility routine to call its writeput  procedure and pass it the message copy.
The write procedure sends the message to the driver to effect the echo and then returns to
the read procedure.

This part of read-side processing is implemented withput  procedures so that the entire
processing sequence occurs as an extension of the driver input character interrupt.

After returning from echo processing, theCHARPROC readput  procedure checks another
of its private data flags and determines that parity checking should be performed on the
input character. Parity should most reasonably be checked as part of echo processing.
However, for this example, parity is checked only when the characters are sent upstream.
This relaxes the timing in which the checking must occur, that is, it can be deferred along
with the canonical processing.CHARPROC usesputq  to schedule the (original) message
for parity check processing by its readservice  procedure. When theCHARPROC read
service  procedure is complete, it forwards the message to the readput  procedure of
CANONPROC. Note that if parity checking was not required, theCHARPROCput  proce-
dure would call theCANONPROCput  procedure through theputnext  routine.

CANONPROC 4

CANONPROC performs canonical processing. As implemented, all read queue processing
is performed in itsservice  procedure so thatCANONPROC'sput  procedure simply calls
putq  to schedule the message for its readservice  procedure and then exits. Theser-
vice  procedure extracts the character from the message buffer and places it in the line
buffer contained in anotherM_DATA message it is constructing. Then, the message that
contained the single character is returned to the buffer pool. If the character received was
not an end-of-line, theservice  procedure returns. Otherwise, a complete line has been
assembled andCANONPROC sends the message upstream to the Stream head that unblocks
the user process from thegetmsg(2) call and passes it the contents of the message.

Write-Side Processing 4

The write-side of this Stream carries two kinds of messages from the user process:ioctl
messages forCHARPROC andM_DATA messages to be output to the terminal.

ioctl  messages are sent downstream as a result of anioctl(2)  system call. When
CHARPROC receives anioctl  message type, it processes the message contents to change
internal flags and then uses a utility routine to send an acknowledgment message upstream
to the Stream head. The Stream head acts on the acknowledgment message by unblocking
the user from theioctl .

For terminal output, it is presumed thatM_DATA messages, sent bywrite(2)  system
calls, contain multiple characters. In general, STREAMS returns to the user process
immediately after processing thewrite  call so that the process may send additional mes-
sages. Flow control eventually blocks the sending process. The messages can queue on the
write-side of the driver because of character transmission timing. When a message is
received by the driver's writeput  procedure, the procedure usesputq  to place the mes-
sage on its write-sideservice  message queue if the driver is currently transmitting a
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previous message buffer. However, there is generally no write queueservice  procedure
in a device driver. Driver output interrupt processing takes the place of scheduling and per-
forms theservice  procedure functions, removing messages from the queue.

Analysis 4

For reasons of efficiency, a module implementation would generally avoid placing one
character per message and using separate routines to echo and parity check each character,
as was done in this example. Nevertheless, even this design yields potential benefits. Con-
sider a case where alternate, more intelligent, port hardware was substituted. If the hard-
ware processed multiple input characters and performed the echo and parity checking
functions ofCHARPROC, then the new driver could be implemented to present the same
interface asCHARPROC. Other modules such asCANONPROC could continue to be used
without change.
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Introduction 5

Messages are the means of communication within a Stream. All input and output under
STREAMS is based on messages. The objects passed between Streams components are
pointers to messages. All messages in STREAMS use two data structures to refer to the
data in the message. These data structures describe the type of the message and contain
pointers to the data of the message, as well as other information. Messages are sent
through a Stream by successive calls to theput  routine of each queue in the Stream using
the appropriate utility routines. Messages may be generated by a driver, a module, or by
the Stream head.

Expedited Data 5

The Open Systems Interconnection (OSI) Reference Model developed by the International
Standards Organization (ISO) and International Telegraph and Telephone Consultative
Committee (CCITT) provides an international standard seven-layer architecture for the
development of communication protocols. PowerMAX OS adheres to this standard and
also supports the Transmission Control Protocol and Internet Protocol (TCP/IP).

OSI and TCP/IP support the transport of expedited data (see note below) for transmission
of high-priority, emergency data. This data is useful for flow control, congestion control,
routing, and various applications where immediate delivery of data is necessary.

Expedited data is mainly used for exceptional cases and transmission of control signals.
Expedited data is processed immediately, ahead of normal data on the queue, but after
STREAMS high-priority messages and after any expedited data already on the queue.

Expedited data flow control is unaffected by the flow control constraints of normal data
transfer. Expedited data has its own flow control because it can easily run the system out
of buffers if its flow is unrestricted.

Drivers and modules define separate high- and low-water marks for priority band data
flow. (Water marks are defined for each queue and identify the upper and lower limit of
bytes that can be contained on the queue.) The default water marks for priority band data
and normal data are the same. The Stream head also ensures that incoming priority band
data is not blocked by normal data already on the queue by associating a priority with the
messages. This priority implies a certain ordering of the messages in the queue. See “Mes-
sage Queues and Priorities” for more information.
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NOTE

Within the STREAMS mechanism and in this guide expedited
data is also referred to as priority band data.

Message Structure 5

All messages are composed of one or more message blocks. A message block is a linked
triplet of two structures and a variable length data buffer. The structures are a message
block (msgb) and a data block (datab ). The data buffer is a location in memory where
the data of a message are stored.

Seedatab(D4DK)  andmsgb(D4DK) for fields that can be referenced in data and mes-
sage blocks.

The fieldb_band  determines where the message is placed when it is enqueued using the
STREAMS utility routines. This field has no meaning for high priority messages and is set
to zero for these messages. When a message is allocated viaallocb , theb_band  field
will be initially set to zero. Modules and drivers may set this field if so desired.

Message Linkage 5

The message block is used to link messages on a message queue, link message blocks to
form a message, and manage the reading and writing of the associated data buffer. The
b_rptr  andb_wptr  fields in themsgb structure locate the data currently contained in
the buffer. As shown in Figure 5-1, the message block (mblk_t ) points to the data block
of the triplet. The data block contains the message type, buffer limits, and control vari-
ables. STREAMS allocates message buffer blocks of varying sizes.db_base  and
db_lim  are the fixed beginning and end (+1) of the buffer.

A message consists of one or more linked message blocks. Multiple message blocks in a
message can occur, for example, because of buffer size limitations, or as the result of pro-
cessing that expands the message. When a message is composed of multiple message
blocks, the type associated with the first message block determines the message type,
regardless of the types of the attached message blocks.
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Figure 5-1.  Message Form and Linkage

A message may occur singly, as when it is processed by aput  procedure, or may be
linked on the message queue in a queue, waiting to be processed by theservice  proce-
dure. Message 2, as shown in Figure 5-1, links to Message 1.

Note that a data block in Message 1 is shared between Message 1 and another message.
Multiple message blocks can point to the same data block to conserve storage and to avoid
copying overhead. For example, the same data block, with associated buffer, may be refer-
enced in two messages, from separate modules that use separate protocol levels.
Figure 5-2 illustrates the concept, but data blocks typically are not shared by messages on
the same queue. The buffer can be retransmitted, if required, because of errors or timeouts,
from either protocol level without replicating the data. Thedupmsg utility routine does
data block sharing. Seedupmsg(D3) . STREAMS maintains a count of the message
blocks sharing a data block in thedb_ref  field.

STREAMS provides utility routines, specified in theDevice Driver Reference, to assist in
managing messages and message queues, and to assist in other areas of module and driver
development. A utility routine should always be used when operating on a message queue
or accessing the message storage pool. If messages are manipulated on the queue without
using the STREAMS utilities, the message ordering may become confused and lead to
inconsistent results.
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CAUTION

If you do not use the STREAMS utilities as they are defined by
the Driver-Kernel Interface, the system may panic or deadlock.
Non-Driver-Kernel Interface drivers are not supported.

Sending/Receiving Messages 5

Most message types can be generated by modules and drivers. A few are reserved for the
Stream head. The most commonly used messages areM_DATA, M_PROTO, and
M_PCPROTO. These messages can also be passed between a process and the topmost mod-
ule in a Stream with the same message boundary alignment maintained on both sides of
the kernel. This allows a user process to function, to some degree, as a module above the
Stream and maintain a service interface.M_PROTO andM_PCPROTO messages are
intended to carry service interface information among modules, drivers, and user pro-
cesses. Some message types can only be used within a Stream and cannot be sent or
received from the user level.

Modules and drivers do not interact directly with any system calls exceptopen(2)  and
close(2) . The Stream head handles all message translation and passing between user
processes and STREAMS components. Message transfer between processes and the
Stream head can occur in different forms. For example,M_DATA andM_PROTO messages
can be transferred in their direct form by thegetmsg(2)  and putmsg(2)  system
calls. Alternatively, write(2)  causes one or moreM_DATA messages to be created
from the data buffer supplied in the call.M_DATA messages received at the Stream head
are consumed byread(2)  and copied into the user buffer. As another example,M_SIG
causes the Stream head to send a signal to a process.

Any module or driver can send any message in either direction on a Stream. However,
based on their intended use in STREAMS and their treatment by the Stream head, certain
messages can be categorized as upstream, downstream, or bidirectional.M_DATA,
M_PROTO, or M_PCPROTO messages, for example, can be sent in both directions. Other
message types are intended to be sent upstream to be processed only by the Stream head.
Messages intended to be sent downstream are silently discarded if received by the Stream
head.

STREAMS enables modules to create messages and pass them to neighboring modules.
However, theread(2)  andwrite(2)  system calls are not enough to enable a user pro-
cess to generate and receive all such messages. First,read  andwrite  are byte-stream
oriented with no concept of message boundaries. To support service interfaces, the mes-
sage boundary of each service primitive must be preserved so that the beginning and end
of each primitive can be located. Also,read  andwrite  offer only one buffer to the user
for transmitting and receiving STREAMS messages. If control information and data were
placed in a single buffer, the user would have to parse the contents of the buffer to separate
the data from the control information.

Theputmsg  system call enables a user to create messages and send them downstream.
The user supplies the contents of the control and data parts of the message in two separate
buffers. Thegetmsg  system call retrievesM_DATA or M_PROTO messages from a Stream
and places the contents into two user buffers.

The format ofputmsg  is as follows:
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int putmsg (int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int flags)

wherefd identifies the Stream to which the message is passed,ctlptr anddataptr identify
the control and data parts of the message, andflags may be used to specify that a high-pri-
ority message (M_PCPROTO) should be sent. When a control part is present, settingflags
to 0 generates anM_PROTO message. Ifflags is set toRS_HIPRI , anM_PCPROTO mes-
sage is generated.

NOTE

The Stream head guarantees that the control part of a message
generated byputmsg(2)  is at least 64 bytes in length. This pro-
motes reusability of the buffer. When the buffer is a reasonable
size, modules and drivers may reuse the buffer for other headers.

Thestrbuf  structure is used to describe the control and data parts of a message, and has
the following format:

wherebuf  points to a buffer containing the data,len  specifies the number of bytes of
data in the buffer, andmaxlen  specifies the maximum number of bytes the given buffer
can hold, and is only significant when retrieving information into the buffer usingget-
msg.

Thegetmsg  system call retrievesM_DATA, M_PROTO, or M_PCPROTO messages avail-
able at the Stream head, and has the following format:

int getmsg (int fd, struct strbuf * ctlptr, struct strbuf * dataptr, int * flagsp)

The arguments togetmsg  are the same as those ofputmsg  except that theflagsp param-
eter is a pointer to anint .

putpmsg  andgetpmsg  (seeputmsg(2)  andgetmsg(2) ) support multiple bands of
data flow. They are analogous to the system callsputmsg  andgetmsg . The extra param-
eter is the priority band of the message.

putpmsg  has the following interface:

int putpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, intband, int flags)

The parameterband is the priority band of the message to put downstream. The valid val-
ues forflags areMSG_HIPRI andMSG_BAND. MSG_BAND andMSG_HIPRI are mutually
exclusive.MSG_HIPRI generates a high-priority message (M_PCPROTO) andband is
ignored.MSG_BAND causes anM_PROTO or M_DATA message to be generated and sent
down the priority band specified byband. The valid range forband is from 0 to 255, inclu-
sive.

struct strbuf {
int maxlen;/* maximum buffer length */
int len; /* length of data */
char *buf; /* pointer to buffer */

}
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The call

putpmsg ( fd, ctlptr, dataptr, 0, MSG_BAND);

is equivalent to the system call

putmsg ( fd, ctlptr, dataptr, 0);

and the call

putpmsg ( fd, ctlptr, dataptr, 0, MSG_HIPRI);

is equivalent to the system call

putmsg ( fd, ctlptr, dataptr, RS_HIPRI);

If MSG_HIPRI is set andband is nonzero,putpmsg  fails withEINVAL.

getpmsg  has the following format:

int getpmsg (int fd, struct strbuf * ctlptr, struct strbuf * dataptr,int * bandp, int * flagsp)

wherebandp is the priority band of the message. This system call retrieves a message from
the Stream. If*flagsp is set toMSG_HIPRI, getpmsg  attempts to retrieve a high-priority
message. IfMSG_BAND is set,getpmsg  tries to retrieve a message from priority band
*bandp or higher. IfMSG_ANY is set, the first message on the Stream head read queue is
retrieved. These three flags (MSG_HIPRI, MSG_BAND, andMSG_ANY) are mutually
exclusive. On return, if a high priority message was retrieved,*flagsp is set to
MSG_HIPRI and*bandp is set to0. Otherwise,*flagsp is set toMSG_BAND and*bandp is
set to the band of the message retrieved.

The call

int band = 0;
int flags = MSG_ANY;

getpmsg ( fd, ctlptr, dataptr, & band, & flags);

is equivalent to

int flags = 0;

getmsg ( fd, ctlptr, dataptr, & flags);

If MSG_HIPRI is set and*bandp is nonzero,getpmsg  fails withEINVAL.

Control of Stream Head Processing 5

The M_SETOPTS message allows a driver or module to exercise control over certain
Stream head processing. AnM_SETOPTS can be sent upstream at any time. The Stream
head responds to the message by altering the processing associated with certain system
calls. The options to be modified are specified by the contents of thestroptions struc-
ture contained in the message. See theDevice Driver Reference for more information.
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Six Stream head characteristics can be modified. Four characteristics correspond to fields
contained inqueue  (minimum/maximum) packet sizes and high-/low- water marks). The
other two are discussed here.

Read Options 5

The value for read options (so_readopt ) corresponds to two sets of three modes a user
can set using theI_SRDOPT ioctl  (seestreamio(7) ) call. The first set deals with
data and message boundaries:

byte-stream (RNORM) Theread(2)  call completes when the byte count is satisfied, the
Stream head read queue becomes empty, or a zero length message
is encountered. In the last case, the zero length message is put
back on the queue. A subsequentread  returns0 bytes.

message non-discard (RMSGN)
The read(2)  call completes when the byte count is satisfied or
at a message boundary, whichever comes first. Any data remain-
ing in the message are put back on the Stream head read queue.

message discard (RMSGD)
The read(2)  call completes when the byte count is satisfied or
at a message boundary. Any data remaining in the message are
discarded.

Byte-stream mode nearly models pipe data transfer. Message non-discard mode nearly
models a TTY in canonical mode.

The second set deals with the treatment of protocol messages by theread(2)  system
call:

normal protocol (RPROTNORM)
The read(2)  call fails with EBADMSG if an M_PROTO or
M_PCPROTO message is at the front of the Stream head read
queue. This is the default operation protocol.

protocol discard (RPROTDIS)
The read(2)  call discards anyM_PROTO or M_PCPROTO
blocks in a message, delivering theM_DATA blocks to the user.

protocol data (RPROTDAT)
Theread(2)  call converts theM_PROTO andM_PCPROTO mes-
sage blocks toM_DATA blocks, treating the entire message as
data.

Write Offset 5

The value for write offset (so_wroff ) is a hook to allow more efficient data handling. It
works as follows: In every data message generated by awrite(2)  system call and in the
first M_DATA block of the data portion of every message generated by aputmsg(2)  call,
the Stream head leavesso_wroff  bytes of space at the beginning of the message block.
Expressed as a C language construct:
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bp->b_rptr = bp->b_datap->db_base + write offset

The write offset value must be smaller than the maximum STREAMS message size,
STRMSGSZ. In certain cases (for example, if a buffer large enough to hold the offset+data
is not currently available), the write offset might not be included in the block. To handle
all possibilities, modules and drivers should not assume that the offset exists in a message,
but should always check the message.

The intended use of write offset is to leave room for a module or a driver to place a proto-
col header before user data in the message instead of allocating and prepending a separate
message.

Message Queues and Priorities 5

Message queues grow when the STREAMS scheduler is delayed from calling aservice
procedure because of system activity, or when the procedure is blocked by flow control.
When called by the scheduler theservice  procedure processes enqueued messages in a
FIFO manner. However, expedited data support and certain conditions require that associ-
ated messages (for example, anM_ERROR) reach their Stream destination as rapidly as
possible. This is done by associating priorities with the messages. These priorities imply a
certain ordering of messages on the queue as shown in Figure 5-2. Each message has a pri-
ority band associated with it. Ordinary messages have a priority of zero. High-priority
messages are high priority by nature of their message type. Their priority band is ignored.
By convention, they are not affected by flow control. Theputq  utility routine places high-
priority messages at the head of the message queue followed by priority band messages
(expedited data) and ordinary messages.

Figure 5-2.  Message Ordering on a Queue

When a message is queued, it is placed after the messages of the same priority already on
the queue (that is, FIFO within their order of queueing). This affects the flow control
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parameters associated with the band of the same priority. Message priorities range from 0
(normal) to 255 (highest). This provides up to 256 bands of message flow within a Stream.
Expedited data can be implemented with one extra band of flow (priority band 1) of data.
This is shown in Figure 5-3.

Figure 5-3.  Message Ordering with One Priority Band

High-priority messages are not subject to flow control. When they are queued byputq ,
the associated queue is always scheduled (in the same way as any queue; following all
other queues currently scheduled). When theservice  procedure is called by the sched-
uler, the procedure usesgetq  to retrieve the first message on queue, which will be a high-
priority message, if present.service  procedures must be implemented to act on high-
priority messages immediately. The above mechanisms—priority message queueing,
absence of flow control, and immediate processing by a procedure—result in rapid trans-
port of high-priority messages between the originating and destination components in the
Stream.

The following routines aid users in controlling each priority band of data flow:

• flushband ,

• bcanputnext

• strqget

• strqset .

flushband  is discussed in the section titled “Flush Handling,” andbcanputnext  is
discussed in the section titled “Flow Control.” TheDevice Driver Reference also has a
description of these routines.

Thestrqget  routine allows modules and drivers to obtain information about a queue or
particular band of the queue. This insulates the STREAMS data structures from the mod-
ules and drivers. The format of the routine is:

int strqget (queue_t * q, qfields_t what, unsigned char pri, long * valp)
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The information is returned in thelong  referenced byvalp. The fields that can be
obtained are defined by Screen 5-1:

Screen 5-1.  Obtained Fields

This routine returns 0 on success and an error number on failure.

The routinestrqset  allows modules and drivers to change information about a queue or
particular band of the queue. This also insulates the STREAMS data structures from the
modules and drivers. Its format is

int strqset (queue_t * q, qfields_t what, unsigned char pri, long val)

The updated information is provided byval. strqset  returns 0 on success and an error
number on failure. If the field is intended to be read-only, then the errorEPERM is returned
and the field is left unchanged. The following fields are currently read-only:QCOUNT,
QFIRST, QLAST, andQFLAG.

Note that thestrqget  and strqset  rout ines must be bracketed by the
freezestr(D3)  andunfreezestr(D3)  routines.

The ioctl s I_FLUSHBAND, I_CKBAND, I_GETBAND, I_CANPUT, andI_ATMARK
support multiple bands of data flow. Theioctl I_FLUSHBAND  allows a user to flush a
particular band of messages. It is discussed in more detail in the section titled “Flush Han-
dling.” The ioctl I_CKBAND  allows a user to check if a message of a given priority
exists on the Stream head read queue. Its interface is

ioctl ( fd, I_CKBAND, pri);

This returns1 if a message of prioritypri exists on the Stream head read queue and0 if no
message of prioritypri exists. If an error occurs,-1  is returned. Note thatpri should be of
type int .

The ioctl I_GETBAND  allows a user to check the priority of the first message on the
Stream head read queue. The interface is

ioctl ( fd, I_GETBAND, prip);

This results in the integer referenced byprip being set to the priority band of the message
on the front of the Stream head read queue.

Theioctl I_CANPUT  allows a user to check if a certain band is writable. Its interface is

typedef enum qfields {
        QHIWAT  = 0, /* q_hiwat or qb_hiwat */
        QLOWAT  = 1, /* q_lowat or qb_lowat */
        QMAXPSZ = 2, /* q_maxpsz */
        QMINPSZ = 3, /* q_minpsz */
        QCOUNT  = 4, /* q_count or qb_count */
        QFIRST  = 5, /* q_first or qb_first */
        QLAST   = 6, /* q_last or qb_last */
        QFLAG   = 7, /* q_flag or qb_flag */
        QBAD    = 8
} qfields_t;
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ioctl ( fd, I_CANPUT, pri);

The return value is 0  if the priority bandpri is flow controlled, 1  if the band is writable,
and-1  on error.

The fieldb_flag  of themsgb structure can have a flagMSGMARK that allows a module or
driver tomark a message. This is used to support TCP's (Transport Control Protocol) abil-
ity to show the user the last byte of out-of-band data. Once marked, a message sent to the
Stream head causes the Stream head to remember the message. A user may check to see if
the message on the front of its Stream head read queue is marked with theI_ATMARK
ioctl . If a user is reading data from the Stream head and there are multiple messages on
the read queue, and one of those messages is marked, theread(2)  terminates when it
reaches the marked message and returns the data only up to that marked message. The rest
of the data may be obtained with successive reads.

The ioctl I_ATMARK  has the following format:

ioctl ( fd, I_ATMARK, flag);

whereflag may be eitherANYMARK or LASTMARK. ANYMARK indicates that the user
merely wants to check if the message is marked.LASTMARK indicates that the user wants
to see if the message is the only one marked on the queue. If the test succeeds,1 is
returned. On failure,0 is returned. If an error occurs,-1 is returned.

queue Structure 5

service  procedures, message queues, message priority, and basic flow control are all
intertwined in STREAMS. A queue generally does not use its message queue if there is no
service  procedure in the queue. The function of aservice  procedure is to process
messages on its queue. Message priority and flow control are associated with message
queues.

The operation of a queue revolves around thequeue  structure. Seequeue(D4DK)  for
details.

Queues are always allocated in pairs (read and write); one queue pair per module, driver,
or Stream head. A queue contains a linked list of messages. When aqueue  pair is allo-
cated, the following fields are initialized by STREAMS:

• q_qinfo  - fromstreamtab

• q_minpsz , q_maxpsz , q_hiwat , q_lowat  - from module_info

Copying values frommodule_info  allows them to be changed in thequeue  without
modifying thestreamtab  andmodule_info  values.

q_count  andqb_count  are used in flow control calculations and represent the number
of bytes in the various bands on the queue.
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Using queue Information 5

Modules and drivers should use STREAMS utility routines to alterq_first , q_last ,
q_count , andq_flag . See theDevice Driver Reference for more information.

Modules and drivers can changeq_ptr . Modules and drivers can read but should not
changeq_qinfo , q_bandp , andq_nband .

Modules and drivers need locks for their private data structures (just as the STREAMS
code protects theq_next  pointer, for example).

Seequeue(D4DK)  for a list of flags that you can test.

qband Structure 5

The queue flow information for each band is contained in aqband  structure. This struc-
ture is not visible to a module/driver, although some information in it may be read and
written usingstrqget  andstrqset .

qband  includes a field analogous to thequeue 'sq_count  field. However, the field only
applies to the messages on the queue in the band of data flow represented by the corre-
spondingqband  structure. (In contrast,q_count  only contains information regarding
normal and high-priority messages.)

Each band has a separate high- and low-water mark. These are initially set to thequeue 's
q_hiwat  andq_lowat  respectively. Modules and drivers may change these values if
desired through thestrqset  function.

Theqband  structures are not preallocated per queue. They are allocated when a message
with a priority greater than zero is placed on the queue byputq , putbq , or insq .
Because band allocation can fail, these routines return 0 on failure and 1 on success. Once
a qband  structure is allocated, it remains associated with the queue until the queue is
freed.strqset  andstrqget  will causeqband  allocation to occur.

Using qband Information 5

Use the STREAMS utility routines when manipulating the fields in theqband  structure.
Use the routinesstrqset  andstrqget  to access band information.

Message Processing 5

put  procedures are generally required in pushable modules.service  procedures are
optional. If theput  routine enqueues messages, you need a correspondingservice  rou-
tine to handle the enqueued messages. If theput  routine does not enqueue messages, you
do not need theservice  routine.

The general processing flow when both procedures are present is as follows:

1. A message is received by theput  procedure in a queue, where some pro-
cessing may be performed on the message.
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2. Theput  procedure places the message on the queue with theputq  utility
routine for theservice  procedure to process further at some later time.

3. putq  places the message on the queue based on its priority.

4. putq  makes the queue ready for execution by the STREAMS scheduler.

5. After some indeterminate delay (intended to be short), the STREAMS
scheduler calls theservice  procedure.

6. Theservice  procedure gets the first message from the message queue
with thegetq  utility.

7. Theservice  procedure processes the message and passes it to theput
procedure of the next queue withputnext .

8. Theservice  procedure gets the next message and processes it.

This processing continues until the queue is empty (getq  does not return a message) or
flow control blocks further processing. Theservice  procedure returns to the caller.

NOTE

A service  or put  procedure must never sleep since it has no
user context. It must always return to its caller.

If no processing is required in theput  procedure, the procedure does not have to be
explicitly declared. However,putq  can be placed in theqinit  structure declaration for
the appropriate queue side to queue the message for theservice  procedure, for exam-
ple:

static struct qinit winit = { putq, modwsrv, ...... };

Typically, put  procedures will, at a minimum, process high-priority messages to avoid
queueing them. IfM_FLUSH messages are queued there is a danger that a message queued
after theM_FLUSH will be discarded when theM_FLUSH is processed.

The key attribute of aservice  procedure in the STREAMS architecture is delayed pro-
cessing. When aservice  procedure is used in a module, the module developer is imply-
ing that there are other, more time-sensitive activities to be performed elsewhere in this
Stream, in other Streams, or in the system in general. The presence of aservice  proce-
dure is mandatory if the flow control mechanism is to be used by the queue.

The delay for STREAMS to call aservice  procedure varies with implementation and
system activity.

If a module or driver wishes to recognize priority bands, theservice  procedure is writ-
ten to the following algorithm:
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NOTE

In this example, a race condition exists on a multiprocessor sys-
tem betweenbcanputnext  and putnext . By the time
putnext  is called, the destination queue may be full, potentially
causing the high water mark to be exceeded. Although the queue
may be full, the amount of “overwrite” bounded, and is therefore
not usually a problem.

Flow Control 5

The STREAMS flow control mechanism is voluntary and operates between the two near-
est queues in a Stream containingservice  procedures (see Figure 5-4). Messages are
generally held on a queue only if aservice  procedure is present in the associated queue.
Flow control is applied per band. Each band has its own high- and low-water marks.

Messages accumulate on a queue when the queue'sservice  procedure processing does
not keep pace with the message arrival rate, or when the procedure is blocked from placing
its messages on the following Stream component by the flow control mechanism. Push-
able modules contain independent upstream and downstream limits. The Stream head con-
tains a preset upstream limit (which can be modified by a special message sent from
downstream) and a driver may contain a downstream limit.

.

.
while ((bp = getq(q)) != NULL) {

if (pcmsg(bp->b_datap->db_type)) {
   putnext(q, bp);

} else if (bcanputnext(q, bp->b_band)) {
   putnext(q, bp);

} else {
   putbq(q, bp);
   return;
}

}
.
.
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Figure 5-4.  Flow Control

Flow control operates as follows:

1. Each time a STREAMS message handling routine (for example,putq )
adds or removes a message from a message queue, the limits are checked.
STREAMS calculates the total size of all message blocks (bp->b_wptr
- bp->b_rptr ) on the message queue.

2. The total is compared to the queue high-water and low-water values. If the
total exceeds the high-water value, an internal full indicator is set for the
queue. The operation of theservice  procedure in this queue is not
affected if the indicator is set, and theservice  procedure continues to be
scheduled.

3. The next part of flow control processing occurs in the nearest preceding
queue that contains aservice  procedure. In Figure 5-4, if Queue D is full
and Queue C has noservice  procedure, then Queue B is the nearest pre-
ceding queue.

4. Theservice  procedure in Queue B uses a STREAMS utility routine to
see if a queue ahead is marked full. If messages cannot be sent, the sched-
uler blocks theservice  procedure in Queue B from further execution.
Queue B remains blocked until the low water mark of the full queue,
Queue D, is reached.

5. While Queue B is blocked, any messages except high-priority messages
arriving at Queue B will accumulate on its message queue.

NOTE

High-priority messages are not subject to flow control.
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Eventually, Queue B may reach a full state and the full condition will propagate
back to the previous module in the Stream.

6. When theservice  procedure processing on Queue D causes the message
block total to fall below the high-water mark, the full indicator is turned
off. When the message block total falls below the low-water mark,
STREAMS automatically schedules the nearest preceding blocked queue
(Queue B in this example), to restart processing. This automatic scheduling
is known as back-enabling a queue.

Modules and drivers need to observe the message priority. High-priority messages, deter-
mined by the type of the first block in the message, are not subject to flow control. They
are processed immediately and forwarded, as appropriate.

For ordinary messages, flow control must be tested before any processing is performed.
Thecanputnext  utility determines if the forward path from the queue is blocked by
flow control.

This is the general flow control processing of ordinary messages:

1. Retrieve the message at the head of the queue withgetq .

2. Determine if the message type is high priority and not to be processed here.

3. If so, pass the message to theput  procedure of the following queue with
putnext .

4. Usecanputnext  to determine if messages can be sent onward.

5. If messages should not be forwarded, put the message back on the queue
with putbq  and return from the procedure.

6. Otherwise, process the message.

The canonical representation of this processing within aservice  procedure is as fol-
lows:

Expedited data have their own flow control with the same general processing as that of
ordinary messages.bcanputnext  provides modules and drivers with a way to test flow
control in the given priority band. It returns 1 if a message of the given priority can be
placed on the queue, returns 0 if the priority band is flow controlled, and if the band does
not yet exist on the queue in question, the routine returns 1.

Banded data has separate flow control. In other words, bands 1 through 255 operate totally
independently. Any band greater than or equal to band 1, when flow controlled, will stop
band 0 data (normal data).

Note that the callbcanputnext(q, 0)  is equivalent to the callcanputnext(q) .

while (getq != NULL)
        if (high priority message || no flow control)
                process message
                putnext
        else
                putbq
                return
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NOTE

A service  procedure must process all messages on its queue
unless flow control prevents this.

A service  procedure continues processing messages from its queue untilgetq  returned
NULL. When an ordinary message is enqueued byputq , putq  causes theservice  pro-
cedure to be scheduled only if the queue was previously empty, and a previousgetq  call
returnsNULL (that is, theQWANTR flag is set). If there are messages on the queue,putq
presumes theservice  procedure is blocked by flow control and the procedure is auto-
matically rescheduled by STREAMS when the block is removed. If theservice  proce-
dure cannot complete processing as a result of conditions other than flow control (for
example, no buffers), it must ensure it will return later (for example, by use of the
bufcall  utility routine) or it must discard all messages on the queue. If this is not done,
STREAMS never schedules theservice  procedure to be run unless the queue'sput
procedure enqueues a priority message withputq .

NOTE

High-priority messages are discarded only if there is already a
high-priority message on the Stream head read queue. Only one
high-priority message can be present on the Stream head read
queue at any time.

putbq  replaces messages at the beginning of the appropriate section of the message
queue by their priority. This might not be the same position at which the message was
retrieved by the precedinggetq . A latergetq  might return a different message.

putq  only looks at the priority band in the first message. If a high-priority message is
passed toputq  with a nonzerob_band  value,b_band  is reset to 0 before placing the
message on the queue. If the message is passed toputq  with a b_band  value that is
greater than the number ofqband  structures associated with the queue,putq  tries to allo-
cate a newqband  structure for each band up to and including the band of the message.

The above also applies toputbq  andinsq . If an attempt is made to insert a message out
of order in a queue byinsq , the message is not inserted and the routine fails.

putq  will not schedule a queue ifnoenable (q) has been previously called for this
queue.noenable  instructsputq  to enqueue the message when called by this queue, but
not to schedule theservice  procedure.noenable  does not prevent the queue from
being scheduled by a flow control back-enable. The inverse ofnoenable  is
enableok(q) .

Driver upstream flow control is explained next as an example. Although device drivers
typically discard input when they are unable to send it to a user process, STREAMS
allows driver read-side flow control, possibly for handling temporary upstream blockages,
through a driver readservice  procedure that is disabled during the driveropen  with
noenable . If the driver input interrupt routine determines messages can be sent
upstream, it sends the message withputnext . Otherwise, it callsputq  to queue the mes-
sage. The message waits on the message queue (possibly with queue length checked when
new messages are enqueued by the interrupt routine) until the upstream queue becomes
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unblocked. When the blockage abates, STREAMS back-enables the driver readservice
procedure, which then sends the messages upstream using the mechanisms described pre-
viously. This is similar tolooprsrv  (see the section titled “Loop-around Driver” where
theservice  procedure is present only for flow control.

qenable , another flow control utility, allows a module or driver to cause one of its
queues to be scheduled.qenable  might also be used when a module or driver wants to
delay message processing for some reason. An example is a buffer module that gathers
messages in its message queue and forwards them as a single, larger message. This mod-
ule usesnoenable  to inhibit itsservice  procedure and queues messages with itsput
procedure until a certain byte count or “in queue” time has been reached. When either
condition is met, the module callsqenable  to cause itsservice  procedure to run.

Another example is a communication line discipline module that implements end-to-end
(that is, to a remote system) flow control. Outbound data is held on the write-side message
queue until the read-side receives a transmit window from the remote end of the network.

NOTE

STREAMS routines are called at different priority levels. Inter-
rupt routines are called at the interrupt priority of the interrupting
device.service  routines are called with interrupts enabled
(hence,service  routines for STREAMS drivers can be inter-
rupted by their own interrupt routines). Write sideput  procedures
may also be interrupted by their own interrupt routines.

Service Interfaces 5

STREAMS can implement a service interface between any two components in a Stream,
and between a user process and the topmost module in the Stream. A service interface is
defined at the boundary between a service user and a service provider. A service interface
is a set of primitives and the rules that define a service and the allowable state transitions
that result as these primitives are passed between the user and the provider. These rules are
typically represented by a state machine. In STREAMS, the service user and provider are
implemented in a module, driver, or user process. The primitives are carried bidirection-
ally between a service user and provider inM_PROTO andM_PCPROTO messages.

PROTO messages (M_PROTO andM_PCPROTO) can be multiblock, with the second
through last blocks of typeM_DATA. The first block in aPROTO message contains the
control part of the primitive in a form agreed on by the user and provider. The block is not
intended to carry protocol headers. (Although its use is not recommended, upstream
PROTO messages can have multiplePROTO blocks at the start of the message.get-
msg(2) compacts the blocks into a single control part when sending to a user process).
TheM_DATA block(s) contains any data part associated with the primitive. The data part
may be processed in a module that receives it, or it may be sent to the next Stream compo-
nent along with any data generated by the module. The contents ofPROTO messages and
their allowable sequences are determined by the service interface.

PROTO messages can be sent bidirectionally (upstream and downstream) on a Stream and
between a Stream and a user process.putmsg(2)  andgetmsg(2)  system calls are
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analogous, respectively, towrite(2) andread(2)  except that the former allow both
data and control parts to be (separately) passed, and they retain the message boundaries
across the user-Stream interface.putmsg(2) and getmsg(2)  separately copy the
control part (M_PROTO or M_PCPROTO block) and data part (M_DATA blocks) between
the Stream and user process.

An M_PCPROTO message is normally used to acknowledge primitives composed of other
messages.M_PCPROTO ensures that the acknowledgment reaches the service user before
any other message. If the service user is a user process, the Stream head only stores a sin-
gle M_PCPROTO message, and discards subsequentM_PCPROTO messages until the first
one is read withgetmsg(2) .

A STREAMS message format has been defined to simplify the design of service inter-
faces. System calls,getmsg(2)  andputmsg(2) , are available for sending messages
downstream and receiving messages that are available at the Stream head.

This section describes the system callsgetmsg  andputmsg  in the context of a service
interface example. First, a brief overview of STREAMS service interfaces is presented.

Service Interface Benefits 5

A principal advantage of the STREAMS mechanism is its modularity. From the user level,
kernel-resident modules can be dynamically interconnected to implement any reasonable
processing sequence. This modularity reflects the layering characteristics of contemporary
network architectures.

One benefit of modularity is the ability to interchange modules of like functions. For
example, two distinct transport protocols, implemented as STREAMS modules, may pro-
vide a common set of services. An application or higher layer protocol that requires those
services can use either module. This ability to substitute modules enables user programs
and higher level protocols to be independent of the underlying protocols and physical
communication media.

Each STREAMS module provides a set of processing functions, or services, and an inter-
face to those services. The service interface of a module defines the interaction between
that module and any neighboring modules, and is a necessary component for providing
module substitution. By creating a well-defined service interface, applications and
STREAMS modules can interact with any module that supports that interface, as shown in
Figure 5-5.
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Figure 5-5.  Protocol Substitution

By defining a service interface through which applications interact with a transport proto-
col, it is possible to substitute a different protocol below that service interface in a way
completely transparent to the application. In this example, the same application can run
over the Transmission Control Protocol (TCP) and the ISO transport protocol. Of course,
the service interface must define a set of services common to both protocols.

The three components of any service interface are the service user, the service provider,
and the service interface itself, as shown in Figure 5-6.
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Figure 5-6.  Service Interface

Typically, a user makes a request of a service provider using some well-defined service
primitive. Responses and event indications are also passed from the provider to the user
using service primitives.

Each service interface primitive is a distinct STREAMS message that has two parts: a con-
trol part and a data part. The control part contains information that identifies the primitive
and includes all necessary parameters. The data part contains user data associated with
that primitive.

An example of a service interface primitive is a transport protocol connect request. This
primitive requests the transport protocol service provider to establish a connection with
another transport user. The parameters associated with this primitive may include a desti-
nation protocol address and specific protocol options to be associated with that connec-
tion. Some transport protocols also allow a user to send data with the connect request. A
STREAMS message would be used to define this primitive. The control part would iden-
tify the primitive as a connect request and would include the protocol address and options.
The data part would contain the associated user data.

Service Interface Library 5

The service interface library example presented in Screen 5-2 through Screen 5-7 includes
four functions that enable a user to do the following:
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• Establish a Stream to the service provider and bind a protocol address to
the Stream. See Screen 5-2, Screen 5-3 and Screen 5-4.

• Send data to a remote user. See Screen 5-6.

• Receive data from a remote user. See Screen 5-7.

• Close the Stream connected to the provider. See Screen 5-5.

Screen 5-2 shows the structure and constant definitions required by the library. These typ-
ically will reside in a header file associated with the service interface.

Screen 5-2.  Service Interface Library Example

/*
 * Primitives initiated by the service user.
 */
#define BIND_REQ 1 /* bind request */
#define UNITDATA_REQ 2 /* unitdata request */

/*
 * Primitives initiated by the service provider.
 */
#define OK_ACK 3 /* bind acknowledgment */
#define ERROR_ACK 4 /* error acknowledgment */
#define UNITDATA_IND 5 /* unitdata indication */

/*
 * The following structure definitions define the format of the
 * control part of the service interface message of the above
 * primitives.
 */

struct bind_req { /* bind request */
long PRIM_type; /* always BIND_REQ */
long BIND_addr; /* addr to bind */

};

struct unitdata_req { /* unitdata request */
long PRIM_type; /* always UNITDATA_REQ */
long DEST_addr; /* destination addr */

};

struct ok_ack { /* positive acknowledgment */
long PRIM_type; /* always OK_ACK */

};

struct error_ack { /* error acknowledgment */
long PRIM_type; /* always ERROR_ACK */
long UNIX_error; /* UNIX system error code  */

};

struct unitdata_ind {/* unitdata indication */
long PRIM_type; /* always UNITDATA_IND */
long SRC_addr; /* source addr */

};

/* union of all primitives */

union primitives {
long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

};
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Five primitives have been defined. The first two represent requests from the service user to
the service provider. These are as follows:

BIND_REQ Asks the provider to bind a specified protocol address (that is, give
it a name on the network.). It requires an acknowledgment from
the provider to verify that the contents of the request are syntacti-
cally correct.

UNITDATA_REQ Asks the provider to send data to the specified destination address.
It does not require an acknowledgment from the provider.

The three other primitives represent acknowledgments of requests, or indications of
incoming events, and are passed from the service provider to the service user. These are as
follows:

OK_ACK Informs the user that a previous bind request was received suc-
cessfully by the service provider.

ERROR_ACK Informs the user that a non-fatal error was found in the previous
bind request. It indicates that no action was taken with the primi-
tive that caused the error.

UNITDATA_IND Indicates that data destined for the user have arrived.

The defined structures describe the contents of the control part of each service interface
message passed between the service user and service provider. The first field of each con-
trol part defines the type of primitive being passed.

Accessing the Service Provider 5

The first routine presented,inter_open , opens the protocol driver device file specified
by path and binds the protocol address contained inaddr so that it may receive data. On
success, the routine returns the file descriptor associated with the open Stream; on failure,
it returns-1  and setserrno  to indicate the appropriate error value.

/* header files needed by library */
#include <stropts.h>
#include <stdio.h>
#include <errno.h>
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Screen 5-3.  Accessing the Service Provider

After opening the protocol driver,inter_open  packages a bind request message to send
downstream.putmsg  is called to send the request to the service provider. The bind
request message contains a control part that holds abind_req structure, but it has no data
part.ctlbuf is a structure of typestrbuf , and it is initialized with the primitive type and
address. Notice that themaxlen  field of ctlbuf  is not set before callingputmsg ,
becauseputmsg  ignores this field. Thedataptr argument toputmsg  is set toNULL to
indicate that the message contains no data part. Also, theflags argument is 0, which speci-
fies that the message is not a high-priority message.

After inter_open  sends the bind request, it must wait for an acknowledgment from the
service provider, as shown in Screen 5-4:

inter_open(char *path, int oflags, int addr)
{

int fd;
struct bind_req bind_req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error_ack *error_ack;
int flags;

if ((fd = open(path, oflags)) < 0)
return(-1);

/* send bind request msg down stream */

bind_req.PRIM_type = BIND_REQ;
bind_req.BIND_addr = addr;
ctlbuf.len = sizeof(struct bind_req);
ctlbuf.buf = (char *)&bind_req;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) {
close(fd);
return(-1);

}
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Screen 5-4.  Acknowledgment from Service Provider

getmsg  is called to retrieve the acknowledgment of the bind request. The acknowledg-
ment message consists of a control part that contains either anok_ack  or error_ack
structure, and no data part.

The acknowledgment primitives are defined as priority messages. Messages are queued in
a FIFO sequence within their priority at the Stream head; high-priority messages are
placed at the front of the Stream head queue followed by priority band messages and ordi-
nary messages. The STREAMS mechanism allows only one high-priority message per
Stream at the Stream head at one time; any further high-priority messages are freed until
the message at the Stream head is processed. (Only one high priority message can be
present on the Stream head read queue at any time.) High-priority messages are particu-
larly suitable for acknowledging service requests when the acknowledgment should be
placed ahead of any other messages at the Stream head.

Before callinggetmsg , this routine must initialize thestrbuf  structure for the control
part.buf should point to a buffer large enough to hold the expected control part, andmax-
len must be set to show the maximum number of bytes this buffer can hold.

/* wait for ack of request */

ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&rcvbuf;
flags = RS_HIPRI;

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) {
close(fd);
return(-1);

}

/* did we get enough to determine type */
if (ctlbuf.len < sizeof(long)) {

close(fd);
errno = EPROTO;
return(-1);

}

/* switch on type (first long in rcvbuf) */
switch(rcvbuf.type) {

default:
close(fd);
errno = EPROTO;
return(-1);

case OK_ACK:
return(fd);

case ERROR_ACK:
if (ctlbuf.len < sizeof(struct error_ack)) {

close(fd);
errno = EPROTO;
return(-1);

}
error_ack = (struct error_ack *)&rcvbuf;
close(fd);
errno = error_ack->UNIX_error;
return(-1);

}
}
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Because neither acknowledgment primitive contains a data part, thedataptr argument to
getmsg  is set toNULL. Theflagsp argument points to an integer containing the value
RS_HIPRI . This flag indicates thatgetmsg  should wait for a STREAMS high-priority
message before returning. It is set because we want to catch the acknowledgment primi-
tives that are priority messages. Otherwise, if the flag is zero, the first message is taken.
With RS_HIPRI  set, even if a normal message is available,getmsg  will block until a
high-priority message arrives.

On return fromgetmsg , the len field is checked to ensure that the control part of the
retrieved message is an appropriate size. The example then checks the primitive type and
takes appropriate actions. AnOK_ACK indicates a successful bind operation, and
inter_open  returns the file descriptor of the open Stream. AnERROR_ACK indicates a
bind failure, anderrno  is set to identify the problem with the request.

Closing the Service Provider 5

The next routine in the service interface library example isinter_close , which closes
the Stream to the service provider.

Screen 5-5.  Closing the Service Provider

The routine simply closes the given file descriptor. This routine causes the protocol driver
to free any resources associated with that Stream. For example, the driver may unbind the
protocol address that had previously been bound to that Stream, thereby freeing that
address for use by some other service user.

Sending Data to the Service Provider 5

The third routine,inter_snd , passes data to the service provider for transmission to the
user at the address specified inaddr. The data to be transmitted are contained in the buffer
pointed to bybuf and containslen bytes. On successful completion, this routine returns the
number of bytes of data passed to the service provider; on failure, it returns-1  and sets
errno  to an appropriate error value.

inter_close(int fd)
{

close(fd);
}
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Screen 5-6.  Sending Data

In this example, the data request primitive is packaged with both a control part and a data
part. The control part contains aunitdata_req structure that identifies the primitive type
and the destination address of the data. The data to be transmitted are placed in the data
part of the request message.

Unlike the bind request, the data request primitive requires no acknowledgment from the
service provider. In the example, this choice was made to minimize the overhead during
data transfer. If theputmsg  call succeeds, this routine assumes all is well and returns the
number of bytes passed to the service provider.

Receiving Data from the Service Provider 5

The final routine in this example,inter_rcv , retrieves the next data.buf points to a
buffer where the data should be stored,len shows the size of that buffer, andaddr points to
a long integer where the source address of the data will be placed. On successful comple-
tion, inter_rcv  returns the number of bytes in the retrieved data; on failure, it   returns
-1  and sets the appropriate PowerMAX OS System error value.

inter_snd(int fd, char *buf, int len, long addr)
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;
unitdata_req.DEST_addr = addr;
ctlbuf.len = sizeof(struct unitdata_req);
ctlbuf.buf = (char *)&unitdata_req;
databuf.len = len;
databuf.buf = buf;

if (putmsg(fd, &ctlbuf, &databuf, 0) < 0) {
errno = EIO;
return(-1);

}

return(len);
}



STREAMS Modules and Drivers

5-28

Screen 5-7.  Receiving Data

getmsg  is called to retrieve the data indication primitive, where that primitive contains
both a control and data part. The control part consists of aunitdata_ind  structure that
identifies the primitive type and the source address of the data sender. The data part con-
tains the data itself.

In ctlbuf , buf  must point to a buffer where the control information will be stored, and
maxlen  must be set to indicate the maximum size of that buffer. Similar initialization is
done fordatabuf .

The integer pointed at byflagsp in thegetmsg  call is set to zero, indicating that the next
message should be retrieved from the Stream head, regardless of its priority. Data will
arrive in normal priority messages. If no message currently exists at the Stream head,
getmsg  will block until a message arrives.

The user's control and data buffers should be large enough to hold any incoming data. If
both buffers are large enough,getmsg  processes the data indication and return0, indicat-
ing that a full message was retrieved successfully. However, if either buffer is not large
enough,getmsg  only retrieves the part of the message that fits into each user buffer. The
remainder of the message is saved for later retrieval (if in message non-discard mode), and
a positive, non-zero value is returned to the user,MORECTL indicates that more control
information is waiting for retrieval,MOREDATA indicates that more data is waiting for
retrieval, and (MORECTL | MOREDATA) indicates that data from both parts of the mes-
sage remains. In the example, if the user buffers are not large enough (that is,getmsg
returns a positive, non-zero value), the function will seterrno  to EIO and fail.

inter_rcv(int fd, char *buf, int len, long *addr)
{
struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_ind unitdata_ind;
int retval;
int flagsp;

ctlbuf.maxlen = sizeof(struct unitdata_ind);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&unitdata_ind;
databuf.maxlen = len;
databuf.len = 0;
databuf.buf = buf;
flagsp = 0;

if ((retval = getmsg(fd, &ctlbuf, &databuf, &flagsp)) < 0) {
errno = EIO;
return(-1);

}
if (retval) {

errno = EIO;
return(-1);

}
if (unitdata_ind.PRIM_type != UNITDATA_IND) {

errno = EPROTO;
return(-1);

}
*addr = unitdata_ind.SRC_addr;
return(databuf.len);

}
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The type of the primitive returned bygetmsg  is checked to make sure it is a data indica-
tion (UNITDATA_IND in the example). The source address is then set and the number of
bytes of data is returned.

The example presented is a simplified service interface. The state transition rules for such
an interface were not presented for the sake of brevity. The intent was to show typical uses
of theputmsg  andgetmsg  system calls. Seeputmsg(2) andgetmsg(2)  for further
details. For simplicity, this example did not also consider expedited data.

Multiprocessor/Driver-Kernel Interface driver locks are used to protect against race condi-
tions on multiprocessor systems with respect to the current state.

Module Service Interface 5

Screen 5-8 and Screen 5-9 show an example of part of a module that illustrates the concept
of a service interface. The module implements a simple service interface and mirrors the
service interface library example given earlier. The following rules pertain to service inter-
faces:

• Modules and drivers that support a service interface must act on allPROTO
messages and not pass them through.

• Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these mod-
ules may not alter the contents of the control part (PROTO block, first mes-
sage block) nor alter the boundaries of the control or data parts. The mes-
sage blocks comprising the data part may be changed, but the message may
not be split into separate messages nor combined with other messages.

In addition, modules and drivers must observe the rule that high-priority messages are not
subject to flow control and forward them accordingly.

The service interface primitives are defined in the declarations as shown in Screen 5-8:
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Screen 5-8.  Module Service Interface Declaration

In general, theM_PROTO or M_PCPROTO block is described by a data structure containing
the service interface information. In this example, union primitives is that structure.

Two commands are recognized by the module:

BIND_REQ Give this Stream a protocol address (that is, give it a name on the
network). After aBIND_REQ is completed, data from other send-
ers will find their way through the network to this particular
Stream.

UNITDATA_REQ Send data to the specified address.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/errno.h>

/* Primitives initiated by the service user */

#define BIND_REQ1/* bind request */
#define UNITDATA_REQ2/* unitdata request */

/* Primitives initiated by the service provider */

#define OK_ACK3 /* bind acknowledgment */
#define ERROR_ACK4/* error acknowledgment */
#define UNITDATA_IND5/* unitdata indication */
/*
 * The following structures define the format of the
 * stream message block of the above primitives.
 */
struct bind_req {  /* bind request */

long PRIM_type;/* always BIND_REQ */
long BIND_addr;/* addr to bind*/

};
struct unitdata_req {/* unitdata request */

long PRIM_type;/* always UNITDATA_REQ */
long DEST_addr;/* dest addr */

};
struct ok_ack {/* ok acknowledgment */

long PRIM_type;/* always OK_ACK */
};
struct error_ack {/* error acknowledgment */

long PRIM_type;/* always ERROR_ACK */
long UNIX_error;/* UNIX system error code */

};
struct unitdata_ind {/* unitdata indication */

long PRIM_type;/* always UNITDATA_IND */
long SRC_addr;/* source addr */

};
union primitives {/* union of all primitives */

long  type;
struct bind_req  bind_req;
struct unitdata_req  unitdata_req;
struct ok_ack  ok_ack;
struct error_ack  error_ack;
struct unitdata_ind  unitdata_ind;

};
struct dgproto {/* structure per minor device */

short state;/* current provider state */
long addr;/* net address */
lck_t *lck;

};
/* Provider states */
#define IDLE   0
#define BOUND  1
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Three messages are generated:

OK_ACK A positive acknowledgment (ack) of BIND_REQ.

ERROR_ACK A negative acknowledgment (nak) of BIND_REQ.

UNITDATA_IND Data from the network have been received (this code is not
shown).

The acknowledgment of aBIND_REQ informs the user that the request was syntactically
correct (or incorrect ifERROR_ACK). The receipt of aBIND_REQ is acknowledged with
anM_PCPROTO to ensure that the acknowledgment reaches the user before any other mes-
sage. For example, aUNITDATA_IND could come through before the bind has completed,
and the user would get confused.

The driver uses a per-minor device data structure,dgproto , which contains the follow-
ing:

state Current state of the service providerIDLE  or BOUND

addr Network address that has been bound to this Stream

lck A spin lock to protect state information

It is assumed (though not shown) that the module open procedure sets the write queue
q_ptr  to point at the appropriate private data structure.

Service Interface Procedure 5

The writeput  procedure is shown in Screen 5-9:
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Screen 5-9.  Write Procedure

int protowput(queue_t *q, mblk_t  *mp)
{

union primitives *proto;
struct dgproto *dgproto;
int err;
pl_t oldpri;

dgproto = (struct dgproto *) q->q_ptr;

switch (mp->b_datap->db_type) {

default:
/* don't understand it */
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
break;

case M_FLUSH:
/* standard flush handling goes here ... */
break;

case M_PROTO:
/* Protocol message -> user request */
proto = (union primitives *) mp->b_rptr;
switch (proto->type) {
default:

mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
return;

case BIND_REQ:
oldpri = LOCK(dgproto->lck, plstr);
if (dgproto->state != IDLE) {

err = EINVAL;
goto error_ack;

}
if (mp->b_wptr - mp->b_rptr != sizeof(struct bind_req)) {

err = EINVAL;
goto error_ack;

}
if (err = chkaddr(proto->bind_req.BIND_addr))

goto error_ack;

dgproto->state = BOUND;
dgproto->addr = proto->bind_req.BIND_addr;
UNLOCK(dgproto->lck, oldpri);
mp->b_datap->db_type = M_PCPROTO;
proto->type = OK_ACK;
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The writeput  procedure switches on the message type. The only types accepted are
M_FLUSH andM_PROTO. For M_FLUSH messages, the driver performs the canonical
flush handling (not shown). ForM_PROTO messages, the driver assumes the message
block contains a union primitive and switches on thetype  field. Two types are under-
stood:BIND_REQ andUNITDATA_REQ.

For aBIND_REQ, the current state is checked; it must beIDLE . Next, the message size is
checked. If it is the correct size, the passed-in address is verified for legality by calling
chkaddr . If everything checks, the incoming message is converted into anOK_ACK and
sent upstream. If there is any error, the incoming message is converted into an
ERROR_ACK and sent upstream.

For UNITDATA_REQ, the state is also checked; it must beBOUND. As above, the message
size and destination address are checked. If there is any error, the message is simply dis-
carded. If all is well, the message is put on the queue, and the lower half of the driver is
started.

If the writeput  procedure receives a message type that it does not understand, either a
badb_datap->db_type  or badproto->type,  the message is converted into an
M_ERROR message and sent upstream.

The generation ofUNITDATA_IND messages (not shown in the example) normally
occurs in the device interrupt if this is a hardware driver or in the lower readput  proce-
dure if this is a multiplexor. The algorithm is simple: The data part of the message is
prepended by anM_PROTO message block that contains aunitdata_ind  structure and
sent upstream.

mp->b_wptr = mp->b_rptr + sizeof(struct ok_ack);
qreply(q, mp);
break;

error_ack:
UNLOCK(dgproto->lck, oldpri);
mp->b_datap->db_type = M_PCPROTO;
proto->type = ERROR_ACK;
proto->error_ack.UNIX_error = err;
mp->b_wptr = mp->b_rptr + sizeof(struct error_ack);
qreply(q, mp);
break;

case UNITDATA_REQ:
oldpri = LOCK(dgproto->lck, plstr);
if (dgproto->state != BOUND)

goto bad;
if (mp->b_wptr - mp->b_rptr != sizeof(struct unitdata_req))

goto bad;
if (err = chkaddr(proto->unitdata_req.DEST_addr))

goto bad;

/* start device or mux output ... */

UNLOCK(dgproto->lck, oldpri);
putq(q, mp);
break;

bad:
UNLOCK(dgproto->lck, oldpri);
freemsg(mp);
break;

}
}
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Message Allocation and Freeing 5

Theallocb  utility routine allocates a message and the space to hold the data for the mes-
sage.allocb  returns a pointer to a message block containing a data buffer of at least the
size requested, providing there is enough memory available. It returns null on failure. Note
thatallocb  always returns a message of typeM_DATA. The type may then be changed if
required.b_rptr  andb_wptr  are set todb_base  (seemsgb anddatab ), which is the
start of the memory location for the data.

allocb  may return a buffer larger than the size requested. Ifallocb  indicates buffers
are not available (allocb  fails), theput /service  procedure may not callsleep  to
wait for a buffer to become available. Instead, thebufcall  utility can defer processing in
the module or the driver until a buffer becomes available.

If message space allocation is done by theput  procedure andallocb  fails, the message
is usually discarded. If the allocation fails in theservice  routine, the message is
returned to the queue.bufcall  is called to enable to theservice  routine when a mes-
sage buffer becomes available, and theservice  routine returns.

Thefreeb  utility routine releases (deallocates) the message block descriptor and the cor-
responding data block, if the reference count (seedatab  structure) is equal to 1. If the
reference counter exceeds 1, the data block is not released.

The freemsg  utility routine releases all message blocks in a message. It usesfreeb  to
free all message blocks and corresponding data blocks.

In Screen 5-10,allocb  is used by thebappend  subroutine that appends a character to a
message block:

Screen 5-10.  Appending a Character to a Message Block

bappend  receives a pointer to a message block pointer and a character as arguments. If a
message block is supplied(*bpp != NULL) , thenbappend  checks if there is room for

/*
 * Append a character to a message block.
 * If (*bpp) is null, it will allocate a new block
 * Returns 0 when the message block is full, 1 otherwise
 */

#define MODBLKSZ128/* size of message blocks */

static bappend(mblk_t **bpp, int ch)
{

mblk_t *bp;

if ((bp = *bpp) != NULL) {
if (bp->b_wptr >= bp->b_datap->db_lim)

return 0;
} else if ((*bpp = bp = allocb(MODBLKSZ, BPRI_MED)) == NULL)

return 1;
*bp->b_wptr++ = ch;
return 1;

}



STREAMS Messages

5-35

more data in the block. If not, it fails. If there is no message block, a block of at leastMOD-
BLKSZ is allocated throughallocb .

If the allocb  fails,bappend  returns success, silently discarding the character. This may
or may not be acceptable. For TTY-type devices, it is generally accepted. If the original
message block is not full or theallocb  is successful,bappend  stores the character in
the block.

Screen 5-11 shows subroutinemodwput  which processes all the message blocks in any
downstream data (typeM_DATA) messages.freemsg  deallocates messages.

Screen 5-11.  Processing Message Blocks

In Screen 5-11, data messages are scanned and filtered.modwput  copies the original mes-
sage into a new block(s), modifying as it copies;nbp points to the current new message
block; andnmp points to the new message being formed as multipleM_DATA message
blocks. The outerfor  loop goes through each message block of the original message,
while the innerwhile  loop goes through each byte.bappend  is used to add characters to
the current or new block; if it fails, the current new block is full. Ifnmp is NULL, nmp is
pointed at the new block. Ifnmp is notNULL, the new block is linked to the end ofnmp
with thelinkb  utility.

/* Write side put procedure */
static modwput( queue_t *q, mblk_t *mp)
{

switch (mp->b_datap->db_type) {
default:

putnext(q, mp);/* Don't do these, pass them along */
break;

case M_DATA: {
register mblk_t *bp;
struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont) {
while (bp->b_rptr < bp->b_wptr) {

if (*bp->b_rptr == '\n')
if (!bappend(&nbp, '\r'))

goto newblk;
if (!bappend(&nbp, *bp->b_rptr))

goto newblk;

bp->b_rptr++;
continue;

newblk:
if (nmp == NULL)

nmp = nbp;
else linkb(nmp, nbp); /* link message block

 to tail of nmp */
nbp = NULL;

}
}

if (nmp == NULL)
nmp = nbp;

else linkb(nmp, nbp);
freemsg(mp); /* de-allocate message */
if (nmp)

putnext(q, nmp);
break;

}
}

}
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At the end of the loops, the final new block is linked tonmp. The original message (all
message blocks) is returned to the pool byfreemsg . If a new message exists, it is sent
downstream.

Recovering from No Buffers 5

Thebufcall  utility can recover from anallocb  failure. The call syntax is as follows:

bufcall (int size, int pri, int (* func)(), long arg)

bufcall  calls (*func)(arg) when a buffer ofsize bytes is available. Whenfunc is called, it
has no user context and must return without sleeping. Also, because of interrupt process-
ing, and multiprocessor contention for resources, there is no guarantee that whenfunc is
called, a buffer will actually be available (someone else may steal it).

On success,bufcall  returns a nonzero identifier that can be used as a parameter to
unbufcall  to cancel the request later. On failure, 0 is returned and the requested func-
tion will never be called.

NOTE

Make sure you avoid deadlock when holding resources while
waiting for bufcall  to call (*func)(arg). Usebufcall  spar-
ingly.

Two examples, Screen 5-12 and Screen 5-13, are provided. Screen 5-12 is a device receive
interrupt handler:
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Screen 5-12.  Device Receive Interrupt Handler

dev_rintr  is called when the device has posted a receive interrupt. The code retrieves
the data from the device (not shown).dev_rintr  must then give the device another
buffer to fill by a call todev_re_load , which callsallocb . If allocb  fails,
dev_re_load  usesbufcall  to call itself when STREAMS determines a buffer is
available.

NOTE

Becausebufcall  may fail, there is still a chance that the device
may hang. A better strategy, ifbufcall  fails, is to discard the
current input message and resubmit that buffer to the device. Los-
ing input data is generally better than hanging.

Screen 5-13 is a writeservice  procedure,mod_wsrv , which needs to prepend each
output message with a header.mod_wsrv  illustrates a case for potential deadlock:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>

dev_rintr(int dev)
{

/* process incoming message ... */

/* allocate new buffer for device */
dev_re_load(dev);

}
/*
 * Reload device with a new receive buffer
 */
dev_re_load(int dev)
{

mblk_t *bp;

if ((bp = allocb(DEVBLKSZ, BPRI_MED)) == NULL) {
cmn_err(CE_WARN, “dev: allocb failure (size %d)\n”, DEVBLKSZ);
/*
 * Allocation failed.  Use bufcall to
 * schedule a call to ourselves.
 */
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load, dev);
return;

}

/* pass buffer to device ... */
}
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Screen 5-13.  Write Service Procedure

However, ifallocb  fails, mod_wsrv  wants to recover without loss of data and calls
bufcall . In this example, the routine passed tobufcall  is qenable . When a buffer is
available, theservice  procedure is automatically re-enabled. Before exiting, the current
message is put back on the queue. This example deals withbufcall  failure by resorting
to theitimeout  operating system utility routine. This routine schedules the given func-
tion to be run with the given argument in the given number of clock ticks (there are HZ
clock ticks per second). In this example, ifbufcall  fails, the system runsqenable
after two seconds have passed.

Extended STREAMS Buffers 5

Some hardware using the STREAMS mechanism supports memory-mapped I/O that
allows the sharing of buffers between users, kernel, and the I/O card.

If the hardware supports memory-mapped I/O, data received from the network are placed
in the DARAM (dual access RAM) section of the I/O card. Because DARAM is a shared
memory between the kernel and the I/O card, data transfer between the kernel and the I/O
card is eliminated. Once in kernel space, you can manipulate the data buffer as if it were a
kernel resident buffer. Similarly, data being sent downstream is placed in DARAM and
then forwarded to the network.

In a typical network arrangement, data is received from the network by the I/O card. The
block of data is read into the card's internal buffer. It interrupts the host computer to denote
that data have arrived. The STREAMS driver gives the controller the kernel address where
the data block is to go and the number of bytes to transfer. After the controller reads the
data into its buffer and verifies the checksum, it copies the data into main memory to the
address specified by the direct memory access (DMA) memory address. Once in the ker-
nel space, the data is packaged into message blocks and processed in the usual way.

static int mod_wsrv(queue_t  *q)
{

int qenable;
mblk_t *mp, *bp;

while (mp = getq(q)) {

/* check for priority messages and canput ... */

/* Allocate a header to prepend to the message.  If
 * the allocb fails, use bufcall to reschedule.
 */
if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) {

if (!bufcall(HDRSZ, BPRI_MED, qenable, q)) {
   itimeout(qenable, q, HZ*2, plstr);
}
/* Put the message back and exit, we will be re-enabled later */
putbq(q, mp);
return;

}
/* process message .... */

}
}
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When data is transmitted from user process to the network, the data is copied from the user
space to the kernel space, and packaged as a message block and sent to the downstream
driver. The driver interrupts the I/O card signaling that data is ready to be transmitted to
the network. The controller copies the data from the kernel space to the internal buffer on
the I/O card, and from there data is placed on the network.

The STREAMS buffer allocation mechanism enables the allocation of message and data
blocks to point directly to a client-supplied (non-STREAMS) buffer. Message and data
blocks allocated this way are indistinguishable (for the most part) from the normal data
blocks. The client-supplied buffers are processed as if they were normal STREAMS data
buffers.

Drivers may not only attach non-STREAMS data buffers but also free them. This is done
as follows:

• Allocation - if the drivers are to use DARAM without wasting STREAMS
resources and without being dependent on upstream modules, a data and
message block can be allocated without an attached data buffer. The rou-
tine to use is calledesballoc . This returns a message block and data
block without an associated STREAMS buffer. The buffer used is the one
supplied by the caller.

• Freeing - each driver using non-STREAMS resources in a STREAMS
environment must fully manage those resources, including freeing them.
However, to make this as transparent as possible, a driver-dependent rou-
tine is executed iffreeb  is called to free a message and data block with an
attached non-STREAMS buffer.

freeb  detects if a buffer is a client supplied, non-STREAMS buffer. If it is,freeb
finds thefree_rtn  structure associated with that buffer. After calling the driver-
dependent routine (defined infree_rtn ) to free the buffer, thefreeb  routine
frees the message and data block.

NOTE

The free routine must not reference any dynamically allocated
data structures that become freed when the driver is closed,
because messages can exist in a Stream after the driver is closed.
This can occur, for example, when a Stream is closed down. The
driver close routine is called and the driver's private data structure
may be deallocated. If the driver sends a message created by
esballoc  upstream, that message may still be on the Stream
head read queue. The Stream head read queue is then flushed,
freeing the message and calling the driver's free routine after the
driver has been closed.

The format of thefree_rtn  structure is as follows:
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The structure has two fields: a pointer to a function and a location for any argument passed
to the function. Instead of defining a specific number of arguments,free_arg  is defined
as achar * . Drivers can then pass pointers to structures if more than one argument is
needed.

The STREAMS utility routine,esballoc , provides a common interface for allocating
and initializing data blocks. It makes the allocation as transparent to the driver as possible
and provides a way to change the fields of the data block, since modification should only
be performed by STREAMS. The driver calls this routine when it wants to attach its own
data buffer to a newly allocated message and data block. If the routine successfully com-
pletes the allocation and assigns the buffer, it returns a pointer to the message block. The
driver is responsible for supplying the arguments toesballoc , namely, a pointer to its
data buffer, the size of the buffer, the priority of the data block, and a pointer to the
free_rtn  structure. All arguments should be non-NULL. See theDevice Driver Refer-
ence for a detailed description ofesballoc .

Message Types 5

All the STREAMS messages are defined insys/stream.h . The messages differ in their
intended purpose and their queueing priority. The contents of certain message types can be
transferred between a process and a Stream by system calls.

Below, the message types are briefly described and classified according to their queueing
priority.

Ordinary Messages (also called “normal” messages):

M_BREAK Request to a Stream driver to send a “break”

M_CTL Control/status request used for intermodule communication

M_DATA User data message for I/O system calls

M_DELAY Request a real-time delay on output

M_IOCTL Control/status request generated by a Stream head

M_PASSFP File pointer passing message

M_PROTO Protocol control information

M_RSE Reserved for internal use

M_SETOPTS Set options at the Stream head, sent upstream

struct free_rtn {
    void (*free_func) (); /* driver dependent free routine */
    char *free_arg;       /* argument for free_rtn */
};
typedef struct free_rtn frtn_t;
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M_SIG Signal sent from a module/driver to a user

High Priority Messages:

M_COPYIN Copy in data for transparentioctl s, sent upstream

M_COPYOUT Copy out data for transparentioctl s, sent upstream

M_ERROR Report downstream error condition, sent upstream

M_FLUSH Flush module queue

M_HANGUP Set a Stream head hangup condition, sent upstream

M_IOCACK Positiveioctl(2) acknowledgment

M_IOCDATA Data for transparentioctl s, sent downstream

M_IOCNAK Negativeioctl(2)  acknowledgment

M_PCPROTO Protocol control information

M_PCRSE Reserved for internal use

M_PCSIG Signal sent from a module/driver to a user

M_READ Read notification, sent downstream

M_START Restart stopped device output

M_STARTI Restart stopped device input

M_STOP Suspend output

M_STOPI Suspend input

NOTE

Transparentioctl s support applications developed before the
introduction of STREAMS.

Defined STREAMS message types differ in their intended purposes, their treatment at the
Stream head, and in their message queueing priority.

STREAMS does not prevent a module or driver from generating any message type and
sending it in any direction on the Stream. However, established processing and direction
rules should be observed. Stream head processing according to message type is fixed,
although certain parameters can be altered.
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Detailed Description of Message Types 5

The message types are classified according to their message queueing priority. Ordinary
messages are described first, with high priority messages following. In certain cases, two
message types may perform similar functions, differing only in priority. The use of the
word “module” generally implies “module or driver.”

Ordinary messages are also called normal or non-priority messages. Ordinary messages
are subject to flow control whereas high priority messages are not.

Ordinary Messages 5

M_BREAK 5

Sent to a driver to request that BREAK be transmitted on whatever media the driver is
controlling.

The message format is not defined by STREAMS and its use is developer dependent. This
message may be considered a special case of anM_CTL message. AnM_BREAK message
cannot be generated by a user-level process and is always discarded if passed to the
Stream head.

M_CTL 5

Generated by modules that want to send information to a particular module or type of
module.M_CTL messages are typically used for inter-module communication, as when
adjacent STREAMS protocol modules negotiate the terms of their interface. AnM_CTL
message cannot be generated by a user-level process and is always discarded if passed to
the Stream head.

M_DATA 5

Intended to contain ordinary data. Messages allocated by theallocb  routine are type
M_DATA by default.M_DATA messages are generally sent bidirectionally on a Stream and
their contents can be passed between a process and the Stream head. In thegetmsg(2)
andputmsg(2)  system calls, the contents ofM_DATA message blocks are referred to as
the data part. Messages composed of multiple message blocks will typically haveM_DATA
as the message type for all message blocks following the first.
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M_DELAY 5

Sent to a media driver to request a real-time delay on output. The data buffer associated
with this message is expected to contain an integer to show the number of machine ticks of
delay desired.M_DELAY messages are typically used to prevent transmitted data from
exceeding the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its use is developer dependent. Not
all media drivers may understand this message. This message may be considered a special
case of anM_CTL message. AnM_DELAY message cannot be generated by a user-level
process and is always discarded if passed to the Stream head.

M_IOCTL 5

Generated by the Stream head in response toI_STR , I_LINK , I_UNLINK , I_PLINK ,
and I_PUNLINK  (ioctl(2)  STREAMS system calls, seestreamio(7) ), and in
response toioctl  calls that contain a command argument value not defined instrea-
mio(7) . When one of theseioctl s is received from a user process, the Stream head
uses values supplied in the call and values from the process to create anM_IOCTL mes-
sage containing them, and sends the message downstream.M_IOCTL messages are
intended to perform the generalioctl  functions of character device drivers.

For anI_STR ioctl , the user values are supplied in a structure of the following form,
provided as an argument to theioctl  call (seeI_STR  in streamio(7) ):

whereic_cmd  is the request (or command) defined by a downstream module or driver,
ic_timout  is the time the Stream head will wait for acknowledgment to theM_IOCTL
message before timing out, andic_dp  is a pointer to an optional data buffer. On input,
ic_len  contains the length of the data in the buffer passed in and, on return from the call,
it contains the length of the data, if any, being returned to the user in the same buffer.

TheM_IOCTL message format is oneM_IOCTL message block followed by zero or more
M_DATA message blocks. STREAMS constructs anM_IOCTL message block by placing
an iocblk  structure, defined insys/stream . h, in its data buffer:

struct strioctl
{

int   ic_cmd; /* downstream request */
int   ic_timout; /* ACK/NAK timeout */
int   ic_len; /* length of data arg */
char *ic_dp; /* ptr to data arg */

};
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For anI_STR ioctl , ioc_cmd  corresponds toic_cmd  of thestrioctl  structure.
ioc_cr  points to a credentials structure defining the user process's permissions (see
cred.h ). Its contents can be tested to determine if the user issuing theioctl  call is
authorized to do so. For anI_STR ioctl , ioc_count  is the number of data bytes, if
any, contained in the message and corresponds toic_len .

ioc_id  is an identifier generated internally, and is used by the Stream head to match each
M_IOCTL message sent downstream with response messages sent upstream to the Stream
head. The response message which completes the Stream head processing for theioctl
is anM_IOCACK (positive acknowledgment) or anM_IOCNAK (negative acknowledg-
ment) message.

For anI_STR ioctl , if a user supplies data to be sent downstream, the Stream head cop-
ies the data, pointed to byic_dp  in thestrioctl  structure, intoM_DATA message
blocks and links the blocks to the initialM_IOCTL message block.ioc_count  is copied
from ic_len . If there is no data,ioc_count  is zero.

If the Stream head does not recognize the command argument of anioctl , it creates a
transparentM_IOCTL message. The format of a transparentM_IOCTL message is one
M_IOCTL message block followed by oneM_DATA block. The form of theiocblk  struc-
ture is the same as above. However,ioc_cmd  is set to the value of the command argu-
ment in theioctl  system call andioc_count  is set toTRANSPARENT, defined in
sys/stream.h . TRANSPARENT distinguishes the case where anI_STR ioctl  may
specify a value ofioc_cmd  equivalent to the command argument of a transparent
ioctl . TheM_DATA block of the message contains the value of thearg parameter in the
ioctl  call.

The first module or driver that understands theioc_cmd  request contained in the
M_IOCTL acts on it. For anI_STR ioctl , this action generally includes an immediate
upstream transmission of anM_IOCACK message. For transparentM_IOCTLs, this action
generally includes the upstream transmission of anM_COPYIN or M_COPYOUT message.

Intermediate modules that do not recognize a particular request must pass the message on.
If a driver does not recognize the request, or the receiving module can not acknowledge it,
anM_IOCNAK message must be returned.

M_IOCACK andM_IOCNAK message types have the same format as anM_IOCTL mes-
sage and contain aniocblk  structure in the first block. AnM_IOCACK block may be
linked to followingM_DATA blocks. If one of these messages reaches the Stream head
with an identifier that does not match that of the currently-outstandingM_IOCTL message,
the response message is discarded. A common means of assuring that the correct identifier
is returned is for the replying module to convert theM_IOCTL message into the appropri-

struct iocblk
{

int      ioc_cmd; /* ioctl command type */
cred_t  *ioc_cr; /* full credentials */
uint     ioc_id; /* ioctl identifier */
uint     ioc_count; /* byte count for ioctl data */
int      ioc_error; /* error code for M_IOCACK or M_IOCNAK */
int      ioc_rval; /* return value for M_IOCACK */
long     ioc_filler[4]; /* reserved for future use */

};
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ate response type and setioc_count  to 0, if no data is returned. Then, theqreply  util-
ity is used to send the response to the Stream head.

In anM_IOCACK or M_IOCNAK message,ioc_error  holds any return error condition
set by a downstream module. If this value is non-zero, it is returned to the user inerrno .
Note that both anM_IOCNAK and anM_IOCACK may return an error. However, only an
M_IOCACK can have a return value. For anM_IOCACK, ioc_rval  holds any return
value set by a responding module. For anM_IOCNAK, ioc_rval  is ignored by the
Stream head.

If a module processing anI_STR ioctl  wants to send data to a user process, it must use
theM_IOCACK message that it constructs such that theM_IOCACK block is linked to one
or more followingM_DATA blocks containing the user data. The module must set
ioc_count  to the number of data bytes sent. The Stream head places the data in the
address pointed to byic_dp  in the userI_STR strioctl  structure.

If a module processing a transparentioctl  (that is, it received a transparentM_IOCTL)
wants to send data to a user process, it can use only anM_COPYOUT message. For a trans-
parentioctl , no data can be sent to the user process in anM_IOCACK message. All data
must have been sent in a precedingM_COPYOUT message. The Stream head will ignore
any data contained in anM_IOCACK message (inM_DATA blocks) and will free the
blocks.

No data can be sent with anM_IOCNAK message for any type ofM_IOCTL. The Stream
head will ignore and will free anyM_DATA blocks.

The Stream head blocks the user process until anM_IOCACK or M_IOCNAK response to
theM_IOCTL (sameioc_id ) is received. For anM_IOCTL generated from anI_STR
ioctl , the Stream head will time out if no response is received inic_timout  interval
(the user may specify an explicit interval or specify use of the default interval). For
M_IOCTL messages generated from all otherioctl s, the default (infinite) is used.

M_PASSFP 5

Used by STREAMS to pass a file pointer from the Stream head at one end of a Stream
pipe to the Stream head at the other end of the same Stream pipe.

The message is generated as a result of anI_SENDFD ioctl  (seestreamio(7) )
issued by a process to the sending Stream head. STREAMS places theM_PASSFP mes-
sage directly on the destination Stream head's read queue to be retrieved by anI_RECVFD
ioctl  (seestreamio(7) ). The message is placed without passing it through the
Stream (that is, it is not seen by any modules or drivers in the Stream). This message
should never be present on any queue except the read queue of a Stream head. Conse-
quently, modules and drivers do not need to recognize this message, and it can be ignored
by module and driver developers.

M_PROTO 5

Intended to contain control information and associated data. The message format is one or
more (see note)M_PROTO message blocks followed by zero or moreM_DATA message
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blocks as shown in Figure 5-7. The semantics of theM_DATA andM_PROTO message
block are determined by the STREAMS module that receives the message.

TheM_PROTO message block will typically contain implementation dependent control
information.M_PROTO messages are generally sent bidirectionally on a Stream, and their
contents can be passed between a process and the Stream head. The contents of the first
message block of anM_PROTO message is generally referred to as the control part, and the
contents of any followingM_DATA message blocks are referred to as the data part. In the
getmsg(2)  andputmsg(2)  system calls, the control and data parts are passed sepa-
rately.

NOTE

On the write-side, the user can only generateM_PROTO messages
containing oneM_PROTO message block.

Although its use is not recommended, the format ofM_PROTO andM_PCPROTO (generi-
cally PROTO) messages sent upstream to the Stream head allows multiplePROTO blocks
at the beginning of the message.getmsg(2)  will compact the blocks into a single con-
trol part when passing them to the user process.

Figure 5-7.  M_PROTO and M_PCPROTO Message Structure
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Reserved for internal use. Modules that do not recognize this message must pass it on.
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M_SETOPTS 5

Used to alter some characteristics of the Stream head. It is generated by any downstream
module, and is interpreted by the Stream head. The data buffer of the message has the fol-
lowing structure:

whereso_flags  specifies which options are to be altered, and can be any combination
of the following:

SO_ALL: Update all options according to the values specified in the remain-
ing fields of thestroptions  structure.

SO_READOPT: Set the read mode (seeread(2) ) as specified by the value of
so_readopt :

SO_WROFF: Direct the Stream head to insert an offset specified byso_wroff
into the first message block of allM_DATA messages created as a
result of awrite(2) system call. The same offset is inserted
into the firstM_DATA message block, if any, of all messages cre-
ated by aputmsg  system call. The default offset is zero.

The offset must be less than the maximum message buffer size (system dependent). Under
certain circumstances, a write offset may not be inserted. A module or driver must test that
b_rptr  in themsgb structure is greater thandb_base  in thedatab  structure to deter-
mine that an offset has been inserted in the first message block.

RNORM Byte stream

RMSGD Message discard

RMSGN Message non-discard

RPROTNORM Normal protocol

RPROTDAT TurnM_PROTO andM_PCPROTO messages
into M_DATA messages.

RPROTDIS DiscardM_PROTO andM_PCPROTO blocks in
a message and retain any linkedM_DATA
blocks.

struct stroptions
{

ulong  so_flags; /* options to set */
short  so_readopt; /* read option */
ushort so_wroff; /* write offset */
long   so_minpsz; /* minimum read packet size */
long   so_maxpsz; /* maximum read packet size */
ulong  so_hiwat; /* read queue high-water mark */
ulong  so_lowat; /* read queue low-water mark */
unsigned char so_band; /* update water marks for this band */

};
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SO_MINPSZ: Change the minimum packet size value associated with the
Stream head read queue toso_minpsz . This value is advisory
for the module immediately below the Stream head. It is intended
to limit the size ofM_DATA messages that the module should put
to the Stream head. There is no intended minimum size for other
message types. The default value in the Stream head is zero.

SO_MAXPSZ: Change the maximum packet size value associated with the
Stream head read queue toso_maxpsz  This value is advisory for
the module immediately below the Stream head. It is intended to
limit the size ofM_DATA messages that the module should put to
the Stream head. There is no intended maximum size for other
message types. The default value in the Stream head isINFPSZ,
the maximum STREAMS allows.

SO_HIWAT: Change the flow control high water mark (q_hiwat  in the
queue  structure,qb_hiwat  in theqband  structure) on the
Stream head read queue to the value specified inso_hiwat .

SO_LOWAT: Change the flow control low water mark (q_lowat  in thequeue
structure,qb_lowat  in theqband  structure) on the Stream head
read queue to the value specified inso_lowat .

SO_MREADON: Enable the Stream head to generateM_READ messages when pro-
cessing aread(2)  system call. If bothSO_MREADON and
SO_MREADOFF are set inso_flags , SO_MREADOFF will have
precedence.

SO_MREADOFF: Disable the Stream head generation ofM_READ messages when
processing aread(2)  system call. This is the default. If both
SO_MREADON and SO_MREADOFF are set inso_flags ,
SO_MREADOFF will have precedence.

SO_NDELON: Set  non-STREAMS t ty  semant ics  forO_NDELAY (or
O_NONBLOCK) processing onread(2)  andwrite(2)  system
calls. If O_NDELAY (or O_NONBLOCK) is set, aread(2) will
return 0 if no data is waiting to be read at the Stream head. If
O_NDELAY (or O_NONBLOCK) is clear, aread(2)  will block
until data becomes available at the Stream head.

Regardless of the state ofO_NDELAY (or O_NONBLOCK), a write(2)  will block on
flow control and will block if buffers are not available.

If both SO_NDELON andSO_NDELOFF are set inso_flags , SO_NDELOFF will have
precedence.

NOTE

For conformance with the POSIX standard, it is recommended
that new applications use theO_NONBLOCK flag whose behavior
is the same as that ofO_NDELAY unless otherwise noted.
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SO_NDELOFF: Set STREAMS semantics forO_NDELAY (or O_NONBLOCK) pro-
cessing onread(2)  andwrite(2)  system calls. IfO_NDELAY
(or O_NONBLOCK) is set, aread(2)  will return -1  and set
EAGAIN if no data is waiting to be read at the Stream head. If
O_NDELAY (or O_NONBLOCK) is clear, a read(2) will block
until data becomes available at the Stream head. (See the note
above.)

If O_NDELAY (or O_NONBLOCK) is set, awrite(2)  will return -1  and setEAGAIN if
flow control is in effect when the call is received. It will block if buffers are not available.
If O_NDELAY (or O_NONBLOCK) is set and part of the buffer has been written and a flow
control or buffers not available condition is encountered,write(2)  will terminate and
return the number of bytes written.

If O_NDELAY (or O_NONBLOCK) is clear, awrite(2)  will block on flow control and
will block if buffers are not available.

This is the default. If bothSO_NDELON andSO_NDELOFF are set inso_flags ,
SO_NDELOFF will have precedence.

In the STREAMS-based pipe mechanism, the behavior of read(2)  and write(2)  is
different for theO_NDELAY andO_NONBLOCK flags. Seeread(2)  andwrite(2)  for
details.

SO_BAND: Set water marks in a band. If theSO_BAND flag is set with the
SO_HIWAT or SO_LOWAT flag, theso_band  field contains the
priority band number theso_hiwat  andso_lowat  fields per-
tain to.

If the SO_BAND flag is not set and theSO_HIWAT andSO_LOWAT flags are on, the nor-
mal high and low water marks are affected. TheSO_BAND flag has no effect ifSO_HIWAT
andSO_LOWAT flags are off.

Only one band's water marks can be updated with a singleM_SETOPTS message.

SO_ISTTY: Inform the Stream head that the Stream is acting like a controlling
terminal.

SO_ISNTTY: Inform the Stream head that the Stream is no longer acting like a
controlling terminal.

For SO_ISTTY, the Stream may or may not be allocated as a controlling terminal via an
M_SETOPTS message arriving upstream during open processing. If the Stream head is
opened before receiving this message, the Stream will not be allocated as a controlling ter-
minal until it is queued again by a session leader.

SO_TOSTOP: Stop on background writes to the Stream.

SO_TONSTOP: Do not stop on background writes to the Stream.

SO_TOSTOP andSO_TONSTOP are used with job control.
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M_SIG 5

Sent upstream by modules or drivers to post a signal to a process. When the message
reaches the front of the Stream head read queue, it evaluates the first data byte of the mes-
sage as a signal number, defined insys/signal.h . (Note that the signal is not gener-
ated until it reaches the front of the Stream head read queue.) The associated signal will be
sent to process(es) under the following conditions:

If the signal isSIGPOLL, it will be sent only to those processes that have explicitly regis-
tered to receive the signal (seeI_SETSIG  in streamio(7) ).

If the signal is notSIGPOLL and the Stream containing the sending module or driver is a
controlling tty, the signal is sent to the associated process group. A Stream becomes the
controlling tty for its process group if, onopen(2) , a module or driver sends an
M_SETOPTS message to the Stream head with theSO_ISTTY flag set.

If the signal is notSIGPOLL and the Stream is not a controlling tty, no signal is sent,
except in case ofSIOCSPGRP andTIOCSPGRP. These twoioctl s set the process group
field in the Stream head so the Stream can generate signals even if it is not a controlling
tty.

High Priority Messages 5

M_COPYIN 5

Generated by a module or driver and sent upstream to request that the Stream head per-
form acopyin  for the module or driver. It is valid only after receiving anM_IOCTL mes-
sage and before anM_IOCACK or M_IOCNAK.

The message format is oneM_COPYIN message block containing acopyreq  structure,
defined insys/stream.h :

The first four members of the structure correspond to those of theiocblk  structure in the
M_IOCTL message which allows the same message block to be reused for both structures.
The Stream head will guarantee that the message block allocated for theM_IOCTL mes-
sage is large enough to contain acopyreq  structure. Thecq_addr  field contains the
user space address from which the data is to be copied. Thecq_size  field is the number

struct copyreq {
int      cq_cmd; /* ioctl command (from ioc_cmd) */
cred_t  *cq_cr; /* full credentials */
uint     cq_id; /* ioctl id (from ioc_id) */
caddr_t  cq_addr; /* address to copy data to/from */
uint     cq_size; /* number of bytes to copy */
int      cq_flag; /* reserved */
mblk_t  *cq_private; /* private state information */
long     cp_filler[4];/* reserved for future use */

};
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of bytes to copy from user space. Thecq_flag  field is reserved for future use and should
be set to zero.

Thecq_private  field can be used by a module to point to a message block containing
the module's state information relating to thisioctl . The Stream head will copy (without
processing) the contents of this field to theM_IOCDATA response message so that the
module can resume the associated state. If anM_COPYIN or M_COPYOUT message is
freed, STREAMS will not free any message block pointed to bycq_private . This is
the module's responsibility.

This message should not be queued by a module or driver unless it intends to process the
data for theioctl .

M_COPYOUT 5

Generated by a module or driver and sent upstream to request that the Stream head per-
form acopyout  for the module or driver. It is valid only after receiving anM_IOCTL
message and before anM_IOCACK or M_IOCNAK.

The message format is oneM_COPYOUT message block followed by one or moreM_DATA
blocks. TheM_COPYOUT message block contains acopyreq  structure as described in
theM_COPYIN message with the following differences: Thecq_addr  field contains the
user space address to which the data is to be copied. Thecq_size  field is the number of
bytes to copy to user space.

Data to be copied to user space is contained in the linkedM_DATA blocks.

This message should not be queued by a module or driver unless it intends to process the
data for theioctl  in some way.

M_ERROR 5

Sent upstream by modules or drivers to report some downstream error condition. When
the message reaches the Stream head, the Stream is marked so that all subsequent system
calls issued to the Stream, excludingclose(2)  andpoll(2) , will fail with errno  set
to the first data byte of the message.POLLERR is set if the Stream is beingpoll ed (see
poll(2) ). All processes sleeping on a system call to the Stream are awakened. An
M_FLUSH message withFLUSHRW is sent downstream.

The Stream head maintains two error fields, one for the read-side and one for the write-
side. The one-byte formatM_ERROR message sets both of these fields to the error speci-
fied by the first byte in the message.

The second style of theM_ERROR message is two bytes long. The first byte is the read
error and the second byte is the write error. This allows modules to set a different error on
the read-side and write-side. If one of the bytes is set toNOERROR, then the field for the
corresponding side of the Stream is unchanged. This allows a module to just an error on
one side of the Stream. For example, if the Stream head was not in an error state and a
module sent anM_ERROR message upstream with the first byte set toEPROTO and the
second byte set toNOERROR, all subsequent read-like system calls (for example,read ,
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getmsg ) will fail with EPROTO, but all write-like system calls (for example,write ,
putmsg ) will still succeed. If a byte is set to 0, the error state is cleared for the corre-
sponding side of the Stream. The valuesNOERROR and 0 are not valid for the one-byte
form of theM_ERROR message.

M_FLUSH 5

Requests all modules and drivers that receive it to flush their message queues (discard all
messages in those queues) as indicated in the message. All modules that enqueue mes-
sages must identify and process this message type.

An M_FLUSH can originate at the Stream head, or in any module or driver. The first byte
of the message contains flags that specify one of the following actions:

• FLUSHR: Flush the read queue of the module.

• FLUSHW: Flush the write queue of the module.

• FLUSHRW: Flush both the read queue and the write queue of the module.

• FLUSHBAND: Flush the message according to the priority associated with
the band.

Each module passes this message to its neighbor after flushing its appropriate queue(s),
until the message reaches one end of the Stream.

Drivers are expected to include the following processing forM_FLUSH messages. When
anM_FLUSH message is sent downstream through the write queues in a Stream, the driver
at the Stream end should flush its queues according to the flag settings as follows:

• If only FLUSHW is set, the write queue is flushed and the message is dis-
carded.

• If the message indicates that the read queues are to be flushed, the driver
should flush its read queue, shut off theFLUSHW flag, and send the mes-
sage up the Stream's read queues.

When a flush message is sent up a Stream's read-side, the Stream head checks whether the
write-side of the Stream is to be flushed:

• If only FLUSHR is set, the Stream head discards the message.

• If FLUSHW is set, the Stream head turns off theFLUSHR flag and sends the
message down the Stream's write side.

The lower side of a multiplexing driver should processM_FLUSH messages the same as
the Stream head.

If FLUSHBAND is set, the second byte of the message contains the value of the priority
band to flush.
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M_HANGUP 5

Sent upstream by a driver to report that it can no longer send data upstream. As example,
this might be because of an error, or to a remote line connection being dropped. When the
message reaches the Stream head, the Stream is marked so that all subsequentwrite(2)
and putmsg(2)  system calls issued to the Stream will fail and return anEIO error.
Thoseioctl s that cause messages to be sent downstream are also failed.POLLHUP is set
if the Stream is being polled (seepoll(2) ).

However, subsequentread(2)  or getmsg(2)  calls to the Stream will not generate an
error. These calls will return any messages (according to their function) that were on, or in
transit to, the Stream head read queue before theM_HANGUP message was received. When
all such messages have been read,read(2)  will return 0 and getmsg(2)  will set each
of its two length fields to 0.

This message also causes aSIGHUP signal to be sent to the controlling process instead of
the foreground process group, since the allocation and deallocation of controlling termi-
nals to a session is the responsibility of the controlling process.

M_IOCACK 5

Signals the positive acknowledgment of a previousM_IOCTL message. The message for-
mat is oneM_IOCACK block (containing aniocblk  structure, seeM_IOCTL) followed
by zero or moreM_DATA blocks. Theiocblk  data structure may contain a value in
ioc_rval  to be returned to the user process. It may also contain a value inioc_error
to be returned to the user process inerrno .

If this message is responding to anI_STR ioctl  (seestreamio(7) ), it may contain
data from the receiving module or driver to be sent to the user process. In this example,
message format is oneM_IOCACK block followed by one or moreM_DATA blocks con-
taining the user data. The Stream head returns the data to the user if there is a correspond-
ing outstandingM_IOCTL request. Otherwise, theM_IOCACK message is ignored and all
blocks in the message are freed.

Data can not be returned in anM_IOCACK message responding to a transparentM_IOCTL.
The data must have been sent with precedingM_COPYOUT message(s). If anyM_DATA
blocks follow theM_IOCACK block, the Stream head will ignore and free them.

The format and use of this message type is described further underM_IOCTL.

M_IOCDATA 5

Generated by the Stream head and sent downstream as a response to anM_COPYIN or
M_COPYOUT message. The message format is oneM_IOCDATA message block followed
by zero or moreM_DATA blocks. TheM_IOCDATA message block contains acopyresp
structure, defined insys/stream.h .
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The first three members of the structure correspond to those of theiocblk  structure in
theM_IOCTL message which allows the same message blocks to be reused for all of the
related transparent messages (M_COPYIN, M_COPYOUT, M_IOCACK, M_IOCNAK). The
cp_rval  field contains the result of the request at the Stream head. Zero indicates suc-
cess and non-zero indicates failure. If failure is indicated, the module should not generate
anM_IOCNAK message. It must abort allioctl  processing, clean up its data structures,
and return. Thecp_private  field is copied from thecp_private  field in the associ-
atedM_COPYIN or M_COPYOUT message. It is included in theM_IOCDATA message so
the message can be self-describing. This is intended to simplifyioctl  processing by
modules and drivers.

If the message is in response to anM_COPYIN message and success is indicated, the
M_IOCDATA block will be followed byM_DATA blocks containing the data copied in.

If an M_IOCDATA block is reused, any unused fields defined for the resultant message
block should be cleared (particularly in anM_IOCACK or M_IOCNAK).

This message should not be queued by a module or driver unless it intends to process the
data for theioctl  in some way.

M_IOCNAK 5

Signals the negative acknowledgment (failure) of a previousM_IOCTL message. Its form
is oneM_IOCNAK block containing aniocblk  data structure ( seeM_IOCTL). The
iocblk  structure may contain a value inioc_error  to be returned to the user process
in errno . Unlike theM_IOCACK, no user data or return value can be sent with this mes-
sage. If anyM_DATA blocks follow theM_IOCNAK block, the Stream head will ignore and
free them. When the Stream head receives anM_IOCNAK, the outstandingioctl  request,
if any, will fail. The format and usage of this message type is described further under
M_IOCTL.

M_PCPROTO 5

Similar to theM_PROTO message type, except for the priority and the following additional
attributes.

When anM_PCPROTO message is placed on a queue, itsservice  procedure is always
enabled. The Stream head will allow only oneM_PCPROTO message to be placed in its

struct copyresp {
   int     cp_cmd;       /* ioctl command (from ioc_cmd) */
   cred_t  *cp_cr;       /* full credentials */
   uint    cp_id;        /* ioctl id (from ioc_id) */
   caddr_t cp_rval;      /* status of request: 0 -> success
                            non_zero -> failure */
   uint    cp_pad1;      /* reserved */
   int     cp_pad2;      /* reserved */
   mblk_t  *cp_private;  /* private state info from cq_private */
   long    cp_filler[4]; /* reserved for future use */
};
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read queue at a time. If anM_PCPROTO message is already in the queue when another
arrives, the second message is silently discarded and its message blocks freed.

This message is intended to allow data and control information to be sent outside the nor-
mal flow control constraints.

Thegetmsg(2)  andputmsg(2)  system calls refer toM_PCPROTO messages as high
priority messages.

M_PCRSE 5

Reserved for internal use. Modules that do not recognize this message must pass it on.
Drivers that do not recognize it must free it.

M_PCSIG 5

Similar to theM_SIG message, except for the priority.

M_PCSIG is often preferable to theM_SIG message especially in tty applications, because
M_SIG may be queued whileM_PCSIG is more guaranteed to get through quickly. For
example, if one generates anM_SIG message when the DEL (delete) key is pressed on the
terminal and one has already typed ahead, theM_SIG message becomes queued and the
user doesn't get the call until it's too late; it becomes impossible to kill or interrupt a pro-
cess by pressing a delete key.

M_READ 5

Generated by the Stream head and sent downstream for a read(2)  system call if no
messages are waiting to be read at the Stream head and if read notification has been
enabled. Read notification is enabled with theSO_MREADON flag of theM_SETOPTS
message and disabled by use of theSO_MREADOFF flag.

The message content is set to the value of thenbyte parameter (the number of bytes to be
read) in theread(2) call.

M_READ is intended to notify modules and drivers of the occurrence of aread . It is also
intended to support communication between Streams that reside in separate processors.
The use of theM_READ message is developer dependent. Modules may take specific
action and pass on or free theM_READ message. Modules that do not recognize this mes-
sage must pass it on. All other drivers may or may not take action and then free the mes-
sage.

This message cannot be generated by a user-level process and should not be generated by
a module or driver. It is always discarded if passed to the Stream head.
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M_START and M_STOP 5

Request devices to start or stop their output. They are intended to produce momentary
pauses in a device's output, not to turn devices on or off.

The message format is not defined by STREAMS and its use is developer dependent.
These messages may be considered special cases of anM_CTL message. These messages
cannot be generated by a user-level process and each is always discarded if passed to the
Stream head.

M_STARTI and M_STOPI 5

Similar toM_START andM_STOP except thatM_STARTI andM_STOPI are used to start
and stop input.
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Introduction 6

Modules and drivers are processing elements in STREAMS. A Stream device driver is
similar to a conventional UNIX system driver. It is opened like a conventional driver and is
responsible for the system interface to the device.

STREAMS modules and drivers are structurally similar. The call interfaces to driver rou-
tines are identical to interfaces used for modules. Drivers and modules must declare
streamtab , qinit , andmodule_info  structures. Within the STREAMS mechanism,
drivers are required elements, but modules are optional. However, in the STREAMS-based
pipe mechanism only the Stream head is required.

One consequence of the flexibility and modularity of STREAMS is the tendency to split
up the processing formerly done by drivers and distribute it among a number of
STREAMS modules and a driver. For example, where a TTY driver might directly call a
line discipline routine, a STREAMS configuration would isolate the line discipline pro-
cessing in a module. While STREAMS drivers may be cleaner and less complicated to
write, the driver writer may have the additional responsibility of writing modules as well.

Furthermore, the user-level program establishing access to a STREAMS device has the
option of building a stream with whatever modules are available. This flexibility implies
that a module's functionality must be well documented by the developer so that an applica-
tions programmer can be confident of correctly including it in a stream.

Differences Between Modules and Drivers 6

The following list summarizes the major differences between STREAMS modules and
drivers:

• Drivers are always positioned at the end of a stream. Consequently, for
hardware devices, the driver must handle interrupts, but modules do not.

• Drivers may be at the stream end for more than one stream at a time,
whereas a module can only be part of one stream.

• A module is not assigned a special device file and must be pushed onto a
stream, while a driver is opened.

• Modules have no user context, and cannot access theuser  structure. This
is also true for drivers, with the exception of theopen(D3)  and
close(D3)  routines.
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Similarities Between Modules and Drivers 6

While the differences are significant, the similarities between modules and drivers are also
important.

• Both modules and drivers are built onqueue  structures.

• The manner in which the entry point routines are called is similar.
STREAMS devices are considered a subset of character devices, so they
are accessed through thecdevsw  switch table. If the device were a simple
character device, the entry point routine would be looked up in this table. If
a STREAMS device has a non-null value in thed_str  field of the
cdevsw  table, the designatedstreamtab(D4)  table should be used
instead. Thestreamtab  structure, in turn, contains pointers toqinit
structures defining the entry points.

• STREAMS drivers and modules both havestreamtab  tables for access
to routines, and so both have the same choice of routines, most of which are
different from those found in thecdevsw  table for character devices. See
“STREAMS Entry Points” for a discussion of these routines.

• Both modules and drivers pass the same objects, (pointers toqueues  and
to messages). Consequently, both modules and drivers make extensive use
of the STREAMS-specific functions described in theDevice Driver Refer-
encemanual.

User context is not generally available to STREAMS module procedures and drivers. The
exception is during execution of theopen  andclose  routines. Driver and moduleopen
andclose  routines have user context and may access theu_area  structure, although
this is discouraged. Theopen  andclose  routines may use blocking primitives as defined
in the DDI.

NOTE

STREAMS driver and moduleput  procedures andservice
procedures have no user context. They cannot access theu_area
structure of a process and must not sleep.

The module and driveropen /close  interface has been modified
for UNIX System V Release 4.However, the system defaults to
UNIX System V Release 3.0 interface unlessprefixdevflag  is
defined. Examples and descriptions in this chapter reflect the
Release 4 interface.

This release of the operating system does not support code that
does not conform to the DDI/DKI standard.

Module and Driver Declarations 6

A module and driver contains, at a minimum, declarations of the form as shown in
Screen 6-1:
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Screen 6-1.  Module and Driver Declarations

The contents of these declarations are constructed for the null module example in this sec-
tion. This module does no processing. Its only purpose is to show linkage of a module into
the system. The descriptions in this section are general to all STREAMS modules and
drivers unless they specifically reference the example.

The declarations shown are the header set; the read and write queue (rminfo  and
wminfo ) module_info  structures; the module open, read/write-put, and close proce-
dures; the read and write (rinit  andwinit ) qinit  structures; and thestreamtab
structure.

The header filesddi.h , types.h , andstream.h , are always required for modules and
drivers. The header fileparam.h , contains definitions forNULL and other values for
STREAMS modules and drivers.

NOTE

When configur ing a STREAMS module or  dr iver  the
streamtab  structure must be externally accessible. The
streamtab  structure name must be the prefix appended with
info . Also, the driver flag must be externally accessible. The flag
name must be the prefix appended withdevflag .

Thestreamtab  containsqinit  values for the read and write queues. Theqinit  struc-
tures in turn point to amodule_info  and an optionalmodule_stat  structure. The two
required structures are shown in Screen 6-2:

#include <sys/types.h> /* required in all modules and drivers */
#include <sys/stream.h> /* required in all modules and drivers */
#include <sys/param.h>
#include <sys/cred.h>
#include <sys/synch.h>
#include <sys/ddi.h> /* required in all modules and drivers */

static struct module_info rminfo = { 0x08, “mod”, 0, INFPSZ, 0, 0 };
static struct module_info wminfo = { 0x08, “mod”, 0, INFPSZ, 0, 0 };
static int modopen(), modput(), modclose();

static struct qinit rinit = {
modput, NULL, modopen, modclose, NULL, &rminfo, NULL };

static struct qinit winit = {
modput, NULL, NULL, NULL, NULL, &wminfo, NULL };

struct streamtab modinfo = { &rinit, &winit, NULL, NULL };

int moddevflag = D_MT;
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Screen 6-2.  Required Structures

Theqinit  contains the queue procedures:put , service , open , andclose . All mod-
ules and drivers with the samestreamtab  (that is, the samefmodsw  or cdevsw  entry)
point to the same upstream and downstreamqinit  structure(s). The structure is meant to
be software read-only, as any changes to it affect all instantiations of that module in all
Streams. Pointers to theopen  andclose  procedures must be contained in the read
qinit  structure. These fields are ignored on the write-side. Our example has noser-
vice  procedure on the read-side or write-side.

Themodule_info  contains identification and limit values. All queues associated with a
certain driver/module share the samemodule_info  structures. Themodule_info
structures define the characteristics of that driver/module's queues. As with theqinit ,
this structure is intended to be software read-only. However, the four limit values
(q_minpsz , q_maxpsz , q_hiwat , q_lowat ) are copied to aqueue  structure where
they are modifiable. In the example, the flow control high- and low-water marks are zero
since there is noservice  procedure and messages are not queued in the module.

Three names are associated with a module:

• The character string infmodsw.

• The prefix forstreamtab , used in configuring the module.

• The module name field in themodule_info  structure. The module name
must match the entry for the module in the device driver/module configura-
tion file. The name of this configuration file is machine specific; it is
described in either the master(4)  or mdevice(4)  manual page,
depending on your system.

Each module ID number and module name should be unique in the system. The module
ID number is currently used only in logging and tracing. It is0x08  in the example.

Minimum and maximum packet sizes are intended to limit the total number of characters
contained inM_DATA messages passed to this queue. These limits are advisory except for
the Stream head. For certain system calls that write to a Stream, the Stream head observes
the packet sizes set in the write queue of the module immediately below it. Otherwise, the

struct qinit {
      int  (*qi_putp)(); /* put procedure */
      int  (*qi_srvp)(); /* service procedure */
      int  (*qi_qopen)(); /* called on each open or a push */
      int  (*qi_qclose)(); /* called on last close or a pop */
      int  (*qi_qadmin)(); /* reserved for future use */
      struct module_info  *qi_minfo; /* information structure */
      struct module_stat  *qi_mstat; /* statistics structure - optional */
};

struct module_info {
      ushort_t mi_idnum; /* module ID number */
      char *mi_idname; /* module name */
      long mi_minpsz; /* min packet size, for developer use */
      long mi_maxpsz; /* max packet size, for developer use */
      ulong_t mi_hiwat; /* hi-water mark */
      ulong_t mi_lowat; /* lo-water mark */
};
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use of packet size is developer-dependent. In the example,INFPSZ indicates unlimited
size on the read-side.

Themodule_stat  is optional. Currently, there is no STREAMS support for statistical
information gathering.

Null Module Example 6

The null module procedures are shown in Screen 6-3:

Screen 6-3.  Null Module Procedure

The form and arguments of these procedures are the same in all modules and all drivers.
Modules and drivers can be used in multiple Streams and their procedures must be re-
entrant.

modopen illustrates the open call arguments and return value. The arguments are the read
queue pointer (q), the pointer (devp) to the major/minor device number, the file flags (flag,
defined insys/file.h ), the Stream open flag (sflag), and a pointer to a credentials
structure (credp). The Stream open flag can take on the following values:

MODOPEN Normal module open

0 Normal driver open

CLONEOPEN Clone driver open

The return value from open is0 for success and an error number for failure. If a driver is
called with theCLONEOPEN flag, the device number pointed to by thedevp should be set
by the driver to an unused device number accessible to that driver. This should be an entire
device number (major and minor device number). Theopen  procedure for a module is
called on the firstI_PUSH and on all lateropen  calls to the same Stream. During a push,
a nonzero return value causes theI_PUSH to fail and the module to be removed from the
Stream. If an error is returned by a module during anopen  call, theopen  fails, but the

static int modopen(queue_t *q, dev_t *devp, int flag,
   int sflag, cred_t *credp)

{
qprocson(q);/* enables put and srv routines */
/* return success */
return 0;

}

static int modput(queue_t *q, mblk_t *mp)
{

putnext(q, mp);/* pass message through */
}

/* Note: we only need one put procedure that can be used for both
 * read-side and write-side.
 */

static int modclose(queue_t *q, int flag, cred_t *credp)
{

qprocsoff(q);/* disables put and srv routines */
return 0;

}
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Stream remains intact. In the null module example,modopen simply enables itsput  (and
service ) procedure(s) usingqprocson  and returns successfully.

If the Enhanced Security Utilities are installed, the moduleopen  fails if the calling pro-
cess does not have theP_DEV privilege in its working set (seeintro(2)  for a list of
privileges.)

On Enhanced Security versions of the system, permission checks in module and driver
open  routines should be done with thedrv_priv  routine; there is no need to check if
u.u_uid == 0 . This and thesuser  routine have been replaced with:

error = drv_priv(credp);
if (error)      /* not privileged */

return errno;

modput  illustrates the common interface toput  procedures. The arguments are the read
or write queue  pointer, as appropriate, and the message pointer. Theput  procedure in
the appropriate side of the queue is called when a message is passed from upstream or
downstream. Theput  procedure has no return value, but it is defined asint (). In the
example, no message processing is done. All messages are forwarded usingputnext .
See theDevice Driver Reference.putnext  calls theput  procedure of the next queue in
the proper direction.

The close routine is only called on anI_POP ioctl  for modules, or on the lastclose
call of the Stream for drivers. The arguments are the read queue pointer, the file flags as in
modopen, and a pointer to a credentials structure.

qprocsoff  is called to disable theput  (andservice ) procedures.

The return value is0 on success. A failure ofclose  is ignored by the system.

Module and Driver ioctls 6

STREAMS is an addition to the UNIX system traditional character input/output (I/O)
mechanism. In this section, the phrases “character I/O mechanism” and “I/O mechanism”
refer only to that part of the mechanism that pre-existed STREAMS.

The character I/O mechanism handles allioctl(2)  system calls in a transparent man-
ner. The kernel expects allioctl s to be handled by the device driver associated with the
character special file on which the call is sent. Allioctl  calls are sent to the driver,
which is expected to do all validation and processing other than file descriptor validity
checking. The operation of any specificioctl  is dependent on the device driver. If the
driver requires data to be transferred in from user space, it uses the kernelcopyin  func-
tion. It may also usecopyout  to transfer out any data results back to user space.

With STREAMS, there are a number of differences from the character I/O mechanism that
affect ioctl  processing.

First, there are a set of generic STREAMSioctl  command values (seeioctl(2) ) rec-
ognized and processed by the Stream head. These are described instreamio(7) . The
operation of the generic STREAMSioctl s are generally independent of the presence of
any specific module or driver on the Stream.
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The second difference is the absence of user context in a module and driver when the
information associated with theioctl  is received. This prevents use ofcopyin  or
copyout  by the module. This also prevents the module and driver from associating any
kernel data with the currently running process. (It is likely that by the time the module or
driver receives theioctl , the process generating it may no longer be running.)

A third difference is that for the character I/O mechanism, allioctl s are handled by the
single driver associated with the file. In STREAMS, there can be multiple modules on a
Stream and each one can have its own set ofioctl s. Theioctl s that can be used on a
Stream can change as modules are pushed and popped.

STREAMS provides the capability for user processes to perform control functions on spe-
cific modules and drivers in a Stream withioctl  calls. Moststreamio(7) ioctl
commands go no further than the Stream head. They are fully processed there and no
related messages are sent downstream. However, certain commands and all unrecognized
commands cause the Stream head to create anM_IOCTL message that includes theioctl
arguments, and send the message downstream to be received and processed by a specific
module or driver. TheM_IOCTL message is the initial message type that carriesioctl
information to modules. Other message types are used to complete theioctl  processing
in the Stream. In general, each module must uniquely recognize and take action on spe-
cific M_IOCTL messages.

STREAMS ioctl  handling is equivalent to the transparent processing of the character
I/O mechanism. STREAMS modules and drivers can processioctl s generated by appli-
cations that are implemented for a non-STREAMS environment.

General ioctl Processing 6

STREAMS blocks a user process that issues anioctl  and causes the Stream head to
generate anM_IOCTL message. The process remains blocked until either

• A module or a driver responds with anM_IOCACK (ack, positive acknowl-
edgment) message or anM_IOCNAK (nak, negative acknowledgment) mes-
sage.

• No message is received and the request “times out.”

• The ioctl  is interrupted by the user process.

• An error condition occurs.

For theioctl I_STR , the timeout period can be a user-specified interval or a default. For
the otherM_IOCTL ioctl s, the default value (infinite) is used.

For anI_STR , the STREAMS module or driver that generates a positive acknowledgment
message can also return data to the process in that message. An alternate means to return
data is provided with transparentioctl s. If the Stream head does not receive a positive
or negative acknowledgment message in the specified time, theioctl  call fails.

A module that receives an unrecognizedM_IOCTL message should pass it on unchanged.
A driver that receives an unrecognizedM_IOCTL should produce a negative acknowledg-
ment.
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The form of anM_IOCTL message is a singleM_IOCTL message block followed by zero
or moreM_DATA blocks. TheM_IOCTL message block contains aniocblk structure,
defined insys/stream.h . For details, seeiocblk(D4) .

For anI_STR ioctl , ioc_cmd  (in theiocblk  structure) contains the command sup-
plied by the user in thestrioctl  structure defined instreamio(7) .

If a module or driver determines anM_IOCTL message is in error for any reason, it must
produce the negative acknowledgment message by setting the message type toM_IOCNAK
and sending the message upstream. No data or a return value can be sent to a user in this
case. Ifioc_error  (in iocblk ) is set to 0, the Stream head causes theioctl  call to
fail with EINVAL. The driver has the option of settingioc_error  to an alternate error
number if desired.

NOTE

ioc_error  can be set to a nonzero value in bothM_IOCACK
andM_IOCNAK. This causes that value to be returned as an error
number to the process that sent theioctl .

If a module wants to look at whatioctl s of other modules are doing, the module should
not look for a specificM_IOCTL on the write-side but look forM_IOCACK or M_IOCNAK
on the read-side. For example, the module seesTCSETS (seetermios(7) ) going down
and wants to know what is being set. The module should look at it and save the data but
not use it. The read-side processing knows that the module is waiting for an answer for the
ioctl . When the read-side processing sees anack or nak next time, it checks if it is the
sameioctl  (hereTCSETS) and if it is, the module may use the data previously saved.

The two STREAMSioctl  mechanisms,I_STR  and transparent, are described next.
(Here, I_STR  means thestreamio(7) I_STR  command and implies the related
STREAMS processing unless noted otherwise).I_STR  has a restricted format and
restricted addressing for transferringioctl -related data between user and kernel space. It
requires only a single pair of messages to completeioctl  processing. The transparent
mechanism is more general and has almost no restrictions onioctl  data format and
addressing. The transparent mechanism generally requires that multiple pairs of messages
be exchanged between the Stream head and module to complete the processing.

I_STR ioctl Processing 6

The I_STR ioctl  provides a capability for user applications to do module and driver
control functions on STREAMS files.I_STR  allows an application to specify theioctl
timeout. It requires that all userioctl  data (to be received by the destination module) be
placed in a single block that is pointed to from the userstrioctl  structure. The module
can also return data to this block.

If the module is looking at, for example, theTCSETS/TCGETS group ofioctl  calls as
they pass up or down a Stream, it must never assume that becauseTCSETS comes down
that it actually has a data buffer attached to it. The user may have formedTCSETS as an
I_STR  call and accidentally given a null data buffer pointer. You should always check
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b_cont  to see if it isNULL before using it as an index to the data block that goes with
M_IOCTL messages.

TheTCGETA call, if formed as anI_STR  call with a data buffer pointer set to a value by
the user, always has a data buffer attached tob_cont  from the main message block.
Check to see that theioctl  message does not have a buffer attached before allocating a
new buffer and assigningb_cont  to point at it. If you do not, the original buffer will be
lost.

Figure 6-4 illustrates processing associated with anI_STR ioctl . lpdoioctl  is called
to process trappedM_IOCTL messages:

Screen 6-4.  I_STR ioctl Processing

lpdoioctl  illustrates driverM_IOCTL processing, which also applies to modules. How-
ever, at casedefault , a module would notnak an unrecognized command, but would
pass the message on. In this example, only one command is recognized,SET_OPTIONS.
ioc_count  contains the number of user-supplied data bytes. For this example, it must
equal the size of a short. The user data is sent directly to the printer interface usinglpse-
topt . Next, theM_IOCTL message is changed to typeM_IOCACK and theioc_count
field is set to zero to show that no data is to be returned to the user. Finally, the message is
sent upstream usingqreply . If ioc_count  was left nonzero, the Stream head copies
that many bytes from the 2nd through Nth message blocks into the user buffer.

TYPE
lpdoioctl(struct lp *lp, mblk_t *mp)
{

struct iocblk *iocp;
queue_t *q;

q = lp->qptr; /*its own write queue*/

/* 1st block contains iocblk structure */
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET_OPTIONS:

/* Count should be exactly one short's worth
(for this example) */
if (iocp->ioc_count != sizeof(short))

goto iocnak;
if (mp->b_cont == NULL)

goto lognak; /* not shown in this example */
/* Actual data is in 2nd message block */
lpsetopt(lp, *(short *)mp->b_cont->b_rptr);

 /*hypothetical routine*/

/* ACK the ioctl */
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

/* NAK the ioctl */
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);

}
}



STREAMS Modules and Drivers

6-10

Transparent ioctl Processing 6

The transparent STREAMSioctl  mechanism allows application programs to perform
module and driver control functions withioctl s other thanI_STR . It is intended to
transparently support applications developed before the introduction of STREAMS, and
alleviates the need to recode and recompile the user level software to run over STREAMS
files.

The mechanism extends the data transfer capability for STREAMSioctl  calls beyond
that provided in theI_STR  form. Modules and drivers can transfer data between their ker-
nel space and user space in anyioctl  that has a value of thecommand argument not
defined instreamio(7) . Theseioctl s are known as transparentioctl s to differen-
tiate them from theI_STR  form. Transparent processing support is necessary when exist-
ing user level applications perform ioctl s on a non-STREAMS character device and
the device driver is converted to STREAMS. Theioctl  data can be in any format mutu-
ally understood by the user application and module.

The transparent mechanism also supports STREAMS applications that want to send
ioctl  data to a driver or module in a single call, where the data may not be in a form
readily embedded in a single user block. For example, the data may be contained in nested
structures, different user space buffers, and so forth.

This mechanism is needed because user context does not exist in modules and drivers
whenioctl  processing occurs. This prevents them from using the kernelcopyin  and
copyout  functions. For example, consider the followingioctl  call:

ioctl  ( stream_fildes, user_command, & ioctl_struct);

whereioctl_struct is a structure containing the members:

int stringlen;  /* string length */
char *string;
struct other_struct *other1;

To read (or write) the elements ofioctl_struct, a module would have to do a series of
copyin /copyout  calls using pointer information from a priorcopyin  to transfer addi-
tional data. A non-STREAMS character driver could directly execute these copy functions
because user context exists during all PowerMAX OS system calls to the driver. However,
in STREAMS, user context is only available to modules and drivers in their open and
close routines.

The transparent mechanism enables modules and drivers to request that the Stream head
do acopyin  or copyout  on their behalf to transferioctl  data between their kernel
space and various user space locations. The related data is sent in message pairs
exchanged between the Stream head and the module. A pair of messages is required so
that each transfer can be acknowledged. In addition toM_IOCTL, M_IOCACK, and
M_IOCNAK messages, the transparent mechanism also usesM_COPYIN, M_COPYOUT,
andM_IOCDATA messages.

The general processing by which a module or a driver reads data from user space for the
transparent case involves pairs of request/response messages, as follows:

1. The Stream head does not recognize thecommand argument of anioctl
call and creates a transparentM_IOCTL message. Theiocblk  structure
has aTRANSPARENT indicator containing the value of thearg  argument
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in the call. It sends theM_IOCTL message downstream. See “Transparent
ioctl Messages” for more details.

2. A module receives theM_IOCTL message, recognizes theioc_cmd , and
determines that it isTRANSPARENT.

3. If the module requires user data, it creates anM_COPYIN message to
request acopyin  of user data. The message contains the address of user
data to copy in and how much data to transfer. It sends the message
upstream.

4. The Stream head receives theM_COPYIN message and uses the contents to
copyin  the data from user space into anM_IOCDATA response message
that it sends downstream. The message also contains an indicator of
whether the data transfer succeeded. Thecopyin  might fail, for instance,
because of anEFAULT condition. Seeintro(2) .

5. The module receives theM_IOCDATA message and processes its contents.

The module may use the message contents to generate anotherM_COPYIN. Steps 3
through 5 may be repeated until the module has requested and received all the user
data to be transferred.

6. When the module completes its data transfer, it does theioctl  processing
and sends anM_IOCACK message upstream to notify the Stream head that
ioctl  processing has successfully completed.

Writing data from a module to user space is similar except that the module uses an
M_COPYOUT message to request the Stream head to write data into user space. In addition
to length and user address, the message includes the data to be copied out. In this case, the
M_IOCDATA response will not contain user data, only show success or failure.

The module may intermixM_COPYIN andM_COPYOUT messages in any order. However,
each message must be sent one at a time; the module must receive the associated
M_IOCDATA response before any subsequentM_COPYIN/M_COPYOUT request orack/nak
message is sent upstream. After the lastM_COPYIN/M_COPYOUT message, the module
must send anM_IOCACK message (orM_IOCNAK for a detected error condition).

NOTE

For a transparentM_IOCTL, user data cannot be returned with an
M_IOCACK message. The data must have been sent with a preced-
ing M_COPYOUT message.

Transparent ioctl Messages 6

The form of theM_IOCTL message generated by the Stream head for a transparentioctl
is a singleM_IOCTL message block followed by oneM_DATA block. The form of the
iocblk  structure in theM_IOCTL block is the same as described under “General ioctl
Processing.” However,ioc_cmd  is set to the value of thecommand argument in the
ioctl  system cal l  andioc_count  is  set  toTRANSPARENT,  defined in
sys/stream.h . TRANSPARENT distinguishes the case where anI_STR ioctl  may
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specify a value ofioc_cmd  equivalent to thecommand argument of a transparent
ioctl . TheM_DATA block of the message contains the value of thearg  parameter in the
call.

NOTE

Modules that process a specificioc_cmd  that did not validate the
ioc_count  field of theM_IOCTL message will break if trans-
parentioctl s with the same command are done from user space.

Transparent ioctl Examples 6

The following are three examples of transparentioctl  processing. Screen 6-5 and
Screen 6-6 illustrateM_COPYIN. Screen 6-7 illustratesM_COPYOUT. Screen 6-8 and
Screen 6-9 show a more complex example with state transitions combining both
M_COPYIN andM_COPYOUT.

M_COPYIN Example 6

In this example, the contents of a user buffer are transferred into the kernel as part of an
ioctl  call of the form

ioctl ( fd, SET_ADDR, & bufadd)

wherebufadd is a structure declared as

struct address {
   int ad_len;/* buffer length in bytes */
   caddr_t ad_addr;/* buffer address */
};

This requires two pairs of messages (request/response) following receipt of theM_IOCTL
message. The first willcopyin  the structure and the second willcopyin  the buffer.
Screen 6-5 illustrates processing that supports only the transparent form ofioctl . xxx-
wput  is the write-sideput  procedure for the module or driverxxx :
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Screen 6-5.  Request/Response Messages

struct address { /* same members as in user space */
int ad_len; /* length in bytes */
caddr_t ad_addr; /* buffer address */

};

/* state values (overloaded in private field) */
#define GETSTRUCT 0 /* address structure */
#define GETADDR 1 /* byte string from ad_addr */

xxxwput(queue_t *q, mblk_t *mp)
{

struct iocblk *iocbp;
struct copyreq *cqp;

switch (mp->b_datap->db_type) {
.
.
.

case M_IOCTL:
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case SET_ADDR:

if (iocbp->ioc_count != TRANSPARENT) {/* fail if I_STR */
if (mp->b_cont) { /* return buffer to pool ASAP */

freemsg(mp->b_cont);
mp->b_cont = NULL;

}
mp->b_datap->db_type = M_IOCNAK;/* EINVAL */
qreply(q, mp);
break;

}
/* Reuse M_IOCTL block for M_COPYIN request */

cqp = (struct copyreq *)mp->b_rptr;

/* Get user space structure address from linked M_DATA block */

cqp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;
freemsg(mp->b_cont); /* MUST free linked blocks */
mp->b_cont = NULL;
cqp->cq_private = (mblk_t *)GETSTRUCT;  /* to identify response */

/* Finish describing M_COPYIN message */

cqp->cq_size = sizeof(struct address);
cqp->cq_flag = 0;
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
qreply(q, mp);
break;
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xxx wput  verifies that theSET_ADDR is TRANSPARENT to avoid confusion with an
I_STR ioctl , which uses a value ofioc_cmd  equivalent to thecommand argument of
a transparentioctl . When sending anM_IOCNAK, freeing the linkedM_DATA block is
not mandatory as the Stream head frees it. However, this returns the block to the buffer
pool more quickly.

In this and all the following examples in this section, the message blocks are reused to
avoid the overhead of deallocating and allocating.

NOTE

The Stream head guarantees that the size of the message block
containing aniocblk  structure is large enough also to hold the
copyreq  andcopyresp  structures.

cq_private  is set to contain state information forioctl  processing (tells us what the
subsequentM_IOCDATA response message contains). Keeping the state in the message
makes the message self-describing and simplifies theioctl  processing.M_IOCDATA
processing is done inxxxioc . Two M_IOCDATA types are processed,GETSTRUCT and
GETADDR:

default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

}   /* switch (iocbp->ioc_cmd) */

break;

case M_IOCDATA:
xxxioc(q, mp);/* all M_IOCDATA processing done here */
break;
.
.
.

}    /* switch (mp->b_datap->db_type) */
}
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Screen 6-6.  GETSTRUCT and GETADDR

xxxioc(queue_t *q, mblk_t *mp)/* M_IOCDATA processing */
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct address *ap;

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;
switch (csp->cp_cmd) {/* validate M_IOCDATA for this module */

case SET_ADDR:
if (csp->cp_rval) {/* GETSTRUCT or GETADDR failed */

freemsg(mp);
return;

}
switch ((int)csp->cp_private) {/* determine state */

case GETSTRUCT:/* user structure has arrived */
mp->b_datap->db_type = M_COPYIN; /* reuse M_IOCDATA block */
cqp = (struct copyreq *)mp->b_rptr;
ap = (struct address *)mp->b_cont->b_rptr; /* user structure */
cqp->cq_size = ap->ad_len;/* buffer length */
cqp->cq_addr = ap->ad_addr;/* user space buffer address */
freemsg(mp->b_cont);
mp->b_cont = NULL;
cqp->cq_flag = 0;
csp->cp_private = (mblk_t *)GETADDR;/* next state */
qreply(q, mp);
break;

case GETADDR: /* user address is here */
if (xxx_set_addr(mp->b_cont) == FAILURE){/*hypothetical routine*/

mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EIO;

} else {
mp->b_datap->db_type = M_IOCACK;/* success */
iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */
iocbp->ioc_rval = 0;/* may have been overwritten */

}
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
freemsg(mp->b_cont);
mp->b_cont = NULL;
qreply(q, mp);
break;

default:  /* invalid state: can't happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->rptr + sizeof(struct iocblk);
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xxx _set_addr  is a routine (not shown in the example) that processes the user address
from theioctl . Because the message block has been reused, the fields that the Stream
head examines (denoted bymay have been overwritten) must be cleared before sending an
M_IOCNAK.

M_COPYOUT Example 6

In this example, the user wants option values for this Stream device to be placed into the
user'soptions  structure (see beginning of example code). This can be done by use of a
transparentioctl  call of the form

ioctl ( fd, GET_OPTIONS, & optadd)

or, alternately, by use of astreamio  call

ioctl ( fd, I_STR , & opts_strioctl)

In the first case,optadd is declaredstruct options . In theI_STR  case,opts_strioctl
is declaredstruct strioctl , whereopts_strioctl.ic_dp  points to the user
options  structure.

Screen 6-7 illustrates support of both theI_STR  and transparent forms of anioctl . The
transparent form requires a singleM_COPYOUT message following receipt of the
M_IOCTL to copyout  the contents of the structure.xxx wput  is the write-sideput  pro-
cedure for module or driverxxx :

iocbp->ioc_error = EINVAL;  /* may have been overwritten */
qreply(q, mp);
ASSERT (0);/* panic if debugging mode */
break;

}
break;/* switch (cp_private) */

default:  /* M_IOCDATA not for us */
/* if module, pass message on */
/* if driver, free message */
break;

} /* switch (cp_cmd) */
}
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Screen 6-7.  I_STR and Transparent ioctl

struct options {/* same members as in user space */
int op_one;
int op_two;
shortop_three;
long op_four;

};

xxxwput(queue_t *q, mblk_t *mp)
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
int transparent = 0;

switch (mp->b_datap->db_type) {
.
.
.

case M_IOCTL:
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case GET_OPTIONS:

if (iocbp->ioc_count == TRANSPARENT) {
transparent = 1;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = sizeof(struct options);
/* Get structure address from linked M_DATA block */
cqp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;
cqp->cq_flag = 0;

/* No state necessary - we will only ever get one
 * M_IOCDATA from the Stream head indicating success
 * or failure for the copyout */

}
if (mp->b_cont)

freemsg(mp->b_cont);/* overwritten */
if ((mp->b_cont = allocb(sizeof(struct options),
BPRI_MED)) == NULL) {

mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
qreply(q, mp);
break;

}
xxx_get_options(mp->b_cont);   /* hypothetical routine */
if (transparent) {

mp->b_datap->db_type = M_COPYOUT;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);

} else {
mp->b_datap->db_type = M_IOCACK;
iocbp->ioc_count = sizeof(struct options);
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Bidirectional Transfer Example 6

Screen 6-8 and Screen 6-9 illustrate bidirectional data transfer between the kernel and user
space during transparentioctl  processing. It also shows how more complex state infor-
mation can be used.

The user wants to send and receive data from user buffers as part of a transparentioctl
call of the form

ioctl ( fd, XXX_IOCTL, & addr_xxxdata)

The useraddr_ xxxdata  structure defining the buffers is declared asstruct xxxdata ,
as shown. This requires three pairs of messages following receipt of theM_IOCTL mes-
sage:

1. tocopyin  the structure

2. tocopyin  one user buffer

3. tocopyout  the second user buffer

xxx wput  is the write-sideput  procedure for the module or driverxxx:

}
qreply(q, mp);
break;

default: /* M_IOCTL not for us */
/* if module, pass on; if driver, nak ioctl */

break;
} /* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
csp = (struct copyresp *)mp->b_rptr;
if (csp->cmd != GET_OPTIONS) { /* M_IOCDATA not for us */

/* if module, pass on; if driver, free message */

break;
}
if (csp->cp_rval) {

freemsg(mp);/* failure */
return;

}
/* Data successfully copied out, ack */

mp->b_datap->db_type = M_IOCACK;/* reuse M_IOCDATA for ack */
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */
iocbp->ioc_rval = 0;/* may have been overwritten */
qreply(q, mp);
break;
.
.
.

} /* switch (mp->b_datap->db_type) */
}
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Screen 6-8.  Write-Side put Procedure

struct xxxdata { /* same members in user space */
int x_inlen; /* number of bytes copied in */
caddr_t x_inaddr; /* buffer address of data copied in */
int x_outlen; /* number of bytes copied out */
caddr_t x_outaddr; /* buffer address of data copied out */

};
/*  State information for ioctl processing */
struct state {

int st_state; /* see below */
struct xxxdatast_data; /* see above */

};
/* state values */

#define GETSTRUCT 0 /* get xxxdata structure */
#define GETINDATA 1 /* get data from x_inaddr */
#define PUTOUTDATA 2 /* get response from M_COPYOUT */

static int
xxxwput(queue_t *q, mblk_t *mp)
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct state *stp;
mblk_t *tmp;
switch (mp->b_datap->db_type) {

.

.

.
case M_IOCTL:

iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case XXX_IOCTL:
if (iocbp->ioc_count != TRANSPARENT) {/* fail if I_STR */

if (mp->b_cont) { /* return buffer to pool ASAP */
freemsg(mp->b_cont);
mp->b_cont = NULL;

}
mp->b_datap->db_type = M_IOCNAK;/* EINVAL */
qreply(q, mp);
break;

}
/* Reuse M_IOCTL block for M_COPYIN request */

cqp = (struct copyreq *)mp->b_rptr;

/* Get structure's user address from linked M_DATA block */

cqp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;
freemsg(mp->b_cont);
mp->b_cont = NULL;
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xxx wput  allocates a message block to contain the state structure and reuses the
M_IOCTL to create anM_COPYIN message to read in thexxxdata  structure.
M_IOCDATA processing is done inxxx ioc :

/* Allocate state buffer */

if ((tmp = allocb(sizeof(struct state), BPRI_MED)) == NULL) {
mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
qreply(q, mp);
break;

}
tmp->b_wptr += sizeof(struct state);
stp = (struct state *)tmp->b_rptr;
stp->st_state = GETSTRUCT;
cqp->cq_private = tmp;

/* Finish describing M_COPYIN message */

cqp->cq_size = sizeof(struct xxxdata);
cqp->cq_flag = 0;
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
qreply(q, mp);
break;

default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

} /* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
xxxioc(q, mp);/* all M_IOCDATA processing done here */
break;
.
.
.

} /* switch (mp->b_datap->db_type) */
}
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Screen 6-9.  Message Block Allocation

xxxioc(queue_t *q, mblk_t *mp)  /* M_IOCDATA processing */
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct state *stp;
mblk_t *xxx_indata();

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;
switch (csp->cp_cmd) {

case XXX_IOCTL:
if (csp->cp_rval) {/* failure */

if (csp->cp_private)/* state structure */
freemsg(csp->cp_private);

freemsg(mp);
return;

}
stp = (struct state *)csp->cp_private->b_rptr;
switch (stp->st_state) {
case GETSTRUCT:/* xxxdata structure copied in */

/* save structure */

stp->st_data = *(struct xxxdata *)mp->b_cont->b_rptr;
freemsg(mp->b_cont);
mp->b_cont = NULL;
/* Reuse M_IOCDATA to copyin data */
mp->b_datap->db_type = M_COPYIN;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = stp->st_data.x_inlen;
cqp->cq_addr = stp->st_data.x_inaddr;
cqp->cq_flag = 0;
stp->st_state = GETINDATA;/* next state */
qreply(q, mp);
break;

case GETINDATA:/* data successfully copied in */
/* Process input, return output */
if ((mp->b_cont = xxx_indata(mp->b_cont)) == NULL) {

/* hypothetical */
mp->b_datap->db_type = M_IOCNAK; /* fail xxx_indata */
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = EIO;
qreply(q, mp);
break;

}
mp->b_datap->db_type = M_COPYOUT;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = min(msgdsize(mp->b_cont),

    stp->st_data.x_outlen);
cqp->cq_addr = stp->st_data.x_outaddr;
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At case GETSTRUCT, the userxxxdata  structure is copied into the module'sstate
structure (pointed at bycp_private  in the message) and theM_IOCDATA message is
reused to create a secondM_COPYIN message to read in the user data. Atcase GETIN-
DATA, the input user data is processed by thexxx _indata  routine (not supplied in the
example), which frees the linkedM_DATA block and returns the output data message
block. TheM_IOCDATA message is reused to create anM_COPYOUT message to write the
user data. Atcase PUTOUTDATA, the message block containing the state structure is
freed and an acknowledgment is sent upstream.

Care must be taken at the “can't happen” default case since the message block containing
the state structure (cp_private ) is not returned to the pool because it might not be
valid. This might result in a lost block. TheASSERT helps find errors in the module if a
“can't happen” condition occurs.

I_LIST ioctl 6

The ioctl I_LIST  supports thestrconf  andstrchg  commands that are used to
query or change the configuration of a Stream. Only the superuser or an owner of a
STREAMS device may alter the configuration of that Stream. Seestrchg(1)  for more
information.

Thestrchg  command does the following:

• Pushes one or more modules on the Stream

• Pops the topmost module off the Stream

cqp->cq_flag = 0;
stp->st_state = PUTOUTDATA;/* next state */
qreply(q, mp);
break;

case PUTOUTDATA:  /* data successfully copied out, ack ioctl */
freemsg(csp->cp_private);/* state structure */
mp->b_datap->db_type = M_IOCACK;
mp->b_wtpr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */
iocbp->ioc_rval = 0;/* may have been overwritten */
qreply(q, mp);
break;

default: /* invalid state: can't happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = EINVAL;
qreply(q, mp);
ASSERT (0);/* panic if debugging mode */
break;

}  /* switch (stp->st_state) */
break;

default:  /* M_IOCDATA not for us */
/* if module, pass message on */
/* if driver, free message */
break;

}  /* switch (csp->cp_cmd) */
}
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• Pops all the modules off the Stream

• Pops all modules up to but not including a specified module

Thestrconf  command does the following:

• Indicates if the specified module is present on the Stream

• Prints the topmost module of the Stream

• Prints a list of all modules and topmost driver on the Stream

If the Stream contains a multiplexing driver, thestrchg  andstrconf  commands will
not recognize any modules below that driver.

Theioctl I_LIST  performs two functions. When the third argument of theioctl  call
is set toNULL, the return value of the call shows the number of modules, including the
driver, present on the Stream. For example, if there are two modules above the driver, 3 is
returned. On failure,errno  may be set to a value specified instreamio(7) . The sec-
ond function of theI_LIST ioctl  is to copy the module names found on the Stream to
the user-supplied buffer. The address of the buffer in user space and the size of the buffer
are passed to theioctl  through a structurestr_list , which is defined in Screen 6-10:

Screen 6-10.  str_list Structure

wheresl_nmods  is the number of modules in thesl_modlist  array that the user has
allocated. Each element in the array must be at leastFMNAMESZ+1 bytes long.
FMNAMESZ is defined bysys/conf.h .

The user can find out how much space to allocate by first invoking theioctl I_LIST
with arg  set toNULL. TheI_LIST  call with arg  pointing to thestr_list  structure
returns, in thesl_nmods  member, the number of entries that have been filled into the
sl_modlist  array. Note that the number of entries includes the driver. If there is not
enough space in thesl_modlist  array (see note) orsl_nmods  is less than 1, the
I_LIST  call fails anderrno  is set toEINVAL. If arg or thesl_modlist  array points
outside the allocated address space,EFAULT is returned.

NOTE

It is possible, but unlikely, that another module was pushed on the
Stream after the user invoked theI_LIST ioctl  with the NULL
argument and before theI_LIST ioctl  with the structure argu-
ment was invoked.

struct  str_mlist {
  char l_name[FMNAMESZ+1];       /* space for holding a module name */
};
struct str_list {
   int sl_nmods;         /* # of modules for which space is allocated */
   struct str_mlist  *sl_modlist;/* address of buffer for names */
};
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Flush Handling 6

All modules and drivers are expected to handleM_FLUSH messages. AnM_FLUSH mes-
sage can originate at the Stream head or from a module or a driver. The first byte of the
M_FLUSH message is an option flag that can have the following values:

FLUSHR Flush read queue

FLUSHW Flush write queue

FLUSHRW Flush both, read and write, queues

FLUSHBAND Flush a specified priority band only

Screen 6-11 shows line discipline module flush handling:

Screen 6-11.  Line Discipline Flush Handling

The Stream head turns around theM_FLUSH message ifFLUSHW is set (FLUSHR will be
cleared).

A driver turns aroundM_FLUSH if FLUSHR is set (should mask offFLUSHW). The Stream
head turns around theM_FLUSH message ifFLUSHW is set (FLUSHR will be cleared).

A driver turns aroundM_FLUSH if FLUSHR is set (should mask offFLUSHW).

Screen 6-12 example shows the line discipline module flushing because of break:

static int
ld_put(queue_t *q, mblk_t *mp)
{

int qflag;
pl_t pl;

switch (mp->b_datap->db_type) {

default:
/*
 * queue everything except flush
 */
putq(q, mp);
return;

case M_FLUSH:
pl = freezestr(q);
(void)strqget(q, QFLAG, 0, &qflag);/* get q_flag */
unfreezestr(q, pl);

if (*mp->b_rptr & FLUSHW)/* flush write queue */
flushq(qflag & QREADR ? WR(q) : q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR)/* flush read queue */
flushq(qflag & QREADR ? q : RD(q), FLUSHDATA);

putnext(q, mp);
return;

}
}
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Screen 6-12.  Line Discipline Break Flushing

The next two figures further show flushing the entire Stream due to a line break.
Figure 6-1shows the flushing of the write-side of a Stream, and Figure 6-2 shows the
flushing of the read-side of a Stream. The dotted boxes depict flushed queues.

static int
ld_put(queue_t *q, mblk_t *mp)
{

int qflag;
pl_t pl;

switch (mp->b_datap->db_type) {

default:
/*
 * queue everything except flush, break
 */
putq(q, mp);
return;

case M_FLUSH:
pl = freezestr(q);
(void)strqget(q, QFLAG, 0, &qflag);/* get q_flag */
unfreezestr(q, pl);

if (*mp->b_rptr & FLUSHW)/* flush write queue */
flushq(qflag & QREADR ? WR(q) : q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR)/* flush read queue */
flushq(qflag & QREADR ? q : RD(q), FLUSHDATA);

putnext(q, mp);
return;

case M_BREAK:
pl=freezestr(q);
(void)strqget(q, QFLAG, 0, &qflag);/* get q_flag */
unfreezestr(q,pl);
/*
 * read side only;
 * doesn't make sense for write side
 */
if (qflag & QREADR) {

putnextctl1(q, M_PCSIG, SIGINT);
putnextctl1(q, M_FLUSH, FLUSHW);
putnextctl1(WR(q), M_FLUSH, FLUSHR);

} else
freemsg(mp);

return;
}

}
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Figure 6-1.  Flushing the Write-Side of a Stream

In Figure 6-1, the following is taking place:

1. A break is detected by a driver.

2. The driver generates anM_BREAK message and sends it upstream.

3. The module translates theM_BREAK into anM_FLUSH message with
FLUSHW set and sends it upstream.

4. The Stream head does not flush the write queue (no messages are ever
queued there).

5. The Stream head turns the message around (sends it down the write-side).

6. The module flushes its write queue.

7. The message is passed downstream.

8. The driver flushes its write queue and frees the message.

Figure 6-2 shows flushing the read-side of a Stream. The dotted boxes depict flushed
queues.
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Figure 6-2.  Flushing the Read-Side of a Stream

The events taking place in Figure 6-2 are as follows:

1. After generating the firstM_FLUSH message, the module generates an
M_FLUSH with FLUSHR set and sends it downstream.

2. The driver flushes its read queue.

3. The driver turns the message around (sends it up the read-side).

4. The module flushes its read queue.

5. The message is passed upstream.

6. The Stream head flushes the read queue and frees the message.

The flushband  routine provides the module and driver with the capability to flush mes-
sages associated with a given priority band. See theDevice Driver Reference.

A user can flush a particular band of messages by issuing:

ioctl ( fd, I_FLUSHBAND, bandp);

wherebandp is a pointer to a structurebandinfo  that has a format:
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struct bandinfo {
        uchar_tbi_pri;
        intbi_flag;
};

Thebi_flag  field may be one ofFLUSHR, FLUSHW, orFLUSHRW.

Screen 6-13 shows flushing according to the priority band:

Screen 6-13.  Priority Band Flush Handling

Note that modules and drivers are not required to treat messages as flowing in separate
bands. Modules and drivers can view the queue having only two bands of flow, normal and
high priority. However, the latter alternative flushes the entire queue whenever an
M_FLUSH message is received.

One use of the fieldb_flag  of themsgb structure is provided to give the Stream head a
way to stopM_FLUSH messages from being reflected forever when the Stream is being
used as a pipe. When the Stream head receives anM_FLUSH message, it sets the
MSGNOLOOP flag in theb_flag  field before reflecting the message down the write-side
of the Stream. If the Stream head receives anM_FLUSH message with this flag set, the
message is freed rather than reflected.

Driver-Kernel Interface 6

TheDriver-Kernel Interface is an interface between the PowerMAX OS system kernel
and drivers. These drivers are block interface drivers, character interface drivers, and driv-
ers and modules supporting a STREAMS interface. Each driver type supports an interface
from the kernel to the driver. This kernel-to-driver interface consists of a set of driver-

queue_t  *rdq;/* read queue */
queue_t  *wrq;/* write queue */

case M_FLUSH:
if (*bp->b_rptr & FLUSHBAND)  {

if (*bp->b_rptr & FLUSHW)
flushband(wrq, FLUSHDATA, *(bp->b_rptr + 1));

if (*bp->b_rptr & FLUSHR)
flushband(rdq, FLUSHDATA, *(bp->b_rptr + 1));

} else {
if (*bp->b_rptr & FLUSHW)

flushq(wrq, FLUSHDATA);
if (*bp->b_rptr & FLUSHR)

flushq(rdq, FLUSHDATA);
}
/*
 * modules pass the message on;
 * drivers shut off FLUSHW and loop the message
 * up the read-side if FLUSHR is set; otherwise,
 * drivers free the message.
 */
break;
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defined functions that are called by the kernel. These functions are the entry points into the
driver.

One benefit of defining the DKI is increased portability of driver source code between var-
ious UNIX System V implementations. Another benefit is a gain in modularity that results
in extending the potential for changes in the kernel without breaking driver code.

The interaction between a driver and the kernel can be described as occurring along two
paths. See Figure 6-3.

One path includes those functions in the driver that are called by the kernel. These are
entry points into the driver. The other path consists of the functions in the kernel that are
called by the driver. Along both paths, information is exchanged between the kernel and
drivers in the form of data structures. The DKI identifies these structures and specifies a
set of contents for each.

The DKI defines data structure constraints (some fields are read/write, some are read-only,
and some are neither readable nor writable). Be careful when you use DKI data structures;
you must make sure that your code is portable, and that you do not corrupt the system. See
theDevice Driver Reference for more specific information.

NOTE

This release of the system does not support code that does not
conform to the DDI/DKI.

The DKI also defines the common set of entry points expected to be supported in each
driver type and their calling and return syntaxes. For each driver type, the DKI lists a set of
kernel utility functions that can be called by that driver and also specifies their calling and
return syntaxes.
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Figure 6-3.  Interfaces Affecting Drivers

The set of STREAMS utilities available to drivers is listed in theDevice Driver Reference.
No system-defined macros that manipulate global kernel data or introduce structure size
dependencies are permitted in these utilities. Therefore, some utilities that have been
implemented as macros in the prior UNIX system releases are implemented as functions
in PowerMAX OS. This does not preclude the existence of both macro and function ver-
sions of these utilities. Driver source code must include a header file that picks up function
declarations while the core operating system source includes a header file that defines the
macros. With the DKI interface, the following STREAMS utilities are implemented as C
programming language functions:datamsg , OTHERQ, putnext , RD, splstr , andWR.
See “Header Files” for more information.

Replacing macros such asRD with function equivalents in the driver source code allows
driver objects to be insulated from changes in the data structures and their size, further
increasing the useful lifetime of driver source code and objects.

The driver is insulated from implementation-specific details of multiprocessor STREAMS
synchronization.

The DKI interface defines an interface suitable for drivers and there is no need for drivers
to access global kernel data structures directly. The kernel functionsdrv_getparm  and
drv_setparm  are provided for reading and writing information in these structures. This
restriction has an important consequence. Because drivers are not permitted to access glo-
bal kernel data structures directly, changes in the contents/offsets of information within
these structures will not break objects. Thedrv_getparm  anddrv_setparm  functions
are described in more detail in theDevice Driver Reference.
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Device Driver and Driver-Kernel Interface 6

The DDI is an interface that facilitates driver portability across different UNIX system
versions. The DKI is an interface that also facilitates driver source code portability across
implementations of PowerMAX OS on all machines. DKI driver code, however, has to be
recompiled on the machine on which it is to run.

The most important distinction between the DDI and the Driver-Kernel Interface lies in
scope. The DDI addresses complete interfaces for block, character, and STREAMS inter-
face drivers and modules. The DKI defines only driver interfaces with the kernel with the
addition of the kernel interface for file system type (FST) modules. The DKI interface
does not specify the system initialization driver interface (that is,init  andstart  driver
routines) nor hardware related interfaces.

NOTE

The “complete interface” refers to hardware- and boot/auto-con-
figuration-related driver interface in addition to the interface with
the kernel.

STREAMS Interface 6

The entry points from the kernel into STREAMS drivers and modules are through the
qinit  structures pointed to by thestreamtab  structure,prefixinfo.  See theDevice
Driver Reference.

STREAMS drivers may need to define additional entry points to support the interface with
boot/autoconfiguration software and the hardware (for example, an interrupt handler).

If the STREAMS module has prefixmod, then the declaration is of the form:

Screen 6-14.  mod Declaration Form

static int modrput(queue_t *, mblk_t *);
static int modrsrv(queue_t *);
static int modopen(queue_t *, dev_t *, int, int, cred_t *);
static int modclose(queue_t *, int, cred_t *);

static int modwput(queue_t *, register mblk_t *);
static int modwsrv(queue_t *);

static struct mod_minfo = {}
static struct qinit rdinit =

{modrput, modrsrv, modopen, modclose, NULL, & m_info, NULL};

static struct qinit wrinit =
{modwput, modwsrv, NULL, NULL, NULL, & m_info, NULL};

struct streamtab modinfo = { &rdinit, &wrinit, NULL, NULL };

int moddevflag = D_MT;
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where

• modrput  is the module's read queueput  procedure.

• modrsrv  is the module's read queueservice  procedure.

• modopen is theopen  routine for the module.

• modclose  is theclose  routine for the module.

• modwput  is theput  procedure for the module's write queue.

• modwsrv  is theservice  procedure for the module's write queue.

Eachqinit  structure can point to four entry points. (An additional function pointer has
been reserved for future use and must not be used by drivers or modules.) These four func-
tion pointer fields in theqinit  structure areqi_putp , qi_srvp , qi_qopen , and
qi_close .

The utility functions that can be called by STREAMS drivers and modules are listed in the
Device Driver Reference. They must follow the call and return syntaxes specified in the
manual. Manual pages relating to the DDI/DKI are provided in theDevice Driver Refer-
ence.

Configuring the System for STREAMS Drivers and Modules 6

To configure the system to use a STREAMS software driver or module, you must edit a
number of configuration files. The names of the files vary on different systems; see either
the master(4)  andsystem(4)  manual pages or themdevice(4)  andsde-
vice(4) manual pages for descriptions of the configuration files for your system.

This section summarizes guidelines common to the design of STREAMS modules and
drivers. Additional rules about modules and drivers can be found in “STREAMS Mod-
ules” and “STREAMS Drivers.”

Modules and Drivers 6

1. Modules and drivers cannot access information in theu_area  of a pro-
cess. Modules and drivers are not associated with any process, and there-
fore have no concept of process or user context, except during open and
close routines (see the section titled “Rules for Open/Close Routines” later
in This section).

To configure the system to use a STREAMS software driver or module, you must
edit a number of configuration files. The names of the files vary on different sys-
tems; see either the master(4)  andsystem(4)  manual pages or themde-
vice(4)  and sdevice(4)  manual pages for descriptions of the configuration
files for your system.
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2. Every module and driver must process anM_FLUSH message according to
the value of the argument passed in the message.

3. A module or a driver should not change the contents of a data block whose
reference count is greater than 1 because other modules/drivers that have
references to the block may not want the data changed. To avoid problems,
data should be copied to a new block and then changed in the new one. See
theDevice Driver Reference.

4. Modules and drivers should manipulate queues and manage buffers only
with the routines provided for that purpose, in conformance with DDI/DKI.
See theDevice Driver Reference.

5. Modules and drivers should not require the data in anM_DATA message to
follow a particular format, such as a specific alignment.

6. Care must be taken when modules are mixed and matched, because one
module may place different semantics on the priority bands than another
module. The specific use of each band by a module should be included in
the service interface specification.

When designing modules and drivers that make use of priority bands one should
keep in mind that priority bands merely provide a way to impose an ordering of
messages on a queue. The priority band is not used to determine the service primi-
tive. Instead, the service interface should rely on the data contained in the message
to determine the service primitive.

Rules for Open/Close Routines 6

• open  andclose  routines may use blocking primitives as defined in the
DDI.

• Theopen  routine should return zero on success or an error number on fail-
ure. If theopen  routine is called with theCLONEOPEN flag, the device
number should be set by the driver to an unused device number accessible
to that driver. This should be an entire device number (major/minor).

• If a module or a driver wants to allocate a controlling terminal, it should
send anM_SETOPTS message to the Stream head with theSO_ISTTY flag
set. Otherwise signaling will not work on the Stream.

• open  andclose  routines have user context and can access some fields in
theu_area  using thedrv_getparm  anddrv_setparm  functions.

A multithreaded driver or module must callqprocson  to enable its put and service
procedures andqprocsoff  to disable them.

NOTE

The DKI  in te r face  prov ides  thedrv_getparm  and
drv_setparm  functions to read/write kernel parameters, so the
driver/module should not access them directly.
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Rules for ioctls 6

• Do not change theioc_id, ioc_uid, ioc_gid,  or ioc_cmd  fields
in anM_IOCTL message.

• The above rule also applies to fields in anM_IOCDATA, M_COPYIN, and
M_COPYOUT message. Field names are different; See theDevice Driver
Reference.

• Always validateioc_count  to see whether theioctl  is the transparent
or I_STR  form.

Rules for Put and Service Procedures 6

To ensure proper data flow between modules and drivers, the following rules should be
observed input  andservice  procedures:

• Put  andservice  procedures must not sleep.

• Return codes can be sent with STREAMS messagesM_IOCACK,
M_IOCNAK, andM_ERROR.

• Protect data structures common toput  andservice  procedures by using
splstr .

Note that multithreaded drivers must protect all global driver data with
DDI/DKI-defined locks or synchronization utility functions.

• Put  andservice  procedures cannot access the information in the
u_area  of a process.

• Messages should be handled consistently. Any given message type should
be handled completely by theput  procedure, or deferred to theservice
procedure.

Put  andservice  procedures must protect against race conditions using DDI/DKI locks.
The basic model forput  andservice  concurrency for a multithreaded driver is as fol-
lows: Only one instance of theservice  procedure for a specific queue may run at a time;
this ensures FIFO ordering of messages is preserved. Multiple instances of theput  proce-
dure may run concurrently, and theput  andservice  routines may run concurrently
with each other. Strict adherence to the DDI/DKI rules governing system data structure
access and use of DDI/DKI STREAMS utilities (for example,getq , strqget , put-
next , and so forth) protects underlying STREAMS subsystem races. However, the driver
writer must take care to protect driver-private data structures from potential race condi-
tions because ofput  andservice  procedure concurrency. To protect against deadlock,
the processor priority associated with a given driver lock must be high enough to prevent
all interrupts that may need to acquire that lock.

NOTE

References to drivers apply to modules as well.
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Put Procedures 6

• Generally, each queue defines aput  procedure in itsqinit  structure for
passing messages between modules.

In some instances, drivers do not need put procedures; for example, mes-
sages are only passed upstream by the driver's interrupt routine, and there-
fore a read-side put procedure is not needed.

• A put  procedure must use theputq  utility to enqueue a message on its
own queue. This is necessary to ensure that the various fields of thequeue
structure are maintained consistently. See theDevice Driver Reference.

• When passing messages to a neighboring module, a module may not call
putq  directly, but must call its neighbor module'sput  procedure using the
appropriate DDI/DKI STREAMS utility. Seeputnext  in theDevice
Driver Reference.

However, theq_qinfo  structure that points to a module'sput  procedure may point
to putq  (that is,putq  is used as theput  procedure for that module). When a mod-
ule calls a neighbor module'sput  procedure that is defined in this way, it will be
calling putq  indirectly. If any module usesputq  as itsput  procedure in this way,
the module must define aservice  procedure. Otherwise, no messages will ever be
processed by the next module. Also, becauseputq  does not processM_FLUSH
messages, any module that usesputq  as itsput  procedure must define aservice
procedure to processM_FLUSH messages.

• Theput  procedure of a queue with noservice  call its neighbor mod-
ule'sput  procedure using the appropriate DDI/DKI STREAMS utility. See
putnext  in theDevice Driver Reference.

• Theput  procedure of a queue with noservice  procedure must call the
put  procedure of the next queue usingputnext  if a message is to be
passed to that queue.

• Processing many function calls with theput  procedure could lead to inter-
rupt stack overflow. In that case, switch toservice  procedure processing
whenever appropriate to switch to a different stack.

• Although most drivers do not have a read-sideput  procedure, those that
do must be called (for example, from the interrupt handler) with the multi-
processor DDI/DKI functionput .

Service Procedures 6

1. If flow control is desired, aservice  procedure is required.

Theservice  procedure should use thecanputnext  or bcanputnext  routines
before doingputnext  to honor flow control.

2. Theservice  procedure must usegetq  to remove a message from its
message queue, so that the flow control mechanism is maintained.

3. Theservice  procedure should process all messages on its queue. The
only exception is if the queue ahead is blocked (that is,canputnext
fails) or some other failure like buffer allocation failure. Adherence to this
rule is the only guarantee that STREAMS will enable (schedule for execu-
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tion) theservice  procedure when necessary, and that the flow control
mechanism will not fail.

If a service  procedure exits for other reasons, it must take explicit steps to assure
it will be re-enabled.

4. Theservice  procedure should not put a high-priority message back on
the queue, because of the possibility of getting into an infinite loop.

5. Theservice  procedure must follow the steps below for each message
that it processes. STREAMS flow control relies on strict adherence to these
steps.

a. Remove the next message from the queue usinggetq . It is possible
that theservice  procedure could be called when no messages exist
on the queue, so theservice  procedure should never assume that
there is a message on its queue. If there is no message, RETURN.

b. If all the following conditions are met:

• Failure of functionscanputnext  or bcanputnext .

• The message type is not a high priority type.

• The message is to be put on the next queue.

Continue to Step c. Otherwise, continue at Step d.

c. The message must be replaced on the head of the queue from which
it was removed usingputbq . See theDevice Driver Reference. Fol-
lowing this, theservice  procedure is exited. Theservice  proce-
dure should not be re-enabled at this point. It will be automatically
back-enabled by flow control.

d. If all the conditions of Step b are not met, the message should not be
returned to the queue. It should be processed as necessary. Then,
return to Step a.

Data Structures 6

Only the contents ofq_ptr , q_minpsz , q_maxpsz, q_hiwat , andq_lowat  in the
queue  structure may be altered.q_minpsz , q_maxpsz , q_hiwat , andq_lowat  are
set when the module or driver is opened, but they may be modified later only by using the
DDI/DKI utility strqset .

Drivers and modules are allowed to change theqb_hiwat  andqb_lowat  fields of the
qband  structure. They may only read theqb_count , qb_first , qb_last , and
qb_flag  fields.

The routinesstrqget  andstrqset  must be used to get and set the fields associated
with the queue. They insulate modules and drivers from changes in thequeue  structure
and from multiprocessor STREAMS implementation details, and also enforce the previ-
ous rules.
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Dynamic Allocation of STREAMS Data Structures 6

Before PowerMAX OS, STREAMS data structures were statically configured to support a
fixed number of Streams, read and write queues, message and data blocks, link block data
structures, and Stream event cells. The only way to change this configuration was to
reconfigure and reboot the system. Resources were also wasted because data structures
were allocated but not necessarily needed.

With Release 4, the STREAMS mechanism has been enhanced to dynamically allocate the
following STREAMS data structures:stdata , queub_last , andqb_flag  fields.
STREAMS allocates memory to cover these structures as needed.

Dynamic data structure allocation has the advantage of the kernel being initially smaller
than a system with static configuration. The performance of the system may also improve
because of better memory use and added flexibility. However,allocb , bufcall , and
freeb , the routines that manage these data structures, may be slower at times because of
extra overhead needed for dynamic allocation.

Header Files 6

The following header files are generally required in modules and drivers:

types.h Contains type definitions used in the STREAMS header files.

stream.h Contains required structure and constant definitions.

stropts.h Primarily for users, but contains definitions of the arguments to
theM_FLUSH message type also required by modules.

ddi.h Contains definitions and declarations needed by drivers to use
functions for the UNIX System V DDI or DKI. This header file
should be the last header file included in the driver source code
(after all#include  statements).

One or more of the header files described next may also be included. No standard UNIX
system header files should be included except as described in the following section. The
intent is to prevent attempts to access data that cannot or should not be accessed.

errno.h Defines various system error conditions, and is needed if errors
are to be returned upstream to the user.

sysmacros.h Contains miscellaneous system macro definitions (subject to
DDI/DKI restrictions).

param.h Defines various system parameters.

signal.h Defines system signal values, and should be used if signals are to
be processed or sent upstream.

file.h Defines fi le open flags, and is needed ifO_NDELAY (or
O_NONBLOCK) is interpreted.
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7
Chapter 7STREAMS Modules

7
7
7

Introduction 7

A STREAMS module is a pair of queues and a defined set of kernel-level routines and
data structures used to process data, status, and control information. A Stream may have
zero or more modules. User processes push (insert) modules on a Stream using the
I_PUSH ioctl  and pop (remove) them using theI_POP ioctl . Pushing and popping
of modules happens in a Last-In-First-Out (LIFO) fashion. Modules manipulate messages
as they flow through the Stream.

Routines 7

STREAMS module routines (such asopen , close , put , andservice ) have already
been described in the previous sections. This section shows some examples and further
describes attributes common to moduleput  andservice  routines.

A module'sput  routine is called by the preceding module, driver, or Stream head and
before the correspondingservice  routine. Theput  routine should do any processing
that needs to be done immediately (for example, processing of high-priority messages).
Any processing that can be deferred should be left for the correspondingservice  rou-
tine.

Theservice  routine implements flow control, handles de-packetization of messages,
performs deferred processing, and handles resource allocation. Once theservice  rou-
tine is enabled, it may be started but not necessarily completed before running user-level
code.

The put  andservice  routines must not callsleep  and cannot access theu_area
area, because they are executed asynchronously with respect to any process.

Screen 7-1 shows a STREAMS module read-sideput  routine:
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Screen 7-1.  Read Side put Procedure

The following briefly describes the code:

• A pointer to a queue defining an instance of the module and a pointer to a
message are passed to theput  routine.

• Theput  routine switches on the type of the message. For each message
type, theput  routine either enqueues the message for further processing
by the moduleservice  routine, or passes the message to the next module
in the Stream.

• High priority messages are processed immediately by theput  routine and
passed to the next module.

• Ordinary (or normal) messages are either enqueued or passed along the
Stream.

Screen 7-2 shows a module write-sideput  routine:

static int modrput(queue_t *q, mblk_t *mp)
{

struct mod_prv *modptr;

modptr = (struct mod_prv *) q->q_ptr;  /* for state information */

if (pcmsg(mp->b_datap->db_type)) { /* process priority message */
putnext(q, mp);                /* and pass it on */
return;

}
switch(mp->b_datap->db_type) {
case M_DATA:                     /* may process message data */

putq(q, mp);                   /* queue message for service routine */
return;

case M_PROTO: /* handle protocol control message */
.
.
.

default:
putnext(q, mp);
return;

}
}
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Screen 7-2.  Write Side put Procedure

The write-sideput  routine, unlike the read-side, may be passedM_IOCTL messages. It is
up to the module to recognize and process theioctl  command, or pass the message
downstream if it does not recognize the command.

Screen 7-3 shows a general scenario employed by the module'sservice  routine:

Screen 7-3.  Service Routine

static int modwput(queue_t *q, mblk_t *mp)
{

struct mod_prv *modptr;
modptr = (struct mod_prv *) q->q_ptr;/* for state information */
if (pcmsg(mp->b_datap->db_type)) {/* process priority message */

putnext(q, mp);    /* and pass it on */
return;

}
switch(mp->b_datap->db_type) {
case M_DATA: /* may process message data */

putq(q, mp); /* queue message for service routine */
/* or pass message along */
/* putnext(q, mp); */

return;
case M_PROTO:

.

.

.
case M_IOCTL:/* if command in message is recognized */

/* process message and send back reply */
/* else pass message downstream */

default:
putnext(q, mp);
return;

}
}

static int modrsrv(queue_t *q)
{

mblk_t *mp;

while ((mp = getq(q)) != (mblk_t *) NULL) {
if (!pcmsg(mp->b_datap->db_type) &&
   !canputnext(q)) {    /* flow control check */

putbq(q, mp);/* return message */
return;

}
        /* process the message */

switch(mp->b_datap->db_type) {
.
.
.
putnext(q, mp);/* pass the result */

}
} /* while */

}
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The steps are as follows:

1. Retrieve the first message from the queue usinggetq .

2. If the message is high priority, process it immediately, and pass it along the
Stream.

3. Otherwise, theservice  routine should use thecanputnext  routine to
determine if the next module or driver that enqueues messages is within
acceptable flow control limits.canputnext  goes down the Stream (or up
on the read-side) until it reaches a module, a driver, or the Stream head
with aservice  routine. When it reaches one, it looks at the total message
space currently allocated at that queue for enqueued messages. If the
amount of space currently used at that queue exceeds the high-water mark,
canputnext  returns false (zero). If the next queue with aservice  rou-
tine is within acceptable flow control limits, it returns true (nonzero).

4. If canputnext  returns false, theservice  routine should return the
message to its own queue using theputbq  routine. Theservice  routine
can do no further processing now, and it should return.

5. If canputnext  returns true, theservice  routine should complete any
processing of the message. This may involve retrieving more messages
from the queue, (de)- allocating header and trailer information, and per-
forming control function for the module.

6. When theservice  routine is finished processing the message, it may call
theputnext  routine to pass the resulting message to the next queue.

7. Above steps are repeated until there are no messages left on the queue (that
is, untilgetq  returnsNULL) or canputnext  returns false.

Filter Module Example 7

The module shown in Screen 7-4,crmod , is an asymmetric filter. On the write-side,new-
line is converted tocarriage return followed bynewline. On the read-side, no conver-
sion is done. The declarations of this module are the same as those of the null module pre-
sented in the previous section:
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Screen 7-4.  Filter Module

stropts.h  includes definitions of flush message options common to user level, modules
and drivers.modopen andmodclose  are unchanged from the null module example
shown earlier in this chapter.modrput  is likemodput  from the null module.

Note that, in contrast to the null module example, a singlemodule_info  structure is
shared by the read-side and write-side. Themodule_info  includes the flow control
high- and low-water marks (512 and 128) for the write queue. (Although the same
module_info  is used on the read queue side, the read-side has noservice  procedure,
so flow control is not used.) Theqinit  contains theservice  procedure pointer.

The write-sideput  procedure, the beginning of theservice  procedure, and an example
of flushing a queue are shown in Screen 7-5:

/* Simple filter - converts newline -> carriage return, newline */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>

static struct module_info minfo = { 0x09, “crmod”, 0, INFPSZ, 512, 128 };

static int modopen, modrput, modwput, modwsrv, modclose;

static struct qinit rinit = {
modrput, NULL, modopen, modclose, NULL, &minfo, NULL };

static struct qinit winit = {
modwput, modwsrv, NULL, NULL, NULL, NULL, &minfo, NULL };

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL };

int moddevflag = D_MP;
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Screen 7-5.  Write Side put Procedure and Queue Flush

modwput , the writeput  procedure, switches on the message type. High-priority mes-
sages that are not typeM_FLUSH areputnext  to avoid scheduling. The others are
queued for theservice  procedure. AnM_FLUSH message is a request to remove mes-
sages on one or both queues. It can be processed in either theput  or service  procedure;
it is preferable to use theput  procedure, so thatM_FLUSH is handled immediately.

modwsrv  is the writeservice  procedure. It takes a single argument, a pointer to the
write queue . modwsrv  processes only one high-priority message,M_FLUSH. No other
high-priority messages should reachmodwsrv .

For anM_FLUSH message,modwsrv  checks the first data byte. IfFLUSHW (defined in
stropts.h ) is set, the write queue is flushed with theflushq  utility. See theDevice
Driver Reference.flushq  takes two arguments, the queue pointer and a flag. The flag
shows what should be flushed, data messages (FLUSHDATA) or everything (FLUSHALL).
In Screen 7-6, data includesM_DATA, M_DELAY, M_PROTO, andM_PCPROTO messages.
The choice of what types of messages to flush is module-specific.

If canputnext (q) returns false, ordinary messages are returned to the queue, indicating
the downstream path is blocked. Screen 7-6 continues with the remaining part ofmod-
wsrv  processingM_DATA messages:

static int modwput(queue_t *q, register mblk_t *mp)
{

if (pcmsg(mp->b_datap->db_type) && mp->b_datap->db_type != M_FLUSH)
putnext(q, mp);

else
putq(q, mp);    /* Put it on the queue */

}

static int modwsrv(queue_t  *q)
{

mblk_t *mp;

while ((mp = getq(q) != NULL) {
switch (mp->b_datap->db_type) {

default:
    if (canputnext(q)) {
        putnext(q, mp);
        break;
    } else {
        putbq(q, mp);

return;
            }

case M_FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
putnext(q, mp);
break;
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Screen 7-6.  M_DATA Message Processing

The differences inM_DATA processing between this and the example in the section titled
“Message Allocation and Freeing” relate to the way the new messages are forwarded and
flow controlled. To show alternative means of processing messages, this version creates
individual new messages rather than a single message containing multiple message
blocks. When a new message block is full, it is immediately forwarded with theputnext
routine rather than being linked into a single, large message (as was done in the example).
This alternative may not be desirable because message boundaries are altered and there is
an additional overhead of handling and scheduling multiple messages.

When the filter processing is performed (following push),canputnext  should check
flow control after, rather than before, each new message is forwarded. This is because
there is no provision to hold the new message until the queue becomes unblocked. If the
downstream path is blocked, the remaining part of the original message is returned to the
queue. Otherwise, processing continues.

case M_DATA: {
mblk_t *nbp = NULL;
mblk_t *next;

if (!canputnext(q)) {
putbq(q, mp);
return;

}
/* Filter data, appending to queue */
for (; mp != NULL; mp = next) {

while (mp->b_rptr < mp->b_wptr) {
if (*mp->b_rptr == '\n´

if (!bappend(&nbp, '\r'))
goto push;

if (!bappend(&nbp, *mp->b_rptr))
goto push;

mp->b_rptr++;
continue;

push:
    if (nbp)

putnext(q, nbp);
nbp = NULL;
if (!canputnext(q)) {

if (mp->b_rptr >= mp->b_wptr) {
next = mp->b_cont;
freeb(mp);
mp=next;

}
if (mp)

putbq(q, mp);
return;

}
} /* while */
next = mp->b_cont;
freeb(mp);

} /* for */
if (nbp)

putnext(q, nbp);
} /* case M_DATA */

} /* switch */
} /* while */

}
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Flow Control 7

To use the STREAMS flow control mechanism, modules must useservice  procedures,
invokecanputnext  before callingputnext , and use appropriate values for the high-
and low-water marks.

Module flow control limits the amount of data that can be placed on a queue. It prevents
depletion of buffers in the buffer pool. Flow control is advisory in nature and can be
bypassed. It is managed by high- and low-water marks and regulated byQWANTW and
QFULL flags. Module flow control is implemented by using thecanputnext , getq ,
putq , putbq , insq , andrmvq  routines.

During normal flow control, when a module and driver are in sync, the following steps are
taken:

1. A driver sends data to a module using theputnext  routine.

2. The module'sput  procedure queues data usingputq .

3. Theputq  routine increments the module'sq_count  by the number of
bytes in the message and enables theservice  procedure.

4. When STREAMS scheduling runs theservice  procedure, theservice
procedure retrieves the data by calling thegetq  utility.

5. getq  decrementsq_count  by an appropriate value.

If the module cannot process data at the rate at which the driver is sending the data, the
following steps occur:

1. The module'sq_count  goes above its high-water mark, and theQFULL
flag is set byputq .

2. The driver'scanputnext  fails, and setsQWANTW flag in the module's
queue.

3. The driver sends a command to the device to either stop input, queue the
data in its own queue, or drop the data.

4. The module'sq_count  falls below its low-water mark because ofgetq .

5. getq  finds the nearest back queue with aservice  procedure and enables
it.

6. The scheduler runs theservice  procedure.

The procedure for banded data is the same, except thatqb_count  is used in place of
q_count .

NOTE

Flow control does not prevent exceedingq_hiwat  on a given
queue. Flow contro l  may exceed i ts  maximum before
canputnext  detectsQFULL and flow is stopped.
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Screen 7-7 and Screen 7-8 show a line discipline module's flow control. Screen 7-7 is a
read-side line discipline module:

Screen 7-7.  Read Side Line Discipline

Screen 7-8 shows a write-side line discipline module:

/* read-side line discipline module flow control */

ld_read_srv(queue_t *q)
{

mblk_t *mp;    /* original message */
mblk_t *bp;    /* canonicalized message */

while ((mp = getq(q)) != NULL) {
   switch (mp->b_datap->db_type) {       /* type of message */
   case M_DATA:                     /* data message */
       if (canputnext(q)) {

bp = read_canon(mp);
putnext(q, bp);

       } else {
putbq(q, mp);    /* put message back in queue */
return;

       }
       break:

   default:
if (pcmsg(mp->b_datap->db_type))

putnext(q, mp);  /* high priority message */
else {                          /* ordinary message */

if (canputnext(q))
    putnext(q, mp);
else {
    putbq(q, mp);
    return;
}

}
break;

}
  }
}
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Screen 7-8.  Write Side Line Discipline

Design Guidelines 7

Module developers should follow these guidelines:

• Message types that are not understood by the modules should be passed to
the next module.

• The module that acts on anM_IOCTL message should send anM_IOCACK
or M_IOCNAK message in response to theioctl . If the module does not
understand theioctl , it should pass theM_IOCTL message to the next
module.

• Modules should be designed in such a way that they do not pertain to any
particular driver but can be used by all drivers.

/* write-side line discipline module flow control */

ld_write_srv(queue_t *q)
{

mlbk_t *mp;/* original message */
mblk_t *bp;/* canonicalized message */

while ((mp = getq(q)) != NULL) {
   switch (mp->b_datap->db_type) {  /* type of message */
   case M_DATA:       /* data message */

if (canputnext(q)) {
bp = write_canon(mp);
putnext(q, bp);

} else {
putbq(q, mp);
return;

}
        break;

   case M_IOCTL:
        ld_ioctl(q, mp);

break:

   default:
if (pcmsg(mp->b_datap->db_type))

putnext(q, mp);/* high priority message */
        else {     /* ordinary message */

if (canputnext(q))
    putnext(q, mp);
else {
    putbq(q, mp);
    return;
}

}
break;

}
    }
}
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• In general, modules should not require the data in anM_DATA message to
follow a particular format, such as a specific alignment. This makes it eas-
ier to arbitrarily push modules on top of each other in a sensible fashion.
Not following this rule may limit module reusability.

• Filter modules pushed between a service user and a service provider may
not alter the contents of theM_PROTO or M_PCPROTO block in messages.
The contents of the data blocks may be manipulated, but the message
boundaries must be preserved.

• A multithreaded module is responsible for protecting module-specific data
against multiprocessor race conditions.
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8
Chapter 8STREAMS Drivers

8
8
8

Introduction 8

A driver is software that provides an interface between the operating system and a device.
The driver controls the device in response to kernel commands, and user-level programs
access the device through system calls. The system calls interface with the file system and
process control system, which in turn access the drivers. The driver provides and manages
a path for the data to and from the hardware device, and services interrupts issued by the
device controller.

Unlike a module, a device driver may have an interrupt routine so that it is accessible from
a hardware interrupt as well as from the Stream. A driver can have multiple Streams con-
nected to it. Multiple connections occur when more than one minor device of the same
driver is in use and for multiplexors. However, these particular differences are not recog-
nized by the STREAMS mechanism. They are handled by developer-provided code
included in the driver procedures.

This chapter describes the operation of a STREAMS driver, and discusses some of the
processing typically required in drivers.

Driver Classification 8

In general, drivers are grouped according to the type of the device they control, the access
method (the way data is transferred), and the interface between the driver and the device.

The type can be hardware or software. A hardware driver controls a physical device such
as a disk. A software driver, also called a pseudo-device, controls software, which in turn
may interface with a hardware device. The software driver may also support pseudo-
devices that have no associated physical device.

Drivers can be character-type or block-type, but many support both access methods. In
character-type transfer, data is read a character at a time or as a variable length stream of
bytes, the size of which is determined by the device. In block-type access, data transfer is
performed on fixed-length blocks of data. Devices that support both block- and character-
type access must have a separate special device file for each access method. Character
access devices can also use raw (also called unbuffered) data transfer that takes place
directly between user address space and the device. Unbuffered data transfer is used
mainly for administrative functions where the speed of the specific operation is more
important than overall system performance.

The driver interface refers to the system structures and kernel interfaces used by the driver.
For example, STREAMS is an interface.
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Writing a Driver 8

All drivers are identified by a string of up to four characters called the prefix. The prefix is
defined in the master file for the driver and is added to the name of the driver routines. For
example, theopen  routine for the driver with thexyz  prefix isxyz open .

Writing a driver differs from writing other C programs in the following ways:

• A driver does not have amain  routine. Driver entry points are given spe-
cific names and accessed through switch tables.

• A driver functions as a part of the kernel. Consequently, a poorly written
driver can degrade system performance or corrupt the system.

• A driver cannot use system calls or the C library, because the driver func-
tions at a lower level.

• A driver cannot use floating-point arithmetic.

• A driver cannot use archives or shared libraries, but frequently used sub-
routines can be put in separate files in the source code directory for the
driver.

Driver code, like other system software, uses the advanced C language capabilities. These
include bit-manipulation capabilities, casting of data types, and use of header files for
defining and declaring global data structures.

Driver code includes a set of entry point routines:

• Initialization entry points that are accessed throughio_init  and
io_start  arrays during system initialization.

• Switch table entry points that are accessed throughbdevsw  (block-
access) andcdevsw  (character-access) switch tables when the appropriate
system call is issued.

• Interrupt entry points that are accessed through the interrupt vector table
when the hardware generates an interrupt.

The following lists rules of driver development:

• All drivers must have entries in the necessary configuration files. See “Con-
figuring the System for STREAMS Drivers and Modules.”

• All drivers should have#include  system header files that define data
structures used in the driver.

• Drivers may have aninit  and/or astart  routine to initialize the driver.

Software drivers usually have little to initialize, because there is no hardware
involved. An init  routine is used when a driver needs to initialize but does not
need any system services.init  routines are run before system services are initial-
ized (like the kernel memory allocator, for example). When a driver needs to do ini-
tialization that requires system services, astart  routine is used. Thestart  rou-
tines are run after system services are initialized.

• Drivers haveopen  andclose  routines.
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• Most drivers have an interrupt handler routine.

The driver developer is responsible for supplying an interrupt routine for the device's
driver. The PowerMAX OS system provides a few interrupt handling routines for
hardware interrupts, but the developer has to supply the specifics about the device.

In general, aprefix int  interrupt routine should be written for any device that
does not send separate transmit and receive interrupts. TTY devices that request sep-
arate transmit and receive interrupts can have two separate interrupt routines associ-
ated with them;prefix xint  to transmit an interrupt, andprefix rint  to
receive an interrupt.

• Most drivers havestatic  subordinate driver routines to provide the func-
tionality for the specific device. The names of these routines should include
the driverprefix, although this is not required since the routine is declared
asstatic .

• A bootable object file and special device files are also needed for a driver to
be fully functional.

Major and Minor Device Numbers 8

A device appears to the PowerMAX OS system as a special device file. The system
accesses a device by opening, reading, writing, and closing the device's special device file.

The system identifies and accesses the special device file using the file's major and minor
device numbers. The major number identifies a driver for a controller. The minor number
identifies a specific device.

Major numbers are assigned by the installation and configuration software. Minor num-
bers are designated by the driver developer.

Minor numbers are determined differently for different types of devices. Typically, minor
numbers are an encoding of information needed by the controller board.

Major and minor numbers can be external or internal.

• External major numbers are those visible to the user.

• Internal major numbers serve as an index into thecdevsw  andbdevsw
switch tables. These are assigned by the configuration process when drivers
are loaded and they may change every time a full configuration boot is
done.

One driver may control several devices, but each device will have its own external
major number and all those external major numbers are mapped to one internal
major number for the driver.

• External minor numbers are controlled by a driver developer, although
there are conventions enforced for some types of devices by some utilities.
For example, a tape drive may interface with a hardware controller (device)
to which several tape drives (subdevices) are attached. All tape drives
attached to one controller will have the same external major number, but
each drive will have a different external minor number.
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• Internal minor numbers are used with hardware drivers to identify the logi-
cal controller that is being addressed. Because drivers that control multiple
devices (controllers) usually require a data structure for each configured
device, drivers address the per-controller data structure by the internal
minor number rather than the external major number.

Logical controller numbers are assigned sequentially by the central controller firmware at
self-configuration time.

The internal minor number for all software drivers is 0.

The switch tables will have only as many entries as required to support the drivers
installed on the system. Switch table entry points are activated by system calls that refer-
ence a special device file that supplies the external major number and instructions on
whether to usebdevsw  or cdevsw . The routinesgetmajor  andgetminor  return an
internal major and minor number for the device. The routinesgetemajor  andgetemi-
nor  return an external major and minor number for the device.

STREAMS Drivers 8

At the interface to hardware devices, character I/O drivers have interrupt entry points; at
the system interface, those same drivers generally have direct entry points (routines) to
processopen , close , read , write , poll , andioctl  system calls.

STREAMS device drivers have interrupt entry points at the hardware device interface and
have direct entry points only for theopen  andclose  system calls. These entry points are
accessed by STREAMS, and the call formats differ from traditional character device driv-
ers. (STREAMS drivers are character drivers, too. We call the non-STREAMS character
drivers traditional character drivers or non-STREAMS character drivers.) Theput  proce-
dure is a driver's third entry point, but it is a message (not system) interface. The Stream
head translateswrite  andioctl  calls into messages and sends them downstream to be
processed by the driver's write queueput  procedure.read  is seen directly only by the
Stream head, which contains the functions required to process system calls. A driver does
not know about system interfaces other thanopen  andclose , but it can detect the
absence of aread  indirectly if flow control propagates from the Stream head to the driver
and affects the driver's ability to send messages upstream.

For input processing, when the driver is ready to send data or other information to a user
process, it does not wake up the process. It prepares a message and sends it to the read
queue of the appropriate (minor device) Stream. The driver'sopen  routine generally
stores the queue address corresponding to this Stream.

For output processing, the driver receives messages in place of awrite  call. If the mes-
sage can not be sent immediately to the hardware, it may be stored on the driver's write
message queue. Later output interrupts can remove messages from this queue.

When sending data to the device, the driver needs to handle the special cases that affect
hardware access to the memory. For example, drivers that perform physical Direct Mem-
ory Access (DMA) to or from STREAMS message buffers should be aware that a
STREAMS message buffer can cross page boundaries. This will happen if the buffer size
is greater than the page size of the machine. Buffers smaller than the page size are usually
allocated such that they will not cross a page boundary, but if the message was allocated
via esballoc , the buffer could be positioned in an arbitrary location in memory.
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Drivers using physical DMA should therefore transfer only those ranges of memory that
are physically contiguous. The driver should check each message buffer to see if the data
crosses a page boundary, and transfer separately each range of data that resides in a differ-
ent page. If the hardware supports scatter-gather DMA, then the driver should generate a
new base-length pair for each page.

Figure 8-1 shows multiple Streams (corresponding to minor devices) to a common driver.
There are two distinct Streams opened from the same major device. Consequently, they
have the samestreamtab  and the same driver procedures.

The configuration mechanism distinguishes between STREAMS devices and traditional
character devices, because system calls to STREAMS drivers are processed by
STREAMS routines, not by the PowerMAX OS system driver routines. In thecdevsw
file, the fieldd_str  provides this distinction.

Multiple instantiations (minor devices) of the same driver are handled during the initial
open for each device. Typically, thequeue  address is stored in a driver-private structure
array indexed by the minor device number. This is for use by the interrupt routine that
needs to translate from device number to a particular Stream. Theq_ptr  of thequeue
points to the private data structure entry. When the messages are received by the queue, the
calls to the driverput  andservice  procedures pass the address of thequeue , allowing
the procedures to determine the associated device.

A driver is at the end of a Stream. As a result, drivers must include standard processing for
certain message types that a module might simply be able to pass to the next component.

STREAMS guarantees that only oneopen  or close  routine will be active at any time for
any given major/minor pair.
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Figure 8-1.  Device Driver Streams

Printer Driver Example 8

Screen 8-2 through Screen 8-6 show how a simple interrupt-per-character line printer
driver could be written. The driver is unidirectional and has no read-side processing. It
shows some differences between module and driver programming, including the follow-
ing:

Open handling A driver is passed a device number or is asked to select one.
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Flush handling A driver must loopM_FLUSH messages back upstream.

ioctl handling A driver must send a negative acknowledgment forioctl  mes-
sages it does not understand. This is discussed under “Module and
Driver ioctls.”

Declarations 8

The driver declarations are shown in Screen 8-1. For more information, see “Module and
Driver Declarations.”

Screen 8-1.  Line Printer Driver

Configuring a STREAMS driver requires only thestreamtab  structure to be externally
accessible. For hardware drivers, the interrupt handler must also be externally accessible.
All other STREAMS driver procedures would typically be declaredstatic .

/* Simple line printer driver */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>

static struct module_info minfo = {
0xaabb, “lp”, 0, INFPSZ, 150, 50 };

static int lpopen(queue_t *, dev_t *, int, int, cred_t *);
static int lpclose(queue_t *, int, cred_t *);
static int lpwput(queue_t *, mblk_t *);

static struct qinit rinit = {
NULL, NULL, lpopen, lpclose, NULL, &minfo, NULL };

static struct qinit winit = {
lpwput, NULL, NULL, NULL, NULL, &minfo, NULL };

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL };

#define SET_OPTIONS(('l'<<8)|1)/* should be in a .h file */

lkinfo_t lp_lkinfo;

/* This is a private data structure, one per minor device number. */
/* Access to struct lp must be protected by DDI/DKI locks or */
/* synchronization primitives. */

struct lp {
short flags;/* flags -- see below */
mblk_t *msg;/* current message being output */
queue_t *qptr;/* back pointer to write queue */
lock_t *lck;

};
/* Flags bits */
#define BUSY  1/* device is running and interrupt is pending */

extern struct lp lp_lp[];/* per device lp structure array */
extern int lp_cnt;/* number of valid minor devices */

int lpdevflag = D_MT;
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Thestreamtab  structure must be defined asprefixinfo, whereprefix is the value of the
prefix field in the master file for this driver. The values in the module name and ID fields in
themodule_info  structure should be unique in the system. Note that, as in character I/O
drivers,extern  variables are assigned values in the master file when configuring drivers
or modules.

The privatelp  structure is indexed by the minor device number and contains these ele-
ments:

flags A set of flags. Only one bit is used:BUSY indicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the write
queue during interrupt processing.

lck A DDI/DKI driver lock to prevent race conditions on the
structure.

There is no read-sideput  or service  procedure. The flow control limits for use on the
write-side are 50 bytes for the low water mark and 150 bytes for the high water mark.

Driver Open 8

The STREAMS mechanism allows only one Stream per minor device. The driver open
routine is called whenever a STREAMS device is opened. Opening also allocates a private
data structure. The driver open,lpopen  in Screen 8-2, has the same interface as the mod-
ule open:
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Screen 8-2.  Driver Open

The Stream flag,sflag, must have the value 0, indicating a normal driver open.devp  is a
pointer to the major/minor device number for this port. After checkingsflag, the
STREAMS open flag,lpopen  extracts the minor device pointed to bydevp, using the
getminor  function.credp is a pointer to a credentials structure.

The minor device number selects a printer. The device number pointed to bydevp must be
less thanlp_cnt , the number of configured printers. Otherwise, failure occurs.

The next check,if (q->q_ptr) . . . , determines if this printer is already open. If
it is, EBUSY is returned to avoid merging printouts from multiple users.q_ptr  is a
driver/module private data pointer. It can be used by the driver for any purpose and is ini-
tialized to zero by STREAMS. In this example, the driver sets the value ofq_ptr , in both
the read and writequeue  structures, to point to a private data structure for the minor
device,lp_lp[device] .

There are no physical pointers between queues.WR(q)  generates the write pointer from
the read pointer.RD(q)  generates the read pointer from the write pointer, and OTH-
ERQ(q) generates the mate pointer from either.

void lpinit()
{

register struct lp *lp;

/*
 * allocate multiprocessor lock for each minor device
 */
for (lp = lp_lp; lp < &lp_lp[lp_cnt]; lp++)

lp->lck = LOCK_ALLOC(1, plstr, &lp_lkinfo, KM_SLEEP);
}

int lpopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{

struct lp *lp;
dev_t device;

if (sflag) /* check if non-driver open */
return ENXIO;

/* check if already open */
device = getminor(*devp);
if (device > lp_cnt)

return ENXIO;
if (q->q_ptr)

return EBUSY;

 /* point q_ptr at driver structure */
lp = &lp_lp[device];
lp->qptr = WR(q);
q->q_ptr = (char *)lp;
WR(q)->q_ptr = (char *)lp;

/* enable put and srv routines for queue pair */
qprocson(q);

return 0;
}
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Driver Flush Handling 8

The following writeput  procedure,lpwput , illustrates driverM_FLUSH handling. Note
that all drivers are expected to incorporate flush handling.

If FLUSHW is set, the write message queue is flushed, and (in this example) the leading
message (lp->msg ) is also flushed.

The lineoldpri = LOCK(lp->lck, plstr);  is used to protect the critical code,
assuming the device interrupts at level belowplstr .

Normally, if FLUSHR is set, the read queue would be flushed. However, in this example,
no messages are ever placed on the read queue, so it is not necessary to flush it. The
FLUSHW bit is cleared and the message is sent upstream usingqreply . If FLUSHR is not
set, the message is discarded.

The Stream head always performs the following actions on flush requests received on the
read-side from downstream. IfFLUSHR is set, messages waiting to be sent to user space
are flushed. IfFLUSHW is set, the Stream head clears theFLUSHR bit and sends the
M_FLUSH message downstream. In this way, a singleM_FLUSH message sent from the
driver can reach all queues in a Stream. A module must send twoM_FLUSH messages to
have the same affect.

lpwput  enqueuesM_DATA andM_IOCTL messages and, if the device is not busy, starts
output by callinglpout . Messages types that are not recognized are discarded.
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Screen 8-3.  Flush Handling

Driver Interrupt 8

lpint  is the driver interrupt handler routine.lpout  simply takes a character from the
queue and sends it to the printer. For convenience, the message currently being output is
stored inlp->msg . lpoutchar  sends a character to the printer and interrupts when
complete. Printer interface options need to be set before being able to print.

Screen 8-4 shows the interrupt routine in the printer driver.

int lpwput(queue_t *q, mblk_t *mp)
{

register struct lp *lp;
pl_t oldpri;

lp = (struct lp *)q->q_ptr;

switch(mp->b_datap->db_type) {

default:
freemsg(mp);
break;

case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {

/*
 * flush the queue;
 * also flush lp->msg since it is logically
 * at the head of the write queue.
 * access to lp must be locked to protect against
 * potential multiprocessor race.
 */
flushq(q, FLUSHDATA);
oldpri = LOCK(lp->lck, plstr);;
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

}
UNLOCK(lp->lck, oldpri);

}

if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);

} else
freemsg(mp);

break;

case M_IOCTL:
case M_DATA:

putq(q, mp);
oldpri = LOCK(lp->lck, plstr);
if (!(lp->flags & BUSY))

lpout(lp);
UNLOCK(lp->lck, oldpri);

}
}
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Screen 8-4.  Device Interrupt

/*
 * Device interrupt routine
 */
lpint(int device)
{

register struct lp *lp;
pl_t oldpri;
lp = &lp_lp[device];
oldpri = LOCK(lp->lck, plstr);
if (!(lp->flags & BUSY)) {

UNLOCK(lp->lck, oldpri);
cmn_err(CE_WARN, “lp: unexpected interrupt\n”);
return;

}
lp->flags &= ~BUSY;
lpout(lp);
UNLOCK(lp->lck, oldpri);

}
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Driver Close Routine 8

The driverclose  routine is called by the Stream head. Any messages left on the queue
are automatically removed by STREAMS. The Stream is dismantled and the data struc-
tures are deallocated.

/* Start output to device -- called by put and interrupt routines */
/* argument lp is locked on entry */

lpout(struct lp *lp)
{

register mblk_t *bp;
queue_t *q;

q = lp->qptr;

loop:
if ((bp = lp->msg) == NULL) {/* no current message */

if ((bp = getq(q)) == NULL) {
lp->flags &= ~BUSY;
return;

}

if (bp->b_datap->db_type == M_IOCTL) {
lpioctl(lp, bp);
goto loop;

}

lp->msg = bp;/* new message */
}

if (bp->b_rptr >= bp->b_wptr) {/* validate message */
bp = lp->msg->b_cont;
lp->msg->b_cont = null;
freeb(lp->msg);
lp->msg = bp;
goto loop;

}

lpoutchar(lp, *bp->b_rptr++);/* output one character */
lp->flags |= BUSY;

}
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Screen 8-5.  Driver Close Routine

Driver Flow Control 8

The same utilities and mechanisms used for module flow control are used by drivers.

When the message is queued,putq  increments the value ofq_count  by the size of the
message and compares the result against the driver's write high water limit (q_hiwat )
value. If the count exceedsq_hiwat , theputq  utility routine sets the internalFULL indi-
cator for the driver write queue. This causes messages from upstream to be halted (can-
putnext  returnsFALSE) until the write queue count reachesq_lowat . The driver mes-
sages waiting to be output are dequeued by the driver output interrupt routine withgetq ,
which decrements the count. If the resulting count is belowq_lowat , thegetq  routine
back-enables any upstream queue that had been blocked.

For priority band data,qb_count , qb_hiwat , andqb_lowat  are used.

Device drivers typically discard input when unable to send it to a user process. However,
STREAMS allows flow control to be used on the driver read-side to handle temporary
upstream blocks.

To some extent, a driver or a module can control when its upstream transmission will
become blocked. Control is available through theM_SETOPTS message to modify the
Stream head read-side flow control limits.

Cloning 8

In many earlier examples, each user process connected a Stream to a driver by opening a
particular minor device of that driver. Often, however, a user process had to connect a new
Stream to a driver regardless of which minor device is used to access the driver. In the

static int lpclose(queue_t  *q, int flag, cred_t *credp)
{

struct lp *lp;
pl_t oldpri;
/*
 * disable put and srv routines for q pair
 */
qprocsoff(q);

lp = (struct lp *) q->q_ptr;

/* Free message, queue is automatically flushed by streans */

oldpri = LOCK(lp->lck, plstr);
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

}
lp->flags = 0;
UNLOCK(lp->lck, oldpri);

}
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past, this typically forced the user process to poll the various minor device nodes of the
driver for an available minor device. To alleviate this task, a facility called “clone open” is
supported for STREAMS drivers. If a STREAMS driver is implemented as a clonable
device, a single node in the file system may be opened to access any unused device that the
driver controls. This special node guarantees that the user is allocated a separate Stream to
the driver on everyopen  call. Each Stream is associated with an unused major/minor
device, so the total number of Streams that may be connected to a particular clonable
driver is limited by the number of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment where a proto-
col pseudo-device driver requires each user to open a separate Stream over which it estab-
lishes communication.

Note, however, that a race can occur when simultaneous cloning opens and non-cloning
opens are in progress. A clone driver must detect this race and returnECLNRACE (a sys-
tem errno) for the non-cloning open. The FS layers above will detect this errno and restart
the open.

NOTE

The decision to implement a STREAMS driver as a clonable
device is made by the designers of the device driver.

Knowledge of clone driver implementation is not required. A
description is presented here for completeness and to assist devel-
opers who must implement their own clone driver.

There are two ways to create a clone device node in the file system. The first is to have a
node with the major number of the clone driver and with a minor number equal to the
major number of the real device one wants to open. For example,/dev/net00  might be
major 40, minor 0 (normal open), and/dev/net  might be major 4 (the major number of
the clone driver) minor 40 (the major number of the real device).

The second way to create a clone device node is for the driver to designate a special minor
device as its clone entry point. Here,/dev/net  might be major 40, minor 0 (clone open).

The former example causessflag to be set toCLONEOPEN in the open routine when
/dev/net  is opened. The latter will not. Instead, in the latter case the driver has decided
to designate a special minor device as its clone interface. When the clone is opened, the
driver knows that it should look for an unused minor device. This implies that the reserved
minor for the clone entry point will never be given out.

In either case, the driver returns the new device number as

* devp = makedevice ( getemajor (* devp), newminor);

NOTE

makedevice  is unique to the DDI. If the DDI is not used,
makedev  can be used instead ofmakedevice .
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Loop-around Driver 8

The loop-around driver is a pseudo-driver that loops data from one open Stream to another
open Stream. The user processes see the associated files almost like a full-duplex pipe.
The Streams are not physically linked. The driver is a simple multiplexor that passes mes-
sages from one Stream's write queue to the other Stream's read queue.

To create a connection, a process opens two Streams, obtains the minor device number
associated with one of the returned file descriptors, and sends the device number in an
I_STR ioctl(2)  to the other Stream. For eachopen , the driver open places the
passedqueue  pointer in a driver interconnection table, indexed by the device number.
When the driver later receives theI_STR  as anM_IOCTL message, it uses the device
number to locate the other Stream's interconnection table entry, and stores the appropriate
queue  pointers in both of the Streams' interconnection table entries.

Subsequently, when messages other thanM_IOCTL or M_FLUSH are received by the
driver on either Stream's write-side, the messages are switched to the read queue following
the driver on the other Stream's read-side. The resultant logical connection is shown in
Figure 8-2. In Figure 8-2, the abbreviation QP represents a queue pair. Flow control
between the two Streams must be handled by special code since STREAMS does not auto-
matically propagate flow control information between two Streams that are not physically
interconnected.
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Figure 8-2.  Loop-Around Streams

The next example shows the loop-around driver code. Theloop  structure contains the
interconnection information for a pair of Streams.loop_loop  is indexed by the minor
device number. When a Stream is opened to the driver, the address of the corresponding
loop_loop  element is placed inq_ptr  (private data structure pointer) of the read-side
and write-sidequeue s. Because STREAMS clearsq_ptr  when thequeue  is allocated,
aNULL value ofq_ptr  indicates an initialopen . loop_loop  verifies that this Stream is
connected to another open Stream. This example driver uses coarse-grained locking for
simplicity.
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The declarations for the driver are shown in Screen 8-6:

Screen 8-6.  Driver Declarations

The open procedure includes canonical clone processing that enables a single file system
node to yield a new minor device/vnode each time the driver is opened as shown in
Figure 8-7:

/* Loop-around driver */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

static struct module_info minfo = {
0xee12, “loop”, 0, INFPSZ, 512, 128};

static int loopopen(queue_t *, dev_t *, int, int, cred_t *);
static int loopclose(quque_t *, int, cred_t *);
static int loopwput(queue_t *, mblk_t *);
static int loopwsrv(queue_t *);
static int looprsrv(queue_t *);

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL};

static struct qinit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL};

struct streamtab loopinfo = {&rinit, &winit, NULL, NULL};

lkinfo_t loop_lkinfo;
lock_t *loop_lck;

struct loop {
queue_t*qptr;/* back pointer to write queue */
queue_t *oqptr;/* pointer to connected read queue */

}

#define LOOP_SET (('l'<<8)|1)/* should be in a .h file */

extern struct loop loop_loop[];
extern int loop_cnt;

int loopdevflag = D_MT;
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Screen 8-7.  Open Procedure

In loopopen , sflag can beCLONEOPEN, indicating that the driver should pick an unused
minor device (that is, the user does not care which minor device is used). In this example,
the driver scans its privateloop_loop  data structure to find an unused minor device
number. Ifsflag has not been set toCLONEOPEN, the passed-in minor device specified by
geteminor (*devp)  is used.

Because the messages are switched to the read queue following the other Stream's read-
side, the driver needs aput  procedure only on its write-side.

loopwput  shows another use of anI_STR ioctl  call (see “Module and Driver ioctls”).
The driver supports aLOOP_SET value ofioc_cmd  in the iocblk  of theM_IOCTL
message.LOOP_SET instructs the driver to connect the current open Stream to the Stream
identified in the message. The second block of theM_IOCTL message holds an integer
that specifies the minor device number of the Stream to connect to.

The driver performs the following sanity checks:

void loopinit()
{

loop_lock = LOCK_ALLOC(LOOPHIER, plstr, &loop_lkinfo, KM_SLEEP);
}

int loopopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{

struct loop *loop;
dev_t newminor;
pl_t pl;

if (q->q_ptr)/* already open */
return(0);

/*
 * If CLONEOPEN, pick a minor device number to use.
 * Otherwise, check the minor device range.
 */

pl = LOCK(loop_lock, plstr);
if (sflag == CLONEOPEN) {

for (newminor = 0; newminor < loop_cnt; newminor++) {
if (loop_loop[newminor].qptr == NULL)

break;
}

} else
newminor = geteminor(*devp);

if (newminor >= loop_cnt) {
UNLOCK(loop_lock, pl);
return(ENXIO);

}

/* build new device number and reset devp */
/* getmajor gets the external major number, if (sflag == CLONEOPEN) */

*devp = makedev(getemajor(*devp), newminor);
loop = &loop_loop[newminor];
WR(q)->q_ptr = (char *) loop;
q->q_ptr = (char *) loop;
loop->qptr = WR(q);
loop->oqptr = NULL;
UNLOCK(loop_lock, pl);

/* enable put and srv routines for this queue pair */
qprocson(q);
return(0);

}
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• The data in the second block is checked for the proper amount

• The range of theto  device is checked

• Theto  device is checked to see if it is open

• The current Stream is checked to see if it is disconnected

• Theto  Stream is checked to see if it is disconnected

If everything checks out, the readqueue  pointers for the two Streams are stored in the
respectiveoqptr  fields. This cross-connects the two Streams indirectly, using
loop_loop .

Canonical flush handling is incorporated in theput  procedure.

Finally, loopwput  enqueues all other messages (for example,M_DATA or M_PROTO) for
processing by itsservice  procedure. A check is made to see if the Stream is connected.
If not, anM_ERROR is sent upstream to the Stream head.
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Screen 8-8.  Driver Sanity Checks

int loopwput(queue_t *q, mblk_t *mp)
{

register struct loop *loop;
pl_t pl;

loop = (struct loop *) q->q_ptr;

switch (mp->b_datap->db_type) {

case M_IOCTL: {
struct iocblk *iocp;
int error;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case LOOP_SET: {

int to;/* other minor device */

/*
 * Sanity check.  ioc_count contains the amount of
 * user supplied data that must equal the size of
 * an int.
 */

if (iocp->ioc_count != sizeof(int)) {
error = EINVAL;
goto iocnak;

}

/* fetch other dev from 2nd message block */
to = *(int *)mp->b_cont->b_rptr;

/*
 * More sanity checks.  The minor must be in range, open
 * already.  Also, this device and the other one must be
 * disconnected.
 */

pl = LOCK(loop_lock, plstr);
if (to >= loop_cnt || to < 0 || !loop_loop[to].qptr) {

error = ENXIO;
UNLOCK(loop_lock, pl);
goto iocnak;

}
if (loop->oqptr || loop_loop[to].oqptr) {

error = EBUSY;
UNLOCK(loop_lock, pl);
goto iocnak;

}

/* Cross connect streams using the loop structures */
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loop->oqptr = RD(loop-loop[to].qptr);
loop_loop[to].oqptr = RD(q);

UNLOCK(loop_lock, pl);
/*
 * Return successful ioctl.  Set ioc_count to zero,
 * since no data is returned.
 */
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

}
default:

error = EINVAL;
iocnak:

/*
 * Bad ioctl.  Setting ioc_error causes the ioctl
 * call to return that particular errno.  By default,
 * ioctl will return EINVAL on failure.
 */
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error;/* set returned errno */
qreply(q, mp);

}
break;

}

case M_FLUSH:
pl = LOCK(loop_lock, plstr);
if (*mp->b_rptr & FLUSHW) {

flushq(q, FLUSHALL);/* write */
if (loop->oqptr != NULL)

flushq(loop->oqptr, FLUSHALL);
/* read on other side equals write on this side */

}
if (*mp->b_rptr & FLUSHR) {

flushq(RD(q), FLUSHALL);
if (loop->oqptr != NULL)

flushq(WR(loop->oqptr), FLUSHALL);
}
UNLOCK(loop_lock, pl);
switch(*mp->b_rptr) {

case FLUSHW:
*mp->b_rptr = FLUSHR;
break;

case FLUSHR:
*mp->b_rptr = FLUSHW;
break;

}
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Certain message types can be sent upstream by drivers and modules to the Stream head
where they are translated into actions detectable by user process(es). The messages may
also change the state of the Stream head:

M_ERROR Causes the Stream head to lock up. Message transmission
between Stream and user processes is terminated. All subsequent
system calls exceptclose(2) andpoll(2)  will fail. Also
causes anM_FLUSH clearing all message queues to be sent down-
stream by the Stream head.

M_HANGUP Terminates input from a user process to the Stream. All subse-
quent system calls that would send messages downstream will
fail. Once the Stream head read message queue is empty, EOF is
returned on reads. Can also result in theSIGHUP signal being sent
to the process group.

M_SIG/M_PCSIG Causes a specified signal to be sent to a process.

putnextctl1  andputnextctl  are utilities that allocate a nondata (that is, not
M_DATA, M_DELAY, M_PROTO, or M_PCPROTO) type message, place one byte in the
message (forputnextctl1 ), and call theput  procedure of the queue next to the speci-
fied queue.

service  procedures are required in Screen 8-9 on both the write-side and read-side for
flow control:

pl = LOCK(loop_lock, plstr);

if (loop->oqptr != NULL) {
UNLOCK(loop_lock, pl);
/*
 * loop->oqptr can only be cleared in loopclose, which
 * can not be called while the put procedure is executing
 */
putnext(loop->oqptr, mp);

}
else

UNLOCK(loop_lock, pl);
break;

default:/* If this Stream isn't connected, send M_ERROR upstream */
pl = LOCK(loop_lock, plstr);
if (loop->oqptr == NULL) {

UNLOCK(loop_lock, pl);
freemsg(mp);
putnextctl1(RD(q), M_ERROR, ENXIO);
break;

}
UNLOCK(loop_lock, pl);
putq(q, mp);

}
}
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Screen 8-9.  Write and Read Side Flow Control

The writeservice  procedure,loopwsrv , takes on the canonical form. The queue being
written to is not downstream, but upstream (found by usingoqptr ) on the other Stream.

In Screen 8-10, there is no read-sideput  procedure so the readservice  procedure,
looprsrv , is not scheduled by an associatedput  procedure, as has been done previ-
ously. looprsrv  is scheduled only by being back-enabled when its upstream becomes
unstuck from flow control blockage. The purpose of the procedure is to re-enable the
writer (loopwsrv ) by usingoqptr  to find the relatedqueue . loopwsrv  cannot be
directly back-enabled by STREAMS because there is no directqueue  linkage between
the two Streams. Note that no message ever gets queued to the readservice  procedure.
Messages are kept on the write-side so that flow control can propagate up to the Stream
head. Theqenable  routine schedules the write-sideservice  procedure of the other
Stream.

static int loopwsrv(queue_t *q)
{

mblk_t *mp;
register struct loop *loop;
pl_t pl;

loop = (struct loop *) q->q_ptr;

while ((mp = getq(q)) != NULL) {
/*
 * Check if we can put the message up the other Stream read
 * queue.
 */
pl = LOCK(loop_lock, plstr);
if (pcmsg(mp->b_datap->db_type) && !canputnext(loop->oqptr)) {

UNLOCK(loop_lock, pl);
putbq(q, mp);/* read-side is blocked */
break;

}
/* send message */
/*
 * loopwput verified that loop->oqptr was set and it can only
 * be cleared in the close routine, which can not be called
 * while this queue was enabled.
 */
putnext(loop->oqptr, mp);/* To queue following other

   Stream read queue */
}

}

/*
 * read service routine
 * Enter only when “back enabled” by flow control
 */
static int looprsrv(queue_t *q)
{

struct loop *loop;
pl_t pl;

loop = (struct loop *) q->q_ptr;
pl = LOCK(loop_lock, plstr);
if (loop->oqptr != NULL)

/* manually enable write service procedure */
UNLOCK(loop_lock, pl);
qenable(WR(loop->oqptr));

} else
UNLOCK(loop_lock, pl);

}
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loopclose  breaks the connection between the Streams:

Screen 8-10.  Re-enabling the Writer

loopclose  sends anM_HANGUP message up the connected Stream to the Stream head.

NOTE

A loop-around driver must never directly link theq_next  point-
ers of the queue pairs of the two Streams.

Design Guidelines 8

Driver developers should follow these guidelines:

• Messages that are not understood by the drivers should be freed.

• A driver must process anM_IOCTL message. Otherwise, the Stream head
blocks for anM_IOCNAK or M_IOCACK until the timeout (potentially infi-
nite) expires.

• If a driver does not understand anioctl , anM_IOCNAK message must be
sent to upstream.

• Terminal drivers must always acknowledge theEUCioctl s whether they
understand them or not.

int loopclose(queue_t *q, int flag, cred_t *credp)
{

register struct loop *loop;
pl_t pl;

/* disable put and srv routines for queue pair. */
qprocsoff(q);
pl = LOCK(loop_lock, plstr);
loop = (struct loop *) q->q_ptr;
loop->qptr = NULL;

/*
 * If we are connected to another stream, break the linkage, and send
 * a hangup message.  The hangup message causes the stream head to fail
 * writes, allow the queued data to be read completely, and then
 * return EOF on subsequent reads.
 */
if (loop->oqptr) {

((struct loop *)loop->oqptr->q_ptr)->oqptr = NULL;
UNLOCK(loop_lock, pl);
putnextctl(loop->oqptr, M_HANGUP);
pl = LOCK(loop_lock, plstr);
loop->oqptr = NULL;

}
UNLOCK(loop_lock, plstr);

}
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• If a driver wants to allocate a controlling terminal, it should send an
M_SETOPTS message with theSO_ISTTY flag set upstream.

• A driver must be a part of the kernel for it to be opened.

• A multithreaded driver is responsible for protecting driver-specific data
against multiprocessor race conditions.

NOTE

For information regarding the loadable STREAMS drivers, see
theDevice Driver Programmingmanual.
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9
Chapter 9STREAMS Multiplexing

9
9
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Introduction 9

This section describes how STREAMS multiplexing configurations are created and also
discusses multiplexing drivers. A STREAMS multiplexor is a driver with multiple
Streams connected to it. The primary function of the multiplexing driver is to switch mes-
sages among the connected Streams. Multiplexor configurations are created at user level
by system calls.

STREAMS-related system calls set up the “plumbing,” or Stream interconnections, for
multiplexing drivers. The subset of these calls that allows a user to connect (and discon-
nect) Streams below a driver is referred to as the multiplexing facility. This type of con-
nection is referred to as a 1-to-M, or lower, multiplexor configuration. This configuration
must always contain a multiplexing driver, which is recognized by STREAMS as having
special characteristics.

Multiple Streams can be connected above a driver byopen(2)  calls. This was done for
the loop-around driver and for the driver handling multiple minor devices in “STREAMS
Drivers.” There is no difference between the connections to these drivers, only the func-
tions performed by the driver are different. In the multiplexing case, the driver routes data
between multiple Streams. In the device driver case, the driver routes data between user
processes and associated physical ports. Multiplexing with Streams connected above is
referred to as an N-to-1, or upper, multiplexor. STREAMS does not provide any facilities
beyondopen(2)  andclose(2) to connect or disconnect upper Streams for multiplex-
ing purposes.

From the driver's perspective, upper and lower configurations differ only in how they are
initially connected to the driver. The implementation requirements are the same: route the
data and handle flow control. All multiplexor drivers require special developer-provided
software to perform the multiplexing data routing and to handle flow control. STREAMS
does not directly support flow control among multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above mecha-
nisms in a driver.

As discussed in “STREAMS Drivers,” the multiple Streams that represent minor devices
are actually distinct Streams in which the driver keeps track of each Stream attached to it.
The STREAMS subsystem does not recognize any relationship between the Streams. The
same is true for STREAMS multiplexors of any configuration. The multiplexed Streams
are distinct and the driver must be implemented to do most of the work.

In addition to upper and lower multiplexors, more complex configurations can be created
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general-purpose multi-
plexor drivers. STREAMS provides a general purpose multiplexing facility that allows
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users to set up the intermodule/driver plumbing to create multiplexor configurations of
generally unlimited interconnection.

Building a Multiplexor 9

This section builds a protocol multiplexor with the multiplexing configuration shown in
Figure 9-1. To free users from the need to know about the underlying protocol structure, a
user-level daemon process is built to maintain the multiplexing configuration. Users can
then access the transport protocol directly by opening the transport protocol (TP) driver
device node.

An internetworking protocol driver (IP) routes data from a single upper Stream to one of
two lower Streams. This driver supports two STREAMS connections beneath it. These
connections are to two distinct networks; one for the IEEE 802.3 standard with the 802.3
driver, and the other to the IEEE 802.4 standard with the 802.4 driver. The TP driver mul-
tiplexes upper Streams over a single Stream to the IP driver.
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Figure 9-1.  Protocol Multiplexor

The following example shows how this daemon process sets up the protocol multiplexor.
The necessary declarations and initialization for the daemon program are shown in
Screen 9-1:
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Screen 9-1.  Daemon Program Declarations and Initialization

This multilevel multiplexed Stream configuration is built from the bottom up. Therefore,
Screen 9-1 begins by first constructing the Internal Protocol (IP) multiplexor. This multi-
plexing device driver is treated like any other software driver. It owns a node in the Power-
MAX OS file system and is opened just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creating separate
Streams above each driver as shown in Figure 9-2 The Stream to the 802.4 driver may now
be connected below the multiplexing IP driver using theI_LINK ioctl  call.

Figure 9-2.  Before Link

The sequence of instructions to this point is

#include <fcntl.h>
#include <stropts.h>

main()
{

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/* daemonize this process */

switch (fork()) {
case 0:

break;
case -1:

perror(“fork failed”);
exit(2);

default:
exit(0);

}
setsid();
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Driver
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STREAMS Multiplexing

9-5

I_LINK  takes two file descriptors as arguments. The first file descriptor,fd_ip , must
reference the Stream connected to the multiplexing driver, and the second file descriptor,
fd_802_4 , must reference the Stream to be connected below the multiplexor. Figure 9-3
shows the state of these Streams following theI_LINK  call. The complete Stream to the
802.4 driver has been connected below the IP driver. The Stream head's queues of the
802.4 driver is used by the IP driver to manage the lower half of the multiplexor.

if ((fd_802_4 = open(“/dev/802_4”, O_RDWR)) < 0) {
perror(“open of /dev/802_4 failed”);
exit(1);

}

if ((fd_ip = open(“/dev/ip”, O_RDWR)) < 0) {
perror(“open of /dev/ip failed”);
exit(2);

}

/* now link 802.4 to underside of IP */

if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) {
perror(“I_LINK ioctl failed”);
exit(3);

}
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Figure 9-3.  IP Multiplexor after First Link

I_LINK  returns an integer value, calledmuxid , which is used by the multiplexing driver
to identify the Stream just connected below it. Thismuxid  is ignored in the example, but
is useful for dismantling a multiplexor or routing data through the multiplexor. Its signifi-
cance is discussed later.

The following sequence of system calls is used to continue building the internetworking
protocol multiplexor (IP):

All links below the IP driver have now been established, giving the configuration in
Figure 9-5
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if ((fd_802_3 = open(“/dev/802_3”, O_RDWR)) < 0) {
perror(“open of /dev/802_3 failed”);
exit(4);

}

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {
perror(“I_LINK ioctl failed”);
exit(5);

}
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Figure 9-4.  IP Multiplexor

The Stream above the multiplexing driver used to establish the lower connections is the
controlling Stream and has special significance when dismantling the multiplexing config-
uration. This will be illustrated later in this section. The Stream referenced byfd_ip  is
the controlling Stream for the IP multiplexor.

NOTE

The order in which the Streams in the multiplexing configuration
are opened is unimportant. If it is necessary to have intermediate
modules in the Stream between the IP driver and media drivers,
these modules must be added to the Streams associated with the
media drivers (usingI_PUSH) before the media drivers are
attached below the multiplexor.

The number of Streams that can be linked to a multiplexor is restricted by the design of the
particular multiplexor. The manual page describing each driver describes such restrictions.
SeeDevice Driver Reference. However, only oneI_LINK  operation is allowed for each
lower Stream; a single Stream cannot be linked below two multiplexors simultaneously.
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Continuing with the example, the IP driver is now linked below the transport protocol (TP)
multiplexing driver. As seen in Figure 9-4, only one link is supported below the transport
driver. This link is formed by the following sequence of system calls:

The multilevel multiplexing configuration shown in Figure 9-5 has now been created.

Figure 9-5.  TP Multiplexor

Because the controlling Stream of the IP multiplexor has been linked below the TP multi-
plexor, the controlling Stream for the new multilevel multiplexor configuration is the
Stream above the TP multiplexor.

if ((fd_tp = open(“/dev/tp”, O_RDWR)) < 0) {
perror(“open of /dev/tp failed”);
exit(6);

}

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) {
perror(“I_LINK ioctl failed”);
exit(7);

}
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At this point, the file descriptors associated with the lower drivers can be closed without
affecting the operation of the multiplexor. If these file descriptors are not closed, all later
read , write , ioctl , poll , getmsg  andputmsg  (or getmsg(2)  andput-
msg(2)) system calls issued to them will fail becauseI_LINK  associates the Stream
head of each linked Stream with the multiplexor, so the user may not access that Stream
directly for the duration of the link.

The following sequence of system calls completes the daemon example:

The transport driver supports several simultaneous Streams. These Streams are multi-
plexed over the single Stream connected to the IP multiplexor. The mechanism for estab-
lishing multiple Streams above the transport multiplexor is actually a by-product of the
way in which Streams are created between a user process and a driver. By opening differ-
ent minor devices of a STREAMS driver, separate Streams are connected to that driver. Of
course, the driver must be designed with the intelligence to route data from the single
lower Stream to the appropriate upper Stream.

The daemon process maintains the multiplexed Stream configuration through an open
Stream (the controlling Stream) to the transport driver. Meanwhile, other users can access
the services of the transport protocol by opening new Streams to the transport driver; they
are freed from the need for any unnecessary knowledge of the underlying protocol config-
urations and subnetworks that support the transport service.

Multilevel multiplexing configurations should be assembled from the bottom up because
the passing ofioctl s through the multiplexor is determined by the multiplexing driver
and cannot generally be relied on.

Dismantling a Multiplexor 9

Streams connected to a multiplexing driver from above withopen , can be dismantled by
closing each Stream withclose . The mechanism for dismantling Streams that have been
linked below a multiplexing driver is less obvious, and is described below.

The I_UNLINK ioctl  call disconnects each multiplexor link below a multiplexing
driver individually. This command has the form:

ioctl ( fd, I_UNLINK , muxid);

wherefd is a file descriptor associated with a Stream connected to the multiplexing driver
from above, andmuxid is the identifier that was returned byI_LINK  when a driver was
linked below the multiplexor. Each lower driver may be disconnected individually in this
way, or a specialmuxid value of-1  may disconnect all drivers from the multiplexor simul-
taneously.

close(fd_802_4);
close(fd_802_3);
close(fd_ip);

/* Hold multiplexor open forever */
pause();

}
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In the multiplexing daemon program shown in Figure 9-1, the multiplexor is never explic-
itly dismantled because all links associated with a multiplexing driver are automatically
dismantled when the controlling Stream associated with that multiplexor is closed.
Because the controlling Stream is open to a driver, only the final call ofclose  for that
Stream closes it. In this example, the daemon is the only process that opens the controlling
Stream, so the multiplexing configuration is dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, multiplexed Stream
configuration, the controlling Stream for each multiplexor at each level must be linked
under the next higher level multiplexor. In the example, the controlling Stream for the IP
driver was linked under the TP driver, which resulted in a single controlling Stream for the
full, multilevel configuration. Because the multiplexing program relied on closing the con-
trolling Stream to dismantle the multiplexed Stream configuration instead of using explicit
I_UNLINK  calls, themuxid values returned byI_LINK  could be ignored.

An important side-effect of automatic dismantling on the close is that it is not possible for
a process to build a multiplexing configuration withI_LINK  and then exit. This is
becauseexit(2)  closes all files associated with the process, including the controlling
Stream. To keep the configuration intact, the process must exist for the life of that multi-
plexor. That is the motivation for implementing the example as a daemon process.

However, if the process uses persistent links with theI_PLINK ioctl  call, the multi-
plexor configuration remains intact after the process exits. Persistent links are described
later in this chapter.

Routing Data through a Multiplexor 9

STREAMS provides a mechanism for building multiplexed Stream configurations. How-
ever, the criteria on which a multiplexor routes data is driver-dependent. For example, the
protocol multiplexor shown before might use address information found in a protocol
header to determine over which subnetwork data should be routed. It is the multiplexing
driver's responsibility to define its routing criteria.

One routing option available to the multiplexor is to use themuxid  value to determine to
which Stream data should be routed (remember that each multiplexor link is associated
with a muxid). I_LINK  passes themuxid value to the driver and returns this value to the
user. The driver can therefore specify that themuxid value must accompany data routed
through it. For example, if a multiplexor routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexor could require the user to insert
themuxid  of the desired lower Stream into the first four bytes of each message passed to
it. The driver could then match themuxid  in each message with themuxid  of each lower
Stream, and route the data accordingly.

Connecting/Disconnecting Lower Streams 9

Multiple Streams are created above a driver/multiplexor with theopen  system call on
either different minor devices, or on a clonable device file. Note that any driver that han-
dles more than one minor device is considered an upper multiplexor.
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To connect Streams below a multiplexor requires additional software within the multi-
plexor. The main difference between STREAMS lower multiplexors and STREAMS
device drivers are that multiplexors are pseudo-devices and that multiplexors have two
additionalqinit  structures, pointed to by fields in thestreamtab  structure: the lower
half read-sideqinit  and thelower half write-sideqinit .

The multiplexor is conceptually divided into two parts: the lower half (bottom) and the
upper half (top). The multiplexorqueue  structures that have been allocated when the
multiplexor was opened, use the usualqinit  entries from the multiplexor'sstreamtab .
This is the same as any open of the STREAMS device. When a lower Stream is linked
beneath the multiplexor, theqinit  structures at the Stream head are substituted by the
bottom halfqinit  structures of the multiplexors. Once the linkage is made, the multi-
plexor switches messages between upper and lower Streams. When messages reach the
top of the lower Stream, they are handled byput  andservice  routines specified in the
bottom half of the multiplexor.

Connecting Lower Streams 9

A lower multiplexor is connected as follows: the initialopen  to a multiplexing driver cre-
ates a Stream, as in any other driver.open  uses the first twostreamtab  structure entries
to create the driver queues. At this point, the only distinguishing characteristic of this
Stream are non-NULL entries in thestreamtab st_muxrinit  andst_muxwinit
fields.

These fields are ignored byopen  (see the rightmost Stream in Figure 9-6). Any other
Stream subsequently opened to this driver will have the samestreamtab  and thereby
the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The driver for the lower
Stream is typically a device driver (see the leftmost Stream in Figure 9-6). This Stream has
no distinguishing characteristics. It can include any driver compatible with the multi-
plexor. Any modules required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with anI_LINK
ioctl  call (seestreamio(7) ). The Stream head points to the Stream head routines as
its procedures (known by itsqueue ). An I_LINK  to the upper Stream, referencing the
lower Stream, causes STREAMS to modify the contents of the Stream head's queues in
the lower Stream. The pointers to the Stream head routines, and other values, in the
Stream head's queues are replaced with those contained in the mux fields of the multiplex-
ing driver'sstreamtab . Changing the Stream head routines on the lower Stream means
that all subsequent messages sent upstream by the lower Stream's driver, eventually, are
passed to theput  procedure designated inst_muxrinit , the multiplexing driver. The
I_LINK  also establishes this upper Stream as the control Stream for this lower Stream.
STREAMS remembers the relationship between these two Streams until the upper Stream
is closed, or the lower Stream is unlinked.

Finally, the Stream head sends anM_IOCTL message withioc_cmd  set toI_LINK  to
the multiplexing driver. TheM_DATA part of theM_IOCTL contains alinkblk  structure.
The multiplexing driver stores information from thelinkblk  structure in private storage
and returns anM_IOCACK message (acknowledgment).l_index  is returned to the pro-
cess requesting theI_LINK . This value can be used later by the process to disconnect this
Stream.
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An I_LINK  is required for each lower Stream connected to the driver. Additional upper
Streams can be connected to the multiplexing driver byopen  calls. Any message type can
be sent from a lower Stream to user processes along any of the upper Streams. The upper
Streams provide the only interface between the user processes and the multiplexor.

Note that no direct data structure linkage is established for the linked Streams. The read
queue'sq_next  is NULL and the write queue'sq_next  points to the first entity on the
lower Stream. Messages flowing upstream from a lower driver (a device driver or another
multiplexor) enters the multiplexing driverput  procedure withl_qbot  as thequeue
value. The multiplexing driver has to route the messages to the appropriate upper (or
lower) Stream. Similarly, a message coming downstream from user space on any upper
Stream has to be processed and routed, if required, by the driver.

Also note that the lower Stream (see the headers and file descriptors) is no longer accessi-
ble from user space. This causes all system calls to the lower Stream to returnEINVAL,
except forclose . This is why all modules have to be in place before the lower Stream is
linked to the multiplexing driver.

Finally, note that the absence of direct linkage between the upper and lower Streams
means that STREAMS flow control has to be handled by special code in the multiplexing
driver. The flow control mechanism cannot see across the driver.

In general, multiplexing drivers should be implemented so that new Streams can be
dynamically connected to (and existing Streams disconnected from) the driver without
interfering with its ongoing operation. The number of Streams that can be connected to a
multiplexor is developer-dependent.

Disconnecting Lower Streams 9

Dismantling a lower multiplexor is done by disconnecting (unlinking) the lower Streams.
Unlinking can be initiated in three ways:

• An I_UNLINK ioctl  references a specific Stream

• An I_UNLINK  references all lower Streams

• The lastclose  of the control Stream performs the unlinking

As in the link, an unlink sends alinkblk  structure to the driver in anM_IOCTL mes-
sage. In the first bullet item,I_UNLINK  uses thel_index  value returned in theI_LINK
to specify the lower Stream to be unlinked. In the second and third bullet items, the calls
must designate a file corresponding to a control Stream which causes all the lower Streams
that were previously linked by this control Stream to be unlinked. The driver sees a series
of individual unlinks.

If no open references exist for a lower Stream, a subsequent unlink automatically closes
the Stream. Otherwise, the lower Stream must be closed byclose  following the unlink.
STREAMS automatically dismantles all cascaded multiplexors (below other multiplexing
Streams) if their controlling Stream is closed. AnI_UNLINK  leaves lower, cascaded mul-
tiplexing Streams intact unless the Stream file descriptor was previously closed.
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Multiplexor Construction Example 9

This section describes an example of multiplexor construction and usage. Figure 9-6
shows the Streams before their connection to create the multiplexing configuration of
Figure 9-7. Multiple upper and lower Streams interface to the multiplexor driver. The user
processes of Figure 9-5 are not shown in Figure 9-6.

Figure 9-6.  Internet Multiplexor before Connecting

The EthernetTM, LAPB, and IEEE 802.2 device drivers terminate links to other nodes. The
multiplexor driver is an Internet Protocol (IP) multiplexor that switches data among the
various nodes or sends data upstream to a user(s) in the system. The Net modules typically
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provide a convergence function, which matches the multiplexor driver and device driver
interface.

Figure 9-6 depicts only a portion of the full, larger Stream. In the dotted rectangle above
the IP multiplexor, there generally is an upper transport control protocol (TCP) multi-
plexor, additional modules and, possibly, additional multiplexors in the Stream. Multiplex-
ors can also be cascaded below the IP driver if the device drivers are replaced by multi-
plexor drivers.
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Figure 9-7.  Internet Multiplexor after Connecting

Streams A, B, and C are opened by the process, and modules are pushed as needed. Two
upper Streams are opened to the IP multiplexor. The rightmost Stream represents multiple
Streams, each connected to a process using the network. The Stream second from the right
provides a direct path to the multiplexor for supervisory functions. It is the control Stream,
leading to a process that sets up and supervises this configuration. It is always directly
connected to the IP driver. Although not shown, modules can be pushed on the control
Stream.
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After the Streams are opened, the supervisory process typically transfers routing informa-
tion to the IP drivers (and any other multiplexors above the IP), and initializes the links. As
each link becomes operational, its Stream is connected below the IP driver. If a more com-
plex multiplexing configuration is required, the IP multiplexor Stream with all its con-
nected links can be connected below another multiplexor driver.

Figure 9-7 shows that the file descriptors for the lower device driver Streams are left dan-
gling. The primary purpose in creating these Streams is to provide parts for the multi-
plexor. Those not used for control and not required for error recovery (by reconnecting
through anI_UNLINK ioctl ) have no further function. These lower Streams can be
closed to free the file descriptor without affecting the multiplexor.

Multiplexing Driver 9

This section contains an example of a multiplexing driver that implements an N-to-1 con-
figuration. This configuration might be used for terminal windows, where each transmis-
sion to or from the terminal identifies the window. This example resembles a typical
device driver, with two differences: the device handling functions are performed by a sep-
arate driver, connected as a lower Stream, and the device information (that is, relevant user
process) is contained in the input data rather than in an interrupt call.

Each upper Stream is created byopen(2) . A single lower Stream is opened and then
linked by the multiplexing facility. This lower Stream might connect to the tty driver. The
implementation of this example is a foundation for an M-to-N multiplexor.

As in the loop-around driver (in “STREAMS Drivers”), flow control requires the use of
standard and special code, since connectivity among the Streams is broken at the driver.
Different approaches are used for flow control on the lower Stream, for messages coming
upstream from the device driver, and on the upper Streams, for messages coming down-
stream from the user processes.

The multiplexor declarations are shown in Screen 9-2:
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Screen 9-2.  Multiplexor Declarations

The fourstreamtab  entries correspond to the upper read, upper write, lower read, and
lower writeqinit  structures. The multiplexingqinit  structures replace those in each
lower Stream head after theI_LINK  has completed successfully. In a multiplexing con-
figuration, the processing performed by the multiplexing driver can be partitioned between
the upper and lower queues. There must be an upper Stream writeput  procedure and
lower Stream readput  procedure. If the queue procedures of the opposite upper/lower
queue are not needed, the queue can be skipped over, and the message put to the following
queue.

In the example, the upper read-side procedures are not used. The lower Stream read queue
put  procedure transfers the message directly to the read queue upstream from the multi-

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

static int muxopen(queue_t *, dev_t *, int, int, cred_t *);
static int muxclose(queue_t *, int, cred_t *);
static int muxuwput(queue_t *, mblk_t *);
static int muxlwsrv(queue_t *);
static int muxlrput(queue_t *, mblk_t *);
static int muxuwsrv(queue_t *);

static struct module_info info = {0xaabb, “mux”, 0, INFPSZ, 512, 128};

static struct qinit urinit = {/* upper read */
NULL, NULL, muxopen, muxclose, NULL, &info, NULL };

static struct qinit uwinit = {/* upper write */
muxuwput, muxuwsrv, NULL, NULL, NULL, &info, NULL };

static struct qinit lrinit = {/* lower read */
muxlrput, NULL, NULL, NULL, NULL, &info, NULL };

static struct qinit lwinit = {/* lower write */
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL };

struct streamtab muxinfo = {&urinit, &uwinit, &lrinit, &lwinit};

struct mux {
queue_t *qptr; /* back pointer to read queue */
lock_t *lck; /* lock to protect mux struct */
int flag ; /* used to coordinate muxlrput with muxclose*/

}

/* flag bits */
#define BUSY 0x1
#define CLOSING 0x2

extern struct mux mux_mux[];
extern int mux_cnt;

int muxdevflag = D_MP;

lkinfo_t mux_lkinfo;
lock_t *muxlck;
sv_t *muxsv;
int muxbot_ref;/* prevents unlinks while putnext in progress */
queue_t *muxbot; /* linked lower queue */
int muxerr; /* set if error or hangup on lower stream */
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plexor. There is no lower writeput  procedure because the upper writeput  procedure
directly feeds the lower write queue downstream from the multiplexor.

The driver uses a private data structure,mux. mux_mux[dev]  points back to the opened
upper read queue. This is used to route messages coming upstream from the driver to the
appropriate upper queue. It is also used to find a free major/minor device for aCLONE-
OPEN driver open case.

The upper queue open contains the canonical driver open code as shown in Screen 9-3:

Screen 9-3.  Canonical Driver Open Code

void muxinit(void)
{

register struct mux *mux;

muxlck = LOCK_ALLOC(MUXHIER, plstr, &mux_lkinfo, KM_NOSLEEP);
muxsv = SV_ALLOC(KM_NOSLEEP);
for (mux = mux_mux; mux < &mux_mux[mux_cnt]; mux++)

             mux->lck = LOCK_ALLOC(MUXHIER, plstr, &mux_lkinfo, KM_NOSLEEP);
}

static int muxopen(queue_t *q, dev_t *devp, int flag, int sflag,
   cred_t *credp)

{
struct mux *mux;
dev_t device;
pl_t pl;
if (q->q_ptr)

return(EBUSY);
if (muxlck == NULL || muxsv == NULL)

return(ENXIO);

if (sflag == CLONEOPEN) {
for (device = 0; device < mux_cnt; device++) {

if (mux_mux[device].lck == NULL)
continue;

pl = LOCK(mux_mux[device].lck, plstr);
if (mux_mux[device].qptr == NULL)

break;
/* Note that we break out of if statement */
/* with the correct lock held */
if (device >= mux_cnt)
UNLOCK(&mux_mux[device].lck, pl);

return(ENXIO);
}

}
else {

device = getminor(*devp);
if (device < 0 || device >= mux_cnt)

return(ENXIO);
if (mux_mux[device].lck == NULL)

return (EXNIO);
pl = LOCK(mux_mux[device].lck, plstr);
}

}
/*
 * Once we get here, the device is valid and we're holding its lock.
 */
mux = &mux_mux[device];
mux->qptr = q;
mux->flag = 0;
q->q_ptr = (char *) mux;
WR(q)->q_ptr = (char *) mux;
UNLOCK(mux->lck, pl);
qprocson(q);
return(0);

}
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muxopen  checks for a clone or ordinary open call. It initializesq_ptr  to point at the
mux_mux[]  structure.

The core multiplexor processing is the following: downstream data written to an upper
Stream is queued on the corresponding upper write message queue if the lower Stream is
flow controlled. This allows flow control to propagate towards the Stream head for each
upper Stream. A lower writeservice  procedure, rather than a writeput  procedure, is
used so that flow control, coming up from the driver below, may be handled.

On the lower read-side, data coming up the lower Stream are passed to the lower readput
procedure. The procedure routes the data to an upper Stream based on the first byte of the
message. This byte holds the minor device number of an upper Stream. Theput  proce-
dure handles flow control by testing the upper Stream at the first upper read queue beyond
the driver. Theput  procedure treats the Stream component above the driver as the next
queue.

Upper Write Put Procedure 9

muxuwput , the upper queue writeput  procedure, trapsioctl s, in particularI_LINK
andI_UNLINK :
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Screen 9-4.  Upper Write Put Procedure

static int muxuwput(queue_t *q, mblk_t *mp)
{

pl_t pl;
struct mux *mux;

mux = (struct mux *) q->q_ptr;
switch (mp->b_datap->db_type) {
case M_IOCTL: {

struct iocblk *iocp;
struct linkblk *linkp;

/*
 * ioctl.  Only channel 0 can do ioctls.  Two calls are
 * recognized: LINK, and UNLINK
 */

if (mux != mux_mux)
goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case I_LINK:

/*
 * Link.  The data contains a linkblk structure
 * Remember the bottom queue in muxbot.
 */
pl = LOCK(muxlck, plstr);
if (muxbot != NULL) {

UNLOCK(muxlck, pl);
goto iocnak;

}
linkp = (struct lnkblk *) mp->b_cont->b_rptr;
muxbot = linkp->l_qbot;
muxerr = 0;
muxbot_ref = 0;
UNLOCK(muxlck, pl);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

case I_UNLINK:
/*
 * Unlink.  The data contains a linkblk structure.
 * If muxbot is busy, fail unlink.
 */
linkp = (struct linkblk *) mp->b_cont->b_rptr;
pl = LOCK(muxlck, plstr);
if (muxbot_ref) {

mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = EAGAIN;

} else {
  muxbot = NULL;
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} mp->b_datap->db_type = M_IOCACK;
UNLOCK(muxlck, pl);
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

/* fail ioctl */
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);

}
break;

}
case M_FLUSH:

if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);

} else
freemsg(mp);

break;
case M_DATA:

/*
 * Data.  If we have no bottom queue --> fail
 * Otherwise, queue the data and invoke the lower
 * service procedure.
 */
pl = LOCK(muxlck, plstr);
if (muxerr || muxbot == NULL) {

UNLOCK(muxlck, pl);
goto bad;

}
if (canputnext(muxbot)) {

mblk_t *bp;
if ((bp = allocb(1, BPRI_MED)) == NULL) {

UNLOCK(muxlck, pl);
putq(q, mp);
bufcall(1, BPRI_MED, qenable, q);
break;

}
muxbot_ref = 1;
UNLOCK(muxlck, pl);
*bp->b_wptr++ = (struct mux*) q->q_ptr - mux_mux;
bp->b_cont = mp;
putnext(muxbot, bp);
pl = LOCK(muxlck, plstr);
muxbot_ref = 0;
UNLOCK(muxlck, pl);

} else {
UNLOCK(muxlck, pl);
putq(q, mp);

}
break;

default:
bad:

/*
 * Send an error message upstream.
 */
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EINVAL;
qreply(q, mp);

}
}
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First, there is a check to enforce that the Stream associated with minor device 0 will be the
single, controlling Stream. Theioctl s are only accepted on this Stream. As described
previously, a controlling Stream is the one that issues theI_LINK . Having a single control
Stream is a recommended practice.I_LINK  andI_UNLINK  include alinkblk  struc-
ture containing:

l_qtop The upper write queue from which theioctl  is coming. It
should always equalq.

l_qbot The new lower write queue. It is the former Stream head write
queue and is important because it is where the multiplexor gets
and puts its data.

l_index A unique (system wide) identifier for the link. It can be used for
routing or during selective unlinks. Since the example only sup-
ports a single link,l_index  is not used.

For I_LINK , l_qbot  is saved inmuxbot and a positive acknowledgment is generated.
From this point on, until anI_UNLINK  occurs, data from upper queues will be routed
throughmuxbot . Note that when anI_LINK , is received, the lower Stream has already
been connected. This allows the driver to send messages downstream to perform any ini-
tialization functions. Returning anM_IOCNAK message (negative acknowledgment) in
response to anI_LINK  will cause the lower Stream to be disconnected.

The I_UNLINK  handling code nulls outmuxbot  and generates a positive acknowledg-
ment. A negative acknowledgment should not be returned to anI_UNLINK . The Stream
head assures that the lower Stream is connected to a multiplexor before sending an
I_UNLINK M_IOCTL.

muxuwput  handlesM_FLUSH messages as a normal driver would, except that there are
no messages enqueued on the upper read queue, so there is no need to callflushq  if
FLUSHR is set.

M_DATA messages are not placed on the lower write message queue. They are queued on
the upper write message queue. When flow control subsides on the lower Stream, the
lower service  procedure,muxlwsrv , is scheduled to start output. This is similar to
starting output on a device driver.

Upper Write Service Procedure 9

Screen 9-5 shows the code for the upper multiplexor writeservice  procedure:
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Screen 9-5.  Upper Write Service Procedure

As long as there is a Stream still linked under the multiplexor and there are no errors, the
service  procedure takes a message off the queue and sends it downstream, if flow con-
trol allows.

Lower Write Service Procedure 9

muxlwsrv , the lower (linked) queue writeservice  procedure is scheduled as a result of
flow control subsiding downstream (it is back-enabled).

static int muxuwsrv(queue_t *q)
{

struct mux *muxp;
mblk_t *mp;
pl_t pl;
muxp = (struct mux *) q->q_ptr;
while (mp = getq(q)) {

pl = LOCK(muxlck, plstr);
if (!muxbot) {

UNLOCK(muxlck, pl);
flushq(q, FLUSHALL);
return;

}
if (muxerr) {

UNLOCK(muxlck, pl);
flushq(q, FLUSHALL);
return;

}
if (canputnext(muxbot)) {

muxbot_ref = 1;
UNLOCK(muxlck, pl);
putnext(muxbot, mp);
pl = LOCK(muxlck, plstr);
muxbot_ref = 0;
UNLOCK(muxlck, pl);

} else {
UNLOCK(muxlck, pl);
putbq(q, mp);
return(0);

}
}

}
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Screen 9-6.  Lower Write Service Procedure

muxlwsrv  steps through all possible upper queues. If a queue is active and there are mes-
sages on the queue, then the upper writeservice  procedure is enabled byqenable .

Lower Read Put Procedure 9

The lower (linked) queue readput  procedure is shown in Screen 9-7:

static int muxlwsrv(queue_t *q)
{

register int i;
pl_t pl;

for (i = 0; i < mux_cnt; i++) {
pl = LOCK(mux_mux[i].lck, plstr);
if (mux_mux[i].qptr)

qenable(mux_mux[i].qptr);
UNLOCK(mux_mux[i].lck, pl);

}
}
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Screen 9-7.  Lower Read Put Procedure

static int muxlrput(queue_t *q, mblk_t *mp)
{

queue_t *uq;
mblk_t *b_cont;
int device;
register struct mux *mux;
pl_t pl;
pl = LOCK(muxlck, plstr);
if (muxerr) {

freemsg(mp);
UNLOCK(muxlck, pl);
return(0);

}
UNLOCK(muxlck, pl);
switch (mp->b_datap->db_type) {
case M_FLUSH:

/*
 * Flush queues.  NOTE: sense of tests is reversed since
 * we are acting like a “ stream head”
 */
if (*mp->b_rptr & FLUSHW) {

*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);

} else
freemsg(mp);

break;
case M_ERROR:
case M_HANGUP:

pl = LOCK(muxlck, plstr);
muxerr = 1;
UNLOCK(muxlck, pl);
freemsg(mp);
break;

case M_DATA:
/*
 * Route message.  First byte indicates device to send to.
 * No flow control.
 *
 * Extract and delete device number.  If the leading block is
 * now empty and more blocks follow, strip the leading block.
 */
device = *mp->b_rptr++;

/* Sanity check.  Device must be in range */
if (device < 0 || device >= mux_cnt) {

freemsg(mp);
break;

}

/*
 * If upper streams is open and not backed up, send the
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muxlrput  receives messages from the Stream linked below the multiplexor. Here, it
needs to act as the Stream head of the lower stream. This means that duringM_FLUSH
handling, the sense of the tests are reversed. IfFLUSHW is set, thenFLUSHR is turned off
and the message is sent back downstream. Otherwise, the message is freed. No flushing is
necessary in this example because no messages are enqueued on the lower queues of the
multiplexor.

muxlrput  also handlesM_ERROR andM_HANGUP messages. If one is received, it locks
up the upper Streams by settingmuxerr .

M_DATA messages are routed by looking at the first data byte of the message. This byte
contains the minor device of the upper Stream. Several sanity checks are made to see if the
device is in range and the upper Stream is open and not full.

This multiplexor does not support flow control on the read-side. It is merely a router. If
everything checks out, the message is put to the proper upper queue. Otherwise, the mes-
sage is discarded.

The upper Streamclose  routine simply clears the mux entry so this queue will no longer
be found.

 * message there, otherwise discard it.
 */
mux = &mux_mux[device];
pl = LOCK(mux->lck, plstr);
uq = mux->qptr;
if (uq != NULL && canputnext(uq)) {

mux->flag |= BUSY;
UNLOCK(mux->lck, pl);
putnext(uq, mp);
pl = LOCK(mux->lck, plstr);
mux->flag &= ~BUSY;
if (mux->flag & CLOSING)

SV_SIGNAL(muxsv, 0);
} else

freemsg(mp);
UNLOCK(mux->lck, pl);
break;

default:
freemsg(mp);

}
}



STREAMS Multiplexing

9-27

Screen 9-8.  Clean Upper queue

Persistent Links 9

With I_LINK  andI_UNLINK ioctl s, the file descriptor associated with the Stream
above the multiplexor used to set up the lower multiplexor connections must remain open
for the duration of the configuration. Closing the file descriptor associated with the con-
trolling Stream dismantles the whole multiplexing configuration. Some applications may
not want to keep a process running merely to hold the multiplexor configuration together.
Therefore, “free-standing” links below a multiplexor are needed. A persistent link is such
a link. It is similar to a STREAMS multiplexor link, except that a process is not needed to
hold the links together. After the multiplexor has been set up, the process may close all file
descriptors and exit, and the multiplexor remains intact.

Two ioctl s, I_PLINK  andI_PUNLINK , are used to create and remove persistent links
that are associated with the Stream above the multiplexor.close(2)  andI_UNLINK  are
not able to disconnect the persistent links.

The format ofI_PLINK  is

ioctl ( fd0, I_PLINK , fd1)

The first file descriptor,fd0, must reference the Stream connected to the multiplexing
driver and the second file descriptor,fd1, must reference the Stream to be connected below
the multiplexor. The persistent link can be created in the following way:

/*
 * Upper queue close
 */
static int muxclose(queue_t *q, int flag, cred_t *credp)
{

register struct mux *mux;
pl_t pl;

mux = (struct mux *) q->q_ptr;
qprocsoff(q);
pl = LOCK(mux->lck, plstr);
/*
 * coordinate with muxlwrput.  Use a global sync. variable since this
 * case is unlikely and not worth the overhead of having 1 per
 * minor.
 */
while (mux->flag & BUSY) {

mux->flag |= CLOSING;
/* don't allow signals - this should be a short wait */
SV_WAIT(muxsv, primed, mux->lck);
pl = LOCK(mux->lck, plstr);
mux->flag &= ~CLOSING;

}
mux->qptr = NULL;
UNLOCK(mux->lck);
q->q_ptr = NULL;
WR(q)->q_ptr = NULL;
return(0);

}
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Figure 9-8 shows howopen(2)  establishes a Stream between the device and the Stream
head.

Figure 9-8.  open() of MUXdriver and Driver1

The persistent link can still exist even if the file descriptor associated with the upper
Stream to the multiplexing driver is closed. TheI_PLINK ioctl  returns an integer
value,muxid , that can be used for dismantling the multiplexing configuration. If the pro-
cess that created the persistent link still exists, it may pass themuxid  value to some other
process to dismantle the link, if the dismantling is desired, or it can leave themuxid  value
in a file so that other processes may find it later. Figure 9-9 shows a multiplexor after
I_PLINK .

upper_stream_fd = open(“/dev/mux”, O_RDWR);
lower_stream_fd = open(“/dev/driver”, O_RDWR);
muxid = ioctl(upper_stream_fd, I_PLINK, lower_stream_fd);
/*
 * save muxid in a file
 */
exit(0);
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Kernel Space
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fd1 fd0
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Figure 9-9.  Multiplexor after I_PLINK

Several users can open the MUXdriver and send data to Driver1 since the persistent link to
Driver1 remains intact, as shown in Figure 9-10.
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Figure 9-10.  Other Users Opening a MUXdriver

TheI_PUNLINK ioctl  is used for dismantling the persistent link. Its format is

ioctl ( fd0, I_PUNLINK , muxid)

where thefd0 is the file descriptor associated with Stream connected to the multiplexing
driver from above. Themuxid is returned by theI_PLINK ioctl  for the Stream that
was connected below the multiplexor. TheI_PUNLINK  removes the persistent link
between the multiplexor referenced by thefd0 and the Stream to the driver designated by
the muxid. Each of the bottom persistent links can be disconnected individually. An
I_PUNLINK ioctl  with themuxid value ofMUXID_ALL removes all persistent links
below the multiplexing driver referenced byfd0.

Screen 9-9 dismantles the previously given configuration:
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Screen 9-9.  Retrieving the MUX ID from the File

The use of theioctl s I_PLINK  and I_PUNLINK  should not be intermixed with
I_LINK  andI_UNLINK . Any attempt to unlink a regular link withI_PUNLINK  or to
unlink a persistent link withI_UNLINK ioctl  causes theerrno  value ofEINVAL to
be returned.

Because multilevel multiplexing configurations are allowed in STREAMS, it is possible to
have a situation where persistent links exist below a multiplexor whose Stream is con-
nected to the above multiplexor by regular links. Closing the file descriptor associated
with the controlling Stream removes the regular link but not the persistent links below it.
On the other hand, regular links are allowed to exist below a multiplexor whose Stream is
connected to the above multiplexor with persistent links. In this example, the regular links
are removed if the persistent link above is removed and no other references to the lower
Streams exist.

The construction of cycles is not allowed when creating links. A cycle could be con-
structed by creating a persistent link of multiplexor 2 below multiplexor 1 and then closing
the controlling file descriptor associated with the multiplexor 2 and reopening it again and
then linking the multiplexor 1 below the multiplexor 2, but this is not allowed. The operat-
ing system prevents a multiplexor configuration from containing a cycle to ensure that
messages cannot be routed infinitely, thus creating an infinite loop or overflowing the ker-
nel stack.

Design Guidelines 9

The following lists general multiplexor design guidelines:

• The upper half of the multiplexor acts like the end of the upper Stream.

• The lower half of the multiplexor acts like the head of the lower Stream.

• Service procedures are used for flow control.

• Message routing is based on multiplexor specific criteria.

• When one Stream is being fed by many Streams, flow control may have to
take place. Then all feeding Streams on the other end of the multiplexor
have to be enabled when the flow control is relieved.

fd = open(“/dev/mux”, O_RDWR);
/*
 * retrieve muxid from the file
 */
ioctl(fd, I_PUNLINK, muxid);
exit(0);
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• When one Stream is feeding many Streams, flow control may also have to
take place. Be careful not to starve other Streams when one becomes flow-
controlled.

• Messages received on the lower half of a multiplexor that are not under-
stood should be freed.

• Messages that should close a multiplexor are driver dependent.
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10
Chapter 10Transport Provider Interface

10
10
10

Introduction 10

This chapter describes the STREAMS-based Transport Provider Interface (TPI). TPI is a
service interface that maps to strategic levels of the Open Systems Interconnection (OSI)
Reference Model. TPI supports the services of the Transport Layer for connection-mode
and connectionless-mode services. One advantage to using TPI is its ability to hide imple-
mentation details of a particular service from the consumer of the service. This enables
system programmers to develop software independent of the particular protocol that pro-
vides a specific service. This chapter focuses on TPI as it is defined within the STREAMS
environment.

How TPI Works 10

TPI defines a message interface to a transport provider implemented under STREAMS. A
user communicates to a transport provider via a full duplex path known as a stream. See
Figure 10-1. This stream provides a mechanism in which messages may be passed to the
transport provider from the transport user and vice versa.
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Figure 10-1.  Example of a Stream from a User to a Transport Provider

The STREAMS messages that are used to communicate transport service primitives
between the transport user and the transport provider may have one of the following for-
mats:

• An M_PROTO message block followed by zero or moreM_DATA message
blocks. TheM_PROTO message block contains the type of transport service
primitive and all the relevant arguments associated with the primitive. The
M_DATA blocks contain transport user data associated with the transport
service primitive.

• OneM_PCPROTO message block containing the type of transport service
primitive and all the relevant arguments associated with the primitive.
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• One or moreM_DATA message blocks containing transport user data.

Section 7 on-line manual pages describe the transport primitives which define both a con-
nection-mode and connectionless-mode transport service. They include primitives that
pertain to both transport modes.

For each type of transport service, two types of primitives exist:

• Primitives which originate from the transport user.

The primitives which originate from the transport user make requests to the trans-
port provider or respond to an event of the transport provider.

• Primitives which originate from the transport provider.

The primitives which originate from the transport provider are either confirmations
of a request or are indications to the transport user that an event has occurred.

“Mapping Of Transport Primitives to OSI” lists the primitive types along with the map-
ping of those primitives to the STREAMS message types and the transport primitives of
the ISO IS 8072 andIS  8072/DAD transport service definitions. The format of these prim-
itives and the rules governing the use of them are described in “Allowable Sequence of
TPI Primitives.”

Overview of Error Handling Capabilities 10

There are two error handling facilities available to the transport user: one to handle non-
fatal errors and one to handle fatal errors.

Non-Fatal Errors 10

The non-fatal errors are those that a transport user can correct, and are reported in the form
of an error acknowledgment to the appropriate primitive in error. Only those primitives
which require acknowledgments may generate a non-fatal error acknowledgment. These
acknowledgments always report a syntactical error in the specified primitive when the
transport provider receives the primitive. The primitive descriptions above define those
primitives and rules regarding the acknowledgment of them. These errors are reported to
the transport user via theT_ERROR_ACK primitive, and give the transport user the option
of reissuing the transport service primitive that caused the error. TheT_ERROR_ACK
primitive also indicates to the transport user that no action was taken by the transport pro-
vider on receipt of the primitive which caused the error.

These errors do not change the state of the transport service interface as seen by the trans-
port user. The state of the interface after the issuance of aT_ERROR_ACK primitive
should be the same as it was before the transport provider received the interface primitive
that was in error.

The allowable errors that can be reported on the receipt of a transport initiated primitive
are presented in the description of the appropriate primitives.
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Fatal Errors 10

Fatal errors are those which can not be corrected by the transport user, or those errors
which result in an uncorrectable error in the interface or in the transport provider.

The most common of these errors are listed under the appropriate primitives. The transport
provider should issue fatal errors only if the transport user can not correct the condition
which caused the error or if the transport provider has no means of reporting a transport
user correctable error. If the transport provider detects an uncorrectable non-protocol error
internal to the transport provider, the provider should issue a fatal error to the user.

Fatal errors are indicated to the transport user via the STREAMS message typeM_ERROR
with the PowerMAX OS system errorEPROTO. This is the only type of error that the
transport provider should use to indicate a fatal protocol error to the transport user. The
messageM_ERROR will result in the failure of all the operating system service routines on
the stream. The only way for a user to recover from a fatal error is to ensure that all pro-
cesses close the file associated with the stream. At that point, the user may reopen the file
associated with the stream.

Transport Service Interface Sequence of Primitives 10

The allowable sequence of primitives are described in the state diagrams and tables in
“Allowable Sequence of TPI Primitives” for both the connection-mode and connection-
less-mode transport services. The following are rules regarding the maintenance of the
state of the interface:

• It is the responsibility of the transport provider to keep record of the state
of the interface as viewed by the transport user.

• The transport provider must never issue a primitive that places the interface
out of state.

• The uninitialized state of a stream is the initial and final state, and it must
be bound (seeT_BIND_REQ primitive) before the transport provider may
view it as an active stream.

• If the transport provider sends aM_ERROR upstream, it should also drop
any further messages received on its write side of the stream.

The following rules apply only to the connection-mode transport services.

• A transport connection release procedure can be initiated at any time dur-
ing the transport connection establishment or data transfer phase.

• The state tables for the connection-mode transport service providers
include the management of the sequence numbering when a transport pro-
vider sends multipleT_CONN_IND requests without waiting for the
response of the previously sent indication. It is the responsibility of the
transport providers not to change state until all the indications have been
responded to, therefore the provider should remain in theT_WRES_CIND
state while there are any outstanding connect indications pending response.
The provider should change state appropriately when all the connect indi-
cations have been responded to.
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• The state of a transport service interface of a stream may only be trans-
ferred to another stream when it is indicated in aT_CONN_RES primitive.
The following rules then apply to the cooperating streams:

- The stream which is to accept the current state of the interface must
be bound to an appropriate protocol address and must be in the idle
state.

- The user transferring the current state of a stream must have correct
permissions for the use of the protocol address bound to the accept-
ing stream.

- The stream which transfers the state of the transport interface must
be placed into an appropriate state after the completion of the trans-
fer.

Precedence of TPI Primitives on a Stream 10

The following rules apply to the precedence of transport interface primitives with respect
to their position on a stream:

NOTE

The stream queue which contains the transport user initiated prim-
itives is referred to as the stream write queue. The stream queue
which contains the transport provider initiated primitives is
referred to as the stream read queue.

• The transport provider has responsibility for determining precedence on its
stream write queue, as described in the rules in “Transport Primitive Prece-
dence.” This section specifies the rules for precedence for both the connec-
tion-mode and connectionless-mode transport services.

• The transport user has responsibility for determining precedence on its
stream read queue, as described in the rules in “Transport Primitive Prece-
dence.” All primitives on the stream are assumed to be placed on the queue
in the correct sequence as defined above.

The following rules apply only to the connection-mode transport services.

• There is no guarantee of delivery of user data once aT_DISCON_REQ
primitive has been issued.

Rules for Flushing Queues 10

The following rules pertain to flushing the stream queues. No other flushes should be
needed to keep the queues in the proper condition.
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• The transport providers must be aware that they will receiveM_FLUSH
messages from upstream. These flush requests are issued to ensure that the
providers receive certain messages and primitives. It is the responsibility of
the providers to act appropriately as deemed necessary by the providers.

• The transport provider must send up aM_FLUSH message to flush both the
read and write queues after receiving a successfulT_UNBIND_REQ mes-
sage and before issuing theT_OK_ACK primitive.

The following rules pertain only to the connection-mode transport providers.

• If the interface is in theT_DATA_XFER, T_WIND_ORDREL or
T_WACK_ORDREL state, the transport provider must send up aM_FLUSH
message to flush both the read and write queues before sending up a
T_DISCON_IND.

• If the interface is in theT_DATA_XFER, T_WIND_ORDREL or
T_WACK_ORDREL state, the transport provider must send up aM_FLUSH
message to flush both the read and write queues after receiving a successful
T_DISCON_REQ message and before issuing theT_OK_ACK primitive.

Mapping Of Transport Primitives to OSI 10

The following table maps those transport primitives as seen by the transport provider to
the STREAMS message types used to realize the primitives and to the ISO IS 8072 and IS
8072/DAD1 transport service definition primitives.
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Allowable Sequence of TPI Primitives 10

The following tables describe the possible events that may occur on the interface and the
possible states as viewed by the transport user that the interface may enter due to an event.

Table 10-1.  Mapping ISO IS 8072 and IS 8072/DAD1 to Transport Primitives

Transport

Primitives

Stream

Message Types

IS 8072 Transport

Primitives

T_CONN_REQ M_PROTO T-CONNECT request

T_CONN_IND M_PROTO T-CONNECT indication

T_CONN_RES M_PROTO T-CONNECT response

T_CONN_CON M_PROTO T-CONNECT confirm

T_DATA_REQ M_PROTO T-DATA request

T_DATA_IND M_PROTO T-DATA indication

T_EXDATA_REQ M_PROTO T-EXPEDITED-DATA request

T_EXDATA_IND M_PROTO T-EXPEDITED-DATA indication

T_DISCON_REQ M_PROTO T-DISCONNECT request

T_DISCON_IND M_PROTO T-DISCONNECT indication

T_UNITDATA_REQ M_PROTO T-UNITDATA request

T_UNITDATA_IND M_PROTO T-UNITDATA indication

T_ORDREL_REQ M_PROTO not defined in ISO

T_ORDREL_IND M_PROTO not defined in ISO

T_BIND_REQ M_PROTO not defined in ISO

T_BIND_ACK M_PCPROTO not defined in ISO

T_UNBIND_REQ M_PROTO not defined in ISO

T_OK_ACK M_PCPROTO not defined in ISO

T_ERROR_ACK M_PCPROTO not defined in ISO

T_INFO_REQ M_PCPROTO not defined in ISO

T_INFO_ACK M_PCPROTO not defined in ISO

T_UDERR_IND M_PROTO not defined in ISO

T_OPTMGMT_REQ M_PROTO not defined in ISO

T_OPTMGMT_ACK M_PCPROTO not defined in ISO
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The events map directly to the transport service interface primitives as described in “Intro-
duction.”

Table 10-2.  Kernel Level Transport Interface States

Possible States

State Abbreviation Description Service Type

sta_0 unbnd unbound T_COTS, T_COTS_ORD,
T_CLTS

sta_1 w_ack b_req awaiting acknowledgment of
T_BIND_REQ

T_COTS, T_COTS_ORD,
T_CLTS

sta_2 w_ack u_req awaiting acknowledgment of
T_UNBIND_REQ

T_COTS, T_COTS_ORD,
T_CLTS

sta_3 idle idle - no connection T_COTS, T_COTS_ORD,
T_CLTS

sta_4 w_ack op_req awaiting acknowledgment of
T_OPTMGMT_REQ

T_COTS, T_COTS_ORD,
T_CLTS

sta_5 w_ack c_req awaiting acknowledgment of
T_CONN_REQ

T_COTS, T_COTS_ORD

sta_6 w_con c_req awaiting confirmation of
T_CONN_REQ

T_COTS, T_COTS_ORD

sta_7 w_res c_ind awaiting response of
T_CONN_IND

T_COTS, T_COTS_ORD

sta_8 w_ack c_res awaiting acknowledgment of
T_CONN_RES

T_COTS, T_COTS_ORD

sta_9 data_t data transfer T_COTS, T_COTS_ORD

sta_10 w_ind or_rel awaitingT_ORDREL_IND T_COTS_ORD

sta_11 w_req or_rel awaitingT_ORDREL_REQ T_COTS_ORD

sta_12 w_ack dreq6 awaiting acknowledgment of
T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_13 w_ack dreq7 awaiting acknowledgment of
T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_14 w_ack dreq9 awaiting acknowledgment of
T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_15 w_ack dreq10 awaiting acknowledgment of
T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_16 w_ack dreq11 awaiting acknowledgment
of T_DISCON_REQ

T_COTS, T_COTS_ORD
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Variables and Outputs 10

The following describes the variables and outputs used in the state tables.

Outgoing Events 10

The following outgoing events are those which are initiated from the transport service
user. They either make requests of the transport provider or respond to an event of the
transport provider.

Table 10-3.  State Table Variables

Variable Description

q queue pair pointer of current stream

rq queue pair pointer of responding stream as
described in theT_CONN_RES primitive

outcnt counter for the number of outstanding
connection indications not responded to
by the transport user

Figure 10-2.  State Table Outputs

Output Description

[1] outcnt  = 0

[2] outcnt = outcnt + 1

[3] outcnt = outcnt - 1

[4] pass connection to queue as indicated in
theT_CONN_RES primitive

Table 10-4.  Kernel Level Transport Interface Outgoing Events

Event Description Service Type

bind_req bind request T_COTS,
T_COTS_ORD,
T_CLTS

unbind_req unbind request T_COTS,
T_COTS_ORD,
T_CLTS

optmgmt_req options mgmt request T_COTS,
T_COTS_ORD,
T_CLTS
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Incoming Events 10

The following incoming events are those which are initiated from the transport provider.
They are either confirmations of a request or are indications to the transport user that an
event has occurred.

conn_req connection request T_COTS,
T_COTS_ORD

conn_res connection response T_COTS,
T_COTS_ORD

discon_req disconnect request T_COTS,
T_COTS_ORD

data_req data request T_COTS,
T_COTS_ORD

exdata_req expedited data request T_COTS,
T_COTS_ORD

ordrel_req orderly release request T_COTS_ORD

unitdata_req unitdata request T_CLTS

Table 10-5.  Kernel Level Transport Interface Incoming Events

Event Description Service Type

bind_ack bind acknowledgment T_COTS,
T_COTS_ORD,
T_CLTS

optmgmt_ack options management
acknowledgment

T_COTS,
T_COTS_ORD,
T_CLTS

error_ack error acknowledgment T_COTS,
T_COTS_ORD,
T_CLTS

Table 10-4.  Kernel Level Transport Interface Outgoing Events

Event Description Service Type
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Transport Service State Tables 10

The tables shown in Figure 10-3, Figure 10-4 and Figure 10-5 describe the possible next
states the interface may enter given a current state and event.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event combi-
nation that is invalid. Along with the next state, each box may include an action. The trans-
port provider must take the specific actions in the order specified in the state table.

ok_ack1 ok acknowledgment
outcnt == 0

T_COTS,
T_COTS_ORD,
T_CLTS

ok_ack2 ok acknowledgment
outcnt == 1,
q == rq

T_COTS,
T_COTS_ORD,

ok_ack3 ok acknowledgment
outcnt == 1,
q != rq

T_COTS,
T_COTS_ORD,

ok_ack4 ok acknowledgment
outcnt > 1

T_COTS,
T_COTS_ORD,

conn_ind connection indication T_COTS,
T_COTS_ORD

conn_con connection confirmation T_COTS,
T_COTS_ORD

data_ind data indication T_COTS,
T_COTS_ORD

exdata_ind expedited data indication T_COTS,
T_COTS_ORD

ordrel_ind orderly release indication T_COTS_ORD

discon_ind1 disconnect indication
outcnt == 0

T_COTS,
T_COTS_ORD

discon_ind2 disconnect indication
outcnt == 1

T_COTS,
T_COTS_ORD

discon_ind3 disconnect indication
outcnt > 1

T_COTS,
T_COTS_ORD

pass_conn pass connection T_COTS,
T_COTS_ORD

unitdata_ind unitdata indication T_CLTS

uderror_ind unitdata error indication T_CLTS

Table 10-5.  Kernel Level Transport Interface Incoming Events

Event Description Service Type
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Figure 10-3.  Initialization State Table

event

bind_req

state
sta_0
unbnd
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sta_4
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w_ack
b_req

sta_3
[1]

sta_3
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w_ack
u_req
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w_ack
op_req

sta_3
idle

unbind_req

optmgmt_req

bind_ack

optmgmt_ack

error_ack

ok_ack1

161890
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event

conn_req

conn_res

discon_req

data_req

exdata_req

**ordrel_req

conn_ind sta_7
[2]

sta_7
[2]

conn_con

data_ind

exdata_ind
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discon_ind2

discon_ind3

error_ack
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Figure 10-4.  Data-Transfer State Table for Connection Oriented Service

Figure 10-5.  Data-Transfer State Table for Connectionless Service

Transport Primitive Precedence 10

The stream queue which contains the transport user initiated primitives is referred to as the
stream write queue. The stream queue which contains the transport provider initiated
primitives is referred to as the stream read queue. Figure 10-6 shows the stream write
queue precedence table. Figure 10-7 shows the steam read queue precedence table.

event

unitdata_req

unitdata_ind

uderror_ind

161910

state
sta_3
idle

sta_3

sta_3

sta_3
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Figure 10-6.  Stream Write Queue Precedence Table
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Figure 10-7.  Stream Read Queue Precedence Table
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Introduction 11

This chapter presents some guidelines for the development of network device drivers
which conform to the Data Link Provider Interface (DLPI). It contains the following:

• An overview of the DLPI model

• A description of the different protocols used in a LAN together with the
requirements for network management

• A description of the PowerMAX OS driver network environment and the
capabilities a driver should provide in order to operate there

• Details of the framework for the design of these drivers

• A model of the OSI Data Link Layer

• A listing of DLPI services and primitives

DLPI specifies a Streams based interface between the data link layer (data link service
provider) and the network layer (Data Link Service user) of the OSI reference model. It
enables a Data Link Service (DLS) user to access any DLPI conformance provider without
special knowledge of the provider's protocol.

NOTE

A DLS user is the user-level application or user-level or kernel-
level protocol that accesses the services of the data link layer.

This implies that the DLPI conformance providers can be freely substituted with minimal
changes to the implementation of the DLS user.

However, there may be many different DLS users such as CLNS, IP and IPX which may
use different framing formats and have other unique requirements. These formats divide
the driver into hardware dependent and hardware independent sections. The hardware
independent code provides the generic part that does not need to change from one driver to
the next and deals mostly with the specifics of the DLPI. Additionally it provides support
for a number of different potential DLS users, specifically TCP/IP, Netware and OSI. The
hardware independent code is available to developers of drivers and allows them to con-
cern themselves only with the hardware specifics of their particular driver.
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How DLPI Works 11

DLPI is a STREAMS-based implementation of the service specification of the IEEE ISO
DIS 8886 and ISO 8802 Logical Link Control (802.2) standard. The IEEE 802 standards
divide the data link layer of the OSI reference model into two sub-layers:

• A media independent upper portion called the Logical Link Control (LLC)
layer, described in standard 802.2

• A media dependent lower layer called the Media Access Control (MAC)
layer, described in standards 802.3 for Carrier Source Multiple Access with
Collision Detection (CSMA/CD), 802.4 for token bus and 802.5 for Token
Ring protocols.

Figure 11-1 shows the IEEE 802 model.

Figure 11-1.  The IEEE 802 Model

The major components of the DLPI model are shown in Figure 11-2. The driver is referred
to as the DLS provider and a protocol module which is layered on top is referred to as a
DLS user.

LLC sub-layer (802.2)

Data Link layer
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Figure 11-2.  The DLPI Model

A DLS user accesses the services of a provider at a Service Access Point (SAP) using
DLPI primitives in the form of STREAMS messages. It can be seen that a DLS provider
must potentially route data from a single physical medium to multiple DLS users, for
example IP and IPX. Individual DLS users identify themselves to the DLS provider using
a SAP address which is conveyed to the provider using a primitive operation which binds a
DLSAP with a STREAM.

DLPI supports three modes of communication to deal with the wide variety of data link
providers and upper layer requirements:

• connection-oriented

• unacknowledged connectionless

• acknowledged connectionless

The framework described in this chapter is for the unacknowledged connectionless mode
since this is the form used by most LAN protocols.

Additionally, DLPI permits twostyles to distinguish between Physical Points of Attach-
ment (PPAs). Style one providers assigns PPAs based on the major and minor number of
the device opened. Typically, there will be one major number per board and DLS users
will be assigned a minor number when opening the stream using the STREAMSclone-
open  feature. Style two providers enable the DLS user to specify the particular PPA after
an open by using an attach primitive. The framework described in this chapter uses a style
one provider.
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Hardware/Software Environment 11

Developers of Streams drivers should refer to the “STREAMS Modules” and “STREAMS
Drivers” chapters in this guide, and theDevice Driver Reference. TheDevice Driver Ref-
erence also contains information on dynamic loadable kernel modules. Packaging and
installation guidelines can be found in theDevice Driver Programming.

The LAN Environment 11

This section gives an overview of the different LAN environments, including media, pro-
tocol suites and network management. It describes the numerous standards documents
relating to networking and highlights the more important information. The references
themselves should be consulted for more detailed information. For further background
reading seeComputer Networks, Tannenbaum, Andrew S., 2nd ed. 1988 Prentice-Hall.

Media Access Methods 11

The two media access methods are CSMA/CD and Token Ring.

CSMA/CD 11

CSMA/CD LANs are governed by two standards, the Ethernet 2.0 specification and the
IEEE 802.3 standard. See theEthernet: Data Link Layer and Physical Layer Specifica-
tions, Digital, Intel and Xerox, 1982 and theANSI/IEEE Std 802.3 ISO 8802/2 CSMA/CD
Access Method The 802.3 standard covers a whole range of speeds from 1 to 20 Mbps on
a variety of media. However, the two most common configurations arethick Ethernet and
thin Ethernet cables using 10 Mbps baseband transmission.

The 802.3 standard is derived from the Ethernet specification; however it does differ
slightly in the framing used.

Figure 11-3 shows the Ethernet frame format. Figure 11-4 shows the 802.3 frame format.

Figure 11-3.  Ethernet Frame Format
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Figure 11-4.  802.3 Frame Format

The only difference between an Ethernet and 802.3 frame that impacts a DLPI driver is
that the packet type indicator in an Ethernet frame is used as a length field in 802.3 frames.
Packet types are used to indicate the protocol using the Ethernet frame. Fortunately, most
protocol type values are greater than 1500, the maximum length of data, which enables a
driver to distinguish between the two types of framing. The exceptions to this rule are the
Xerox PUP protocols which have type fields of0x200  and0x201 .

Token Ring 11

The two main Token Ring protocols are IEEE 802.5 and FDDI. See theANSI/IEEE Std
802.5 ISO 8802/5 Token Ring Access Method, theISO FDDI Physical Layer Protocol, ISO
9314-1, 1989, theISO FDDI Media Access Control, ISO 9314-2, 1987 and theISO FDDI
Physical Layer Medium Dependant, ISO 9314-3, 1989 for more information regarding
Token Ring protocols.

The 802.5 frame format is shown in Figure 11-5.

Figure 11-5.  802.5 Frame Format

There is no explicit maximum length for a frame, however there is an implicit maximum
since the entire frame must be transmitted within the token holding time.
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Logical Link Layer Protocols 11

Messages for the IEEE 802.2 LLC protocol have two formats depending on whether the
SNAP extension is used. These formats are shown in Figure 11-6.

Figure 11-6.  802.2 Message Format

Protocol Suites 11

The framework described in this document provides support for TCP/IP, NetWare and OSI
protocols and also allows for the possibility of them all being used at the same time on the
same host. It must therefore multiplex all incoming packets and route them to the appro-
priate protocol stack. This is done by examining the frame format and LLC headers and
matching them with information provided by the upper layer protocols at bind time.

OSI 11

The OSI protocols require a network driver to provide support for the IEEE 802.2 LLC
protocol along with an appropriate IEEE MAC layer protocol such as 802.3 for
CSMA/CD and 802.5 for Token Ring. SeeANSI/IEEE Std 802.2 ISO 8802/2 Logical Link
Control.

161990

SSAPDSAP

802.(3,4,5)MAC header

IEEE 802.2

IEEE 802.2 with SNAP

802.(3,4,5)MAC trailer

1 1 1

Datacontrol

DSAP
(0xAA)

SSAP
(0xAA)

1 1 1

Datacontrol

3 2

org.
code

protocol
type



Data Link Provider Interface

11-7

TCP/IP over CSMA/CD 11

The TCP/IP protocol suite can use a CSMA/CD LAN in one of two ways. The first is
using Ethernet V2.0 frames, as described inRFC-894, A Standard for the Transmission of
IP Datagrams over Ethernet.

In this example the type field of the Ethernet frame is set to indicate the protocol using the
frame. For example, for IP it would be set to0x0800 . The second method is using 802.3
format frames. The latter is achieved by using the SNAP LSAP in the 802.2 header. This is
described inRFC-1042, A Standard for the Transmission of IP Datagrams over IEEE 802
Networks.

In this example the DSAP and SSAP are set to 0xAA to indicate that the SNAP format is
being used and the last two bytes of the SNAP header are set to the same protocol type
identifier as used in Ethernet frames.

TCP/IP over Token Ring 11

The SNAP frame format will be used to transmit IP datagrams over a token ring network.
While the Org-code will be 0 for both IP and ARP packets, the EtherType fields will be
0x800 and 0x806 respectively.

NetWare over CSMA/CD 11

NetWare client and Portable NetWare stacks can communicate in any of four different
frame formats:

• Ethernet V-2.0 with the protocol ID field set to0x8137

• IEEE-802.3 with no LLC header. This is the predominant frame format
among NetWare LANs. Any received frame whose length/type field has a
value of less than0x600  is automatically handed over to the IPX Trans-
port/Network driver. The user data part of the frame is not encapsulated in
a IEEE-802.2 frame.

• IEEE 802.3 frame containing a IEEE-802.2 LPDU with SAP values of
0xE0

• SNAP frames with0xAA SAPs in the LLC header and the type set to
0x8137

NetWare over Token Ring 11

IEEE-802.2 or SNAP frame formats can be used to send IPX packets. The actual frame
format will depend on the address that will be used with the bind request primitive. An
address values of0xFE will result in all IPX packets to be transmitted as IEEE-802.2
frames. However, an address of0x8137  will result in SNAP frames as the frame type of
choice.
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Network Management Support 11

A network interface driver will probably need to provide some support for network man-
agement especially in the form of statistics. There are two standards governing network
management:

• The SNMP MIB as defined inRFC-1213, Management Information Base
for Network Management of TCP/IP-based Internet: MIB-II,

• The OSI network management framework, as defined inISO/IEC DIS
10165, Information Processing Systems - Open Systems Interconnection -
Structure of Management Information.

Additionally, there are theifstats  statistics which are required by some TCP/IP imple-
mentations.

Broadcast and Multicast Support 11

Broadcast and multicast support are required by various protocols. For example OSI
CLNS uses certain multicast addresses to identify all end systems and all intermediate sys-
tems for routing purposes.

Promiscuous Mode 11

A promiscuous mode SAP is one which receives all packets on the network whether
addressed to it or not. This is typically used by applications which monitor network traffic.
This must not interfere with the normal running of other protocols on the host. Therefore,
in the framework described in “The DLPI Network Driver Framework,” packets intended
for the local host are duplicated and sent to the promiscuous SAP as well as the real desti-
nation SAP. Users can query and set the state of promiscuous mode by using theDLIO-
CGPROMISC andDLIOCSPROMISC streams messages respectively. These streams mes-
sages are documented inioctl(3d)

The DLPI Network Driver Framework 11

The driver software is logically divided into two halves:

• The hardware independent layer handles the DLPI primitives from the DLS
user.

• The hardware dependent layer interfaces with the hardware controller.

Figure 11-7 shows the structure of the driver. Data is passed between the Hardware Inde-
pendent Layer and the DLS user in the form of messages. A message is a set of data struc-
tures used to pass data, status and control information.
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Figure 11-7.  Structure of the Driver

The driver described here provides only the unacknowledged connectionless services. The
DLPI primitives for connection mode data transfer are not supported by this provider. In
addition to data transfer, the DLS user communicates to the Hardware Independent Layer
using anioctl  interface for getting status messages and controlling the card functional-
ity. See “Hardware/Software Environment.”

The Hardware Independent Layer invokes appropriate Hardware Dependent Layer func-
tions during initialization and frame transmission. The Hardware Dependent Layer com-
municates with the Hardware Independent Layer by inserting received frames directly into
the read queue of the Hardware Independent Layer. In addition, the two layers share some
variables for synchronization and flow control purposes.

The Hardware Dependent Layer is responsible for card specific initialization functions,
frame transmission and reception. It also keeps track of error information and translates
someioctl s to controller commands. See “The Hardware Dependent Layer” for more
information.

The DLS provider is configured as a STREAMS driver. A DLS user accesses the provider
usingopen(2) to establish a Stream to the driver. Thereafter, the user and the provider
communicate by using the DLPI primitives.

After an open, the process must identify itself to the provider by binding a SAP to the
Stream with aDL_BIND_REQ primitive. This allows the provider to determine the desti-
nation of received frames. A privileged process (that is, one withuid 0 ) may set its SAP
to be “promiscuous” so that it can receive all incoming frames.
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Major Data Structures 11

The DLPI  da ta  s t ruc tu res  and  the  assoc ia ted  de fines  a re  p resen t  in
/usr/include/sys/dlpi.h . Other major data structures needed in the driver are
those for SAPs, board configuration structure, Ethernet statistics and the MIB. These are
described here. Hardware specific data structures are also needed in the driver, but these
are outside the scope of this chapter.

An Ethernet driver associates every installed board/adapter with an instance of a configu-
ration structureDL_bdconfig_t . A configuration structure describes the characteristics
of the board, contains information needed to operate the board and also holds adapter spe-
ci fic stat ist ics maintained by the dr iver.  Furthermore, each instance of  a
DL_bdconfig_t  structure is shared by the hardware dependent and independent parts
of the driver and used to pass information between them. A configuration structure is com-
posed of a number of standard fields often used by all the drivers. In addition, fields are
available for optional use by the individual drivers.

major The major number of the device that identifies a particular board.

io_start The start of I/O base address.

xio_start The start of extended I/O base address.

max_saps The number of service access points associated with the board

bd_dltype  Device type (Ethernet, FDDI, and so on)

bd_number The board number in a multiboard setup.

flags A bitmask to identify the operational status of the board.

tx_next The next SAP to be serviced.

timer_id Watchdog timer id.

timer_val Watchdog timer value.

eaddr The physical address of the board.

ttl_valid_sap Total number of valid SAPs.

sap_ptr Pointer to a table of service access points associated with the
board.

promisc_cnt The number of promiscuous SAPs currently associated with the
board.

multicast_cnt The total number of multicast address currently being used.

valid_sap A pointer to a link list of valid SAPs that are in use.

mib A list of statistics that are currently being maintained by the
board.

ifstats Pointer to the interface statistics structure.
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All fields in the board structure may be initialized by the driver-specificinit  routines.
For some drivers, themajor , bd_number  andmax_saps  fields are initialized in the
space.c  files that are a part of every driver package. Thesap_ptr  is initialized to
NULL by the init  routines. Thepromisc_cnt  fields are initialized by theinit  rou-
tines and updated by theDLpromisc_on  andDLpromisc_off  routines. The
multicast_cnt  fields are initialized by theinit  routines and updated by the
DLadd_multicast  andDLdel_multicast  routines.

Theflags  element can take the following values:

BOARD_PRESENT The board specificinit  routines will turn on the
BOARD_PRESENT bit after a successful initialization and
reset sequence.

BOARD_DISABLED An unsuccessful initialization or a reset sequence will
result in the hardware dependent part of the driver turning
on theBOARD_DISABLED bit. In addition, this bit could
be turned on if the driver recognizes a malfunctioning
board.

TX_BUSY The bit indicates a temporary lack of resources (e.g.,
buffers needed to transmit a packet).

TX_QUEUED This bit indicates packets waiting to be transmitted over
the network.

Each SAP is identified by a set of standard parameters that describe both the type of the
SAP and its operational characteristics. Each instance of a SAP is associated with a sap
structure (DL_sap_t ).

state Identifies the current state of the SAP as defined by DLPI.
Must be initialized toDL_UNBOUND by the driver specific
init  routines.

sap_addr An unique identifier for the SAP.

flags Defines the operational characteristics of the SAP.

read_q The read side STREAMS queue associated with the SAP.

write_q The write side STREAMS queue associated with the SAP.

mac_type One ofDL_ETHER, DL_CSMACD, or DL_FDDI depend-
ing on the type of the SAP.

service_mode DL_CLDLS , Connection Less Data Link Service.

provider_style DL_STYLE1 .

bd Back pointer that points to the controlling board.

next_sap Points to next SAP in the list of valid SAPs.

max_spdu Maximum amount of user data that can be transmitted in
every frame and this is a function of the type of the SAP.
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min_spdu Minimum amount of user data that can be transmitted in
every frame and this is a function of the type of the SAP.

sap_sv SAP synchronization variable

Theflags  field of the SAP structure can assume the following values:

RAWCSMACD A SAP through which only 802.3 frames are sent and
received.

SNAPCSMACD A SAP that sends and receives SNAP format frames.

PROMISCUOUS A SAP that receives a copy of all the inbound frames irre-
spective of the destination SAP.

SEND_LOCAL_TO_NET Indicates that a copy of all the loopback frames should
also be sent over the network.

PRIVILEGED Need super-user permission to operate the SAP.

A number of statistical counters are maintained as a part of the configuration structure.
Counters are updated both by the hardware independent and dependent parts of the driver.
A brief description of each counter is provided. A user can retrieve the current values of
the counters using the appropriateioctl s.

ifInOctets The total number of bytes received from a given board.

ifOutOctets The total number of bytes sent from a given board.

ifOutUcastPkts number of unicastpackets sent out.

ifOutNUcastPkts number of broadcast and multicast packets sent out.

ifInDiscards number of valid packets received but dropped.

ifInUcastPkts number of unicast packets received.

ifInNUcastPkts number of broadcast and multicast packets received.

ifInErrors number of packets received with errors.

ifUnknownProtos number of packets received and dropped because of an
invalid destination SAP.

ifOutQlen number of packets queued up for transmission.

ifOutErrors number of packets transmitted with errors.

etherAlignErrors number of frames alignment errors.

etherCRCerrors number of frames with CRC errors.

etherMissedPkts number of missed packets.

etherOverrunErrors number of DMA Overrun errors.

etherUnderrunErrors number of DMA Underrun errors.
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etherCollisions number of collisions.

etherAbortErrors number of Transmits aborted at interface.

etherReadqFull Number of times read queues were flow controlled.

etherRcvResources Number of resource allocation failures (e.g.: Buffers).

The Hardware Independent Layer 11

The Hardware Independent Layer processes all calls made by the DLS user and the hard-
ware dependent layer. It has the following routines:

DLopen() open routine

DLclose() close routine

DLwput() put routine for the write queue

DLrsrv() service routine for the read queue

DLrecv() process a completely formed incoming packet

Note that all of these functions have a common prefix ofDL. This is to make the functions
hardware independent. An#include  file in the Hardware Dependent Layer converts
these functions to be hardware specific. See “Function Names and File Organization.”

Further details on these and related functions can be found in the on-line manual pages.
“DLPI Primitives” contains information on the meaning of error codes used in the proce-
dure list.

The Hardware Dependent Layer 11

The Hardware Dependent Layer provides the services of an external I/O device (Ethernet
controller). It handles data transfer between the kernel and the device and is not involved
in DLPI interface processing other than conversion between data structures used by the
STREAMS mechanism and data structures that the device understands. Additionally, it
updates all the fields (other than the ones mentioned above) in the MIB structure.

Further details on functions for the Hardware Dependent Layer can be found on the man-
ual pages in the on-line manual pages.

Watchdog Routines 11

All implementations of Ethernet drivers contain a watchdog routine. A watchdog routine
monitors adapter activity and informs the user of any malfunctions. Thetimeout()  rou-
tine that is available as a part of the operating system forms the basis for watchdog activ-
ity. The algorithm is as follows:
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• The timer_val  field of theDL_bdconfig_t  structure is set to an
appropriate value and a call totimeout()  (with the watchdog routine as
one of i ts arguments) is made after each packet is transmitted
(DLxmit_packet ( ) )  rou t ine .  The t imer_ id  fi e ld  o f
DL_bdconfig_t  is updated to reflect the return value fromtimeout() .

• Every call to the watchdog routine results in the following:

- Thetimer_val  is decremented.

- If the timer_val  is zero, a warning message is printed out on the
console.

- A non zero of value oftimer_val  results in another call totime-
out  with the original set of arguments.

• As a part of the interrupt processing associated with successful transmis-
sion of packets, a call tountimeout  is issued to cancel the watchdog
activity. Thetimer_id  field of DL_bdconfig_t  is used as the argu-
ment tountimeout .

Function Names and File Organization 11

All function names used (but not necessarily defined) in the Hardware Independent Layer
have the common prefix of DL. Function names in the Hardware Dependent Layer have
the common prefix used with the STREAMS initialization. An include file maps the gen-
eral names of the Hardware Independent Layer to driver specific names of the Hardware
Dependent Layer. This allows us to use the same Hardware Independent Layer routines
without any modification with different device-specific Hardware Dependent Layer rou-
tines to get different drivers. For example, the functionDLxmit_packet()  in the Hard-
ware Independent Layer is defined aseglxmit_packet()  in theegl  driver and as
hpexmit_packet()  in thehpe  driver.

Model of the Data Link Layer 11

The data link layer (layer 2 in the OSI Reference Model) is responsible for the transmis-
sion and error-free delivery of bits of information over a physical communications
medium.

The model of the data link layer is presented here to describe concepts that are used
throughout DLPI. It is described in terms of an interface architecture, as well as address-
ing concepts needed to identify different components of that architecture. The description
of the model assumes familiarity with the OSI Reference Model.

Model of the Service Interface 11

Each layer of the OSI Reference Model has two standards:
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• one that defines the services provided by the layer, and

• one that defines the protocol through which layer services are provided.

DLPI is an implementation of the first type of standard. It specifies an interface to the ser-
vices of the data link layer. Figure 11-8 depicts the abstract view of DLPI.

Figure 11-8.  Abstract View of DLPI

The data link interface is the boundary between the network and data link layers of the
OSI Reference Model. The network layer entity is the user of the services of the data link
interface (DLS user), and the data link layer entity is the provider of those services (DLS
provider). This interface consists of a set of primitives that provide access to the data link
layer services, plus the rules for using those primitives (state transition rules). A data link
interface service primitive might request a particular service or indicate a pending event.

To provide uniformity among the various PowerMAX OS system networking products, an
effort is underway to develop service interfaces that map to the OSI Reference Model. A
set of kernel-level interfaces, based on the STREAMS development environment, consti-
tute a major portion of this effort. The service primitives that make up these interfaces are
defined as STREAMS messages that are transferred between the user and provider of the
service. DLPI is one such kernel-level interface, and is targeted for STREAMS protocol
modules that either use or provide data link services. In addition, user programs that need
to access a STREAMS-based data link provider directly may do so using theputmsg(2)
and getmsg(2)  system calls.

In Figure 11-8, the DLS provider is configured as a STREAMS driver, and the DLS user
accesses the provider using open(2)  to establish a stream to the DLS provider. The
stream acts as a communication endpoint between a DLS user and the DLS provider. After
the stream is created, the DLS user and DLS provider communicate via messages.

DLPI is intended to free data link users from specific knowledge of the characteristics of
the data link provider. Specifically, the definition of DLPI hopes to achieve the goal of
allowing a DLS user to be implemented independent of a specific communications
medium. Any data link provider (supporting any communications medium) that conforms
to DLPI may be substituted beneath the DLS user to provide the data link services. Sup-

DLPI

Data
Link user

Data Link
Provider Indication/Confirmation

Primitives

Request/Response
Primitives

162010



STREAMS Modules and Drivers

11-16

port of a new DLS provider should not require any changes to the implementation of the
DLS user.

Modes of Communication 11

The data link provider interface supports two modes of communication: connection and
connectionless. The connection mode is circuit-oriented and enables data to be transferred
over a pre-established connection in a sequenced manner. Data may be lost or corrupted in
this service mode, however, due to provider-initiated re-synchronization or connection
aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained
units with no logical relationship required between units. Because there is no acknowledg-
ment of each data unit transmission, this service mode can be unreliable in the most gen-
eral case. However, a specific DLS provider can provide assurance that messages will not
be lost, duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can
send data and request the return of data at the same time. Although the exchange service is
connectionless, in-sequence delivery is guaranteed for data sent by the initiating station.
The data unit transfer is point-to-point.

Connection-Mode Service 11

The connection-mode service is characterized by four phases of communication:

Local Management This phase enables a DLS user to initialize a stream for
use in communication and establish an identity with the
DLS provider.

Connection Establishment This phase enables two DLS users to establish a data link
connection between them to exchange data. One user (the
calling DLS user) initiates the connection establishment
procedures, while another user (the called DLS user) waits
for incoming connect requests. The called DLS user is
identified by an address associated with its stream. For
both the calling and called DLS users, only one connection
may be established per stream.

Thus, the stream is the communication endpoint for a data
link connection.

The called DLS user may choose to accept a connection
on the stream where it received the connect request, or it
may open a new stream to the DLS provider and accept the
connection on this new, responding stream. By accepting
the connection on a separate stream, the initial stream can
be designated as a listening stream through which all con-
nect requests will be processed. As each request arrives, a
new stream (communication endpoint) can be opened to
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handle the connection, enabling subsequent requests to be
queued on a single stream until they can be processed.

Data Transfer In this phase, the DLS users are considered peers and may
exchange data simultaneously in both directions over an
established data link connection. Either DLS user may
send data to its peer DLS user at any time. Data sent by a
DLS user is guaranteed to be delivered to the remote user
in the order in which it was sent.

Connection Release This phase enables either DLS user, or the DLS provider,
to break an established connection. The release procedure
is considered abortive, so any data that has not reached the
destination user when the connection is released may be
discarded by the DLS provider.

Connectionless-Mode Service 11

The connectionless mode service does not use the connection establishment and release
phases of the connection-mode service. The local management phase is still required to
initialize a stream. Once initialized, however, the connectionless data transfer phase is
immediately entered. Because there is no established connection, however, the connec-
tionless data transfer phase requires the DLS user to identify the destination of each data
unit to be transferred. The destination DLS user is identified by the address associated
with its user.

Connectionless data transfer does not guarantee that data units will be delivered to the des-
tination user in the order in which they were sent. Furthermore, it does not guarantee that a
given data unit will reach the destination DLS user, although a given DLS provider may
provide assurance that data will not be lost.

DLPI Addressing 11

Each user of DLPI must establish an identity to communicate with other data link users.
This identity consists of two pieces. First, the DLS user must somehow identify the physi-
cal medium over which it will communicate. This is particularly evident on systems that
are attached to multiple physical media. Second, the DLS user must register itself with the
DLS provider so that the provider can deliver protocol data units destined for that user.
Figure 11-9 illustrates the components of this identification approach.
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Figure 11-9.  Data Link Addressing Components

Physical Attachment Identification 11

The physical point of attachment (PPA in Figure 11-9) is the point at which a system
attaches itself to a physical communications medium. All communication on that physical
medium funnels through the PPA. On systems where a DLS provider supports more than
one physical medium, the DLS user must identify which medium it will communicate
through. A PPA is identified by a unique PPA identifier. For media that support physical
layer multiplexing of multiple channels over a single physical medium (such as the B and
D channels of ISDN), the PPA identifier must identify the specific channel over which
communication will occur.

Two styles of DLS provider are defined by DLPI, distinguished by the way they enable a
DLS user to choose a particular PPA. Thestyle 1 provider assigns a PPA based on the
major/minor device the DLS user opened. One possible implementation of astyle 1 driver
would reserve a major device for each PPA the data link driver would support. This would
allow the STREAMScloneopen  feature to be used for each PPA configured. This style
of provider is appropriate when few PPAs will be supported.

If the number of PPAs a DLS provider will support is large, astyle 2 provider implementa-
tion is more suitable. Thestyle 2 provider requires a DLS user to explicitly identify the
desired PPA using a specialattach  service primitive. For astyle 2 driver, theopen(2)
creates a stream between the DLS user and DLS provider, and theattach  primitive then
associates a particular PPA with that stream. The format of the PPA identifier is specific to
the DLS provider, and should be described in the provider-specific addendum documenta-
tion.
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Data Link User Identification 11

A data link user's identity is established by associating it with a data link service access
point (DLSAP), which is the point through which the user will communicate with the data
link provider. A DLSAP is identified by a DLSAP address.

The DLSAP address identifies a particular data link service access point that is associated
with a stream (communication endpoint). Abind  service primitive enables a DLS user to
either choose a specific DLSAP by specifying its DLSAP address, or to determine the
DLSAP associated with a stream by retrieving the bound DLSAP address. This DLSAP
address can then be used by other DLS users to access a specific DLS user. The format of
the DLSAP address is specific to the DLS provider, and should be described in the pro-
vider-specific addendum documentation. However, DLPI provides a mechanism for
decomposing the DLSAP address into component pieces. TheDL_INFO_ACK primitive
returns the length of the SAP component of the DLSAP address, along with the total
length of the DLSAP address.

Certain DLS Providers require the capability of binding on multiple DLSAP addresses.
This can be achieved through subsequent binding of DLSAP addresses. DLPI supports
peer andhierarchical binding of DLSAPs. When the User requests peer addressing, the
DLSAP specified in a subsequent bind may be used in lieu of the DLSAP bound in the
DL_BIND_REQ. This will allow for a choice to be made between a number of DLSAPs on
a stream when determining traffic based on DLSAP values. An example of this would be
to specify variousether_type  values as DLSAPs. TheDL_BIND_REQ, for example,
could be issued withether_type  value of IP, and a subsequent bind could be issued
with ether type value of ARP. The Provider may now multiplex off of theether_type
field and allow for either IP or ARP traffic to be sent up this stream.

When the DLS User requests hierarchical binding, the subsequent bind will specify a
DLSAP that will be used in addition to the DLSAP bound using aDL_BIND_REQ. This
will allow additional information to be specified, that will be used in a header or used for
demultiplexing. An example of this would be to use hierarchical bind to specify the OUI
(Organizationally Unique Identifier) to be used by SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is
used as the source SAP when there is ambiguity.

DLPI supports the ability to associate several streams with a single DLSAP, where each
stream may be a unique data link connection endpoint. However, not all DLS providers
can support such configurations because some DLS providers may have no mechanism
beyond the DLSAP address for distinguishing multiple connections. In such cases, the
provider will restrict the DLS user to one stream per DLSAP.

The Connection Management Stream 11

The earlier description of the connection-mode service assumed that a DLS user bound a
DLSAP to the stream it would use to receive connect requests. In some instances, how-
ever, it is expected that a given service may be accessed through any one of several
DLSAPs. To handle this scenario, a separate stream would be required for each possible
destination DLSAP, regardless of whether any DLS user actually requested a connection
to that DLSAP. Obvious resource problems can result in this scenario.
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To obviate the need for tying up system resources for all possible destination DLSAPs, a
connection management stream utility is defined in DLPI. A connection management
stream is one that receives any connect requests that are not destined for currently bound
DLSAPs capable of receiving connect indications. With this mechanism, a special listener
can handle incoming connect requests intended for a set of DLSAPs by opening a connec-
tion management stream to the DLS provider that will retrieve all connect requests arriv-
ing through a particular PPA. In the model, then, there may be a connection management
stream per PPA.

DLPI Services 11

The various features of the DLPI interface are defined in terms of the services provided by
the DLS provider, and the individual primitives that may flow between the DLS user and
DLS provider.

The data link provider interface supports three modes of service:

Connection The connection mode is circuit-oriented and enables data to be
transferred over an established connection in a sequenced manner.

Connectionless The connectionless mode is message-oriented and supports data
transfer in self-contained units with no logical relationship
required between units.

Acknowledged Connectionless
Theacknowledged connectionless mode is similar to connection-
less mode, however, messages are acknowledged and in-sequence
delivery is guaranteed for sender data.

The XID and TEST services that are supported by DLPI are listed in Table 11-1. The DLS
user can issue an XID or TEST request to the DLS Provider. The Provider will transmit an
XID or TEST frame to the peer DLS Provider. On receiving a response, the DLS Provider
sends a confirmation primitive to the DLS user. On receiving an XID or TEST frame from
the peer DLS Provider, the local DLS Provider sends up an XID or TEST indication prim-
itive to the DLS user. The user must respond with an XID or TEST response frame to the
Provider

The services are shown in Table 11-1 and described more fully in the remainder of this
section.
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Table 11-1.  DLS Services and Primitives

Phase Service Primitives

Local Management Information
Reporting

DL_INFO_REQ, DL_INFO_ACK,
DL_ERROR_ACK

Attach DL_ATTACH_REQ,
DL_DETACH_REQ, DL_OK_ACK,
DL_ERROR_ACK

Bind DL_BIND_REQ, DL_BIND_ACK,
DL_SUBS_BIND_REQ,
DL_SUBS_BIND_ACK,
DL_UNBIND_REQ,
DL_SUBS_UNBIND_REQ,
DL_OK_ACK, DL_ERROR_ACK

Other DL_ENABMULTI_REQ,
DL_DISABMULTI_REQ,
DL_OK_ACK, DL_ERROR_ACK

Optional DL_GET_STATISTICS_ACK,
DL_GET_STATISTICS_REQ,
DL_PHYS_ADDR_ACK,
DL_PHYS_ADDR_REQ,
DL_SET_PHYS_ADDR_REQ

Connection
Establishment

Connection
Establishment

DL_CONNECT_REQ,
DL_CONNECT_IND,
DL_CONNECT_RES,
DL_CONNECT_CON,
DL_DISCONNECT_REQ,
DL_DISCONNECT_IND,
DL_TOKEN_REQ,
DL_TOKEN_ACK, DL_OK_ACK,
DL_ERROR_ACK

Connection-mode
Data Transfer

Data Transfer DL_DATA_REQ, DL_DATA_IND

Reset DL_RESET_REQ,
DL_RESET_IND,
DL_RESET_RES,
DL_RESET_CON, DL_OK_ACK,
DL_ERROR_ACK

Connection Release Connection Release DL_DISCONNECT_REQ,
DL_DISCONNECT_IND,
DL_OK_ACK, DL_ERROR_ACK

Connectionless-
mode
Data Transfer

Data Transfer DL_UNITDATA_REQ,
DL_UNITDATA_IND
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Local Management Services 11

The local management services apply to both the connection and connectionless modes of
transmission. These services, which fall outside the scope of standards specifications,
define the method for initializing a stream that is connected to a DLS provider. DLS pro-
vider information reporting services are also supported by the local management facilities

Information Reporting 11

This service provides information about the DLPI stream to the DLS user. The message
DL_INFO_REQ requests the DLS provider to return operating information about the
stream. The DLS provider returns the information in aDL_INFO_ACK message.
Figure 11-10 shows the normal message sequence.

QOS Management DL_UDQOS_REQ,
DL_OK_ACK,
DL_ERROR_ACK

Error Reporting DL_UDERROR_IND

XID and TEST
services

XID DL_XID_REQ,
DL_XID_IND,
DL_XID_RES,
DL_XID_CON

TEST DL_TEST_REQ,
DL_TEST_IND,
DL_TEST_RES,
DL_TEST_CON

Acknowledged
Connectionless-
mode
Data Transfer

Data Transfer DL_DATA_ACK_REQ,
DL_DATA_ACK_IND,
DL_DATA_ACK_STATUS_IN,
DL_REPLY_REQ,
DL_REPLY_IND,
DL_REPLY_STATUS_IND,
DL_REPLY_UPDATE_REQ,
DL_REPLY_UPDATE_STATUS_IND

QOS Management DL_UDQOS_REQ,
DL_OK_ACK, DL_ERROR_ACK

Error Reporting DL_UDERROR_IND

Table 11-1.  DLS Services and Primitives  (Cont.)

Phase Service Primitives



Data Link Provider Interface

11-23

Figure 11-10.  Information Reporting

Attach Service 11

The attach service assigns a physical point of attachment (PPA) to a stream. This service is
required forstyle 2 DLS providers to specify the physical medium over which communi-
cation will occur. The DLS provider indicates success with aDL_OK_ACK, and indicates
failure with aDL_ERROR_ACK. The normal message sequence is illustrated in
Figure 11-11.

Figure 11-11.  Attaching a Stream to a Physical Line

A PPA may be disassociated with a stream using theDL_DETACH_REQ. The normal mes-
sage sequence is illustrated in Figure 11-12.
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Figure 11-12.  Detaching a Stream to a Physical Line

Bind Service 11

The bind service associates a data link service access point (DLSAP) with a stream. The
DLSAP is identified by a DLSAP address. Each stream open to a DLS provider can have
at most one DLSAP associated with it.

DL_BIND_REQ requests that the DLS provider bind a DLSAP to a stream. It also notifies
the DLS provider to make the stream active with respect to the DLSAP for processing
connectionless data transfer and connection establishment requests. Protocol-specific
actions taken during activation should be described in DLS provider-specific addenda.

The DLS provider indicates success with aDL_BIND_ACK, and indicates failure with a
DL_ERROR_ACK.

Certain DLS providers require the capability of binding on multiple DLSAP addresses.
DL_SUBS_BIND_REQ provides that added capability. The DLS provider indicates suc-
cess with aDL_SUBS_BIND_ACK, and indicates failure with aDL_ERROR_ACK.

The normal flow of messages is illustrated in Figure 11-13.
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Figure 11-13.  Binding a Stream to a DLSAP

DL_UNBIND_REQ requests the DLS provider to unbind a DLSAP from a stream. The
DLS provider indicates success with aDL_OK_ACK and indicates failure with a
DL_ERROR_ACK. The normal message sequence is shown in Figure 11-14.
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Figure 11-14.  Unbinding a Stream to a DLSAP

DL_ENABMULTI_REQ requests that the DLS Provider enable specific multicast addresses
on a per stream basis. The Provider indicates success with aDL_OK_ACK, and indicates
failure with aDL_ERROR_ACK as shown in Figure 11-15.

Figure 11-15.  Enabling a Specific Multicast Address on a Stream

DL_DISABMULTI_REQ requests that the DLS Provider disables specific multicast
addresses on a per Stream basis. The Provider indicates success with aDL_OK_ACK, and
indicates failure with aDL_ERROR_ACK as shown in Figure 11-16.
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Figure 11-16.  Disabling a Specific Multicast Address on a Stream

Connection-mode Services 11

The connection-mode services enable a DLS user to establish a data link connection,
transfer data over that connection, reset the link, and release the connection when the con-
versation has terminated.

Connection Establishment Service 11

The connection establishment service establishes a data link connection between a local
DLS user and a remote DLS user for the purpose of sending data. Only one data link con-
nection is allowed on each stream.

Normal Connection Establishment 11

In the connection establishment model, the calling DLS user initiates connection estab-
lishment, while the called DLS user waits for incoming requests.DL_CONNECT_REQ
requests that the DLS provider establish a connection.DL_CONNECT_IND informs the
called DLS user of the request, which may be accepted usingDL_CONNECT_RES.
DL_CONNECT_CON informs the calling DLS user that the connection has been estab-
lished.

The normal sequence of messages is illustrated in Figure 11-17.

162090
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Figure 11-17.  Successful Connection Establishment

Once the connection is established, the DLS users may exchange user data using
DL_DATA_REQ andDL_DATA_IND.

The DLS user may accept an incoming connect request on either the stream where the
connect indication arrived or an alternate, responding stream. The responding stream is
indicated by a token in theDL_CONNECT_RES. This token is a value associated with the
responding stream, and is obtained by issuing aDL_TOKEN_REQ on that stream. The DLS
provider responds to this request by generating a token for the stream and returning it to
the DLS user in aDL_TOKEN_ACK. The normal sequence of messages for obtaining a
token is illustrated in Figure 11-18.

Figure 11-18.  Token Retrieval

In the typical connection establishment scenario, the called DLS user processes one con-
nect indication at a time, accepting the connection on another stream. Once the user
responds to the current connect indication, the next connect indication (if any) can be pro-
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cessed. DLPI also enables the called DLS user to multi-thread incoming connect indica-
tions. The user can receive multiple connect indications before responding to any of them.
This enables the DLS user to establish priority schemes on incoming connect requests.

Connection Establishment Rejections 11

In certain situations, the connection establishment request cannot be completed. The fol-
lowing paragraphs describe the occasions under whichDL_DISCONNECT_REQ and
DL_DISCONNECT_IND primitives will flow during connection establishment, causing
the connect request to be aborted.

Figure 11-19 shows an example where the called DLS user chooses to reject the connect
request by issuingDL_DISCONNECT_REQ instead ofDL_CONNECT_RES.

Figure 11-19.  DLS User Rejection of Connection Establishment Attempt

Figure 11-20 shows an example where the DLS provider rejects a connect request for lack
of resources or other reason. The DLS provider sendsDL_DISCONNECT_IND in
response toDL_CONNECT_REQ.
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Figure 11-20.  DLS Provider Rejection of Connection Establishment Attempt

Figure 11-21 shows an example where the calling DLS user chooses to abort a previous
connection attempt. The DLS user issuesDL_DISCONNECT_REQ at some point follow-
ing aDL_CONNECT_REQ. The resulting sequence of primitives depends on the relative
timing of the primitives involved, as defined in the following time sequence diagrams.

Figure 11-21.  Both Primitives Are Destroyed by Provider

Data Transfer Service 11

The connection-mode data transfer service provides for the exchange of user data in either
direction or in both directions simultaneously between DLS users. Data is transmitted in
logical groups called data link service data units (DLSDUs). The DLS provider preserves
both the sequence and boundaries of DLSDUs as they are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to the DLS users, if
they so choose, to implement a confirmation protocol.
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EachDL_DATA_REQ primitive conveys a DLSDU from the local DLS user to the DLS
provider. Similarly, eachDL_DATA_IND primitive conveys a DLSDU from the DLS pro-
vider to the remote DLS user. The normal flow of messages is illustrated in Figure 11-22.

Figure 11-22.  Normal Flow

Connection Release Service 11

The connection release service provides for the DLS users or the DLS provider to initiate
the connection release. Connection release is an abortive operation, and any data in transit
(has not been delivered to the DLS user) may be discarded.

DL_DISCONNECT_REQ requests that a connection be released.DL_DISCONNECT_IND
informs the DLS user that a connection has been released. Normally, one DLS user
requests disconnection and the DLS provider issues an indication of the ensuing release to
the other DLS user, as illustrated by the message flow in Figure 11-23.
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Figure 11-23.  DLS User-Invoked Connection Release

Figure 11-24 illustrates that when two DLS users independently invoke the connection
release service, neither receives aDL_DISCONNECT_IND.

Figure 11-24.  Simultaneous DLS User-Invoked Connection Release

Figure 11-25 shows that when a DLS provider initiates the connection release service,
each DLS user receives aDL_DISCONNECT_IND.
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Figure 11-25.  DLS Provider Invoked Connection Release

Figure 11-26 illustrates that when the DLS provider and the local DLS user simulta-
neously invoke the connection release service, the remote DLS user receives a
DL_DISCONNECT_IND.

Figure 11-26.  Simultaneous DLS User and Provider Connection Release

Reset Service 11

The reset service may be used by the DLS user to resynchronize the use of a data link con-
nection, or by the DLS provider to report detected loss of data unrecoverable within the
data link service.

Invocation of the reset service will unblock the flow of DLSDUs if the data link connec-
tion is congested. DLSDUs may be discarded by the DLS provider. The DLS user or users
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that did not invoke the reset will be notified that a reset has occurred. A reset may require
a recovery procedure to be performed by the DLS users.

The interaction between each DLS user and the DLS provider will be one of the following:

• a DL_RESET_REQ from the DLS user, followed by aDL_RESET_CON
from the DLS provider;

• a DL_RESET_IND f rom the  DLS prov ider,  fo l l owed by  a
DL_RESET_RES from the DLS user.

TheDL_RESET_REQ acts as a synchronization mark in the stream of DLSDUs that are
transmitted by the issuing DLS user. TheDL_RESET_IND acts as a synchronization mark
in the stream of DLSDUs that are received by the peer DLS user. Similarly, the
DL_RESET_RES acts as a synchronization mark in the stream of DLSDUs that are trans-
mitted by the responding DLS user. TheDL_RESET_CON acts as a synchronization mark
in the stream of DLSDUs that are received by the DLS user which originally issued the
reset.

The resynchronizing properties of the reset service are that:

• No DLSDU transmitted by the DLS user before the synchronization mark
in that transmitted stream will be delivered to the other DLS user after the
synchronization mark in that received stream.

• The DLS provider will discard all DLSDUs submitted before the issuing of
the DL_RESET_REQ that have not been delivered to the peer DLS user
when the DLS provider issues theDL_RESET_IND.

• The DLS provider will discard all DLSDUs and EDLSDUs submitted
before the issuing of theDL_RESET_RES that have not been delivered to
the initiator of theDL_RESET_REQ when the DLS provider issues the
DL_RESET_CON.

• No DLSDU or EDLSDU transmitted by a DLS user after the synchroniza-
tion mark in that transmitted stream will be delivered to the other DLS user
before the synchronization mark in that received stream.

The complete message flow depends on the origin of the reset, which may be the DLS pro-
vider or either DLS user. Figure 11-27 illustrates the message flow for a reset invoked by
one DLS user.
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Figure 11-27.  DLS User-Invoked Connection Reset

Figure 11-28 illustrates the message flow for a reset invoked by both DLS users simulta-
neously.

Figure 11-28.  Simultaneous DLS User-Invoked Connection Reset

Figure 11-29 illustrates the message flow for a reset invoked by the DLS provider.
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Figure 11-29.  DLS Provider-Invoked Connection Reset

Figure 11-30 illustrates the message flow for a reset invoked simultaneously by one DLS
user and the DLS provider.

Figure 11-30.  Simultaneous DLS User/Provider-Invoked Connection Reset
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Connectionless-Mode Services 11

The connectionless-mode services enable a DLS user to transfer units of data to peer DLS
users without incurring the overhead of establishing and releasing a connection. The con-
nectionless service does not, however, guarantee reliable delivery of data units between
peer DLS users. For example, a lack of flow control may cause buffer resource shortages
that result in data being discarded.

Once a stream has been initialized via the local management services, it may be used to
send and receive connectionless data units.

Connectionless Data Transfer Service 11

The connectionless data transfer service provides for the exchange of user data (DLSDUs)
in either direction or in both directions simultaneously without having to establish a data
link connection. Data transfer is neither acknowledged nor confirmed, and there is no end-
to-end flow control provided. As such, the connectionless data transfer service cannot
guarantee reliable delivery of data. However, a specific DLS provider can provide assur-
ance that messages will not be lost, duplicated, or reordered.

DL_UNITDATA_REQ conveys one DLSDU to the DLS provider.DL_UNITDATA_IND
conveys one DLSDU to the DLS user. The normal flow of messages is illustrated in
Figure 11-31.

Figure 11-31.  Connectionless Data Transfer

QOS Management Service 11

The QOS (Quality of Service) management service enables a DLS user to specify the
quality of service it can expect for each invocation of the connectionless data transfer ser-
vice. TheDL_UDQOS_REQ directs the DLS provider to set the QOS parameters to the
specified values. The normal flow of messages is illustrated in Figure 11-32.
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Figure 11-32.  Connectionless Data Transfer (QOS)

Error Reporting Service 11

The connectionless-mode error reporting service may be used to notify a DLS user that a
previously sent data unit either produced an error or could not be delivered. This service
does not, however, guarantee that an error indication will be issued for every undeliverable
data unit.

XID and TEST Service 11

The XID and TEST service enables the DLS User to issue an XID or TEST request to the
DLS Provider. On receiving a response for the XID or TEST frame transmitted to the peer
DLS Provider, the DLS Provider sends up an XID or TEST confirmation primitive to the
DLS User. On receiving an XID or TEST frame from the peer DLS Provider, the local
DLS Provider sends up an XID or TEST indication respectively to the DLS User. The
DLS User must respond with an XID or TEST response primitive.

If the DLS User requested automatic handling of the XID or TEST response, at bind time,
the DLS Provider will send up an error acknowledgment on receiving an XID or TEST
request. Also, no indications will be generated to the DLS User on receiving XID or TEST
frames from the remote side.

The normal flow of messages for the XID service is illustrated in Figure 11-33.
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Figure 11-33.  Message Flow: XID Service

The normal flow of messages for the TEST service is illustrated in Figure 11-34.

Figure 11-34.  Message Flow: TEST Service

Acknowledged Connectionless-Mode Services 11

The acknowledged connectionless-mode services are designed for general use for the reli-
able transfer of information between peer DLS Users. These services are intended for
applications that require acknowledgment of cross-LAN data unit transfer, but need to
avoid the complexity that is viewed as being associated with the connection-mode ser-
vices. Although the exchange service is connectionless, in-sequence delivery is guaran-
teed for data sent by the initiating station.
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Acknowledged Connectionless-Mode Data Transfer Services 11

The acknowledged connectionless-mode data transfer services provide the means by
which the DLS Users can exchange DLSDUs which are acknowledged at the LLC sub-
layer, without the establishment of a Data Link connection. The services provide a means
by which a local DLS User can send a data unit to the peer DLS User, request a previously
prepared data unit, or exchange data units with the peer DLS User.

Figure 11-35 illustrates the acknowledged connectionless-mode data unit transmission
service.

Figure 11-35.  Acknowledged Connectionless-Mode Transmission Service

Figure 11-36 illustrates the acknowledged connectionless-mode data unit exchange ser-
vice.

Figure 11-36.  Acknowledged Connectionless-Mode Exchange Service

Figure 11-37 illustrates the Reply Data Unit Preparation service.
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Figure 11-37.  Reply Data Unit Preparation Service

Error Reporting Service 11

The acknowledged connectionless mode error reporting service is the same as the unac-
knowledged connectionless-mode error reporting service.

Connection-Mode Example 11

Figure 11-38 illustrates the primitives that flow during a complete, connection-mode
sequence between streamopen  and streamclose .
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Figure 11-38.  Connection Mode Example
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DLPI Primitives 11

The kernel-level interface to the data link layer defines a Streams-based message interface
between the provider of the data link service (DLS provider) and the consumer of the data
link service (DLS user). Streams provides the mechanism in which DLPI primitives may
be passed between the DLS user and DLS provider.

Before DLPI primitives can be passed between the DLS user and DLS provider, the DLS
user must establish a stream to the DLS provider using open(2) . The DLS provider
must therefore be configured as a STREAMS driver. When interactions between the DLS
user and DLS provider have completed, the stream may be closed.

The Streams messages used to transport data link service primitives across the interface
have one of the following formats:

• OneM_PROTO message block followed by zero or moreM_DATA blocks.
TheM_PROTO message block contains the data link layer service primitive
type and all relevant parameters associated with the primitive. The
M_DATA block(s) contain any DLS user data that might be associated with
the service primitive.

• OneM_PCPROTO message block containing the data link layer service
primitive type and all relevant parameters associated with the service prim-
itive.

• One or moreM_DATA message blocks conveying user data.

The information contained in theM_PROTO or M_PCPROTO message blocks must begin
on a byte boundary that is appropriate for structure alignment. STREAMS will allocate
buffers that begin on such a boundary. However, these message blocks may contain infor-
mation whose representation is described by a length and an offset within the block. An
example is the DLSAP address (dl_addr_length  anddl_addr_offset ) in the
DL_BIND_ACK primitive. The offset of such information within the message block is not
guaranteed to be properly aligned for casting the appropriate data type (such as anint  or
astructure).

The following sections describe the format of the primitives that support the services
described in the previous section. The primitives are grouped into four general categories:

• Local Management Service Primitives

• Connection-mode Service Primitives

• Connectionless-mode Service Primitives

• Acknowledged Connectionless-mode Service Primitives

Local Management Service Primitives 11

This section describes the local management service primitives that are common to both
the connection and connectionless service modes. These primitives support the Informa-
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tion Reporting, Attach, and Bind services described earlier. Once a stream has been
opened by a DLS user, these primitives initialize the stream, preparing it for use.

PPA Initialization / De-initialization 11

The PPA associated with each stream must be initialized before the DLS provider can
transfer data over the medium. The initialization and de-initialization of the PPA is a net-
work management issue, but DLPI must address the issue because of the impact such
actions will have on a DLS user. More specifically, DLPI requires the DLS provider to ini-
tialize the PPA associated with a stream at some point before it completes processing of
theDL_BIND_REQ. Guidelines for initialization and de-initialization of a PPA by a DLS
provider are presented here.

A DLS provider may initialize a PPA using the following methods:

• Pre-initialized by some network management mechanism before the
DL_BIND_REQ is received; or

• Automat ic  in i t ia l i za t ion  on  rece ip t  o f  aDL_BIND_REQ o r
DL_ATTACH_REQ.

A specific DLS provider may support either of these methods, or possibly some combina-
tion of the two, but the method implemented has no impact on the DLS user. From the
DLS user's viewpoint, the PPA is guaranteed to be initialized on receipt of a
DL_BIND_ACK. For automatic initialization, this implies that theDL_BIND_ACK may
not be issued until the initialization has completed.

If pre-initialization has not been performed and/or automatic initialization fails, the DLS
provider will fail theDL_BIND_REQ. Two errors,DL_INITFAILED  andDL_NOTINIT,
may be returned in theDL_ERROR_ACK response to aDL_BIND_REQ if PPA initialization
fails. DL_INITFAILED  is returned when a DLS provider supports automatic PPA initial-
ization, but the initialization attempt failed.DL_NOTINIT  is returned when the DLS pro-
vider requires pre-initialization, but the PPA is not initialized before theDL_BIND_REQ is
received.

A DLS provider may handle PPA de-initialization using the following methods:

• automatic de-initialization on receipt of the finalDL_DETACH_REQ (for
style 2 providers) orDL_UNBIND_REQ (for style 1 providers), or when
closing of the last stream associated with the PPA;

• automatic de-initialization after expiration of a timer following the last
DL_DETACH_REQ, DL_UNBIND_REQ, or close as appropriate; or

• no automatic de-initialization; administrative intervention is required to de-
initialize the PPA at some point after it is no longer being accessed.

A specific DLS provider may support any of these methods, or possibly some combination
of them, but the method implemented has no impact on the DLS user. From the DLS user's
viewpoint, the PPA is guaranteed to be initialized and available for transmission until it
closes or unbinds the stream associated with the PPA.

DLS provider-specific addendum documentation should describe the method chosen for
PPA initialization and de-initialization.
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Further details on the service primitives for local management can be found in the on-line
manual pages.

Connection-Mode Service Primitives 11

This section describes the service primitives that support the connection-mode service of
the data link layer. These primitives support the connection establishment, connection-
mode data transfer, and connection release services described earlier.

Connection Establishment 11

In the connection establishment model, the calling DLS user initiates a request for a con-
nection, and the called DLS user receives each request and either accepts or rejects it. In
the simplest form (single-threaded), the called DLS user is passed a connect indication
and the DLS provider holds any subsequent indications until a response for the current
outstanding indication is received. At most one connect indication is outstanding at any
time.

DLPI also enables a called DLS user to multi-thread connect indications and responses.
This capability is desirable, for example, when imposing a priority scheme on all DLS
users attempting to establish a connection. The DLS provider will pass all connect indica-
tions to the called DLS user (up to some pre-established limit as set byDL_BIND_REQ
andDL_BIND_ACK). The called DLS user may then respond to the requests in any order.

To support multi-threading, a correlation value is needed to associate responses with the
appropr iate connect  indicat ion.  A correlat ion value is contained in each
DL_CONNECT_IND, and the DLS user must use this value in theDL_CONNECT_RES or
DL_DISCONNECT_REQ primitive used to accept or reject the connect request. The DLS
user can also receive aDL_DISCONNECT_IND with a correlation value when the calling
DLS user or the DLS provider abort a connect request.

Once a connection has been accepted or rejected, the correlation value has no meaning to
a DLS user. The DLS provider may reuse the correlat ion value in another
DL_CONNECT_IND. Thus, the lifetime of a correlation value is the duration of the con-
nection establishment phase, and as good programming practice it should not be used for
any other purpose by the DLS provider.

The DLS provider assigns the correlation value for each connect indication. Correlation
values must be unique among all outstanding connect indications on a given stream. The
values may, but need not, be unique across all streams to the DLS provider. The correla-
tion value must be a positive, non-zero value. There is no implied sequencing of connect
indications using the correlation value; the values do not have to increase sequentially for
each new connect indication.

Further details on the service primitives for connection-mode can be found in the on-line
manual pages.
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Connectionless-Mode Service Primitives 11

This section describes the primitives that support the connectionless-mode service of the
data link layer. These primitives support the connectionless data transfer service described
earlier.

Further details on the service primitives for connectionless-mode can be found in the on-
line manual pages.

XID and TEST Operations Primitives 11

This section describes the service primitives that support the XID and TEST operations.
The DLS User can issue these primitives to the DLS Provider requesting the provider to
send anXID  or aTEST frame. On receipt of anXID  or TEST frame from the remote side,
the DLS Provider can send the appropriate indication to the User.

Further details on the service primitives for XID and TEST operations can be found in the
on-line manual pages.

Quality of Data Link Service 11

The quality of data link service is defined by the termQuality of Service (QOS), and
describes certain characteristics of transmission between two DLS users. These character-
istics are attributable solely to the DLS provider, but are observable by the DLS users. The
visibility of QOS characteristics enables a DLS user to determine, and possibly negotiate,
the characteristics of transmission needed to communicate with the remote DLS user.
Quality of service characteristics apply to both the connection and connectionless modes
of service. The semantics for each mode are discussed below.

Connection-Mode Service 11

Quality of Service (QOS)refers to certain characteristics of a data link connection as
observed between the connection endpoints. QOS describes the specific aspects of a data
link connection that are attributable to the DLS provider.

QOS is defined in terms of QOS parameters. The parameters give DLS users a means of
specifying their needs. These parameters are divided into two groups, based on how their
values are determined:

• QOS parameters that are negotiated on a per-connection basis during con-
nection establishment; and

• QOS parameters that are not negotiated during connection establishment.
The values are determined or known through other methods, usually
administrative.
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The QOS parameters that can be negotiated during connection establishment are: through-
put, transit delay, priority, and protection. The QOS parameters for throughput and transit
delay are negotiated end-to-end between the two DLS users and the DLS provider. The
QOS parameters for priority and protection are negotiated locally by each DLS user with
the DLS provider. The QOS parameters that cannot be negotiated are residual error rate
and resilience. “Procedures for QOS Negotiation and Selection”describes the rules for
QOS negotiation.

Once the connection is established, the agreed QOS values are not renegotiated at any
point. There is no guarantee by any DLS provider that the original QOS values will be
maintained, and the DLS users are not informed if QOS changes. The DLS provider also
need only record those QOS values selected at connection establishment for return in
response to theDL_INFO_REQ primitive.

QOS for Connectionless-Mode Services 11

The QOS for connectionless-mode and acknowledged connectionless-mode service refers
to characteristics of the data link layer between two DLSAPs, attributable to the DLS pro-
vider. The QOS applied to eachDL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive
may  be  independent  o f  the  QOS app l ied  to  p reced ing  and  fo l low ing
DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitives. QOS cannot be negotiated
between two DLS users as in the connection-mode service.

EveryDL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive may have certain QOS val-
ues associated with it. The supported range of QOS parameter values is made known to
the DLS user in response to theDL_INFO_REQ primitive. The DLS user may select spe-
cific QOS parameter values to be associated with subsequent data unit transmissions using
theDL_UDQOS_REQ primitive. This selection is a strictly local management function. If
different QOS values are to be associated with each transmission,DL_UDQOS_REQ may
be issued to alter those values before eachDL_UNITDATA_REQ/DL_DATA_ACK_REQ is
issued.

QOS Parameter Definitions 11

This section describes the quality of service parameters supported by DLPI for both con-
nection-mode and connectionless-mode services. The following table summarizes the sup-
ported parameters. It indicates to which service mode (connection, connectionless, or
both) the parameter applies. For those parameters supported by the connection-mode ser-
vice, the table also indicates whether the parameter value is negotiated during connection
establishment. If so, the table further indicates whether the QOS values are negotiated
end-to-end among both DLS users and the DLS provider, or locally for each DLS user
independently with the DLS provider.
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Throughput 11

Throughput is a connection-mode QOS parameter that has end-to-end significance. It is
defined as the total  number of  DLSDU bi ts successful ly t ransferred by a
DL_DATA_REQ/DL_DATA_INDprimitive sequence divided by the input/output time, in
seconds, for that sequence. Successful transfer of a DLSDU is defined to occur when the
DLSDU is delivered to the intended user without error, in proper sequence, and before
connection termination by the receiving DLS user.

The input/output time for aDL_DATA_REQ/DL_DATA_IND primitive sequence is the
greater of:

• the time between the first and lastDL_DATA_REQ in a sequence; and

• the time between the first and lastDL_DATA_IND in the sequence.

Throughput is only meaningful for a sequence of complete DLSDUs.

Throughput is specified and negotiated for the transmit and receive directions indepen-
dently at connection establishment. The throughput specification defines the target and
minimum acceptable values for a connection. Each specification is an average rate.

The DLS user can delay the receipt or sending of DLSDUs. The delay caused by a DLS
user is not included in calculating the average throughput values.

Parameter Format 11

typedef struct {
long dl_target_value;
long dl_accept_value;

} dl_through_t;

This typedef is used to negotiate the transmit and receive throughput values.

dl_target_value specifies the desired throughput value for the connection
in bits/second.

dl_accept_value specifies the minimum acceptable throughput value for the
connection in bits/second.

Parameter Service Mode Negotiation

throughput connection end-to-end

transit delay both end-to-end

priority both local

protection both local

residual error rate both none

resilience connection none
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Transit Delay 11

Connection and connectionless modes can specify a transit delay, which indicates the
elapsed time between aDL_DATA_REQ or DL_UNITDATA_REQ primitive and the corre-
spondingDL_DATA_IND or DL_UNITDATA_IND primitive. The elapsed time is only
computed for DLSDUs successfully transferred, as described previously for throughput.

In connection mode, transit delay is negotiated on an end-to-end basis during connection
establishment. For each connection, transit delay is negotiated for the transmit and receive
directions separately by specifying the target value and maximum acceptable value. For
connectionless-mode service, a DLS user selects a particular value within the supported
range using theDL_UDQOS_REQ primitive, and the value may be changed for each
DLSDU submitted for connectionless transmission.

The transit delay for an individual DLSDU may be increased if the receiving DLS user
flow controls the interface. The average and maximum transit delay values exclude any
DLS user flow control of the interface. The values are specified in milliseconds, and
assume a DLSDU size of 128 octets.

Parameter Format 11

typedef struct {
long dl_target_value;
long dl_accept_value;

} dl_transdelay_t;

This typedef is used to negotiate the transmit and receive transit delay values.

dl_target_value specifies the desired transit delay value.

dl_accept_value specifies the maximum acceptable transit delay value.

Priority 11

Priority is negotiated locally between each DLS user and the DLS provider in connection-
mode service, and can also be specified for connectionless-mode service. The specifica-
tion of priority is concerned with the relationship between connections or the relationship
between connectionless data transfer requests. The parameter specifies the relative impor-
tance of a connection with respect to:

• the order in which connections are to have their QOS degraded, if neces-
sary; and

• the order in which connections are to be released to recover resources, if
necessary;

For connectionless-mode service, the parameter specifies the relative importance of unit-
data objects with respect to gaining use of shared resources.

For connection-mode service, each DLS user negotiates a particular priority value with the
DLS provider during connection establishment. The value is specified by a minimum and
a maximum within a given range. For connectionless-mode service, a DLS user selects a
particular priority value within the supported range using theDL_UDQOS_REQ primitive,
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and the value may be changed for each DLSDU submitted for connectionless transmis-
sion.

This parameter only has meaning in the context of some management entity or structure
able to judge relative importance. The priority has local significance only, with a value of
zero being the highest priority and100  being the lowest priority.

Parameter Format 11

typedef struct {
long dl_min;
long dl_max;

} dl_priority_t;

dl_min specifies the minimum acceptable priority.

dl_max specifies the maximum desired priority.

Protection 11

Protection is negotiated locally between each DLS user and the DLS provider in connec-
tion-mode service, and can also be specified for connectionless-mode service. Protection
is the extent to which a DLS provider attempts to prevent unauthorized monitoring or
manipulation of DLS user-originated information. Protection is specified by a minimum
and maximum protection option within the following range of possible protection options:

DL_NONE DLS provider will not protect any DLS user data

DL_MONITOR DLS provider will protect against passive monitoring

DL_MAXIMUM DLS provider will protect against modification, replay, addition,
or deletion of DLS user data

For connection-mode service, each DLS user negotiates a particular value with the DLS
provider during connection establishment. The value is specified by a minimum and a
maximum within a given range. For connectionless-mode service, a DLS user selects a
particular value within the supported range using theDL_UDQOS_REQ primitive, and the
value may be changed for each DLSDU submitted for connectionless transmission. Pro-
tection has local significance only.

Parameter Format 11

typedef struct {
long dl_min;
long dl_max;

} dl_protect_t;

dl_min specifies the minimum acceptable protection.

dl_max specifies the maximum desired protection.
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Residual Error Rate 11

Residual error rate is the ratio of total incorrect, lost and duplicate DLSDUs to the total
DLSDUs transferred between DLS users during a period of time. The relationship
between these quantities is defined below:

where

DLSDUtot = total DLSDUs transferred, which is the total ofDLSDUl, DLS-
DUi, DLSDUe, and correctly received DLSDUs.

DLSDUe = DLSDUs received 2 or more times.

DLSDUi = incorrectly received DLSDUs.

DLSDUl = DLSDUs sent, but not received.

Parameter Format 11

long dl_residual_error;

The residual error value is scaled by a factor of 1,000,000, since the parameter is stored as
a long integer in the QOS data structures. Residual error rate is not a negotiated QOS
parameter. Its value is determined by procedures outside the definition of DLPI. It is
assumed to be set by an administrative mechanism, which is informed of the value by net-
work management.

Resilience 11

Resilience is meaningful in connection mode only, and represents the probability of either
DLS provider-initiated disconnects or DLS provider-initiated resets during a time interval
of 10,000 seconds on a connection.

Resilience is not a negotiated QOS parameter. Its value is determined by procedures out-
side the definition of DLPI. It is assumed to be set by an administrative mechanism, which
is informed of the value by network management.

Parameter Format 11

typedef struct {
long dl_disc_prob;
long dl_reset_prob;

} dl_resilience_t;

dl_disc_prob specifies the probability of receiving a provider-initiated discon-
nect, scaled by 10000.

dl_reset_prob specifies the probability of receiving a provider-initiated reset,
scaled by 10000.
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QOS Data Structures 11

To simplify the definition of the primitives containing QOS parameters and the discussion
of QOS negotiation, the QOS parameters are organized into four structures. This section
defines the structures and indicates which structures apply to which primitives.

Each structure is tagged with a type field contained in the first four bytes of the structure,
similar to the tagging of primitives. The type field has been defined because of the current
volatility of QOS parameter definition within the international standards bodies. If new
QOS parameter sets are defined in the future for the data link layer, the type field will
enable DLPI to accommodate these sets without breaking existing DLS user or provider
implementations. If a DLS provider receives a structure type that it does not understand in
a given primitive, the errorDL_BADQOSTYPE should be returned to the DLS user in a
DL_ERROR_ACK primitive.

Currently the following QOS structure types are defined:

DL_QOS_RANGE1 QOS range structure for connection-mode service for
Issue 1 of DLPI

DL_QOS_CO_SEL1 QOS selection structure for connection-mode service for
Issue 1 of DLPI

DL_QOS_CL_RANGE1 QOS range structure for connectionless-mode service for
Issue 1 of DLPI

DL_QOS_CL_SEL1 QOS selection structure for connectionless-mode service
for Issue 1 of DLPI

The syntax and semantics of each structure type is presented in the remainder of this sec-
tion.

Further details on the structures used for Quality of Service can be found in the on-line
manual pages.

Procedures for QOS Negotiation and Selection 11

This section describes the methods used for negotiating and/or selecting QOS parameter
values. In the connection-mode service, some QOS parameter values may be negotiated
during connection establishment. For connectionless-mode service, parameter values may
be selected for subsequent data transmission.

Throughout this section, two special QOS values are referenced. These are defined for all
the parameters used in QOS negotiation and selection. The values are:

DL_UNKNOWN This value indicates that the DLS provider does not know
the value for the field or does not support that parameter.

DL_QOS_DONT_CARE This value indicates that the DLS user does not care to
what value the QOS parameter is set.
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These values are used to distinguish between DLS providers that support and negotiate
QOS parameters and those that cannot. The following sections include the interpretation
of these values during QOS negotiation and selection.

Connection-Mode QOS Negotiation 11

The current connection-mode QOS parameters can be divided into three types as follows:

• Those that are negotiated end-to-end between peer DLS users and the DLS
provider during connection establishment (throughput and transit delay);

• those that are negotiated locally between each DLS user and the DLS pro-
vider during connection establishment (priority and protection); and

• those that cannot be negotiated (residual error rate and resilience).

The rules for processing these three types of parameters during connection establishment
are described in this section.

The current definition of most existing data link protocols does not describe a mechanism
for negotiating QOS parameters during connection establishment. As such, DLPI does not
require every DLS provider implementation to support QOS negotiation. If a given DLS
provider implementation cannot support QOS negotiation, two alternatives are available:

• The DLS provider may specify that any or all QOS parameters are
unknown. This is indicated to the DLS user in theDL_INFO_ACK, where
the values in the QOS range field (indicated bydl_qos_range_length
anddl_qos_range_offset ) and the current QOS field (indicated by
dl_qos_length  anddl_qos_offset ) of this primitive are set to
DL_UNKNOWN.  Th is  va lue  w i l l  a l so  be  ind ica ted  on  the
DL_CONNECT_IND andDL_CONNECT_CON primitives. If the DLS pro-
vider does not support any QOS parameters, the QOS length field may be
set to zero in each of these of these primitives.

• The DLS provider may interpret QOS parameters with strictly local signif-
icance, and their values in theDL_CONNECT_IND primitive will be set to
DL_UNKNOWN.

A DLS user need not select a specific value for each QOS parameter. The special QOS
parameter value,DL_QOS_DONT_CARE, is used if the DLS user does not care what qual-
ity of service is provided for a particular parameter. The negotiation procedures presented
below explain the exact semantics of this value during connection establishment.

If QOS parameters are supported by the DLS provider, the provider will define a set of
default QOS parameter values that are used wheneverDL_QOS_DONT_CARE is specified
for a QOS parameter value. These default values can be defined for all DLS users or can
be defined on a per DLS user basis. The default parameter value set is returned in the QOS
field (indicated bydl_qos_length  anddl_qos_offset ) of theDL_INFO_ACK
before a DLS user negotiates QOS parameter values.

DLS provider addendum documentation must describe the known ranges of support for
the QOS parameters and the default values, and also specify whether they are used in a
local manner only.
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The following procedures are used to negotiate QOS parameter values during connection
establishment.

• TheDL_CONNECT_REQ specifies the DLS user's desired range of QOS
values in thedl_qos_co_range1_t  structure. The target and least-
acceptable values are specified for throughput and transit delay, as
described in “Throughput,” and “Transit Delay.” The target value is the
value desired by the calling DLS user for the QOS parameters. The least-
acceptable value is the lowest value the calling user will accept. These val-
ues are specified separately for both the transmit and receive directions of
the connection.

If either value is set toDL_QOS_DONT_CARE the DLS provider will supply a
default value, subject to the following consistency constraints:

- If DL_QOS_DONT_CARE is specified for the target value, the value
chosen by the DLS provider may not be less than the least-acceptable
value.

- If DL_QOS_DONT_CARE is specified for the least-acceptable value,
the value set by the DLS provider cannot be greater than the target
value.

- If DL_QOS_DONT_CARE is specified for both the target and least-
acceptable value, the DLS provider is free to select any value, with-
out constraint, for the target and least-acceptable values.

For priority and protection, theDL_CONNECT_REQ specifies a minimum and maximum
desired value as defined in “Priority,” and “Protection.” As with throughput and transit
delay, the DLS user may specify a value ofDL_QOS_DONT_CARE for either the minimum
or maximum value. The DLS provider will interpret this value subject to the following
consistency constraints:

• If DL_QOS_DONT_CARE is specified for the maximum value, the value
chosen by the DLS provider may not be less than the minimum value.

• If DL_QOS_DONT_CARE is specified for the minimum value, the value set
by the DLS provider cannot be greater than the maximum value.

• If DL_QOS_DONT_CARE is specified for both the minimum and maximum
values, the DLS provider is free to select any value, without constraint, for
the maximum and minimum values.

The values of the residual error rate and resilience parameters in theDL_CONNECT_REQ
have no meaning and are ignored by the DLS provider.

If the value ofdl_qos_length  in theDL_CONNECT_REQ is set to zero by the DLS
user, the DLS provider should treat all QOS parameter values as if they were set to
DL_QOS_DONT_CARE, selecting any value in its supported range.

If the DLS provider cannot support throughput, transit delay, priority, and protection val-
ues within the ranges specified in theDL_CONNECT_REQ, a DL_DISCONNECT_IND
should be sent to the calling DLS user.

I f  the requested ranges of  values for  throughput and t ransi t  delay in the
DL_CONNECT_REQ are acceptable to the DLS provider, the QOS parameters will be
adjusted to values the DLS provider will support. Only the target value may be adjusted,
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and it is set to a value the DLS provider is willing to provide (which may be of lower QOS
than the target value). The least-acceptable value cannot be modified. The updated QOS
range is then sent to the called DLS user in thedl_qos_co_range1_t  structure of the
DL_CONNECT_IND, where it is interpreted as the available range of service.

If the requested range of values for priority and protection in theDL_CONNECT_REQ is
acceptable to the DLS provider, an appropriate value within the range is selected and
saved for each parameter; these selected values will be returned to the DLS user in the cor-
respondingDL_CONNECT_CON primitive. Because priority and protection are negotiated
locally, theDL_CONNECT_IND will not contain values selected during negotiation with
the calling DLS user. Instead, the DLS provider will offer a range of values in the
DL_CONNECT_IND that will be supported locally for the called DLS user.

The DLS provider will also include the supported values for residual error rate and resil-
ience in theDL_CONNECT_IND that is passed to the called DLS user.

If the DLS provider does not support negotiation of throughput, transit delay, priority, or
protection, a value ofDL_UNKNOWN should be set in the least-acceptable, target, mini-
mum, and maximum value fields of theDL_CONNECT_IND. Also, if the DLS provider
does not support any particular QOS parameter,DL_UNKNOWN should be specified in all
value fields for that parameter. If the DLS provider does not support any QOS parameters,
the value ofdl_qos_length  may be set to zero in theDL_CONNECT_IND.

After receiving theDL_CONNECT_IND, the called DLS user examines the QOS parame-
ter values and selects a specific value from the proffered range of the throughput, transit
delay, priority, and protection parameters. If the called DLS user does not agree on values
in the given range, the connection should be refused with aDL_DISCONNECT_REQ prim-
itive. Otherwise, the selected values are returned to the DLS provider in the
dl_qos_co_sel1_t  structure of theDL_CONNECT_RES primitive.

The values of residual error rate and resilience in theDL_CONNECT_RES are ignored by
the DLS provider. These parameters may not be negotiated by the called DLS user. The
selected values of throughput and transit delay are meaningful, however, and are adopted
for the connection by the DLS provider. Similarly, the selected priority and protection val-
ues are adopted with local significance for the called DLS user.

If the user specifiesDL_QOS_DONT_CARE for either throughput, transit delay, priority, or
protection on theDL_CONNECT_RES, the DLS provider will select a value from the range
specified for that parameter in theDL_CONNECT_IND primitive. Also, a value of zero in
the dl_qos_length  fi e ld  o f  the DL_CONNECT_RES i s  equ iva len t  to
DL_QOS_DONT_CARE for all QOS parameters.

After completion of connection establishment, the values of throughput and transit delay
as selected by the called DLS user are returned to the calling DLS user in the
dl_qos_co_sel1_t  structure of theDL_CONNECT_CON primitive. The values of pri-
ority and protection that were selected by the DLS provider from the range indicated in the
DL_CONNECT_REQ will also be returned in theDL_CONNECT_CON. This primitive will
also contain the values of residual error rate and resilience associated with the newly
established connection. The DLS provider also saves the negotiated QOS parameter val-
ues for the connection, so that they may be returned in response to aDL_INFO_REQ prim-
itive.

As with DL_CONNECT_IND, if the DLS provider does not support negotiation of through-
put, transit delay, priority, or protection, a value ofDL_UNKNOWN should be returned in
the selected value fields. Furthermore, if the DLS provider does not support any particular
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QOS parameter,DL_UNKNOWN should be specified in all value fields for that parameter, or
the value ofdl_qos_length  may be set to zero in theDL_CONNECT_CON primitive.

Connectionless-Mode QOS Selection 11

This section describes the procedures for selecting QOS parameter values that will be
associated with the transmission of connectionless data.

As with connection-mode protocols, the current definition of most existing connectionless
data link protocols does not define a quality of service concept. As such, DLPI does not
require every DLS provider implementation to support QOS parameter selection. The
DLS provider may specify that any or all QOS parameters are unsupported. This is indi-
cated to the DLS user in theDL_INFO_ACK, where the values in the supported range field
(indicated bydl_qos_range_length  anddl_qos_range_offset ) and the cur-
rent QOS field (indicated bydl_qos_length  anddl_qos_offset ) of this primitive
are set toDL_UNKNOWN. If the DLS provider supports no QOS parameters, the QOS
length fields in theDL_INFO_ACK may be set to zero.

If the DLS provider supports QOS parameter selection, theDL_INFO_ACK primitive will
specify the supported range of parameter values for transit delay, priority, protection and
residual error rate. Default values are also returned in theDL_INFO_ACK.

For eachDL_UNITDATA_REQ, the DLS provider should apply the currently selected
QOS parameter values to the transmission. If no values have been selected, the default val-
ues should be used.

At any point during data transfer, the DLS user may issue aDL_UDQOS_REQ primitive to
select new values for the transit delay, priority, and protection parameters. These values
are selected using thedl_qos_cl_sel1_t  structure. The residual error rate parameter
is ignored by this primitive and cannot be set by a DLS user.

In theDL_UDQOS_REQ, the DLS user need not require a specific value for every QOS
parameter.DL_QOS_DONT_CARE may be specified if the DLS user does not care what
quality of service is provided for a particular parameter. When specified, the DLS provider
should retain the current (or default if no previous selection has occurred) value for that
parameter.

Allowable Sequence of DLPI Primitives 11

This section presents the allowable sequence of DLPI primitives. The sequence is
described using a state transition table that defines possible states as viewed by the DLS
user. The state transition table describes transitions based on the current state of the inter-
face and a given DLPI event. Each transition consists of a state change and possibly an
interface action. The states, events, and related transition actions are described below, fol-
lowed by the state transition table itself. Table 11-2 describes the states associated with
DLPI. It presents the state name used in the state transition table, the corresponding DLPI
state name, a brief description of the state, and an indication of whether the state is valid
for connection-oriented data link service (DL_CODLS), connectionless data link service
(DL_CLDLS), acknowledged connectionless data link service (DL_ACLDLS), or all.
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Table 11-2.  DLPI States

State DLPI State Description
Service
Type

0) UNATTACHED DL_UNATTACHED Stream opened but PPA not attached all

1) ATTACH PEND DL_ATTACH_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_ATTACH_REQ

all

2) DETACH PEND DL_DETACH_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DETACH_REQ

all

3) UNBOUND DL_UNBOUND Stream is attached but not bound to aDLSAP all

4) BIND PEND DL_BIND_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_BIND_REQ

all

5) UNBIND PEND DL_UNBIND_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_UNBIND_REQ

all

6) IDLE DL_IDLE The stream is bound and activated for use -
connection establishment or connectionless
data transfer may take place

all

7) UDQOS PEND DL_UDQOS_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_UDQOS_REQ

DL_CLDLS

8) OUTCON PEND DL_OUTCON_PENDING An outgoing connection is pending - the
DLS user is waiting for aDL_CONNECT_CON

DL_CODLS

9) INCON PEND DL_INCON_PENDING An incoming connection is pending - the
DLS provider is waiting for a
DL_CONNECT_RES

DL_CODLS

10) CONN_RES PEND DL_CONN_RES_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_CONNECT_RES

DL_CODLS

11) DATAXFER DL_DATAXFER Connection-mode data transfer may take
place

DL_CODLS

12) USER RESET PEND DL_USER_RESET_PENDING A user-initiated reset is pending - theDLS

user is waiting for aDL_RESET_CON

DL_CODLS

13) PROV RESET PEND DL_PROV_RESET_PENDING A provider-initiated reset is pending - the
DLS provider is waiting for aDL_RESET_RES

DL_CODLS

14) RESET_RES PEND DL_RESET_RES_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_RESET_RES

DL_CODLS

15) DISCON 8 PEND DL_DISCON8_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DISCONNECT_REQ issued
from theDL_OUTCON_PENDING state

DL_CODLS

16) DISCON 9 PEND DL_DISCON9_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DISCONNECT_REQ issued
from theDL_INCON_PENDING state

DL_CODLS



STREAMS Modules and Drivers

11-58

Variables and Actions for State Transition Table 11

Table 11-3 and Table 11-4 describe variables and actions used to describe the DLPI state
transitions.

The variables are used to distinguish various uses of the same DLPI primitive. For exam-
ple, aDL_CONNECT_RES causes a different state transition depending on the current
number of outstanding connect indications. To distinguish these different connect
response events, a variable is used to track the number of outstanding connect indications.

17) DISCON 11 PEND DL_DISCON11_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DISCONNECT_REQ issued
from theDL_DATAXFER state

DL_CODLS

18) DISCON 12 PEND DL_DISCON12_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DISCONNECT_REQ issued
from theDL_USER_RESET_PENDING state

DL_CODLS

19) DISCON 13 PEND DL_DISCON13_PENDING TheDLS user is waiting for an acknowl-
edgement of aDL_DISCONNECT_REQ issued
from theDL_PROV_RESET_PENDING state

DL_CODLS

20) SUBS_BIND PEND DL_SUBS_BIND_REQ TheDLS user is waiting for an acknowl-
edgement of aDL_SUBS_BIND_REQ

all

Table 11-3.  State Transition Table

Variable Description

token The token contained in aDL_CONNECT_RES that indicates on which
stream the connection will be established. A value of zero indicates
that the connection will be established on the stream where the
DL_CONNECT_IND arrived. A non-zero value indicates the connec-
tion will be passed to another stream.

outcnt Number of outstanding connect indications - those to which the DLS
user has not responded. Actions in the state tables that manipulate this
value may be disregarded when providing connectionless service.

Table 11-2.  DLPI States  (Cont.)

State DLPI State Description
Service
Type
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DPLI State Transition Table Variables 11

The actions represent steps the DLS provider must take during certain state transitions to
maintain the interface state. When an action is indicated in the state transition table, the
DLS provider should change the state as indicated and perform the specified action.

DLPI User-Originated Events 11

Table 11-5 describes events initiated by the DLS user that correspond to the various
request and response primitives of DLPI. The table presents the event name used in the
state transition table, a brief description of the event (including the corresponding DLPI
primitive), and an indication of whether the event is valid for connection-oriented data link
service (DL_CODLS), connectionless data link service (DL_CLDLS), acknowledged con-
nectionless data link service (DL_ACLDLS), or all.

Table 11-4.  Variables

Action Description

1 outcnt = outcnt + 1;

2 outcnt = outcnt - 1;

3 Pass connection to the stream indicated by the token in the
DL_CONNECT_RES primitive

Table 11-5.  Events

FSM Event Description Service Type

ATTACH_REQ DL_ATTACH_REQ primitive all

DETACH_REQ DL_DETACH_REQ primitive all

BIND_REQ DL_BIND_REQ primitive all

SUBS_BIND_REQ DL_SUBS_BIND_REQ primitive all

UNBIND_REQ DL_UNBIND_REQ primitive all

UNITDATA_REQ DL_UNITDATA_REQprimitive DL_CLDLS

UDQOS_REQ DL_UDQOS_REQ primitive DL_CLDLS

CONNECT_REQ DL_CONNECT_REQ primitive DL_CODLS

CONNECT_RES DL_CONNECT_RES primitive DL_CODLS

PASS_CONN Received a passed connection from a
DL_CONNECT_RES primitive

DL_CODLS

DISCON_REQ DL_DISCONNECT_REQ primitive DL_CODLS
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DLPI Provider-Originated Events 11

Table 11-6 describes the events initiated by the DLS provider that correspond to the vari-
ous indication, confirmation, and acknowledgment primitives of DLPI. The table presents
the event name used in the state transition table, a brief description of the event (including
the corresponding DLPI primitive), and an indication of whether the event is valid for con-
nection-oriented data link service (DL_CODLS), connectionless data link service
(DL_CLDLS) acknowledged connectionless data link service (DL_ACLDLS), or all.

DATA_REQ DL_DATA_REQ primitive DL_CODLS

RESET_REQ DL_RESET_REQ primitive DL_CODLS

RESET_RES DL_RESET_RES primitive DL_CODLS

Table 11-6.  DLPI Provider Events

FSM Event Description Service Type

BIND_ACK DL_BIND_ACK primitive all

SUBS_BIND_ACK DL_SUBS_BIND_ACK primitive all

UNITDATA_IND DL_UNITDATA_IND primitive DL_CLDLS

UDERROR_IND DL_UDERROR_IND primitive DL_CLDLS

CONNECT_IND DL_CONNECT_IND primitive DL_CODLS

CONNECT_CON DL_CONNECT_CON primitive DL_CODLS

DISCON_IND1 DL_DISCONNECT_IND primitive when
outcnt == 0

DL_CODLS

DISCON_IND2 DL_DISCONNECT_IND primitive when
outcnt == 1

DL_CODLS

DISCON_IND3 DL_DISCONNECT_IND primitive when
outcnt > 1

DL_CODLS

DATA_IND DL_DATA_IND primitive DL_CODLS

RESET_IND DL_RESET_IND primitive DL_CODLS

RESET_CON DL_RESET_CON primitive DL_CODLS

OK_ACK1 DL_OK_ACK primitive when
outcnt == 0

all

OK_ACK2 DL_OK_ACK primitive when
outcnt == 1
andtoken == 0

DL_CODLS

Table 11-5.  Events (Cont.)

FSM Event Description Service Type
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DLPI State Transition Table 11

Table 11-7 through Table 11-11 describe the DLPI state transitions. Each column repre-
sents a state of DLPI, as shown in Table 11-2, and each row represents a DLPI event, as
shown in Table 11-4 and Table 11-5. The intersecting transition cell defines the resulting
state transition, or next state, and associated actions, if any, that must be executed by the
DLS provider to maintain the interface state. Each cell may contain the following:

TheDL_INFO_REQ, DL_INFO_ACK, DL_TOKEN_REQ,  andDL_TOKEN_ACK prim-
itives are excluded from the state transition table because they can be issued from many
states and, when fully processed, do not cause a state transition to occur. However, the
DLS user may not issue aDL_INFO_REQ or DL_TOKEN_REQ if any local acknowledg-
ments are pending. In other words, these two primitives may not be issued until the DLS
user receives the acknowledgment for any previously issued primitive that is expecting
local positive acknowledgment. Thus, these primitives may not be issued from the
DL_ATTACH_PENDING, DL_DETACH_PENDING, DL_BIND_PENDING,
DL_SUBS_BIND_PENDING, DL_UNBIND_PENDING, DL_UDQOS_PENDING,
DL_CONN_RES_PENDING,DL_RESET_RES_PENDING,DL_DISCON8_PENDING,
DL_DISCON9_PENDING, DL_DISCON11_PENDING, DL_DISCON12_PENDING, or
DL_DISCON13_PENDING states. Failure to comply by this restriction may result in loss
of primitives at the stream head if the DLS user is a user process. Once aDL_INFO_REQ
or DL_TOKEN_REQ has been issued, the DLS provider must respond with the appropriate
acknowledgment primitive.

The following rules apply to the maintenance of DLPI state:

• The DLS provider is responsible for keeping a record of the state of the
interface as viewed by the DLS user, to be returned in theDL_INFO_ACK.

• The DLS provider may never generate a primitive that places the interface
out of state.

OK_ACK3 DL_OK_ACK primitive when
outcnt == 1 andtoken != 0

DL_CODLS

OK_ACK4 DL_OK_ACK primitive when
outcnt > 1  andtoken != 0

DL_CODLS

ERROR_ACK DL_ERROR_ACK all

- This transition cannot occur.

n The current input results in a transition to state “n.”

n [a] The list of actions “a” should be executed following the specified
state transition “n” (see table 4 for actions).

Table 11-6.  DLPI Provider Events (Cont.)

FSM Event Description Service Type



STREAMS Modules and Drivers

11-62

NOTE

This would correspond to a minus (- ) cell entry in the state transi-
tion table.

• If the DLS provider generates a STREAMSM_ERROR message upstream,
it should free any further primitives processed by it's write sideput  or
service  procedure.

• The close of a stream is considered an abortive action by the DLS user, and
may be executed from any state. The DLS provider must issue appropriate
indications to the remote DLS user when a close occurs. For example, if the
DLPI state isDL_DATAXFER, aDL_DISCONNECT_IND should be sent to
the remote DLS user. The DLS provider should free any resources associ-
ated with that stream and reset the stream to its unopened condition.

The following points clarify the state transition table.

• If the DLS provider supports connection-mode service, the value of the
outcnt  state variable must be initialized to zero for each stream when that
stream is first opened.

• The initial and final state for astyle 2 DLS provider isDL_UNATTACHED.
However, because astyle 1 DLS provider implicitly attaches a PPA to a
stream when it is opened, the initial and final DLPI state for astyle 1 pro-
vider isDL_UNBOUND. The DLS user should not issueDL_ATTACH_REQ
or DL_DETACH_REQ primitives to astyle 1 DLS provider.

• A DLS provider may have multiple connect indications outstanding at one
time, which indicates that the DLS user has not responded to them. See
“Connection Establishment Service.” As the state transition table points
out, the stream on which those indications are outstanding will remain in
theDL_INCON_PENDING state until the DLS provider receives a response
for all indications.

• The DLPI state associated with a given stream may be transferred to
another stream only when theDL_CONNECT_RES primitive indicates this
behavior. In this example, the responding stream (where the connection
will be established) must be in theDL_IDLE  state. This state transition is
indicated by thePASS_CONN event in Table 11-10.

• The label ing of  the s tatesDL_PROV_RESET_PENDING and
DL_USER_RESET_PENDING indicate the party that started the local
interaction, and does not necessarily indicate the originator of the reset pro-
cedure.

• A DL_DATA_REQ primitive received by the DLS provider in the state
DL_PROV_RESET_PENDING, for example, after aDL_RESET_IND has
been passed to the DLS user, or the stateDL_IDLE , for example, after a
data link connection has been released, should be discarded by the DLS
provider.

• A DL_DATA_IND primitive received by the DLS user after the user has
issued aDL_RESET_REQ should be discarded.
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To ensure accurate processing of DLPI primitives, the DLS provider must adhere to the
following rules about the receipt and generation of STREAMSM_FLUSH messages dur-
ing various state transitions.

• The DLS provider must be ready to receiveM_FLUSH messages from
upstream and flush it's queues as specified in the message.

• The DLS provider must issue anM_FLUSH message upstream to flush both
the read and write queues after receiving a successfulDL_UNBIND_REQ
primitive but before issuing theDL_OK_ACK.

• I f  an incoming disconnect occurs when the interface is in the
DL_DATAXFER, DL_USER_RESET_PENDING,  o r
DL_PROV_RESET_PENDING state, the DLS provider must send up an
M_FLUSH message to flush both the read and write queues before sending
up aDL_DISCONNECT_IND.

• I f  a DL_DISCONNECT_REQ is  issued in theDL_DATAXFER,
DL_USER_RESET_PENDING, or DL_PROV_RESET_PENDING states,
the DLS provider must issue anM_FLUSH message upstream to flush both
the  read  and  wr i te  queues  a f te r  rece iv ing  the  success fu l
DL_DISCONNECT_REQ but before issuing theDL_OK_ACK.

• If a reset occurs when the interface is in theDL_DATAXFER or
DL_USER_RESET_PENDING state, the DLS provider must send up an
M_FLUSH message to flush both the read and write queues before sending
up aDL_RESET_IND or DL_RESET_CON.

Common Local Management Phase 11

Table 11-7 presents the allowed sequence of DLPI primitives for the common local man-
agement phase of communication.

Table 11-7.  Local Management Phase

STATES

EVENTS

UNATTACHED

0

ATTACH

PEND

1

DETACH

PEND

2

UNBOUND

3

BIND

PEND

4

UNBIND

PEND

5

IDLE

6

SUBS_BIND

PEND

20

ATTACH_REQ 1 - - - - - - -

DETACH_REQ - - - 2 - - - -

BIND_REQ - - - 4 - - - -

BIND_ACK - - - - 6 - - -

SUBS_BIND_REQ - - - - - - 20 -

SUBS_BIND_ACK - - - - - - - 6
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Table 11-8 presents the allowed sequence of DLPI primitives for the connectionless data
transfer phase.

UNBIND_REQ - - - - - - 5 -

OK_ACK1 - 3 0 - - 3 - -

ERROR_ACK - 0 3 - 3 6 - -

Table 11-8.  Connectionless-Mode Data Transfer Phase

STATES

EVENTS

IDLE

6

UDQOS

PEND

7

UDQOS_REQ 7 -

OK_ACK1 - 6

ERROR_ACK - 6

UNITDATA_REQ 6 -

UNITDATA_IND 6 -

UDERROR_IND 6 -

Table 11-7.  Local Management Phase (Cont.)

STATES

EVENTS

UNATTACHED

0

ATTACH

PEND

1

DETACH

PEND

2

UNBOUND

3

BIND

PEND

4

UNBIND

PEND

5

IDLE

6

SUBS_BIND

PEND

20
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Table 11-10 presents the allowed sequence of DLPI primitives for the connection estab-
lishment phase of connection mode service.

Table 11-9.  Acknowledged Connectionless-Mode Data Transfer Phase

STATES

EVENTS

IDLE

6

UDQOS

PEND

7

UDQOS_REQ 7 -

OK_ACK1 - 6

ERROR_ACK - 6

DATA_ACK_REQ 6 -

REPLY_REQ 6 -

REPLY_UPDATE_REQ 6 -

DATA_ACK_IND 6 -

REPLY_IND 6 -

DATA_ACK_STATUS_IND 6 -

REPLY_STATUS_IND 6 -

REPLY_UPDATE_STATUS_IND 6 -

ERROR_ACK 6 -

Table 11-10.  Connection Establishment Phase

STATES

EVENTS

IDLE

6

OUTCON

PEND

8

INCON

PEND

9

CONN_RES

PEND

10

DATA-

XFER

11

DISCON 8

PEND

15

DISCON 9

PEND

16

CONNECT_RE

Q

8 - - - - - -

CONNECT_RES - - 10 - - - -

DISCON_REQ - 15 16 - - - -

PASS_CONN 11 - - - - - -

CONNECT_IND 9 [1] - 9 [1] - - - -

CONNECT_CO

N

- 11 - - - - -

DISCON_IND1

(outcnt == 0)

- 6 - - 6 - -

DISCON_IND2

(outcnt == 1)

- - 6 [2] - - - -
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Table 11-11 presents the allowed sequence of DLPI primitives for the connection mode
data transfer phase.

DISCON_IND3

(outcnt > 1)

- - 9 [2] - - - -

OK_ACK1

(outcnt == 0)

- - - - - 6 -

OK_ACK2

(outcnt == 1,

token == 0)

- - - 11 [2] - - 6 [2]

OK_ACK3

(outcnt == 1,

token != 0)

- - - 6 [2,3] - - 6 [2]

OK_ACK4

(outcnt > 1,

token != 0)

- - - 9 [2,3] - - 9 [2]

ERROR_ACK - 6 - 9 - 8 9

Table 11-11.  Connection Mode Data Transfer Phase

STATES

EVENTS

IDLE

6

DATA-

XFER

11

USER

RESET

PEND

12

PROV

RESET

PEND

13

RESET_RES

PEND

14

DISCON 11

PEND

17

DISCON 12

PEND

18

DISCON 13

PEND

19

DISCON_REQ - 17 18 19 - - - -

DATA_REQ - 11 - - - - - -

RESET_REQ - 12 - - - - - -

RESET_RES - - - 14 - - - -

DISCON_IND1

(outcnt == 0)

- 6 6 6 - - - -

DATA_IND - 11 - - - - - -

RESET_IND - 13 - - - - - -

RESET_CON - - 11 - - - - -

OK_ACK1

(outcnt == 0)

- - - - 11 6 6 6

ERROR_ACK - - 11 - 13 11 12 13

Table 11-10.  Connection Establishment Phase (Cont.)

STATES

EVENTS

IDLE

6

OUTCON

PEND

8

INCON

PEND

9

CONN_RES

PEND

10

DATA-

XFER

11

DISCON 8

PEND

15

DISCON 9

PEND

16
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Precedence of DLPI Primitives 11

This section presents the precedence of DLPI primitives relative to one another. Two
queues are used to describe DLPI precedence rules. One queue contains DLS user-origi-
nated primitives and corresponds to the STREAMS write queue of the DLS provider. The
other queue contains DLS provider-originated primitives and corresponds to the
STREAMS read queue of the DLS user. The DLS provider is responsible for determining
precedence on its write queue and the DLS user is responsible for determining precedence
on its read queue as indicated in the precedence tables below.

For each precedence table, the rows (labeled PRIM X) correspond to primitives that are on
the given queue and the columns (labeled PRIM Y) correspond to primitives that are about
to be placed on that queue. Each pair of primitives (PRIM X, PRIM Y) may be manipu-
lated resulting in:

• Change of order, where the order of a pair of primitives is reversed if, and
only if, the second primitive in the pair (PRIM Y) is of a type defined to be
able to advance ahead of the first primitive in the pair (PRIM X).

• Deletion, where a primitive (PRIM X) may be deleted if, and only if, the
primitive that follows it (PRIM Y) is defined to be destructive with respect
to that primitive. Destructive primitives may always be added to the queue.
Some primitives may cause both primitives in the pair to be destroyed.

The precedence rules define the allowed manipulations of a pair of DLPI primitives.
Whether these actions are performed is the choice of the DLS provider for user-originated
primitives and the choice of the DLS user for provider-originated primitives.

Write Queue Precedence 11

Figure 11-39 presents the precedence rules for DLS user-originated primitives on the DLS
provider's STREAMS write queue. It assumes that only non-local primitives (those that
generate protocol data units to a peer DLS user) are queued by the DLS provider.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-thread-
ing scenario, the following rules apply:

• A DL_CONNECT_RES primitive has no precedence over either a
DL_CONNECT_RES or aDL_DISCONNECT_REQ primitive that is associ-
ated with another connection correlation number (dl_correlation ),
and should therefore be placed on the queue behind such primitives.

• Similarly, aDL_DISCONNECT_REQ primitive has no precedence over
either aDL_CONNECT_RES or aDL_DISCONNECT_REQ primitive that is
associated with another connection correlation number, and should there-
fore be placed on the queue behind such primitives. Notice, however, that a
DL_DISCONNECT_REQ does have precedence over aDL_CONNECT_RES
primitive that is associated with the same correlation number. This is indi-
cated in Figure 11-39.
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Figure 11-39.  Write Queue Precedence

PRIMX (on queue)

PI DL_INFO_REQ

P2 DL_ATTACH_REQ

P3 DL_DETACH_REQ

P4 DL_BIND_REQ

P5 DL_UNBIND_REQ

P6 DL_UNITDATA_REQ

P7 DL_UDQOS_REQ

P8 DL_CONNECT_REQ

P10 DL_TOKEN_REQ

P11 DL_DISCONNECT_REQ

P12 DL_DATA_REQ

P13 DL_RESET_REQ

P14 DL_RESET_RES

P15 DL_SUBS_BIND_REQ

P9 DL_CONNECT_RES

P1PRIM Y P2 P3 P4 P5 P6

1

1

1

1 1

1

1

4

5

3

3

3 3

3

P7 P8 P9 P10 P11 P12 P13

162340

P14 P15

CODE

KEY:

Interpretation

1

2

3

4

5

Empty box indicates a scenario which cannot take place.

Y has no precedence over X and should be placed on queue behind X.

Y has precedence over X and may advance ahead of X.

Y has precedence over X and X must be removed.

Y has precedence over X and both X and Y must be removed.

Y may have precedence over X (DLS provider's choice), and if so then X must be removed.

Y may have precedence over X (DLS provider's choice), and if so then X must be removed.
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Read Queue Precedence 11

Figure 11-40 presents the precedence rules for DLS provider-originated primitives on the
DLS user's STREAMS read queue.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-thread-
ing scenario, the following rules apply:

• A DL_CONNECT_IND primitive has no precedence over either a
DL_CONNECT_IND or aDL_DISCONNECT_IND primitive that is associ-
ated with another connection correlation number (dl_correlation ),
and should therefore be placed on the queue behind such primitives.

• Similarly, aDL_DISCONNECT_IND primitive has no precedence over
either aDL_CONNECT_IND or aDL_DISCONNECT_IND primitive that is
associated with another connection correlation number, and should there-
fore be placed on the queue behind such primitives.

• A DL_DISCONNECT_IND does  have  p recedence  over  a
DL_CONNECT_IND primitive that is associated with the same correlation
number (this is indicated in Figure 11-40). If aDL_DISCONNECT_IND is
about to be placed on the DLS user's read queue, the user should scan the
read queue for a possibleDL_CONNECT_IND primitive with a matching
correlation number. If a match is found, both theDL_DISCONNECT_IND
and matchingDL_CONNECT_IND should be removed.

If the DLS user is a user-level process, it's read queue is the stream head read queue.
Because a user process has no control over the placement of DLS primitives on the stream
head read queue, a DLS user cannot straightforwardly initiate the actions specified in the
following precedence table. Except for the connection establishment scenario, the DLS
user can ignore the precedence rules defined in Figure 11-40. This is equivalent to saying
the DLS user's read queue contains at most one primitive.

The only exception to this rule is the processing of connect indication/response primitives.
A problem ar ises i f  a user issues aDL_CONNECT_RES pr imi t ive when a
DL_DISCONNECT_IND is on the stream head read queue. The DLS provider will not be
expecting the connect response because it has forwarded the disconnect indication to the
DLS user and is in theDL_IDLE  state. It will therefore generate an error on seeing the
DL_CONNECT_RES. To avoid this error, the DLS user should not respond to a
DL_CONNECT_IND primitive if the stream head read queue is not empty. The assumption
here is a non-empty queue may be holding a disconnect indication that is associated with
the connect indication that is being processed.

When connect indications/responses are single-threaded, a non-empty read queue can only
contain aDL_DISCONNECT_IND, which must be associated with the outstanding
DL_CONNECT_IND. ThisDL_DISCONNECT_IND primitive indicates to the DLS user
that theDL_CONNECT_IND is to be removed. The DLS user should not issue a response
to theDL_CONNECT_IND if a DL_DISCONNECT_IND is received.

The mul t i - threaded scenar io is  s l ight ly  more complex,  because mul t ip le
DL_CONNECT_IND andDL_DISCONNECT_IND primitives may be interspersed on the
stream head read queue. In this scenario, the DLS user should retrieve all indications on
the queue before responding to a given connect indication. If a queued primitive is a
DL_CONNECT_IND, it should be stored by the user process for eventual response. If a
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queued primitive is aDL_DISCONNECT_IND, it should be matched (using the correlation
number) against any stored connect indications. The matched connect indication should
then be removed, just as is done in the single-threaded scenario.

Figure 11-40.  Read Queue Precedence
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Guidelines for Protocol Independent DLS Users 11

DLPI enables a DLS user to be implemented in a protocol-independent manner such that
the DLS user can operate over many DLS providers without changing the DLS user soft-
ware. DLS user implementors must adhere to the following guidelines, however, to
achieve this independence.

• The protocol-specific service limits returned in theDL_INFO_ACK primi-
tive dl_max_sdu  must not be exceeded. The DLS user should access
these limits and adhere to them while interacting with the DLS provider.

• Protocol-specific DLSAP address and PPA identifier formats should be
hidden from DLS user software. Hard-coded addresses and identifiers must
be avoided. The DLS user should retrieve the necessary information from
some other entity (such as a management entity or a higher layer protocol
entity) and insert it without inspection into the appropriate primitives.

• The DLS user should not be written to a specific style of DLS provider, for
example,style 1 vs.style 2. TheDL_INFO_ACK returns sufficient informa-
tion to identify which style of provider has been accessed, and the DLS
user should perform (or not perform) aDL_ATTACH_REQ accordingly.

• The names of devices should not be hard-coded into user-level programs
that access a DLS provider.

• The DLS user should access thedl_service_mode  field of the
DL_INFO_ACK primitive to determine whether connection or connection-
less services are available on a given stream.

Guidelines for Using DLPI Under PowerMAX OS 11

All DLPI device drivers currently in PowerMAX OS, such asdec , egl , ie , andcnd  are
style 1 connectionless-mode providers. As previously stated in this chapter, a connection-
less-mode data transfer service cannot guarantee reliable delivery of data. As such, appli-
cations must be written in such a way that they can recover from dropped messages.

A style 1 provider assigns a PPA (physical point of attachment) based on the major/minor
number device file combination that the application has opened.  The information about
the driver’s style can be obtained by using theDL_INFO_REQ DLPI  primitive.
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In the current version of PowerMAX OS, the following DLPI primitives are not sup-
ported:

Some of the functionality provided by the above primitives can be obtained through the
use of specificioctl  commands.  For example, to turn on promiscuous mode for packet
capture, one could use theDLIOCSPROMISC primitive to toggle the promiscuous state to
on or off .  For details onioctl s for the DLPI layer, see theDLioctl(3dlpi)  man
page.

Also note that some of the primitives listed above, such asDL_ATTACH_REQ, are actually
only needed for style 2 connection-mode providers.

Under the current release of PowerMAX OS, the followingioctl s are supported in
DLPI layer:

DL_ATTACH_REQ DL_DETACH_REQ DL_UDQOS_REQ

DL_CONNECT_REQ DL_CONNECT_RES DL_TOKEN_REQ

DL_DISCONNECT_REQ DL_RESET_REQ DL_RESET_RES

DL_ENABMULTI_REQ DL_DISABMULTI_REQ DL_PROMISCON_REQ

DL_PROMISCOFF_REQ DL_XID_REQ DL_XID_RES

DL_TEST_RES DL_PHYS_ADDR_REQ DL_SET_PHYS_ADDR_REQ

DL_GET_STATISTICS_REQ DL_DATA_ACK_REQ DL_REPLY_REQ

DL_REPLY_UPDATE_REQ

Table 11-12.  ioctls supported in DLPI Layer

DLPI Primitive Description

DLIOCSMIB Set MIB

DLIOCGMIB Get MIB

DLIOCSENADDR Set Ethernet address

DLIOCGENADDR Get Ethernet address

DLIOCSLPCFLG Set local packet copy flag

DLIOCGLPCFLG Get local packet copy flag

DLIOCSPROMISC Toggle promiscuous state

DLIOCGPROMISC Get promiscuous state

DLIOCADDMULTI Add multicast address

DLIOCDELMULTI Delete multicast address

DLIOCDISABLE Disable controller

DLIOCENABLE Enable controller
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For  deta i ls  on parameters  for  theioct l s l is ted in  Table 11-12 see the
DLioctls(3dlpi)  man page.

For style 1 connectionless-mode providers, abind  call (DL_BIND_REQ) is used to estab-
lish a data link application’s identity, by associating that application with a data link ser-
vice access point (DLSAP), which is the point through which the application will commu-
nicate with the data link provider.

The application can determine theDLSAP by looking at the bind acknowledge data, or
alternatively, theDLSAP can be specified by the application during thebind  call
(DL_BIND_REQ).  For theDL_BIND_REQ call, a application must provide information in
thedl_bind_req_t  structure, including thedl_sap field which must be filled in to prop-
erly identify theDLSAP.

Once thebind  call has been successfully made, subsequent type fields of incoming
frames are compared to the bounddl_sap value. If the values are equal, then the frame is
placed on the STREAMS read queue of that application.

To provide a correctdl_sap field, the application must know the address format.  For driv-
ers in PowerMAX OS, theDLSAP is composed of two parts: a 6 byte physical (Ethernet
address), followed by a 1 or 2 byte SAP identifier.  The size and information for decom-
posing theDLSAP address can be obtained from thedl_info_ack_t  structure that is
returned on aDL_INFO_ACK call.

A special SAP value,PROMISCUOUS_SAP, can be useful for packet capture types of
applications.  This SAP value matches al l  SAP values.  Therefore, using a
PROMISCUOUS_SAP SAP value results in a copy of all packets being received to also be
received on this SAP.

A privileged process may alsobind  to a SAP already bound by another process.  In cases
where a frame qualifies to be sent to more than one process, independent copies of the
frame will be made and placed on the STREAMS read queue of each process.

Under style 1 connectionless-mode providers, frames are sent usingDL_UNITDATA_REQ
messages (viaputmsg(2)  calls) and frames are received asDL_UNITDATA_IND mes-
sages (viagetmsg(2)  calls).

When sending a message, the controlstrbuf  structure of theputmsg(2)  call should
point to a control buffer that contains a filled indl_unitdata_req_t  structure, fol-
lowed by the destination Ethernet/SAP address.  The datastrbuf  structure of the
putmsg(2)  call should point to a buffer that contains the actual data to be sent to the
remote DLSAP application.

When receiving messages viagetmsg(2)  calls, the controlstrbuf structure of the
getmsg(2)  call will return adl_unitdata_ind_t  structure.  Thedl_primitive field

DLIOCRESET Reset controller

DLIOCCSMACDMODE Toggle CSMA-CD mode

DLIOCGETMULTI Get multicast address list

Table 11-12.  ioctls supported in DLPI Layer (Cont.)

DLPI Primitive Description
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will contain a value ofDL_UNITDATA_IND, and thedl_src_addr_offset field of this struc-
ture will contain the offset in thestrbuf  control buffer where the source (originating)
Ethernet/SAP address is located.  The datastrbuf  structure of thegetmsg()  call will
point to the buffer that contains the actual received data.

Using STREAMS Networking Buffers in a DLPI Application 11

Concurrent Computer Systems provides the capability to setup the networking buffers for
a given STREAM stack such that the buffers are shared between the kernel and the user's
address space. This feature minimizes the copying of buffer data between user space and
the kernel, and also reduces the overhead of repeated kernel buffer allocations for the
STREAM stack.

Note that the STREAMS networking buffer feature currently makes use of shared
user/kernel space buffers on STREAMSwrite(2)  andputmsg(2)  calls; the data is
still copied between kernel and user space onread(2)  andgetmsg(2)  calls even
when the target user space buffer is a STREAMS Networking Buffer.

For more information on STREAMS networking buffers, see Chapter 14 of thePower-
MAX OS Real-Time Guide.

While use of cached local memory (theBUFF_FIXED_LOCAL_CACHED buffer reuse
type)  i s  no t  recommended fo r  genera l  app l i ca t ion  use ,  the
BUFF_FIXED_LOCAL_CACHED buffer reuse type happens to be a potentially good
fi t  fo r  DLPI  app l i ca t ions .  Un l i ke  a l l  o f  the  o ther  bu ffe r  reuse  types
(BUFF_FIXED_GLOBAL, BUFF_FIXED_NOCACHE, BUFF_RELOAD_GLOBAL), the
BUFF_FIXED_LOCAL_CACHED type places some additional restrictions on the applica-
tion. Failure to follow these restrictions can result in incorrect data being sent or received.

The following restrictions for using local memory STREAMS Networking Buffers in a
DLPI application must be observed:

- The application must set its CPU bias for the process to one CPU board.
The NBUFF_ALLOCioctl(2)  call will return an error if this require-
ment is not followed.

-  Any LWP in the process that issues a DLPI STREAMwrite(2) ,
read(2) , getmsg(2)  or putmsg(2)  call while using a cached local
memory STREAMS networking buffer as the target buffer must have a
CPU bias that is equal to the same CPU bias of the process.

Additionally, even when the target user-space buffer is not a local memory
cached networking buffer for aread(2)  or getmsg(2)  call, this same
CPU bias restriction also applies to any message received that originated
from a loopback (using the source Ethernet address as the destination
Ethernet address), multicast, or broadcast message from the same program
where a local memory cached networking buffer was used to send that
message.

- In addition to the above biasing requirement, the application must bias
itself to a SPECIFIC CPU board for the following DLPI devices:
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ie must set the CPU bias to the board where ISE Ethernet device
is located.

egl must set the CPU bias to the board where Eagle Ethernet inter-
rupts are handled; this will be the CPU board of the CPU that
handles VME level 5 interrupts. Eithermpadvise(2)  or
intstat(1M)  may be used to determine the CPU that han-
dles the VME level 5 interrupt.

NOTE

Setting the CPU bias to the correct specific CPU board is entirely
up to the application; theNBUFF_ALLOCioctl(2)  call will
not attempt to enforce the setting of the CPU bias to the CPU
board that is correct forie  or egl  DLPI STREAMS stacks.

A Sample DLPI /STREAMS Networking Buffer Program 11

The following sample program shown below makes use of cache local memory
STREAMS Networking Buffers in a DLPI STREAMS stack.

The following comments can be made about this sample program:

- The sample program shown below has been simplified for the sake of clar-
ity. For example, the routine that reads the messages,readdatamsg() ,
could handle dropped messages by using a timeout mechanism, and it
might also resend messages that appear   to be lost or garbled. Also, the
application could be re-coded to handle user-specified destination Ether-
net/SAP addresses and DLPI device filenames, instead of using hard-coded
values.

- The device used in this program is the ISE Ethernet device,/dev/ie0 .
Since this device is located on the first CPU board, the application uses
cpu_bias(2)  to set its cpu bias to the first CPU in the system. Note that
by usingmpadvise(3C) , it would be possible to determine if   more than
one  CPU is  p resen t  on  the  fi r s t  CPU board ,  by  us ing  the
MPA_CPU_LMEM command. Note that other DPI devices, such as
/dev/cnd00, /dev/egl , etc., could also have been used.

- This program assumes that a connectionless mode service, style 1 DLPI
interface is being provided, since this is the current interface mode and type
for  Concurrent  DLPI devices.  TheDL_UNITDATA_REQ and
DL_UNITDATA_IND messages are used to send and receive the data mes-
sages to/from a remote DLPI Ethernet device. The remote/target Ether-
net/SAP address is hardcoded into theethersap_destaddr[] array and it is
used for the bind (DL_BIND_REQ) request.

- For theDL_UNITDATA_REQ messages, thedl_unitdata_req_t
structure is stored at the front of the control buffer, immediately followed
by the destination Ethernet/SAP address. The actual data for the message is
stored separately into the local memory buffer data portion of the
putmsg(2)  call. Similarly, for the receivedDL_UNITDATA_IND mes-
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sages, thedl_unitdata_ind_t structure is returned at the beginning of the
control buffer, and thedl_src_addr_offset field of thedl_unitdata_ind_t
structure contains the offset from the front of the control buffer to the start
of the Ethernet/SAP source address that is also returned within the control
buffer. The actual data portion of the message is returned in the local mem-
ory data buffer.

- This program sends messages to a corresponding remote DLPI application
that is assumed to be already opened, bound and ready to receive messages.
This remote application would be very similar to the code in this sample
program, except that the message loop just receives and sends back the
received messages to the originator. The sample program shown below
sends the messages and then reads them back from the remote application
and then checks the contents of the buffer to see that the correct data was
returned.

- Multiple (4) buffers are setup and used. Each buffer is used to write out a
message before the same buffers are used again to read the data back from
the remote DLPI application.

- Note that since a fixed buffer reuse type is being used, theNBUFF_WAIT
ioctl(2)  call is made before re-using the same buffer again.

/*
 * cc -D_KMEMUSER example.c
 */
#include <sys/types.h>
#include <stropts.h>
#include <sys/ksynch.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/stream.h>
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/dlpi_common.h>
#include <sys/procset.h>
#include <sys/bind.h>
#include <errno.h>
#include <stdio.h>

/* DLPI device file descriptor.
 */
int fd_ether;

/* Buffer size for reading and writing.
 * Use a value that is less than the maximum DLPI
 * transmission size, dl_max_sdu.
 */
#define BUFFER_SIZE1400

/* Control message info buffer.
 */
#define MAXDLBUF 1024
char ctlbuf[MAXDLBUF];
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/* Internal routines.
 */
int dlinforeq(void);
int dlinfoack(char *);
int dlbindreq(unsigned int);
int dlbindack(char *);
int putcntlmsg(char *, int);
int recvackmsg(int, const char *, char *);
void dlunitdatareq(caddr_t, caddr_t, int);
void open_and_bind(void);
void senddatamsg(int);
void readdatamsg(int);
void setupnbuff(void);
void nbuffwait(int);

int dl_addr_length;

/* Ethernet device name.  May be modified to
 * /dev/cnd00, /dev/egl, etc.
 */
char *device_name = "/dev/ie0";

/* Hard-coded destination ethernet address and sap.
 * The ethernet address is 0.0.c3.01.65.11
 * and the sap value is 0x600.
 */
unsigned char ethersap_destaddr[8] =

{ 0x0, 0x0, 0xc3, 0x2, 0x7e, 0x65, 0x6, 0x0};
unsigned int sap_value = 0x600;

/* STREAMS Networking Buffer info structure array.
 * One entry per buffer.
 */
struct netbuffers {

struct str_netbuff_info nb_info;
int nb_data_sval;

};

/* Number of STREAMS Networking Buffers to use.
 */
#define NUM_BUFFERS4
struct netbuffers netbuff_array[NUM_BUFFERS];

/* Holds the current write buffer data value.
 * Each word in the buffer holds an incremented value.
 */
int msg_data_value;
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/* Send and receive this many messages in each buffer.
 */
#define NUM_MESSAGES200

main(argc, argv)
int argc;
char **argv;
{

int i, j;

/* Open the device and bind using our sap value.
 */
open_and_bind();

/* Setup Streams Networking Buffers for the I/O.
 */
setupnbuff();

/* Send and receive NUM_MESSAGES messages in each buffer.
*/
for (j = 0; j < NUM_MESSAGES; j++) {

/* Use all the buffers to first send out messages.
* Then read the messages back and check their contents.
 */
for (i = 0; i < NUM_BUFFERS; i++)

senddatamsg(i);

for (i = 0; i < NUM_BUFFERS; i++)
readdatamsg(i);

}
}

/*
 * Open the Data Link Provider Inteface device and bind to it.
 */
void
open_and_bind()
{

unsigned int *intp;
dl_info_ack_t *infop;

/* Open the DLPI device.
*/
printf("device used is %s\n", device_name);
if ((fd_ether = open(device_name, O_RDWR)) < 0) {

perror("open");
exit(-1);

}
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/* Send an info request and then acknowledge it.
 */
if (dlinforeq() < 0) {

perror("dlinforeq");
exit(-1);

}
if (dlinfoack(ctlbuf) < 0) {

perror("dlinfoack");
exit(-1);

}

/* Check that the medium type is ethernet,
 * and check that the provider style is style 1.
 */
infop = &((union DL_primitives *)ctlbuf)->info_ack;
if (infop->dl_mac_type != DL_ETHER) {

printf("NON ETHERNET medium type %d\n", infop->dl_mac_type);
exit(-1);

}
if (infop->dl_provider_style != DL_STYLE1) {

printf("Unexpected provider style.  %d\n",
infop->dl_provider_style);

exit(1);
}
/* Make a bind request with a specific SAP value
 * and then acknowledge it.
 */
if (dlbindreq(sap_value) < 0) {

perror("dlbindreq");
exit(-1);

}
if (dlbindack(ctlbuf) < 0) {

perror("dlbindack");
exit(-1);

}

/* Print out the local ethernet/sap address.
 */
intp = (unsigned int *)ethersap_destaddr;
printf("SOURCE ETHERNET/SAP ADDRESS: %x ", *intp);
intp++;
printf("%x\n", *intp);

}
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/* Allocate the STREAMS Networking Buffers.
 * Use the local memory cached buffers.
 * Bind the process to the first CPU, since we're using /dev/ie0,
 * which is located on the first CPU board.
 */
void
setupnbuff()
{

int i, error;
struct str_netbuff_info *infop;
struct netbuffers *netbufp;
cpuset_t cpumask = 0x1; /* bind to first cpu */

/* Bind the process to the 1st CPU.
 */
error = cpu_bias(CPU_SETBIAS, P_PID, P_MYID, &cpumask);
if (error) {

printf("cpu_bias(2) returned %d\n", error);
exit(-1);

}

/* Allocate the local memory STREAMS Networking Buffers.
 */
for (i = 0, netbufp = &netbuff_array[0];

i < NUM_BUFFERS; i++, netbufp++)
{

infop = &netbufp->nb_info;
infop->length_requested = BUFFER_SIZE;
infop->req_type = NBUFF_ALLOC;
infop->buff_type = BUFF_FIXED_LOCAL_CACHED;

if (ioctl(fd_ether, I_NBUFF, infop) < 0) {
printf("I_NBUFF ioctl failed.\n");
perror("ioctl");
exit(-1);

}
printf("buffer %d setup at 0x%x\n",i, (char *) infop->address);

/* Change request type field for nbuffwait() calls.
 */
infop->req_type = NBUFF_WAIT;

}
}

/* Acknowledge the prior info request.
 */
int
dlinfoack(char *bufp)
{

return(recvackmsg(DL_INFO_ACK_SIZE, "info", bufp));
}
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/* Acknowledge the bind request.
 */
int
dlbindack(char *bufp)
{

return(recvackmsg(DL_BIND_ACK_SIZE, "bind", bufp));
}

/* Acknowledge a previous request and print the
 * information returned by the acknowledge request.
 */
int
recvackmsg(int size, const char *what, char *bufp)
{

int i, flags;
union DL_primitives *dlp;
dl_info_ack_t *infop;
dl_bind_ack_t *bindp;
char *charp;
struct strbuf ctl;
char c;

ctl.maxlen = MAXDLBUF;
ctl.len = 0;
ctl.buf = bufp;
flags = 0;

if (getmsg(fd_ether, &ctl,(struct strbuf*)NULL, &flags)< 0) {
printf("recvackmsg: %s getmsg: %s \n");
return (-1);

}
dlp = (union DL_primitives *) ctl.buf;

switch (dlp->dl_primitive) {
case DL_BIND_ACK:

bindp = (dl_bind_ack_t *)ctl.buf;
printf("BIND ACKNOWLEDGE\n");
dl_addr_length = bindp->dl_addr_length;
printf("ETHERNET/SAP Address: ");
for (i = 0, charp = ctl.buf + bindp->dl_addr_offset;

i < bindp->dl_addr_length; i++, charp++)
{

c = *charp;
printf("%x ", c);

}
printf("\n");
break;

case DL_INFO_ACK:
case DL_OK_ACK:

break;

case DL_ERROR_ACK:
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/* Acknowledgement error.
 */
switch (dlp->error_ack.dl_errno) {

case DL_BADPPA:
printf("recvackmsg: %s bad ppa (device unit)\n",

what);
break;

case DL_SYSERR:
printf("recvackmsg: %s\n", what);
break;

case DL_UNSUPPORTED:
printf(
"recvackmsg: %s: Service not supplied by provider\n",

what);
break;

case DL_NOTSUPPORTED:
printf(

"recvackmsg: %s: Primitive known but not supported by DLS provider\n",
what);

break;
default:

printf("recvackmsg (default): %s error 0x%x \n",
what, (unsigned int) dlp->error_ack.dl_errno);

break;
}
return (-1);

default:
printf("recvackmsg: %s unexpected primitive ack 0x%x\n",

what, (unsigned int)dlp->dl_primitive);
return (-1);

}

if (ctl.len < size) {
printf("recvackmsg: %s ack too small (%d < %d)\n",

what, ctl.len, size);
return (-1);

}
return (ctl.len);

}

/* Issue a bind request with the specified SAP value.
 */
int
dlbindreq(unsigned int sap)
{

dl_bind_req_t req;

memset((char *)&req, 0, sizeof(req));
req.dl_primitive = DL_BIND_REQ;
req.dl_sap = sap;
return(putcntlmsg((char *)&req, sizeof(req)));

}
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/* Send a DL_INFO_REQ primitive
 */
int
dlinforeq()
{

dl_info_req_t req;

memset((char *)&req, 0, sizeof(req));
req.dl_primitive = DL_INFO_REQ;
return(putcntlmsg((char *)&req, sizeof(req)));

}

/* Send a putmsg() control message request.
 */
int
putcntlmsg(char *ptr, int len)
{

struct strbuf ctl;

ctl.maxlen = 0;
ctl.len = len;
ctl.buf = ptr;
if (putmsg(fd_ether, &ctl, (struct strbuf *) NULL, 0) < 0) {

perror("putcntlmsg ");
return (-1);

}
return (0);

}

/* Send a unit data request message to the target ethernet.
 * The data in the buffer is different for each message.
 *
 * Parameter:
 * index netbuff_array[] index of buffer to use.
 */
void
senddatamsg(int index)
{

int i;
unsigned int *intp;
dl_unitdata_req_t dlu;
char *charp;
vaddr_t bufaddr = netbuff_array[index].nb_info.address;

/* Setup a DL unitdata request structure.
 */
dlu.dl_primitive = DL_UNITDATA_REQ;
dlu.dl_dest_addr_length = dl_addr_length;
dlu.dl_dest_addr_offset = sizeof(dl_unitdata_req_t);
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dlu.dl_priority.dl_min = 100;
dlu.dl_priority.dl_max = 0;

/* Put the dl_unitdata_req_t structure at the
 * very front of the buffer.
 */
bcopy(&dlu, ctlbuf, sizeof(dl_unitdata_req_t));
charp = ctlbuf + sizeof(dl_unitdata_req_t);

/* Put the destination ethernet address and sap just after
 * the dl_unitdata_req_t structure in the buffer.
 */
bcopy(ethersap_destaddr, charp, dl_addr_length);

/* Check the current data value being used.
 * Save off the starting value into the netbuff_array entry.
 */
if (msg_data_value > 0x0fffffff)

msg_data_value = 1;
netbuff_array[index].nb_data_sval = msg_data_value;

/* Write the data into the write buffer.
 */
for (i = 0, intp = (unsigned int *)bufaddr;

i < BUFFER_SIZE; i +=4 , msg_data_value++, intp++)
{

*intp = msg_data_value;
}

/* Send the mesage.
 */
dlunitdatareq(ctlbuf, (caddr_t)bufaddr, BUFFER_SIZE);

}

/* Write out data using the DL_UNITDATA_REQ primitive.
 * The front of the ctlbuffer should aleady have
 * - the dl_unitdata_req_t structure followed by
 * - the destination ethernet address and SAP
 */
void
dlunitdatareq(caddr_t ctlbuffer, caddr_t databuffer, int len)
{

struct strbuf ctl;
struct strbuf dctl;

ctl.maxlen = 0;
ctl.len = sizeof(dl_unitdata_req_t) + dl_addr_length;
ctl.buf = ctlbuffer;

dctl.maxlen = 0;
dctl.len = len;
dctl.buf = databuffer;
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if (putmsg(fd_ether, &ctl, &dctl, 0) < 0) {
perror("dlunitdatareq");
exit(-1);

}
}

/* Attempt to read back the message that we just sent.
 * Validate the received message source address, length of data,
 * and the buffer contents.
 *
 * Parameter:
 * index netbuff_array[] index of buffer to use.
 */
void
readdatamsg(int index)
{

int i, value, bad_data, flags;
unsigned int *intp;
char *charp;
dl_unitdata_ind_t *unit_indp;
struct strbuf strdata;
struct strbuf strctl;
struct netbuffers *nbp = &netbuff_array[index];

/* Make sure that the message that was sent with this buffer
 * has already be sent. If not, wait until the buffer is free
 * for re-use.
 */
nbuffwait(index);

while (1) {
/* Now attempt to read back the message.
*/
strdata.maxlen = BUFFER_SIZE;
strdata.len = 0;
strdata.buf = (char *)nbp->nb_info.address;
strctl.maxlen = MAXDLBUF;
strctl.len = 0;
strctl.buf = ctlbuf;
flags = 0;

if (getmsg(fd_ether, &strctl, &strdata, &flags) < 0) {
perror(" ead_data_message:getmsg");
exit(-1);

}

/* We're expecting to get only unit data indication messages.
 */
unit_indp = (dl_unitdata_ind_t *)strctl.buf;
if (unit_indp->dl_primitive != DL_UNITDATA_IND) {

printf("NOT RECEIVED DL_UNITDATA_IND: %d received\n",
unit_indp->dl_primitive);
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exit(-1);
}

/* The sender should match our target address.
 * Ignore messages received from elsewhere.
 */
charp = strctl.buf;
charp += unit_indp->dl_src_addr_offset;
if (strncmp(charp, ethersap_destaddr,

unit_indp->dl_src_addr_length))
{

continue;
}

/* The amount of data received should match the amount sent.
 */
if (BUFFER_SIZE != strdata.len)

continue;

/* Check that the data pattern is good.
 */
for (i = 0, intp = (unsigned int *)strdata.buf, bad_data = 0,

value = nbp->nb_data_sval;
i < BUFFER_SIZE; i += 4, value++, intp++)

{
if (*intp != value) {

if (!bad_data) {
bad_data++;
break;

}
printf(

"Second data mismatch on same message.\n");
exit(-1);

}
}

/* If bad data, try to read the message again.
 */
if (bad_data)

continue;
break;

}
}

/* Called to wait until the buffer is free after a putmsg() operation.
 *
 * Parameter:
 * indexnetbuff_array[] index of buffer to use.
 */
void
nbuffwait(int index)
{

struct str_netbuff_info*infop = &netbuff_array[index].nb_info;
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do {
if (ioctl(fd_ether, I_NBUFF, infop) < 0) {

printf("NBUFF_WAIT, ioctl failed.\n");
perror("ioctl");
exit(-1);

}
} while (infop->ref_count != 0) ;

}
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1

The following is a list of terms used throughout this manual:

alignment

The position in memory of a unit of data, such as a word or half-word, on an integral
boundary. A data unit is properly aligned if its address is evenly divisible by the data unit's
size in bytes. For example, a word is correctly aligned if its address is divisible by four. A
half-word is aligned if its address is divisible by two.

ARP

Address Resolution Protocol

asm macro

The macro that defines system functions used to improve driver execution speed. They are
assembler language code sections (instead of C code).

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asynchro-
nous event. A signal can occur when something in the system fails, but it is not known
when the failure will occur.

automatic calling unit (ACU)

A device that permits processors to dial calls automatically over the communications net-
work.

base level

The code that synchronously interacts with a user program. The driver's initialization and
switch table entry point routines constitute the base level. Compareinterrupt level .

block and character interface

A collection of driver routines, kernel functions, and data structures that provide a stan-
dard interface for writing block and character drivers.

block data transfer

The method of transferring data in units (blocks) between a block device such as a mag-
netic tape drive or disk drive and a user program.
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block device switch table

The table constructed during automatic configuration that contains the address of each
block driver entry point routine (for example,open(D2) , close(D2) , strat-
egy(D2) ). This table is calledbdevsw  and its structure is defined inconf.h .

block device

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code. Comparecharacter device .

block driver

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for example, thebuf  structure). One driver
is written for each major number employed by block devices.

block I/O

A data transfer method used by drivers for block access devices. Block I/O uses the system
buffer cache as an intermediate data storage area between user memory and the device.

block

The basic unit of data for I/O access. A block is measured in bytes. The size of a block dif-
fers between computers, file system sizes, or devices.

boot device

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

bootable object file

A file that is created and used to build a new version of the operating system.

bootstrap

The process of bringing up the operating system by its own action. The first few instruc-
tions load the rest of the operating system into the computer.

boot

The process of starting the operating system. The boot process consists of self-configura-
tion and system initialization.

buffer

A staging area for input-output (I/O) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a mem-
ory array that contains data from the disk and a buffer header that identifies the buffer.
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cache

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

called DLS user

The DLS user in connection mode that processes requests for connections from other DLS
users.

calling DLS user

The DLS user in connection mode that initiates the establishment of a data link connec-
tion.

canonical processing

Terminal character processing in which the erase character, delete, and other commands
are applied to the data received from a terminal before the data is sent to a receiving pro-
gram. Other terms used in this context are canonical queue, which is a buffer used to retain
information while it is being canonically processed, and canonical mode, which is the
state where canonical processing takes place. Compareraw mode .

character device

A device, such as a terminal or printer, that conveys data character by character. Compare
block device .

character driver

The driver that conveys data character by character between the device and the user pro-
gram. Character drivers are usually written for use with terminals, printers, and network
devices, although block devices, such as tapes and disks, also support character access.

character I/O

The process of reading and writing to/from a terminal.

CLNS

Connectionless Network Service, the datagram version of the OSI network layer

clone driver

A software driver used by STREAMS drivers to select an unused minor device number, so
that the user process does not need to specify it.

communication endpoint

The local communication channel between a DLS user and DLS provider.
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connection establishment

The phase in connection mode that enables two DLS users to create a data link connection
between them.

connection management stream

A special stream that will receive all incoming connect indications destined for Data Link
Service Access Point (DLSAP) addresses that are not bound to any other streams associ-
ated with a particular Physical Point of Attachment (PPA).

connection mode

A circuit-oriented mode of transfer in which data is passed from one user to another over
an established connection in a sequenced manner.

connection release

The phase in connection mode that terminates a previously established data link connec-
tion.

connectionless mode

A mode of transfer in which data is passed from one user to another in self-contained units
with no logical relationship required among the units.

control and status register (CSR)

Memory locations providing communication between the device and the driver. The driver
sends control information to the CSR, and the device reports its current status to it.

controller

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the
device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

critical code

A section of code is critical if execution of arbitrary interrupt handlers could result in con-
sistency problems. The kernel raises the processor execution level to prevent interrupts
during a critical code section.

CSMA/CD

Carrier Sense Multiple Access/Collision Detection

cyclic redundancy check (CRC)

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.
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data structure

The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

data terminal ready (DTR)

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

data transfer

The phase in connection and connectionless modes that supports the transfer of data
between two DLS users.

DDI/DKI

Device Driver Interface/Device Kernel Interface

demand paging

A memory management system that allows unused portions of a program to be stored tem-
porarily on disk to make room for urgently needed information in main memory. With
demand paging, the virtual size of a process can exceed the amount of physical memory
available in a system.

device number

The value used by the operating system to name a device. The device number contains the
major number and the minor number.

dev_t

The C programming language data type declaration that is used to store the driver major
and the minor device numbers.

diagnostic

A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

DLIDU

Data Link Interface Data Unit. A grouping of DLS user data that is passed between a DLS
user and the DLS provider across the data link interface. In connection mode, a DLSDU
may consist of multiple DLIDUs.

DLPI

Data Link Provider Interface
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DLS provider

The data link layer protocol that provides the services of the Data Link Provider Interface.

DLS user

The user-level application or user-level or kernel-level protocol that accesses the services
of the data link layer.

DLS

Data Link Service

DLSAP address

An identifier used to differentiate and locate specific DLS user access points to a DLS pro-
vider.

DLSAP

A point at which a DLS user attaches itself to a DLS provider to access data link services.

DLSDU

Data Link Service Data Unit. A grouping of DLS user data whose boundaries are pre-
served from one end of a data link connection to the other.

downstream

The direction of STREAMS messages flowing through a write queue from the user pro-
cess to the driver.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver routines

Seeroutines .

driver

The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.

DSAP

Destination Service Access Point

EDLIDU

Expedited Data Link Interface Data Unit
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error correction code (ECC)

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

expedited data transfer

A DLPI service that transfers data subject to separate flow control than that applying to
normal data transfer. The service is intended to deliver the data ahead of any DLSDUs that
may be in transit.

FDDI

Fiber Distributed Data Interface

function

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls and
library routines in a user-level program.

initialization entry points

Driver initialization routines that are executed during system initialization (for example,
init(D2) , start(D2) ).

interface

The set of data structures and functions supported by the UNIX kernel to be used by
device drivers.

interprocess communication (IPC)

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

interrupt level

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of the
device, and passes control to the appropriate interrupt routine.

interrupt priority level (IPL)

The interrupt priority level at which the device requests that the CPU call an interrupt pro-
cess. This priority can be overridden in the driver's interrupt routine for critical sections of
code with thespl(D3)  function.

interrupt vector

Interrupts from a device are sent to the device's interrupt vector, activating the interrupt
entry point for the device.
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IP

Internet Protocol

ISO

International Organization for Standardization

kernel buffer cache

A linked list of buffers used to minimize the number of times a block-type device must be
accessed.

LLC

Logical Link Control, a sub-layer of the data link layer for media independent data link
functions.

low water mark

The point at which more data is requested from a terminal because the amount of data
being processed in the character lists has fallen creating room for more. It also applies to
STREAMS queues regarding flow control.

MAC

Media Access Control, a sub-layer of the data link layer for media specific data link func-
tions.

memory management

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

message block

A STREAMS message is made up of one or more message blocks. A message block is
referenced by a pointer to amblk_t  structure, which in turn points to the data block
(dblk_t ) structure and the data buffer.

message

All information flowing in a stream, including transferred data, control information, queue
flushing, errors and signals. The information is referenced by a pointer to amblk_t  struc-
ture.

MIB

Management Information Base
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modem

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.

module

A STREAMS module consists of two relatedqueue  structures, one each for upstream
and downstream messages. One or more modules may be pushed onto a stream between
the stream head and the driver, usually to implement and isolate a line discipline or a com-
munication protocol. virtual to physical memory.

panic

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a mes-
sage is displayed on the console to indicate the cause of the problem.

PDU

Protocol Data Unit

PPA identifier

An identifier of a particular physical medium over which communication transpires.

PPA

The point at which a system attaches itself to a physical communications medium.

prefix

A character name that uniquely identifies a driver's routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be given theramd  prefix.
If it is a block driver, the routines areramdopen , ramdclose , ramdstrategy ,  and
ramdprint .

priority message

STREAMS messages that must move through the stream quickly are classified as priority
messages. They are placed at the head of the queue for processing by thesrv(D2)  rou-
tine.

quality of service (QOS)

Characteristics of transmission quality between two DLS users.

queue

A data structure, the central node of a collection of structures and routines, which makes
up half of a STREAMS module or driver. Each module or driver is made up of one queue
each for upstream and downstream messages. Location:stream.h .
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raw I/O

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

raw mode

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

read queue

The half of a STREAMS module or driver that passes messages upstream.

routines

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines. The entry-point routines are accessed through system tables.

SAP

Service Access Point, conceptually the “point” at which a layer in the OSI model make its
services available to the layer above it.

SCSI driver interface (SDI)

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

SDU

Service Data Unit

semantic processing

Semantic processing entails input validation of the characters received from a character
device.

small computer system interface (SCSI)

The American National Standards Institute (ANSI) approved interface for supporting spe-
cific peripheral devices.

SNMP

Simple Network Management Protocol

Source Code Control System (SCCS)

A utility for tracking, maintaining, and controlling access to source code files.
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special device file

The file that identifies the device's access type (block or character), the external major and
minor numbers of the device, the device name used by user-level programs, and security
control (owner, group, and access permissions) for the device.

SSAP

Source Service Access Point

stream end

The stream end is the component of a stream farthest from the user process, providing the
interface to the device. It contains pointers to driver (rather than module) routines.

stream head

Every stream has a stream head, which is inserted by the STREAMS subsystem. It is the
component of a stream closest to the user process. The stream head processes STREAMS-
related system calls and performs the transfer of data between user and kernel space.

STREAMS

A kernel subsystem used to build a stream, which is a modular, full-duplex data path
between a device and a user process.

stream

A linked list of kernel data structures providing a full-duplex data path between a user pro-
cess and a device or pseudo-device.

switch table entry points

Driver routines that are activated throughbdevsw  or cdevsw  tables.

switch table

The operating system that has two switch tables,cdevsw  andbdevsw . These tables hold
the entry point routines for character and block drivers and are activated by I/O system
calls.

synchronous data link interface (SDLI)

A UN-type circuit board that works subordinately to the input/output accelerator (IOA).
The SDLI provides up to eight ports for full-duplex synchronous data communication.

system initialization

The routines from the driver code and the information from the master file that initialize
the system (including device drivers).
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TCP

Transmission Control Protocol, a connection oriented transport in the Internet suite

upstream

The direction of STREAMS messages flowing through a read queue from the driver to the
user process.

user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user program and the kernel. Drivers execute in the kernel, and the user pro-
grams that interact with drivers generally execute in the user program area. This space is
also referred to as user data area.

volume table of contents (VTOC)

Lists the beginning and ending points of the disk partitions by the system administrator for
a given disk.

write queue

The half of a STREAMS module or driver that passes messages downstream.
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