
PowerMAX OS Real-Time Guide

0890466-100

January 2006

Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be repro-
duced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive Pompano Beach Florida, 33069. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerMAX OS is a trademark of Concurrent Computer Corporation.
UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.
NFS is a trademark of Sun Microsystems, Inc.
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- May 1995 000 PowerUX Release 2.1

Previous Release -- June 2001 070 PowerMAX OS Release 5.1

Previous Release -- August 2003 080 PowerMAX OS Release 6.0

Previous Release -- November 2004 090 PowerMAX OS Release 6.2

Current Release -- January 2006 100 PowerMAX OS Release 6.3

Preface

Scope of Manual

This manual provides an introduction to the real-time features of PowerMAX OS and
describes techniques for improving response time and increasing determinism. It contains
documentation for interfaces that are used primarily by real-time applications.

Structure of Manual

This guide consists of the following 14 chapters, 5 appendixes, and index:

• Chapter 1:

- Overviews the real-time features of PowerMAX OS.

- Introduces this guide.

• Chapter 2 treats:

- Achieving real-time response.

- Increasing process dispatch latency.

• Chapter 3 describes techniques to create a deterministic environment to run
application.

• Chapter 4 explains the procedures for using the ktrace utility.

• Chapter 5 discusses:

- Real-time interprocess communication.

- Procedures for using the POSIX® message-passing facilities.

• Chapter 6 describes PowerMAX OS interprocess synchronization tools.

• Chapter 7 describes some of the facilities that can be used for timing.

• Chapter 8 explains:

- PowerMAX OS support for user-level interrupt routines.

- Using user-level interrupt routines.

• Chapter 9 describes the Virtual Interrupt System and how to use it.

• Chapter 10 describes:

- The 60 Hz clock interrupt and its interrupt service routine.

- Disabling the 60 Hz clock interrupt on one or more CPUs.
iii

PowerMAX OS Real-Time Guide
• Chapter 11 explains:

- Performing direct disk I/O

- Virtual partitions.

- POSIX synchronized I/O interfaces.

• Chapter 12 describes the PowerMAX OS asynchronous I/O facilities and
explains how to use them.

• Chapter 13 explains how to use the following PowerMAX OS facilities:

- Real-time clocks.

- Edge-triggered interrupts.

- High-speed data enhanced devices.

- DR11W emulator.

- 1553 Advanced Bus Interface.

- High-performance serial controller.

• Chapter 14 describes STREAMS Network Buffers and how to use them.

• Appendix A contains an example C program that illustrates use of the
POSIX message queue facilities.

• Appendix B contains an example C program that illustrates use of the inter-
process synchronization tools.

• Appendix C contains an example C program that demonstrates use of the
user-level interrupt routine facility by a user program that executes a user-
level interrupt process and interrupt-handling routine.

• Appendix D contains an example C program that demonstrates use of the
user-level interrupt routine facility by a multithreaded program that creates
two interrupt connections to two separate real-time clocks.

• Appendix E contains example C programs that have been developed to
illustrate use of the high–speed data enhanced device, HSDE.

• The index contains an alphabetical reference to key terms and concepts and
numbers of pages where they occur in the text.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italics.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and system manual page references also appear in list bold
type.
iv

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appear in list type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such options or arguments

Related Publications

The following are related publications:

0830045 HN6800 Console Reference Manual

0830046 HN6800 Architecture Manual

0830047 HN6200 Console Reference Manual

0830048 HN6200 Architecture Manual

0830050 Power Hawk Series 600 Console Reference Manual

0830059 Power Hawk Series 700 Console Reference Manual

0830060 Power Hawk Series 900 Console Reference Manual

0890288 HAPSE Reference Manual

0890398 NightTrace Manual

0890423 PowerMAX OS Programming Guide

0890425 Device Driver Programming

0890429 System Administration Volume 1

0890430 System Administration Volume 2

0890459 Compilation Systems Volume 1 (Tools)

0890493 Data Monitoring Reference Manual

0891080 Power Hawk Series 600 Diskless Systems Administrator’s Guide

0891081 Power Hawk Series 600 Closely-Coupled Programming Guide

0891086 Power Hawk Series 700 Diskless Systems Administrator’s Guide

0891087 Power Hawk Series 700 Closely-Coupled Programming Guide

0891090 Power Hawk Series 900 Diskless Systems Administrator’s Guide
v

PowerMAX OS Real-Time Guide
vi

Chapter 0

Contents

Preface . iii

Chapter 1 Introduction

Focus of Guide. 1-1
Real-Time Features of PowerMAX OS. 1-1

POSIX Real-Time Extension . 1-2
Shielded Processors . 1-2
Exclusive Binding . 1-3
Static Priority Scheduling. 1-3
Memory Resident Processes. 1-3
Memory Mapping and Data Sharing . 1-4
Real–Time Process Synchronization . 1-4
Message Queues . 1-5
Asynchronous Input/Output . 1-5
Direct Asynchronous I/O to Disk Partitions. 1-5
Synchronized I/O . 1-5
User–Level Interrupt Routines . 1-5
User–Level Device Drivers . 1-6
High–Resolution Timeout Facilities. 1-6
Real–Time Signal Behavior . 1-6
Watch-Dog Timer Function . 1-7

Chapter 2 Improving Response Time

Process Dispatch Latency . 2-1
Effect of IPL . 2-2
Effect of Interrupts . 2-4

The Shielded Processor Model . 2-5
Improving Process Dispatch Latency . 2-6

Assigning Processes to CPUs. 2-7
Assigning Process to CPUs Via Exclusive Binding . 2-8
Assigning Interrupts to CPUs. 2-8

Statically Configuring Interrupt Assignments. 2-8
Dynamically Modifying Interrupt Assignments . 2-9

Using intconfig(1M) . 2-10
Using syscx(2) GET_PIN_CPU and SET_PIN_CPU 2-12

Querying the Interrupt Configuration . 2-13
Hardclock Interrupt Handling. 2-14
Using Interrupt Daemons . 2-15
Assigning Daemons to CPUs . 2-17
Controlling STREAMS Scheduling . 2-17

Selecting CPUs and Local Daemons. 2-17
Per-STREAM CPU Biasing of Service Procedures 2-19

Initialization of the per-STREAM CPU Bias Mask. 2-19
Changing the per-STREAM CPU Bias Mask 2-20
vii

PowerMAX OS Real-Time Guide
Setting Kernel Tunables . 2-20
Biasing init(1). 2-21
Bound STREAMS . 2-22
Biasing with strmuxbias(1M) . 2-22

User–Level Interrupt Routines . 2-23
User–Level Device Drivers . 2-24
Threads and Response Time . 2-25

Real-Time System Configuration Using Config . 2-26

Chapter 3 Increasing Determinism

Overview of Determinism. 3-1
Architectural Issues. 3-1

Reducing Contention for the System Bus . 3-2
Interprocessor Interrupts . 3-4

Procedures for Increasing Determinism. 3-5
Locking Pages in Memory . 3-5
Using Local and Global Memory . 3-5
Setting the Program Priority . 3-7
Using High–Resolution Timeout Facilities . 3-8
Waking Another Process. 3-9

Chapter 4 Using the ktrace Utility

Overview of ktrace. 4-1
Configuring a Kernel for Kernel Tracing. 4-1
Procedures for Using ktrace. 4-2

Chapter 5 Real-Time Interprocess Communication

Understanding Message Queue Concepts . 5-1
Understanding Basic Concepts . 5-2
Understanding Advanced Concepts . 5-3
Performance Issue. 5-4
Remote Message Queues . 5-4

Understanding Message Queue Library Routines . 5-5
Understanding the Message Queue Attribute Structure 5-5
Using the Library Routines. 5-6

Using the mq_open Routine . 5-6
Using the mq_send Routine. 5-10
Using the mq_receive Routine . 5-12
Using the mq_notify Routine . 5-13
Using the mq_setattr Routine . 5-15
Using the mq_getattr Routine . 5-16
Using the mq_close Routine . 5-16
Using the mq_unlink Routine . 5-17
Using the mq_remote_timeout Routine. 5-19

Remote Message Queue Debugging. 5-20

Chapter 6 Interprocess Synchronization

Understanding POSIX Counting Semaphores . 6-1
viii

Implementation Issue . 6-3
Performance Issue . 6-3
Remote Semaphores . 6-3
Interfaces . 6-4

Using the sem_init Routine . 6-5
Using the sem_destroy Routine. 6-6
Using the sem_open Routine. 6-7
Using the sem_close Routine . 6-10
Using the sem_unlink Routine . 6-10
Using the sem_wait Routine . 6-12
Using the sem_trywait Routine . 6-12
Using the sem_post Routine . 6-13
Using the sem_getvalue Routine. 6-13
Using the sem_remote_timeout Routine . 6-14

Remote Semaphore Debugging . 6-15
Understanding Synchronization Problems . 6-16
Using Interprocess Synchronization Tools . 6-18

Rescheduling Control . 6-18
Understanding Rescheduling Variables. 6-19
Using the resched_cntl System Call . 6-20
Using the Rescheduling Control Macros . 6-22
Applying Rescheduling Control Tools . 6-23
Rescheduling Variables and Ada. 6-24
Rescheduling Variables and Processor Migration. 6-24

Busy-Wait Mutual Exclusion . 6-25
Understanding the Busy-Wait Mutual Exclusion Variable 6-26
Using the Busy-Wait Mutual Exclusion Macros. 6-26
Applying Busy-Wait Mutual Exclusion Tools . 6-28

Client-Server Coordination . 6-29
Using the Client System Calls. 6-29
Constructing Sleepy-Wait Mutual Exclusion Tools 6-32
Using the Server System Calls . 6-33
Applying Condition Synchronization Tools . 6-36

Chapter 7 Timing Facilities

Understanding POSIX Clocks and Timers . 7-1
Understanding the Time Structures . 7-2
Using the Clock Routines. 7-3

Using the clock_settime Routine. 7-3
Setting the Clock During System Initialization 7-5
Setting the Clock at Init State 2 . 7-6

Using the clock_gettime Routine . 7-6
Using the clock_getres Routine. 7-7

Using the Timer Routines. 7-8
Using the timer_create Routine. 7-8
Using the timer_delete Routine. 7-12
Using the timer_settime Routine. 7-13
Using the timer_gettime Routine . 7-14
Using the timer_getoverrun Routine . 7-15

Using the nanosleep Routine . 7-16
Using the High-Resolution Timing Facility . 7-17

Overview of the High-Resolution Timing Facility. 7-17
ix

PowerMAX OS Real-Time Guide
Using the hirestmode Library Routine . 7-18

Chapter 8 User-Level Interrupt Routines

Overview of User-Level Interrupt Routines . 8-1
Configuration Requirements. 8-3
Operating System Support . 8-3

Connecting to an Interrupt Vector . 8-4
Obtaining an Interrupt Vector . 8-5

Using the IOCTLVECNUM ioctl System Call . 8-6
Modifying the Interrupt Vector Table . 8-6

Using the iconnect Library Routine . 8-7
Defining an Interrupt Vector Connection . 8-9
Disconnecting a Process from an Interrupt Vector 8-10
Allocating Interrupt Vectors . 8-11
Obtaining the Status of Interrupt Vectors . 8-12

Locking Library Memory Pages . 8-14
Using the ienable Library Routine . 8-15

Viewing User-Level Interrupt Connections . 8-16
Using Local Memory . 8-17
Interrupt-Handling Routine Constraints. 8-19
Debugging the Interrupt-Handling Routine . 8-20
Understanding the Processor IPL. 8-22
Using the spl Support Routines . 8-23

Using the spl_map Routine. 8-25
Using the spl_request Routine . 8-25
Using the spl_request_macro . 8-26
Using the spl_unmap Routine. 8-27

Using the eti Support Routines . 8-28
Using the eti_map Routine . 8-28
Using the eti_request Routine. 8-29
Using the eti_unmap Routine . 8-30

Using the Distributed Interrupt Support Routines . 8-30
Using the vme_address Routine. 8-31

Chapter 9 Virtual Interrupt System

Introduction . 9-1
Understanding VIS Signals and Queued Signals . 9-1

VIS Overview . 9-1
The Channel . 9-2

Sense and Source Connections . 9-2
System Timer Channel . 9-3

Connecting to a Timer Channel with vi_sense(2) . 9-3
VIS Calls and Routines . 9-3
VIS Interface—Procedural Overview . 9-4

Creating a Virtual Interrupt Channel . 9-4
Deleting a Virtual Interrupt Channel . 9-6
Establishing a Source Connection . 9-6
Sourcing an Interrupt . 9-7
Removing a Source Channel . 9-8
The action_t Structure . 9-8
Allocating and Initializing an action_t Structure. 9-9
x

Establishing a Sense Connection. 9-10
Timer Connections . 9-10

Removing a Sense Connection . 9-11
VIS Control Operations. 9-11

Command-Level VIS Administration . 9-13

Chapter 10 Hardclock Interrupt Handling

Understanding Hardclock . 10-1
Controlling Clock Interrupt Handling . 10-3

Controlling System-Wide Timing Functions . 10-3
Controlling Local Timing Functions . 10-4

Using the mpadvise Library Routine . 10-4
Using the hardclock Command. 10-5

Understanding Functional Changes. 10-6
The Process Scheduler . 10-6
The Processor File System . 10-6
System Calls, Routines, Commands, and Utilities . 10-6

Chapter 11 Disk I/O

Direct Disk I/O . 11-1
Contiguous Files . 11-3

Creating Contiguous Files . 11-3
I/O With Contiguous Files . 11-3

File Advisories. 11-4
fadvise(3X) . 11-4

Virtual Partition . 11-5
Understanding POSIX Synchronized I/O . 11-6

Configuring POSIX Synchronized I/O. 11-7
Using POSIX Synchronized I/O. 11-8

Using open and fcntl . 11-8
Using fdatasync . 11-9
Using fsync . 11-9

Real-Time Disk Scheduling. 11-10
Miscellaneous Disk I/O Tunables. 11-11

Chapter 12 Real-Time I/O

Overview of Asynchronous I/O. 12-1
Using Asynchronous I/O . 12-2

The Asynchronous I/O Control Block . 12-4
Threads-Based Asynchronous I/O . 12-6
Asynchronous I/O to Raw Disk Partitions . 12-7

The aio_alignment Routine . 12-8
The aio_memlock Routine . 12-9

Using the POSIX Asynchronous I/O Interfaces . 12-10
The aio_read Routine . 12-11
The aio_write Routine . 12-12
The lio_listio Routine . 12-14
The aio_error and aio_return Routines. 12-16
The aio_cancel Routine . 12-17
The aio_suspend Routine . 12-18
xi

PowerMAX OS Real-Time Guide
The aio_fsync Routine . 12-19
Using Notification Mechanisms. 12-20

Polling. 12-20
Call-Back Notification . 12-22
Signal Notification . 12-24

Chapter 13 Peripherals

Using a Real–Time Clock . 13-2
Understanding the Real–Time Clock Device . 13-2
Understanding the User Interface . 13-5
Watch-Dog Timer Function . 13-6

Using an Edge–Triggered Interrupt Device . 13-7
Understanding the Edge–Triggered Interrupt Device. 13-8
Understanding the User Interface . 13-9

Using a Distributed Interrupt Device . 13-9
Understanding Distributed Interrupts . 13-10
Understanding the User Interface . 13-10

Using the High–Speed Data Enhanced Device (HSDE) . 13-11
Understanding the High–Speed Data Enhanced (HSDE) Device 13-11
Understanding the HSDE User Interface . 13-13
Using a Master–Slave Transfer Protocol . 13-14
Using the HSDE Command Chaining Mode . 13-15
Using the HSDE Data Chaining Mode . 13-19

Using a DR11W Emulator . 13-20
Understanding the DR11W Emulator . 13-21
Understanding the DR11W User-Level Device Driver 13-22
Configuration and Installation Requirements . 13-22
Understanding the User Interface . 13-24

Application Requirements . 13-24
Compiling and Linking Procedures . 13-24

Using the Driver Routines . 13-25
dr11w_acheck . 13-25
dr11w_aread. 13-27
dr11w_attn_check . 13-28
dr11w_attn_wait . 13-29
dr11w_await. 13-29
dr11w_awrite . 13-30
dr11w_close . 13-31
dr11w_disable_interrupts. 13-32
dr11w_dump . 13-32
dr11w_enable_interrupts . 13-33
dr11w_get_modes . 13-34
dr11w_get_status . 13-34
dr11w_ienabled . 13-35
dr11w_open . 13-35
dr11w_pio_read . 13-37
dr11w_pio_write . 13-38
dr11w_reset . 13-38
dr11w_sendgo . 13-39
dr11w_sendintr . 13-39
dr11w_set_modes . 13-40
dr11w_setsdir. 13-41
xii

dr11w_set_status . 13-41
Using the 1553 Advanced Bus Interface . 13-42

Understanding the 1553 Advanced Bus Interface . 13-42
Understanding the User Interface. 13-43
Using the 1553 ABI User-Level Device Driver . 13-44

Configuration and Installation Requirements . 13-44
Application Requirements. 13-45
Compiling and Linking Procedures. 13-46

Using the 1553 ABI User-Level Driver Routines . 13-46
abi_attn_check. 13-47
abi_attn_wait . 13-47
abi_close . 13-48
abi_disable_interrupts . 13-49
abi_dump. 13-49
abi_enable_interrupts . 13-50
abi_ienabled . 13-51
abi_open . 13-51
abi_pio_read . 13-52
abi_pio_write. 13-53
abi_reset . 13-54

Using Real–Time Serial Communications . 13-54
Understanding the HPS Controller. 13-54
Configuration and Installation Requirements. 13-55
Understanding the User Interface. 13-55

Using the Ioctl System Call . 13-56
Using Read and Write System Calls . 13-58

Optimizing the Performance of Real-Time TTY Devices 13-59
Memory Mapping for HSDE and DR11W . 13-60

Reserving Physical Memory. 13-60
Binding a Shared Memory Segment to Physical Memory 13-61
Obtaining an Identifier for a Shared Memory Segment 13-61
Attaching a Shared Memory Segment . 13-62

Chapter 14 STREAMS Network Buffers

Overview . 14-1
System Call . 14-1

Understanding the Network Buffer Information Structure. 14-2
Understanding the Network Buffer Commands . 14-3
Understanding Network Buffer Types . 14-5
Example of a System Call . 14-6
Example of Double-Buffering . 14-6

Kernel Tunables. 14-8

Chapter 15 Controlling Periodic Kernel Daemons

Understanding Kernel Daemons . 15-1
Enabling and Disabling Periodic Kernel Daemons . 15-1
Daemoncntl . 15-2
Description of Periodic Kernel Daemons . 15-2

Appendix A Example Program - Message Queues . A-1
xiii

PowerMAX OS Real-Time Guide
Appendix B Example Program - Synchronization Tools . B-1

Appendix C Example 1 - User-Level Interrupt Routines . C-1

Appendix D Example 2 - User-Level Interrupt Routines . D-1

Appendix E HSDE Example Programs

HSDE Device Command and Status Definitions. E-1
HSDE Attach Routine . E-2
Master HSDE Control Program . E-3
Slave HSDE Control Program . E-6
Master HSDE Data Chain Program . E-9
Slave HSDE Data Chain Program . E-11
Master HSDE Command Chain Program . E-13
Slave HSDE Command Chain Program . E-16

Index . Index-1

List of Screens

Screen 2-1. Realtime Configuration Menu . 2-27

List of Illustrations

Figure 2-1. Ideal Process Dispatch Latency . 2-2
Figure 2-2. Effect of Raised IPL on Process Dispatch Latency 2-3
Figure 2-3. Effect of Low IPL on Process Dispatch Latency 2-4
Figure 2-4. Effect of Interrupts on Process Dispatch Latency 2-5
Figure 2-5. Effect of User–Level Interrupts on Process Dispatch Latency 2-24
Figure 5-1. Example of Two Message Queues and Their Messages 5-2
Figure 5-2. The Result of Two mq_sends . 5-11
Figure 5-3. The Result of Two mq_receives . 5-13
Figure 13-1. Library Call Sequence for Driver Routines . 13-26

List of Tables

Table 2-1. Sample Output of intconfig with no Options 2-10
Table 2-2. Options to the intstat Utility. 2-13
Table 2-3. Controllers with Associated Interrupt Daemons 2-16
Table 7-1. Notification Mechanisms for Timer Expirations 7-10
Table 8-1. IPL Values . 8-22
Table 9-1. VIS User Task System Calls and Routines . 9-4
Table 10-1. System Calls and Routines Affected by Disabling hardclock 10-7
Table 12-1. Interfaces Supporting Asynchronous I/O. 12-3
Table 13-1. Mode Default Values . 13-12
Table 13-2. Master/Slave Protocol . 13-14
Table 14-1. Kernel Tunables . 14-8
xiv

1
Introduction

Focus of Guide. 1-1
Real-Time Features of PowerMAX OS. 1-1

POSIX Real-Time Extension . 1-2
Shielded Processors . 1-2
Exclusive Binding . 1-3
Static Priority Scheduling. 1-3
Memory Resident Processes. 1-3
Memory Mapping and Data Sharing . 1-4
Real–Time Process Synchronization . 1-4
Message Queues . 1-5
Asynchronous Input/Output . 1-5
Direct Asynchronous I/O to Disk Partitions. 1-5
Synchronized I/O . 1-5
User–Level Interrupt Routines . 1-5
User–Level Device Drivers . 1-6
High–Resolution Timeout Facilities. 1-6
Real–Time Signal Behavior . 1-6
Watch-Dog Timer Function . 1-7

PowerMAX OS Real-Time Guide

1
Chapter 1Introduction

1
1
1

This chapter describes the focus of this guide and provides an overview of the real-time
features of PowerMAX OS.

Focus of Guide 1

This manual provides an introduction to the real-time features of PowerMAX OS and
describes techniques for improving response time and increasing determinism. It contains
documentation for interfaces that are used primarily by real-time applications. These inter-
faces include those for interprocess synchronization tools, timing facilities, user-level
interrupt routines, synchronized I/O, and asynchronous I/O.

It is intended that this guide be used in conjunction with the PowerMAX OS Programming
Guide. The PowerMAX OS Programming Guide contains documentation for interfaces
that are used generally by both real-time and secure applications (for example, process
management facilities, POSIX scheduling interfaces, signal management facilities, mem-
ory management facilities, and Threads Library facilities).

Real-Time Features of PowerMAX OS 1

The Real-Time features of PowerMAX OS are as follows:

• Support for the POSIX real-time extension

• Shielded processors

• Exclusive binding of processes and processors

• Static priority scheduling

• Memory resident processes

• Memory mapping and data sharing

• Real–time process synchronization tools

• Message queues

• Asynchronous input/output

• Direct asynchronous I/O to disk partitions

• Synchronized I/O
1-1

PowerMAX OS Real-Time Guide
• User–level interrupt routines

• User–level device drivers

• High–resolution time-out facilities

• Real–time signal behavior

• Watch-dog timer function.

All of these features are described in the sections that follow.

POSIX Real-Time Extension 1

PowerMAX OS supports the POSIX real-time extension as set forth in ISO/IEC 9945-1.
This extension includes the following functional areas:

• Semaphores

• Process memory locking

• Memory mapped files

• Shared memory

• Priority scheduling

• Real-time signal extension

• Timers

• Interprocess communication

• Synchronized input and output

• Asynchronous input and output.

Shielded Processors 1

PowerMAX OS provides you with the capability of shielding selected processors from the
unpredictable processing associated with interrupts and system daemons. By allowing you
to bind critical, high–priority tasks to particular CPUs and to direct most interrupts and
system daemons to other CPUs, it provides you with a means of obtaining the best process
dispatch latency possible on a particular processor in a multiprocessor system. Chapter 2
presents a model for shielding processors and describes the techniques that you can use for
improving response time. Chapter 3 describes techniques that you can use for increasing
determinism.
1-2

Introduction
Exclusive Binding 1

PowerMAX OS provides you with the concepts of exclusive-use and general-purpose
processors, and of exclusively bound and unbound processes. An exclusive-use processor
executes only processes which are exclusively bound to it, plus any system daemons
biased to that processor. All processes which are not exclusively bound are unbound. The
unbound processes run on only the general purpose (nonexclusive) processors mentioned
in their biases. Any exclusive-use processor mentioned in the bias of an unbound process
is silently avoided.

A processor dynamically becomes exclusive-use when it acquires its first exclusively
bound process. A processor automatically reverts back to being general purpose when the
last exclusively bound process leaves it. On reverting back, any unbound process which
has that processor in its bias will silently start using it again.

Although exclusive binding can be done with any processor, it is an especially convenient
way of moving off at one time all ordinary processes from a shielded processor at the
moment a real-time application starts up, and letting them back on at the moment the final
real-time application using the shielded processor shuts down. In this way the system
dynamically achieves an efficient utilization of the available processors.

Static Priority Scheduling 1

PowerMAX OS accommodates static priority scheduling––that is, processes scheduled
under certain System V scheduler classes or POSIX scheduling policies do not have their
priorities changed by the operating system in response to their run–time behavior. The
resulting benefits are reduced kernel overhead and increased user control.

Process scheduling and management facilities are fully described in the PowerMAX OS
Programming Guide.

Memory Resident Processes 1

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping, Pow-
erMAX OS allows you to make certain portions of a process’s virtual address space
resident . The mlockall(3C) , munlockall(3C) , mlock(3C) , and
munlock(3C) library routines allow you to lock all or a portion of a process’s virtual
address space in physical memory. The userdma(2) system call allows you to lock an
application’s I/0 buffer in physical memory. Locked regions are immune to paging or
swapping. In contrast to traditional UNIX® operating systems, pages that are not resident
at the time of the call are immediately faulted into memory and locked. Use of each of
these facilities is explained in detail in the PowerMAX OS Programming Guide.
1-3

PowerMAX OS Real-Time Guide
Memory Mapping and Data Sharing 1

PowerMAX OS supports shared memory and memory-mapping facilities that are based
on IEEE Standard 1003.1b-1993 and UNIX System V. These facilities allow processes to
share data through the use of memory objects. Memory objects are named regions of
storage that can be mapped to the address space of one or more processes to allow them to
share the associated memory. Processes can access the data in a memory object directly by
mapping portions of their address spaces onto the objects. The term memory object
includes POSIX shared memory objects, regular files, and some devices, but it does not
include all file system objects (terminals and network devices, for example). One of the
advantages of accessing data in a memory object through a mapping to the object is that it
is generally more efficient than accessing the data through use of the read(2) and
write(2) system calls. The reason is that the data do not have to be copied between the
kernel and the application. The POSIX shared memory facilities and the memory-mapping
facilities are fully described in the PowerMAX OS Programming Guide.

PowerMAX OS also supports the System V IPC shared memory mechanism, which
allows processes to communicate by sharing portions of their virtual address space. Use of
this mechanism is supported by a set of system calls and utilities. You can use the System
V shared memory mechanism and facilities to map a user’s virtual address space onto a
particular range of physical memory addresses. The System V shared memory mechanism
and supporting facilities are described in the PowerMAX OS Programming Guide. An
explanation of the procedures for mapping physical memory is included.

Real–Time Process Synchronization 1

PowerMAX OS provides a variety of tools that cooperating processes can use to
synchronize access to shared resources.

Counting semaphore interfaces that are based on IEEE Standard 1003.1b-1993 provide a
mechanism that allows multiple processes to synchronize their access to the same set of
resources. A counting semaphore has associated with it a value. As long as the semaphore
value is positive, resources are available for use, and one of the resources is allocated to
the next process that tries to acquire it. When the semaphore value is zero or negative,
none of the resources are available; a process trying to acquire a resource must wait until
one becomes available. Procedures for using POSIX counting semaphores and the related
library routines are explained in Chapter 6.

A set of real–time process synchronization tools developed by Concurrent provides the
most efficient means for synchronizing processes. This set includes tools for controlling a
process’s vulnerability to rescheduling, serializing processes’ access to critical sections
with busy–wait mutual exclusion mechanisms, and coordinating client–server interaction
among processes. From these tools, a mechanism for providing sleepy–wait mutual
exclusion with bounded priority inversion can be constructed. Descriptions of the tools
and explanations of the procedures for using them are provided in Chapter 6.
1-4

Introduction
Message Queues 1

PowerMAX OS supports message–passing facilities that are based on IEEE Standard
1003.1b-1993. These facilities provide a means of passing arbitrary amounts of data
between cooperating processes. They allow processes to communicate through message
queues, which are accessed by using names that are visible to all processes in the system.
Messages can be assigned priorities that range from zero to 31. Procedures for using the
message–passing facilities are explained in Chapter 5.

Asynchronous Input/Output 1

Being able to perform I/O operations asynchronously means that you can set up for an I/O
operation and return without blocking on I/O completion. PowerMAX OS accommodates
asynchronous I/O with a group of library routines that are based on IEEE Standard
1003.1b-1993. These interfaces allow a process to perform asynchronous read and write
operations, initiate multiple asynchronous I/O operations with a single call, wait for
completion of an asynchronous I/O operation, cancel a pending asynchronous I/O
operation, and perform asynchronous file synchronization. In addition to asynchronous
disk I/O, asynchronous network output through network buffers is also supported.

Asynchronous I/O is fully described in Chapter 11. Its use with the DR11W emulator is
explained in Chapter 12.

Direct Asynchronous I/O to Disk Partitions 1

PowerMAX OS also supports asynchronous I/O to raw disk partitions through use of the
same POSIX interfaces that are described in the preceding section. This capability allows
a user process to transfer data directly between its I/O buffers and disk, thereby bypassing
intermediate operating system buffering. Requirements and procedures for performing
asynchronous I/O to raw disk partitions are explained in Chapter 11.

Synchronized I/O 1

PowerMAX OS supports the synchronized I/O facilities that are based on IEEE Standard
1003.1b-1993. POSIX synchronized I/O provides the means for ensuring the integrity of
an application’s data and files. A synchronized output operation ensures that data that are
written to an output device are actually recorded by the device. A synchronized input
operation ensures that data read from a device are an image of the data that currently
reside on disk. The synchronized I/O interfaces are fully described in Chapter 10.

User–Level Interrupt Routines 1

PowerMAX OS provides the support necessary to allow a user–level process to connect a
routine to an interrupt vector that corresponds to the interrupt generated by a selected
1-5

PowerMAX OS Real-Time Guide
device and to enable the connection. When a process enables the connection to an
interrupt vector, it blocks in the kernel; it no longer executes at normal program level. It
executes only at interrupt level––executing the user–level interrupt handling routine when
the connected interrupt becomes active. Operating system support for user–level interrupt
routines includes the iconnect(2) and ienable(2) system calls and the
uistat(1) utility. Related operating system support includes the capability to raise and
lower the interrupt priority level (IPL) from a user–level process, the capability to control
edge–triggered interrupts from a user–level process, and the capability to dynamically
allocate interrupt vectors from the kernel interrupt vector table. An overview of user–level
interrupt routines and the ways in which they may be used is provided in Chapter 8.
Procedures for using user–level interrupt routines and the supporting system calls, library
routines, and utilities are explained.

User–Level Device Drivers 1

PowerMAX OS provides support for user–level device drivers. A user–level device driver
consists of a library of routines that allows a user application program to perform I/O and
control operations for a particular device directly from user level without entering the
kernel. User–level device drivers benefit both system responsiveness and program
responsiveness. The ways in which they do so are explained in Chapter 2. The techniques
for writing a user–level device driver are explained in Device Driver Programming.
Information on the user-level device driver for the DR11W emulator and the 1553
Advanced Bus Interface (ABI) is provided in Chapter 12.

High–Resolution Timeout Facilities 1

A finer resolution can be obtained on certain types of timeout requests by configuring a
real–time clock to be used for triggering events in the high–resolution callout queue. If
you configure a real–time clock for this purpose, you can obtain a resolution of one
microsecond instead of 1/60 of a second, which is the resolution provided by the 60 Hz
system–wide clock. By default, a real–time clock is configured into the system for use
with the high–resolution callout queue. Entries can be placed in the high–resolution call-
out queue by using the client_block(2) and server_block(2) system calls and
the nanosleep(3C) and timer_settime(3C) library routines. Procedures for
using these facilities are explained in Chapter 6 and Chapter 7, respectively.

Real–Time Signal Behavior 1

Real–time signal behavior that is specified by IEEE Standard 1003.1b-1993 includes
specification of a range of real–time signal numbers, support for queuing of multiple
occurrences of a particular signal, and support for specification of an application–defined
value when a signal is generated to allow for differentiation among multiple occurrences
of signals of the same type. The POSIX signal-management facilities include the
sigtimedwait(2), sigwaitinfo(2), and sigqueue(2) system calls, which
allow a process to wait for receipt of a signal and queue a signal and an application–
defined value to a process. The POSIX real–time signal behaviors and signal management
facilities are described in detail in the PowerMAX OS Programming Guide.
1-6

Introduction
Watch-Dog Timer Function 1

With the PowerMAXION an application program can use the fifth real time clock on the
first processor board (board in slot 1) as a watch-dog timer. When programmed as a
watch-dog timer this real time clock's time-out generates an exception to the PPC604
processor on the first board. The application can connect a user level interrupt routine to
this exception. The operating system passes program control to the user's service routine at
interrupt level. Refer to Chapter 13 for more information on the watch-dog timer function
of the real-time clock.
1-7

PowerMAX OS Real-Time Guide
1-8

2
Improving Response Time

Process Dispatch Latency . 2-1
Effect of IPL . 2-2
Effect of Interrupts . 2-4

The Shielded Processor Model . 2-5
Improving Process Dispatch Latency . 2-6

Assigning Processes to CPUs. 2-7
Assigning Process to CPUs Via Exclusive Binding . 2-8
Assigning Interrupts to CPUs. 2-8

Statically Configuring Interrupt Assignments. 2-8
Dynamically Modifying Interrupt Assignments . 2-9

Using intconfig(1M) . 2-10
Using syscx(2) GET_PIN_CPU and SET_PIN_CPU 2-12

Querying the Interrupt Configuration . 2-13
Hardclock Interrupt Handling. 2-14
Using Interrupt Daemons . 2-15
Assigning Daemons to CPUs . 2-17
Controlling STREAMS Scheduling . 2-17

Selecting CPUs and Local Daemons. 2-17
Per-STREAM CPU Biasing of Service Procedures 2-19

Initialization of the per-STREAM CPU Bias Mask. 2-19
Changing the per-STREAM CPU Bias Mask 2-20
Setting Kernel Tunables . 2-20
Biasing init(1) . 2-21
Bound STREAMS . 2-22
Biasing with strmuxbias(1M). 2-22

User–Level Interrupt Routines . 2-23
User–Level Device Drivers . 2-24
Threads and Response Time. 2-25

Real-Time System Configuration Using Config . 2-26

PowerMAX OS Real-Time Guide

2
Chapter 2Improving Response Time

2
2
2

This chapter treats some of the issues involved in achieving real–time response. One
aspect of response time that is important to a real–time application is the amount of time
that is required to start responding to a real–world event. The time required to respond to
real–world events is affected by the system metric process dispatch latency. This chapter
provides an overview of process dispatch latency and explains how it is affected by raising
a processor’s interrupt priority level (IPL) and receiving interrupts. The chapter presents a
model for obtaining the best process dispatch latency that is possible on a particular
processor in a multiprocessor system. It describes techniques that you can use to obtain the
best process dispatch latency.

Process Dispatch Latency 2

The term process dispatch latency denotes the time that elapses from the occurrence of an
external event, which is signified by an interrupt, until the process that is waiting for that
external event executes its first instruction in user mode. Process dispatch latency
comprises the time that it takes for the following sequence of events to occur:

1. The interrupt controller notices the interrupt and generates the interrupt
exception to the CPU.

2. The interrupt routine is executed, and the process that is waiting for the
interrupt (target process) is wakened.

3. The currently executing process is suspended, and a context switch is per-
formed so that the target process can run.

4. The target process must exit from the kernel, where it was blocked waiting
for the interrupt.

5. The target process runs in user mode.

This sequence of events represents the ideal case for process dispatch latency; it is illus-
trated by Figure 2-1.
2-1

PowerMAX OS Real-Time Guide
Figure 2-1. Ideal Process Dispatch Latency

The process dispatch latency is a very important metric for event–driven real–time
applications because it represents the speed with which the application can respond to an
external event. Most developers of real–time applications are interested in the worst case
process dispatch latency; the reason is that their applications must meet certain timing
constraints.

Process dispatch latency is affected by raising a processor’s IPL and by receiving
interrupts. The effect of raising IPL is described in “Effect of IPL.” The effect of receiving
interrupts is described in “Effect of Interrupts.”

Effect of IPL 2

Each interrupt on the system is assigned an interrupt priority level. Interrupts at or below a
certain level can be deferred by temporarily raising a processor’s interrupt priority level
(IPL). If the processor’s IPL is greater than or equal to the IPL of an interrupt that occurs,
the interrupt is blocked until the processor’s IPL is lowered. The kernel can raise the IPL
of the CPU to protect critical sections of code. By raising the IPL to PL4, for example, the
kernel ensures that (H)VME devices that interrupt at or below level 4 are prevented from
interrupting the CPU. The kernel raises the IPL for short periods of time to protect critical
sections of code in which it is not desirable to receive a particular interrupt or be pre-
empted.

0

1

2

3

4

5
INTERRUPT ROUTINE

CONTEXT SWITCH

EXIT FROM KERNEL

EVENT OCCURS TARGET PROGRAM RUNS

ELAPSED TIME

IPL
LEVEL

EXECUTION THAT REPRESENTS
PROCESS DISPATCH LATENCY

EXECUTION OF TARGET PROGRAM
2-2

Improving Response Time
The IPL is specific to a particular CPU. Setting the IPL on one CPU does not affect the
IPL on another CPU. Interrupts at or below the value to which the IPL is set on one CPU
may continue to be received on other CPUs.

The IPL may be raised by the operating system when a kernel daemon runs or when the
application makes a system call. It can also be raised by an application program that uses
the spl library routines and macro, which make it possible to modify the IPL from user
level (for information on these routines, refer to the spl_request(3X) system manual
page and Chapter 8 of this guide).

Raising IPL affects worst case process dispatch latency because the system cannot imme-
diately receive an interrupt that interrupts at or below the current IPL. If the interrupt that
is being held out is one that signifies an event for which a task is waiting, the process
dispatch latency for that task is extended by the length of time that the interrupt remains
blocked. Figure 2-2 shows the extent to which process dispatch latency is affected by
raising IPL.

Figure 2-2. Effect of Raised IPL on Process Dispatch Latency

The level to which IPL is raised does not affect the length of time by which process
dispatch latency will be extended. The reason is that the context switch to the target
process cannot be performed until IPL has been lowered to zero. Figure 2-3 illustrates
what happens when IPL is raised to a level that is not as high as the level assigned to the
interrupt for which the target process is waiting.

0

1

2

3

4

5
INTERRUPT ROUTINE

EXECUTION THAT REPRESENTS
PROCESS DISPATCH LATENCY

EXECUTION OF TARGET PROGRAM

CONTEXT SWITCH

EXIT FROM KERNEL

IPL RAISED

IPL
LEVEL

EVENT OCCURS TARGET PROGRAM RUNS

ELAPSED TIME

RANDOM PROGRAM RUNS WITH IPL RAISED
HIGHER THAN INTERRUPT ASSOCIATED WITH EVENT

--
2-3

PowerMAX OS Real-Time Guide
Figure 2-3. Effect of Low IPL on Process Dispatch Latency

In the situation depicted in Figure 2-3, the interrupt routine executes as quickly as in the
ideal case for process dispatch latency. When the interrupt routine completes its process-
ing, however, the section of code that was executing with raised IPL resumes execution
and then lowers the IPL. A context switch cannot be performed until IPL is lowered to
zero. Raising the IPL on a processor causes the worst case process dispatch latency to be
extended by the length of time that interrupts are held out by the raised IPL.

Effect of Interrupts 2

Receiving an interrupt affects process dispatch latency in the same way that raising the
IPL does because receipt of an interrupt causes the IPL to be raised (the hardware raises
the processor’s IPL to that of the interrupt being handled). The shaded blocks in Figures
2–2 and 2–3, for example, can as easily represent the execution of interrupt routines as the
execution of programs with raised IPL.

When multiple interrupts are assigned to the same CPU, the determinism of process
dispatch latency is affected to an even greater extent. The reason is that a CPU can receive
multiple interrupts at the same time. When more than one interrupt is active at the same
time, interrupts are stacked. When the CPU receives an interrupt from an external device,
the hardware raises the IPL for the duration of the related interrupt routine. If a second
interrupt occurs whose interrupt priority level is at or below the IPL, it is blocked. When
servicing of the first interrupt has been completed, the second interrupt becomes active

0

1

2

3

4

5

EVENT OCCURS TARGET PROGRAM RUNS

ELAPSED TIME

CONTEXT SWITCH

EXIT FROM KERNEL

INTERRUPT ROUTINE
EXECUTION THAT REPRESENTS
PROCESS DISPATCH LATENCY

EXECUTION OF TARGET PROGRAM
IPL

LEVEL

-- LOW PRIORITY PROGRAM RUNS WITH RAISED IPL
2-4

Improving Response Time
and is serviced. If a second interrupt whose interrupt priority level is above the current IPL
occurs, it is immediately serviced. After servicing of the second interrupt has been com-
pleted, processing of the first interrupt continues. In both cases, user processes are pre-
vented from running until all of the pending interrupts have been serviced. When multiple
interrupts are assigned to a particular processor, process dispatch latency is less predict-
able on that processor because of the way in which the interrupts can be stacked.
Figure 2-4 illustrates how multiple interrupts affect process dispatch latency.

Figure 2-4. Effect of Interrupts on Process Dispatch Latency

The Shielded Processor Model 2

The shielded processor model represents an approach to obtaining the best process
dispatch latency that is possible on a particular processor in a multiprocessor system. This
model does not apply to uniprocessor systems.

In the shielded processor model, tasks and interrupts are assigned to CPUs in such a way
as to guarantee a high grade of service to certain important, real–time functions. In partic-
ular, a critical, high–priority task is bound to one or more CPUs, and most interrupts and
all system daemons are bound to other CPUs. The CPUs responsible for running the high–

0

1

2

3

4

5

EVENT OCCURS TARGET PROGRAM RUNS

ELAPSED TIME

IPL
LEVEL

CONTEXT SWITCH

EXIT FROM KERNEL

INTERRUPT ROUTINE

HIGH IPL INTERRUPT ROUTINE

LOW IPL INTERRUPT ROUTINE

EXECUTION THAT REPRESENTS
PROCESS DISPATCH LATENCY

EXECUTION OF TARGET PROGRAM
2-5

PowerMAX OS Real-Time Guide
priority tasks are shielded from the unpredictable processing associated with interrupts
and system daemons and are, therefore, called shielded processors. Some examples of the
types of tasks that should be run on shielded processors are as follows:

• Tasks that require the fastest response time

• Tasks that must be run at very high frequencies

• Tasks that have no tolerance for being interrupted by the operating system

Interrupts have higher priorities than tasks. Thus, shielded processors should receive only
those interrupts that signal events that are important to the tasks they run. Other interrupts
should be directed to other CPUs.

Generally, any CPU other than the boot processor may serve as a shielded processor. The
boot processor is the CPU that initially booted the system. It assumes certain responsibili-
ties that are not shared with other CPUs. Its hardclock() interrupt routine, for exam-
ple, keeps track of the time of day, ages entries in the callout queue, and so on. As a result,
the amount of time required to service the periodic 60 Hz clock interrupt is greater on the
boot processor than on other processors. For this reason, you should consider using the
boot processor, and others if necessary, to run the system daemons and most of the inter-
rupt load.

The shielded processor model does not imply a master–slave configuration. All CPUs in
the system can share equally in servicing an application’s workload. However, you are
guaranteed much better process dispatch latency on the shielded processors when the
unpredictable processing associated with interrupts and system daemons can be confined
to other CPUs. The shielded processor model does not imply that the shielded processors
must be idling most of the time. Background tasks are not a serious impediment to fast and
predictable process dispatch latency. You are not required to dedicate a processor to a sin-
gle task to obtain good process dispatch latency.

It is important to note that it is not essential that you use the shielded processor model for
all real–time applications. Some applications may benefit from a more balanced sharing
of the workload.

Improving Process Dispatch Latency 2

You can improve process dispatch latency by using the techniques that are described in
this section. The techniques that are essential to the shielded processor model are pre-
sented first. Procedures for assigning processes and interrupts to CPUs are explained
in”Assigning Processes to CPUs” and “Assigning Interrupts to CPUs,” respectively. Pro-
cedures for controlling the processors on which the 60 Hz clock interrupt is serviced are
described in “Hardclock Interrupt Handling.” Procedures for assigning certain types of
daemons to CPUs are explained in “Assigning Daemons to CPUs.” The extent to which
you can improve process dispatch latency by using user–level interrupt routines and user–
level device drivers is described in “User–Level Interrupt Routines” and “User–Level
Device Drivers,” respectively. The way in which threads scheduling affects response time
is explained in “Threads and Response Time.”
2-6

Improving Response Time
Assigning Processes to CPUs 2

By default, an LWP can execute on any processor in the system. Every LWP has a bit
mask, or CPU bias, that determines the processor or processors on which it can be
scheduled. An LWP inherits its CPU bias from its creator during a fork(2) or an
_lwp_create(2) but may thereafter change it.

You can set the CPU bias for one or more LWPs by specifying the CPU_SETBIAS command
on a call to cpu_bias(2), the MPA_PRC_SETBIAS command on a call to mpad-
vise(3C), or the -b bias option to the run(1) and rerun(1) commands.

To set the CPU bias with mpadvise, cpu_bias, and rerun, the following conditions
must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the LWP for which the bias is being set, or the calling pro-
cess must have the P_OWNER privilege.

• To add a CPU to an LWP’s CPU bias, the calling process must have the
P_CPUBIAS privilege.

Note that the P_CPUBIAS privilege is also required to use the run com-
mand for this purpose.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

You can change the CPU assignment for one or more LWPs by specifying the
CPU_SETRUN command on a call to cpu_bias(2), the MPA_PRC_SETRUN command on
a call to mpadvise(3C), or the -c cpu_id option to the rerun(1) command.

To change an LWP’s CPU assignment, the following conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the LWP for which the CPU assignment is being changed,
or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

A CPU bias can be assigned to the init(1m) process. All general processes are a
descendant from init(1m). As a result, most general processes would have the same
CPU bias as or a subset of init(1m). Only privileged processes (as described above)
are able to increase their CPU bias. Assigning a restricted CPU bias to init(1m), tends
to restrict all general processes to the same subset of CPUs as init(1m). The exception
is selected processes that have the appropriate privilege. The tunable ALLBIAS is used to
specify an initial CPU bias for init(1m).
2-7

PowerMAX OS Real-Time Guide
For additional information on use of the cpu_bias(2) system call, the mpad-
vise(3C) library routine, and the run(1) and rerun(1) commands for these pur-
poses, refer to the PowerMAX OS Programming Guide and the corresponding system
manual pages.

Assigning Process to CPUs Via Exclusive Binding 2

An alternative way of assigning LWPs to CPUs is to exclusively bind them. A CPU which
has LWPs exclusively bound to it will run only those LWPs plus any system daemons
assigned to it. LWPs which are not exclusively bound will avoid the CPU, even if the CPU
is mentioned in their biases. We call these “merely biased” LWPs unbound LWPs.

An exclusive binding may be done with the SET_CPUXBIAS command of
cpu_bias(2), the MPA_PRC_SETXBIAS command of mpadvise(3c), or from the
shell with pexbind(1) or with the -x option of run(1) and rerun(1).

To turn an exclusively bound LWP back into an unbound LWP, simply bias it back to the
desired set of CPUs, as discussed in the previous section. The bias must contain at least
one general purpose (i.e. non-exclusive) cpu.

An exclusive binding is inherited by a child upon creation, and across exec(2).

A LWP may be exclusively bound to only one CPU at a time.

An exclusive-use CPU can still run those system daemons which have that CPU in their
biases. Use the techniques discussed in the Shielded Processor section to prevent most of
these daemons from running on shielded processors.

Exclusive binding is subject to all the privilege requirements of simple biasing, discussed
in the previous section, with the following addition: the P_CPUBIAS privilege is always
required to make a LWP exclusively bound, or to release such a binding.

For additional information see the man pages on the commands and library services men-
tioned above.

Assigning Interrupts to CPUs 2

You can lessen the effect of interrupts on the determinism of process dispatch latency for a
particular processor if you have the capability of directing interrupts to the other CPUs.
Process dispatch latency is important to a high–priority process that will block waiting for
an external event that is delivered via an interrupt. This type of process should be bound
to the CPU where the interrupt associated with the external event will be received. Other
interrupts should be directed away from this CPU.

Statically Configuring Interrupt Assignments 2

On PowerMAX OS systems, you have the capability of assigning external interrupts to
specific CPUs. Each external interrupt is connected to a particular interrupt source
(intsrc) line, and these intsrc lines are connected as inputs into the interrupt controller.
2-8

Improving Response Time
The interrupt controller hardware is configured by the operating system to direct each
incoming intsrc line to a specific CPU.

The operating system controls the interrupt priority associated with each intsrc line, but
the user can control which CPU receives interrupts coming in from a particular intsrc line
by using the idtune(1M) or config(1M) command to modify the value of the
corresponding kernel tunable that controls this intsrc line CPU assignment.

The idtune(1M) or config(1M) utilities should always be used to modify any kernel
tunable. However, the user may obtain information about all the kernel tunable interrupt
source assignments by directly reading the /etc/conf/mtune.d/bspall tunable
file. This file contains the kernel tunable names and their descriptions, of all the kernel
tunables that are related to CPU interrupt source assignments. The user should take care
not to modify this file, since it also contains the default values of various kernel tunables.

Once the user has modified one or more of these tunables with idtune(1M) or
config(1M), they should then rebuild their kernel and reboot the system in order for
these new CPU assignments to take affect.

NOTE

There is a quick and easy kernel configuration tunable that may
suit many real - t ime envi ronments . When the tunable
ALLINTSONCPU0 is enabled, then all configurable interrupts that
are set to use the round-robin algorithm (which is the default
kernel tunable setting for interrupt sources) will be directed to the
boot CPU (CPU0).

Note that even when the ALLINTSONCPU0 tunable is enabled, it is
still possible to explicitly assign specific interrupts to CPUs other
than CPU0, with all other interrupts being assigned to CPU0.

On multi-CPU board systems, there may be a small number of
architectural-specific interrupts that must be assigned to a CPU on
a specific CPU board. In this case, these interrupts will be
directed to the first CPU on the board.

The effect of this tunable may be too general for some systems. If
this is the case, this tunable should not be used; instead the
individual tunables for each interrupt source line should be used.

Dynamically Modifying Interrupt Assignments 2

On Power Hawk Series 700 and Series 900 systems you may also change CPU interrupt
source assignments dynamically, without the need for statically reconfiguring, rebuilding
and rebooting the kernel. Dynamically changing CPU interrupt source assignments is
usually accomplished via the intconfig(1M) utility; however, the user may also
change these assignments directly through the use of the syscx(2) system service.
Both of these methods are described below.
2-9

PowerMAX OS Real-Time Guide
Using intconfig(1M) 2

Dynamic CPU interrupt assignments may be accomplished through the use of the
intconfig(1M) utility. However, note that any CPU interrupt re-assignments that are
made with intconfig(1M) remain in effect only until the next system reboot or until a
different assignment is made with intconfig(1M). During the next system reboot, the
CPU interrupt assignments will be made by using the usual static kernel tunable interrupt
configuration values.

The intconfig(1M) utility is intended as an aid for more quickly and easily
determining the optimal CPU interrupt assignment configuration for a user's application
by repetitively running the application, changing CPU assignments, running the applica-
tion again and observing any differences, and so forth. Once a user has determined the
optimal CPU interrupt source assignments for their application, they may either reconfig-
ure and rebuild their kernel, or they may invoke intconfig(1M) in a system startup
script so that the desired explicit dynamic CPU interrupt assignments are made during
every system boot.

In addition to changing the interrupt CPU assignments, the intconfig(1M) utility may
also be used to query or disable the CPU assignment of any configurable interrupt source
in the system.

See the intconfig(1M) system manual page for more information on these additional
features.

When intconfig is invoked with no options, a table is output to stdout that contains an
entry for each configurable interrupt source in the system. Each table entry contains the
following information:

- The index value of this entry. This index may be used when specifying a
specific interrupt source index to query or modify.

- The corresponding kernel tunable name of this interrupt source.

- A description of the interrupt source.

- The current CPU assignment of this interrupt source.

- An indication of whether or not this interrupt source may be disabled.

A sample of the output from invoking intconfig with no options is shown in
Table 2-1.

Table 2-1. Sample Output of intconfig with no Options

Index Tunable Name Description
Current CPU
Assignment

May Disable?

0 RPIC_RTC_0C0 rtc 0c0 1 No

1 RPIC_SERIAL_A serial port A 0 Yes

2 RPIC_SERIAL_B serial port B 1 Yes

3 RPIC_PMC_INTA PMC S1 IntA/S2 IntC 1 Yes

4 RPIC_PMC_INTB PMC S1 IntB/S2 IntD 0 Yes
2-10

Improving Response Time
NOTE

The intsrc index values do not change across system reboot or
kernel rebuilds. However, the index value for a given interrupt
source tunable MAY change between installations of PowerMAX
OS patches or future releases.

The user may dynamically assign a single interrupt source to a specific CPU through the
use of the '-a ' assign opt ion. For example, to assign the real-t ime clock
/dev/rrtc/0c0 to CPU1 (based on the example values in Table 2-1), use the following
options to intconfig:

intconfig -a 1 -i 0

where '-a 1 ' indicates CPU1, and '-i 0 ' indicates intsrc index 0)

You may also assign ALL configurable interrupts to a specific CPU by using the -A
option. For example:

intconfig -A 0

will assign all configurable interrupts to CPU0.

5 RPIC_PMC_INTC PMC S1 IntC/S2 IntA 1 Yes

6 RPIC_PMC_INTD PMC S1 IntD/S2 IntB 0 Yes

7 RPIC_INTA_VME6 PCI IntA/VME level 6 1 Yes

8 RPIC_INTB_VME5 PCI IntB/VME level 5 0 Yes

9 RPIC_INTC_VME4 PCI IntC/VME level 4 1 Yes

10 RPIC_INTC_VME3 PCI IntD/VME lev 321 0 Yes

11 RPIC_VME7_DMAC VME level 7/DMAC 1 Yes

12 RPIC_VME_SWIACK VME Software Int Ack 0 No

13 RPIC_GT_ETH GT64260 Ethernet 0 Yes

14 RPIC_GT_ERR GT64260 errors 1 No

15 RPIC_VME_ERR VME buserr/powerfail 0 No

16 RPIC_RTC_0C1_2 rtc 0c1/0c2 1 No

17 RPIC_RTC_0C3_4 rtc 0c3/0c4 0 No

18 RPIC_RTC_0C5_6 rtc 0c5/0c6 1 No

19 RPIC_RTC_0C7_8 rtc 0c7/0c8 0 No

Table 2-1. Sample Output of intconfig with no Options (Cont.)

Index Tunable Name Description
Current CPU
Assignment

May Disable?
2-11

PowerMAX OS Real-Time Guide
It is also possible to 'shield' specific CPU(s) from all configurable interrupt sources with
the -S option. When this option is used, then any configurable interrupt sources that are
currently assigned to the specified CPU(s) are re-assigned to the other CPUs in the system.

Unlike other intconfig options, this option uses a hexadecimal CPUID bitmask
instead of a CPU ID value, so that more than one shielded CPU may be specified.
However, note that at least one CPU must remain unshielded; therefore, on systems with
only 2 CPUs, this CPUID mask may contain only 1 bit.

The following example will shield CPUs 2 and 3 on a system that has 4 CPUs:

intconfig -S 0xc

And the following example will shield CPU 1 on a system that has 2 CPUs:

intconfig -S 0x2

When there are two or more CPUs in the system that are not specified in CPUID mask,
then the interrupt sources that are moved off of the CPU(s) in CPUID mask are assigned to
the other non-shielded CPUs in a round-robin fashion.

For information, refer to the intconfig(1M) system manual page.

Using syscx(2) GET_PIN_CPU and SET_PIN_CPU 2

While the intconfig(1M) utility should meet the requirements of most users, it is also
possible for users to query and modify interrupt source CPU assignments directly, through
the syscx(2) system service interface.

The GET_PIN_CPU command may be used to query/get a specific interrupt source CPU
assignment, and the SET_PIN_CPU command may be used to set the interrupt source CPU
assignment of a specific interrupt source.

For example, to query the current CPU assignment of the interrupt source index 2 (this
would be serial port B if we use Table 2-1):

int retval, cpu_id;

retval = syscx(GET_PIN_CPU, 2, &cpu_id);

where the CPU ID of the cpu that is currently assigned to this interrupt source will be
returned in the location “cpu_id” if a successful status value of 0 is returned in “retval”.

Similarly, to change the CPU assignment for interrupt source 2, the following
SET_PIN_CPU call would be used:

retval = syscx(SET_PIN_CPU, 2, 1);

where the above call will assign interrupt source index 2 to CPU1, if a value of 0 (success)
is returned in “retval”.

See the GET_PIN_CPU and SET_PIN_CPU commands information in the syscx(2) system
manual page for more details on how to use these interfaces.

As was previously mentioned, the intsrc index values used on these syscx(2)
commands will not change across system reboots or kernel rebuilds. However, the index
2-12

Improving Response Time
value for any given interrupt source tunable MAY change between new PowerMAX OS
patches or future releases.

CPU interrupt source assignment changes that are made with the syscx(2) system
service remain in effect only until the next system reboot. These interrupt CPU assign-
ments will be re-evaluated during the next system boot using the standard kernel static
configuration method.

Querying the Interrupt Configuration 2

You can determine the CPU to which a particular interrupt is directed by using the
intstat(1M) utility. This utility gathers information about all interrupts associated
with configured devices and software interrupts associated with the operating system. For
each, the intstat utility provides the following information: (1) the name of the device or
interrupt service routine, (2) the interrupt vector number, (3) the interrupt priority level,
(4) the assigned I/O bus (where applicable), (5) the (H)VME interrupt level (where appli-
cable), and (6) the CPU to which the interrupt is directed.

By default, the intstat utility sorts the output information according to interrupt vector
number and displays it on the terminal screen. Options that you can specify to the utility
make it possible for you to develop your own input file; obtain information for all types of
interrupts; have the output information sorted by interrupt priority level, (H)VME inter-
rupt level, or CPU number; and supply the name of the running kernel.

The format for executing the intstat utility is as follows:

intstat [-l] [-a] [-x] [-p or -v or -c] [-n kernel_name] [-d dump_file] \
 [-t input_file]

Options are described in Table 2-2.

Table 2-2. Options to the intstat Utility

Option Description

–l list the interrupt levels for each I/O bus on the system
and the CPU to which interrupts at each level are
directed

–a Lists for all interrupt service routines defined in the sys-
tem— both those associated with device interrupts and
those associated with software interrupts:

- Associated devices or routines
- Interrupt vector numbers Interrupt priority levels
- Assigned I/O bus (where applicable)
- (H)VME interrupt levels (where applicable)
- CPUs to which the interrupts are directed

–x list the interrupt vector number and the interrupt priority
level as hexadecimal numbers

–p sort the output list according to interrupt priority level

–v sort the output list according to (H)VME interrupt level
2-13

PowerMAX OS Real-Time Guide
For additional information, refer to the intstat(1M) system manual page.

Hardclock Interrupt Handling 2

The system-wide 60 Hz clock interrupts every CPU in the system 60 times per second.
Receiving this interrupt on a shielded processor affects worst case process dispatch
latency (see “Effect of Interrupts” for an explanation of the way in which interrupts affect
process dispatch latency). The 60 Hz clock interrupt routine is one of the most frequently
executed interrupt routines in the system. The frequency with which it is executed does
not generally coincide with the frequency with which the cyclically-scheduled processes
of a real-time application run; the 60 Hz clock interrupt is, therefore, a source of random
jitter to the application.

The boot processor serves as the system timekeeper; it is responsible for maintaining
system time and the callout queue. The callout queue is a list of kernel functions that must
be invoked when a certain amount of time expires. Because of these timekeeping responsi-
bilities, hardclock, the operating system mechanism that services the 60 Hz clock inter-
rupt, performs system-wide timing functions on the boot processor that it does not perform
on the other processors in the system. You can configure your system so that some of
these system-wide functions are performed by a system daemon instead of an interrupt
routine. The availability of this option is particularly helpful on a uniprocessor system,
where the shielded processor model does not apply, because it allows you to reduce the
amount of work that is performed at interrupt level.

You can configure a daemon to control system-wide timing functions on the boot CPU by
setting the value of the system tunable parameter TODCINTRDAEMON. For a complete
description of the system-wide timing functions performed by hardclock and the proce-

–c sort the output list according to CPU number

–n kernel_name use the kernel specified by kernel_name

The default kernel is /stand/unix. If the kernel run-
ning on your system is different from the default, specify
this option.

–d dump_file dump the list of interrupt routines being compared with
the symbol table to the file specified by dump_file

You can edit the list obtained by specifying this option to
include the names of interrupt routines associated with
devices that have been added to your system and are not
supported by the intstat utility. By using the –t
option, you can then use the edited file as input to
intstat.

–t input_file use the file specified by input_file to obtain the list of
interrupt routines to be compared with the symbol table

Table 2-2. Options to the intstat Utility (Cont.)

Option Description
2-14

Improving Response Time
dures for using a system daemon to perform some of these functions, refer to Chapter 9 of
this guide.

On each CPU in the system, hardclock also performs a number of functions for the cur-
rently running process. You can improve worst case process dispatch latency on Power-
MAX OS systems by disabling these local timing functions on a shielded processor. You
may use the mpadvise(3C) library routine, the hardclock(1m) command or the
tunable CLOCKINTR to control the processors on which the local timing functions are
performed. For a complete description of the local timing functions performed by hard-
clock and the procedures for using the system call and the utility to disable these functions
on selected CPUs, refer to Chapter 9 of this guide.

CAUTION

Disabling servicing of the 60 Hz clock interrupt affects certain
aspects of process scheduling. It also affects the manner in which
a number of system calls, routines, commands, and utilities func-
tion. Refer to Chapter 9 of this guide for details.

Using Interrupt Daemons 2

The length of time that is spent in an interrupt routine directly affects the worst case pro-
cess dispatch latency. The reason is that the operating system almost always executes an
interrupt routine before any user-level activity on a particular processor. The only excep-
tions are user-level interrupt routines and user code that is executed with the IPL raised
above the level of the incoming interrupt. For some applications, the work performed in an
interrupt routine is actually of lower priority than the highest priority tasks on the system.
An interrupt daemon provides you with a means of ensuring that a user process has higher
priority than the processing performed by an interrupt routine.

PowerMAX OS provides you with the option of using a kernel daemon to handle process-
ing of interrupts from certain controllers. Although this capability is provided on both uni-
processor and multiprocessor systems, it is intended primarily for use on uniprocessor sys-
tems. The reason is that on uniprocessor systems, the shielded processor model does not
apply; that is, interrupts and tasks cannot be directed to other CPUs. To improve process
dispatch latency on uniprocessor systems, you must attempt to minimize the length of time
that is spent in interrupt routines. Interrupt daemons afford you this capability.

On multiprocessor systems, interrupt daemons provide you with a means of removing the
interrupt workload from a processor that is not shielded. Interrupt daemons are not com-
monly used for this purpose because of the resultant degradation in I/O throughput; gener-
ally system administrators are willing to sacrifice response time on one of the processors
for high I/O throughput on the others, however.
2-15

PowerMAX OS Real-Time Guide
You configure an interrupt daemon into the kernel by setting the value of the associated
tunable parameter. Table 2-3 presents the controllers for which interrupt daemons can be
configured on PowerMAX OS systems:

To ensure that interrupts from one of these controllers are handled by a system daemon,
set the value of the associated system tunable parameter to 1. If you wish to ensure that
all interrupt daemons are enabled, you may set the value of the ALLINTRDAEMONS sys-
tem tunable parameter to 2.

Table 2-3. Controllers with Associated Interrupt Daemons

Description System Tunable Parameter

IDE adapter PowerStack IDEINTRDAEMON

STREAMS scheduling All STRSCHED_DAEMON_MSK

Hardclock interrupt All TODCINTRDAEMON

MPEG decoder (cld) PCI or PMC bus systems CLDINTRDAEMON

AMD ethernet (amd) PCI or PMC bus systems AMDINTRDAEMON

GT64260 ethernet (gte) Power Hawk Model
910/920 systems

GTEINTRDAEMON

DEC ethernet (dec) Power Hawk Series 600
or PMC bus systems

DECINTRDAEMON

 MV64460 ethernet (mve) PowerHawk Model 940
systems

MVEINTRDAEMON

PMC FDDI (ip) PMC bus systems IPINTRDAEMON

Symbios ethernet (sym) Power Hawk Series 700 SYMINTRDAEMON

Fibre channel (fibre) PCI or PMC bus systems FIB_INTR_DAEMON

RAMiX ethernet (rmxf) PMC bus systems RMXFINTRDAEMON

NCR SCSI (ncr) Power Hawk systems NCRINTRDAEMON

Zoran MPEG Decoder (zld) PCI bus systems ZLDINTRDAEMON

Symbios DMA (sym_dma) Power Hawk Series 700
Client CCS systems

SYM_DMA_INTR_DAEMON

Condor ethernet (cnd) VME bus systems CNDINTRDAEMON

VME Peregrine FDDI (pg) VME bus systems PGINTRDAEMON

VME DMA (dmac) PCI-to-VME64 bridge
(Universe) systems

DMAC_DAEMON

High Speed Data (hsde) VME bus systems HSDEINTRDAEMON

HSA/VIA SCSI (via) VME bus systems VIAINTRDAEMON

Systech Serial (hps) VME bus systems HPSINTRDAEMON

Async Comm MUX (mvcs) VME bus systems MVCSINTRDAEMON

High Speed Data (vhsd) VME bus systems VHSDINTRDAEMON
2-16

Improving Response Time
You can use the config(1M) utility to (1) determine whether the values of these
parameters have been modified for your system, (2) change the values of these parame-
ters, and (3) rebuild the kernel. Note that you must be the root user to change the value of
a tunable parameter and rebuild the kernel. After rebuilding the kernel, you must then
reboot your system.

Assigning Daemons to CPUs 2

You can improve worst case process dispatch latency on a given CPU by ensuring that
certain daemons run on other CPUs. You may wish to ensure that these daemons run on
the boot CPU. The boot CPU has the least amount of determinism because hardclock, the
interrupt mechanism for the system–wide 60 Hz clock interrupt, performs system–wide
timekeeping functions only on the boot CPU.

Because daemons may raise the IPL on the processor on which they run, it is important
that you assign them to processors that are not shielded. As explained in “Effect of IPL,”
raising the IPL on a particular processor directly affects worst case process dispatch
latency for that processor.

The only way that you can affect the CPU bias of a system daemon is to change the value
of the system tunable parameter associated with that daemon’s CPU bias. You can exam-
ine and modify the values of system tunable parameters associated with system daemons
by using the config(1M) utility. For an explanation of the procedures for using this util-
ity, refer to the “Configuring and Building the Kernel” chapter of System Administration
Volume 2. Note that after changing a tunable parameter, you must rebuild the kernel and
then reboot your system. If you wish to change the CPU bias of all of the system daemons,
you may use the daemon_tune(1M) command or the tunable ALLDAEMONSBIAS. In
this case also, you must then rebuild the kernel and reboot your system.

Controlling STREAMS Scheduling 2

PowerMAX OS uses the STREAMS facility to transfer all networking and terminal data
to and from the external devices that are connected to the system. STREAMS scheduling
transfers queued and in-bound data between the modules of a STREAM by the execution
of STREAMS service procedures. By default, STREAMS scheduling is performed in an
interrupt routine on all processors in the system. Performing STREAMS scheduling at
interrupt level provides optimal performance for the STREAMS facility, but it may not be
desirable for real-time systems. Because interrupts are always at a higher priority than pro-
gram-level activity, STREAMS scheduling can interfere with the activity of time-critical
real-time tasks.

Selecting CPUs and Local Daemons 2

PowerMAX OS provides the flexibility to trade STREAMS performance for determinism
for high-priority real-time tasks. The system administrator can (1) select the processors on
which STREAMS scheduling is executed and (2) determine whether or not STREAMS
scheduling is performed in an interrupt routine.
2-17

PowerMAX OS Real-Time Guide
Note

The STREAMS scheduler will not usually execute STREAMS
service procedures on CPUs that are currently exclusively bound.
The one exception to this rule is discussed in “the Initialization of
the per-STREAM CPU Bias Mask” on page 2-19.

Control over STREAMS scheduling is provided in the form of system tunable parameters.
These parameters are identified as follows:

STRSCHED_DISABLE_MSK allows STREAMS scheduling to be disabled
on selected processors

ALLINTRDAEMONS Configures all interrupt daemons. In addi-
tion, STREAMS scheduling is performed by
the local system daemon on all processors.
(i.e. as if STRSCHED_DAEMON_MSK was
configured for all processors.)

STRSCHED_DAEMON_MSK allows STREAMS scheduling to be per-
formed by the local system daemon on
selected processors

In each case, the value of the tunable parameter is a bit mask in which bits 0 through 7 cor-
respond to processors 0 through 7. The default value for each parameter is zero. Proces-
sors are selected by changing the value of the parameter to a hexadecimal number that sets
the bits corresponding to the desired processors in the mask. System tunable parameters
may be changed by the system administrator. You can use the config(1M) utility to
obtain more detailed information on the STREAMS scheduling parameters and con-
straints on their use.

When determining how to handle STREAMS scheduling on the processors in your sys-
tem, the following should be considered:

• STREAMS scheduling should not be performed at interrupt level on a
shielded processor.

The interrupt-level activity associated with STREAMS scheduling occurs
at random times. It will interfere with the execution of a real-time task run-
ning on a shielded processor.

• STREAMS scheduling may be performed by the local daemon on a
shielded processor.

The local daemon is scheduled under the system scheduler class; as a
result, it does not interfere with the execution of processes scheduled under
the fixed-priority class.

• If the throughput of STREAMS devices is important in your system, at
least one processor should be configured to execute STREAMS scheduling
at interrupt level.

The number of processors that should be configured to perform STREAMS
scheduling at interrupt level depends upon the I/O load and throughput
2-18

Improving Response Time
requirements of your system. The optimum configuration can be deter-
mined only through experimentation.

Note that the processors that perform STREAMS scheduling at interrupt
level are always used first when a STREAMS queue is ready for process-
ing.

Per-STREAM CPU Biasing of Service Procedures 2

On systems with more than one CPU, in addition to being able to select the set of CPUs
that execute all STREAMS service procedures with the STRSCHED_DISABLE_MSK,
some situations may require a higher level of control over which CPUs execute each
STREAM’s own service procedures.

When the STRSCHED_SERVBIAS tunable is set to 1, then per-STREAM CPU biasing of
service procedures is enabled in the kernel. When this feature is enabled, then each
STREAM in the system has its own CPU bias mask, where this mask defines the set of
CPUs that may execute this STREAM’s service procedures.

The following scenarios show some of the possible reasons for making use of the per-
STREAM CPU biasing of service procedures feature:

- A system is configured with two Ethernet devices. While both of these
Ethernet interfaces are used for TCP/IP traffic, one Ethernet device is used
for real-time traffic, and the other Ethernet device is used for background
non-real-time TCP/IP traffic.

In this situation, it would be desirable to split up the servicing of network-
ing STREAMS service procedures between CPUs based on real-time or
non-real-time traffic. That is, the real-time CPU(s) would execute just the
STREAMS service procedures that are related to the real-time networking
traffic.

- A system may have just one Ethernet device. A real-time CPU may make
use of a direct Data Link Provider Interface (DLPI) application for sending
and receiving data through this Ethernet device, while the non-real-time
CPU(s) may make use of this same Ethernet device for background TCP/IP
traffic. In this case, it might be desirable to have the STREAMS service
procedures of the DLPI application executed on the real-time CPU, and the
other background TCP/IP service procedures executed on non-real-time
CPUs.

While these two examples are networking-based examples, the per-STREAM CPU bias-
ing of service procedure executions may be used to provide control for all types of
STREAMS, including STREAMS contained within STREAMS multiplexor (MUX) mod-
ules, as well as customer-written STREAMS modules, drivers and STREAM stack config-
urations.

Initialization of the per-STREAM CPU Bias Mask 2

If STRSCHED_SERVBIAS is enabled, then when a new STREAM is opened, that
STREAM’s service procedure CPU bias mask will be set to the user-visible CPU bias
mask of the calling LWP that is opening that STREAM.
2-19

PowerMAX OS Real-Time Guide
Bits that represent engines that are in the STRSCHED_DISABLE_MSK are removed from
the CPU bias mask.

All service procedures within that STREAM will be executed only by one of the CPUs
within that STREAM’s CPU bias mask.

Generally speaking, exclusively bound CPUs will be dynamically removed from consider-
ation by the STREAMS scheduler each time a CPU is selected to execute a STREAM’s
service procedures. The one exception to this rule (only when STRSCHED_SERVBIAS is
enabled) is that if the LWP making the open(2) call is currently exclusively bound to a
CPU. In this special case, only that exclusively bound CPU will execute this STREAM’s
service procedures.

Note that when the resulting CPU bias mask for a STREAM’s service procedures contains
all the CPUs in the system that are not in the STRSCHED_DISABLE_MSK, then the
STREAMS scheduler method defaults back to the normal STREAMS scheduler method;
that is, for this particular STREAM, it will be as if the STRSCHED_SERVBIAS tunable
was not enabled.

Changing the per-STREAM CPU Bias Mask 2

Two ioctl(2) commands, I_GETSERVBIAS and I_SETSERVBIAS, are available for
getting and setting a STREAM’s CPU bias mask, respectively. The I_SETSERVBIAS
command may be used by a process to change the CPU bias masks of any STREAM that it
currently has open(2). However, this ioctl(2) command may not be used to change
the CPU bias mask of STREAMS currently opened by other processes. See the
streamio(7) man page for more de tai ls on the I_GETSERVBIAS and
I_SETSERVBIAS ioctl(2) command.

Note that when the user-visible CPU bias of a process or a LWP within that process is
modified, the CPU bias masks associated with all the STREAMS currently opened by that
process will NOT change. In this case, the I_SETSERVBIAS ioctl(2) command
may be used to change the CPU bias masks of the process’s open STREAMS, if this is
required.

Setting Kernel Tunables 2

To enable the per-STREAM CPU biasing of service procedures, the kernel tunable
STRSCHED_SERVBIAS should be set to 1 with the config(1M) utility program in
order to enable per-STREAM service procedure CPU biasing. When this tunable is set to
0 (the default), then per-STREAM CPU biasing is disabled, and the normal system-wide
STREAMS scheduler CPU selection method is used.

When STRSCHED_SERVBIAS is enabled, then the STRSCHED_DISABLE_MSK and
STRSCHED_DAEMON_MSK tunables still function in the same way as before. However,
the following tunables behave differently when the STRSCHED_SERVBIAS tunable is
enabled:

STRSCHED_GLOBAL_MSK

This tunable is used by the kernel only when the
STRSCHED_SERVBIAS tunable is also enabled. This tunable contains
a bit mask of those engines that are permitted to process STREAMS ser-
vice procedures of STREAMS that have a CPU bias mask containing all
2-20

Improving Response Time
engines in the system (minus any STRSCHED_DISABLE_MSK CPUs).
CPUs not in the STRSCHED_GLOBAL_MSK will process only
STREAMS service procedures of STREAMS that are biased to a subset
of CPUs in the system. By default, STRSCHED_GLOBAL_MSK is set to
0xffff so that all engines may process system-wide biased
STREAMS service procedures.

However, in real-time system configurations, system administrators
may wish to remove from this mask any engines that are shielded for
execution of only time critical applications.

STRNSCHED

When STRSCHED_SERVBIAS is enabled, this tunable still defines the
maximum number of STREAMS service procedures that a CPU may
execute for STREAMS with system-wide CPU bias masks, in any sin-
gle invocation by the STREAMS scheduler.

When the STRSCHED_BACKOFF tunable is non-zero, then this tunable
also applies to service procedures of STREAMS with biased CPU
masks (CPU masks with less than all CPUs in the system).

However, when the STRSCHED_BACKOFF tunable is zero, then a CPU
will continue to execute STREAMS service procedures of STREAMS
with biased CPU masks until no more biased STREAMS service proce-
dures remain to be processed, within a single invocation of the
STREAMS scheduler.

STRSCHED_BACKOFF

When this tunable is non-zero, and a CPU has executed at least
STRNSCHED STREAMS service procedures, but there are still service
procedures of CPU biased (not system-wide CPU bias masks)
STREAMS that need processing, then this tunable defines in HZ ticks,
the amount of time that a CPU should stop processing CPU biased (not
system-wide biased) service procedures and return to other activities
before returning back to execute additional STREAMS service proce-
dures.

The default value for this tunable is 0. In this case, a CPU will continue
to execute service procedures of STREAMS that have a CPU bias mask
with less than all the CPUs in the system, until no more of these types of
service procedures remain queued for execution by that CPU.

 This tunable will be ignored if the STRSCHED_SERVBIAS tunable is
not also enabled.

Biasing init(1) 2

If the init(1M) program’s CPU bias is modified during system initialization with a
rerun(1) command in the /etc/rc2.d/S03rerun script, then all STREAMS that
are created by init(1M) at system initialization time will have the CPU bias associated
with init’s user-visible CPU bias mask. This approach can be particularly useful on sys-
tems where it is desirable to place most networking daemons and networking-related
STREAMS service procedure executions on a subset of CPUs.
2-21

PowerMAX OS Real-Time Guide
Alternatively, or in addition to this approach, the STRSCHED_GLOBAL_MSK can be set to
a subset of all the CPUs in the system so that any remaining system-wide CPU biased
STREAMS service procedures will execute only on a subset of CPUs. This can be useful
for handling any STREAMS that have already been created at the point that init(1M)’s
CPU bias is modified with the rerun(1) command.

Bound STREAMS 2

Some STREAMS modules and drivers that are not multi-processor safe, or that must be
executed on a particular single CPU, are ‘bound’ to a single CPU (see devflag(D1)
and Master(4)). Bound STREAMS may only be executed on one CPU, including the
execut ion of a l l o f tha t STREAM’s service procedures . Even when the
STRSCHED_SERVBIAS tunable is enabled, the service procedures of bound STREAMS
may execute only on one statically selected engine; the CPU bias mask for these
STREAMS may not be modified. Further, the engine that a ‘bound’ a STREAM executes
upon is not based upon the calling LWP’s user-visible CPU bias mask.

Biasing with strmuxbias(1M) 2

Although STREAMS that are created and linked onto a multiplexor (MUX) module con-
tain the STREAMS service procedure CPU bias mask based on the LWP that created these
STREAMS, sometimes some additional control may be desirable. (See the STREAMS
Modules and Drivers Manual for more information about multiplexors and their use.)

In general, applications that open and create multiplexing STREAMS stack configurations
often build these configurations within the scope of one process. Rather than require that
these applications and scripts be written to take per-STREAM CPU biasing masks into
account when building these STREAMS configurations, the strmuxbias(1M) utility is
provided instead, for changing the STREAM CPU bias masks of these lower level
STREAMS after they have already been constructed.

Note that using strmuxbias(1M) to change lower level MUX STREAMS is optional;
per-STREAM CPU biasing of service procedures will function properly without making
any CPU bias mask adjustments with strmuxbias(1M).

When multiplexors are connected to several lower level STREAMS, the use of these
lower level STREAMS is usually shared among the upper level STREAMS. Therefore,
system administrators may want to set different CPU biases for each of these lower level
STREAMS after these STREAMS have already been created and linked onto a multi-
plexor module.

One example would be the Internet multiplexor, mip, which may have several lower level
STREAMS, with several sets of lower level streams existing for each different Ethernet
networking device. For example, some of these lower level STREAMS might connect to
a Condor device, and some of the other lower level STREAMS might connect to a FDDI
device. Some system administrators of real-time systems may wish to separate the CPUs
that execute these two different sets of STREAMS service procedures.

For more information on using strmuxbias(1M), see the strmuxbias(1M) man
page.

Example for Using strmuxbias(1M)
2-22

Improving Response Time
Since one of the more likely uses of strmuxbias(1M) would be to change the CPU bias
masks of TCP/IP STREAMS that lie below the Internet Multiplexor module (mip), these
STREAMS are discussed briefly here as an example of one way to make use of the
strmuxbias(1M) utility.

The following lines show a sample of TCP/IP related lines of output from a
“strmuxbias -g” invocation on a system with two Condor Ethernet devices and four
CPUs:

0xf /dev/cnd01 108/1 mip arpm cnd
 0xf /dev/cnd01 108/2 mip arpm ipm cnd
 0xf /dev/cnd00 107/1 mip arpm cnd
 0xf /dev/cnd00 107/2 mip arpm ipm cnd
 0xf /dev/tcp 55/8 mip tcpm mip

The first two lines are for IP traffic through the first Condor Ethernet device, and the next
two lines after that are for IP traffic through the second Condor Ethernet device. The arpm
modules handles Address Resolution Protocol (ARP) processing, and the ipm module
handles the Internet Protocol (IP) processing.

The last line is for the STREAM that handles the Transmission Control Protocol (TCP)
processing for all TCP/IP traffic.

As an example, if the first Condor Ethernet device is handling real-time networking traf-
fic, and it is desirable for only the last two CPUs in the system to process this real-time
networking data, then the system administrator might want change the first two lines so
that the CPU bias masks of these STREAMS contain only the last two CPUs in the sys-
tem. Further, the system administrator might want to place the rest of the non-real-time
TCP/IP related STREAMS service procedure processing on the first two (presumably
non-real-time) CPUs.

Thus, the following lines might represent the contents of a CPU bias mask input file that
would be used on a “strmuxbias -s” invocation to set the CPU bias masks of these
lower level TCP/IP STREAMS:

 0xc /dev/cnd01 108/1 mip arpm cnd
 0xc /dev/cnd01 108/2 mip arpm ipm cnd
 0x3 /dev/cnd00 107/1 mip arpm cnd
 0x3 /dev/cnd00 107/2 mip arpm ipm cnd
 0x3 /dev/tcp 55/8 mip tcpm mip

User–Level Interrupt Routines 2

The operating system provides the support necessary for a user–level process to connect a
routine to an interrupt vector that corresponds to the interrupt generated by a selected
device and to enable the connection. You can significantly improve process dispatch
latency for an individual program by using the user–level interrupt routine facility. Con-
necting a user–level interrupt routine to an interrupt vector allows you to avoid several of
the events that make up process dispatch latency when the kernel catches the interrupt. If
you use a user–level interrupt routine, it is not necessary to execute a kernel interrupt
routine or wake the process that is waiting for the event signified by the interrupt. In
addition, process dispatch latency is not affected by interrupts or raised IPL unless the
interrupt or the raised IPL has a higher interrupt priority level than the connected interrupt.
2-23

PowerMAX OS Real-Time Guide
Figure 2-5 illustrates the extent to which process dispatch latency is affected by use of
user–level interrupt routines.

An overview of user–level interrupt routines and a detailed explanation of the procedures
for using them are provided in Chapter 8 of this guide.

Figure 2-5. Effect of User–Level Interrupts on Process Dispatch Latency

User–Level Device Drivers 2

The operating system provides support for user–level device drivers. A user–level device
driver consists of a set of library routines that allows a user program to perform I/O and
control operations for a particular device directly from user level without entering the
kernel. Direct access to the device is achieved by mapping the (H)VME addresses associ-
ated with the device’s hardware registers onto the user’s virtual address space.

A user–level device driver benefits worst case process dispatch latency because it gives
you access to the driver’s source file and allows you to directly control the length of criti-
cal sections. As a result, you can directly control the length of the critical sections that are
protected by raising the IPL (see “Effect of IPL” for information on the way in which the
length of a critical section that is protected by raising IPL affects worst case process
dispatch latency). You can also directly control the length of a user–level device driver’s
interrupt routine (see “Effect of Interrupts” for information on the way in which the length
of the interrupt routine affects process dispatch latency). Because most user–level device

0

1

2

3

4

5

IPL
LEVEL

EVENT OCCURS

TARGET PROGRAM RUNS

EXECUTION OF TARGET PROGRAM

EXECUTION THAT REPRESENTS
PROCESS DISPATCH LATENCY

ELAPSED TIME

KERNEL INTERRUPT STUB
2-24

Improving Response Time
drivers are simple in design, their critical sections and interrupt routines are much shorter
than those of a kernel device driver.

A user–level device driver also provides an alternative, low–overhead means of perform-
ing I/O operations. Without a user–level device driver, you must use system calls to
perform I/O operations––a procedure that is costly in terms of overhead. A system call
involves crossing the user–kernel boundary and several layers of kernel routines before
finally calling the device driver routine associated with the particular system call. After
the kernel device driver performs the work required for completion of the requested I/O
operation, the same path must be traced back through the various layers to exit the kernel.
A user–level device driver provides a means of performing I/O operations without having
to enter and exit the kernel.

Other advantages of a user–level device driver include the following: (1) it does not
require that the kernel be modified or rebooted, and (2) it may permit I/O operations to be
performed directly to a user process’s virtual address space.

An overview of user–level device drivers and the advantages and disadvantages of using
them is provided in Device Driver Programming. This manual describes the components
that make up a user–level driver and the issues that are involved in developing one. It also
provides an introduction to the operating system support for user–level device drivers.

A user–level device driver that enables you to access a DR11W emulator directly from
user space is available (the dr11w emulator is a high–speed 16–bit interface between a
Series 6000 system and a device that uses the Digital Equipment Corporation DR11W
interface.) By performing I/O through the DR11W user–level driver, you can achieve a
significant reduction in the overhead associated with issuing an I/O request. An overview
of the DR11W emulator is provided in Chapter 12 of this guide. Procedures for using the
related user–level device driver are included.

Threads and Response Time 2

The threads library allows an application to be divided into multiple execution streams
that execute concurrently. This programming model can produce significant performance
gains on a multiprocessor system because true concurrency can be achieved. If you use
this programming model for real-time applications, it is important to understand how
threads are scheduled by the threads library, how the threads-library level scheduler and
the system scheduler interact, and how bound-thread scheduling differs from multiplexed-
thread scheduling (see the “Thread Scheduling” section of the chapter entitled “Program-
ming with the Threads Library” in the PowerMAX OS Programming Guide).

In multi-threaded real-time applications, it is recommended that you use only bound
threads to perform time-critical tasks. Use of bound threads is recommended for the fol-
lowing reasons:

• When a bound thread is created, it is permanently attached to the LWP that
is created with it. A bound thread that is ready to run executes when the
system scheduler schedules its associated LWP for execution.

A runnable multiplexed thread is temporarily assigned to an LWP by the
threads library scheduler when an LWP becomes available. After the thread
is assigned to an LWP, the LWP is scheduled for execution by the kernel,
2-25

PowerMAX OS Real-Time Guide
The additional scheduling overhead of the threads library causes the pro-
cess dispatch latency for a multiplexed thread to be worse than that for a
bound thread.

• A bound thread can be assigned a real-time scheduling policy and priority
by using the thr_setscheduler(3thread) routine. The threads
library scheduler assigns the specified policy and priority to the LWP to
which the bound thread is attached. This allows direct control of the under-
lying LWP’s priority.

A multiplexed thread can be assigned a scheduling priority by using
thr_setscheduler, but that priority is used only by the threads library
scheduler to assign multiplexed threads to LWPs. A higher priority thread
is assigned to an LWP before a lower priority thread; the priority of the
LWP to which the thread is assigned is not taken into consideration. A mul-
tiplexed thread runs under the scheduling policy and priority of the LWP to
which it is assigned. With multiplexed threads, the application has no direct
control of the underlying LWP’s scheduling priority.

• The kernel’s real-time scheduling policies are not available to multiplexed
threads through the thr_setscheduler interface, which is the only
scheduling control interface that should be used to set the scheduling pol-
icy of multiplexed threads.

Real-Time System Configuration Using Config 2

The kernel configuration utility, config(1M), can be used to tune a system for use in a
real-time environment. The easiest way to do this is by selecting the “Real-Time” sub-
menu from the main-menu in config(1M). This sub-menu provides a convenient way
to examine and modify the configuration features listed earlier in this chapter.

The real-time sub-menu will appear as follows:
2-26

Improving Response Time
Screen 2-1. Realtime Configuration Menu

The items on this sub-menu may be used to do the following:

- direct interrupts to first CPU
In this mode, all fully configurable interrupts are directed to the
boot processor (i.e. CPU0). Depending on the architecture, some
interrupts may only be directed to a specific CPU board, in which
case, the interrupt will be bound to the first CPU on that board.

Note that this configuration may be too rigid for some systems. In
this case, this mode should not be selected. Instead, the tunable for
each individual interrupt should be configured appropriately. Refer
to “Assigning Interrupts to CPUs.”

- enable/configure interrupt daemons
Used to configure interrupt daemons by setting the tunable
ALLINTRDAEMONS. Interrupt daemons can be fully enabled, fully
disabled, or selectively enabled. Refer to “Using Interrupt Dae-
mons.”

- disable hardclock interrupts on selected cpus
Can be used to selectively disable hardclock interrupts on individ-
ual processors. Refer to “Hardclock Interrupt Handling.”

- specify CPUs that are eligible to run kernel daemons
Used to specify a CPU mask of processors that can run interrupt
and kernel daemons.

Note that this configuration may be too rigid for some systems. In
2-27

PowerMAX OS Real-Time Guide
this case, this mode should not be selected. Instead, the tunable for
each individual daemon should be configured appropriately. Refer
to “Assigning Daemons to CPUs.”

- specify CPUs that are eligible to run general programs
Used to specify a CPU mask of processors that can run general pro-
grams. Note that this CPU bias is assigned to the init(1m) pro-
gram and will be inherited by all children and sub-children pro-
cesses. Any user with the appropriate privilege may be able to
decrease or increase the scope of the CPU bias. Refer to “Assigning
Processes to CPUs.”

- specify disk scheduling algorithm
Used to configure the disk scheduling algorithm that will be used.
Scheduling can be priority-based (which may be ideal in real-time
environments). In addition FIFO or CSCAN queueing can be speci-
fied.

- specify miscellaneous tunables
Can examine and modify tunables STRSCHED_DISABLE_MSK
and STRSCHED_DAEMON_MSK. Refer to “Controlling STREAMS
Scheduling.”

Can examine and modify tunable KMA_GBACK_DISABLE which is
used to control the set of cpus that will run the KMA giveback dae-
mon.

- enable real-time features
Can examine and modify tunable HIGHRESTIMING which is used
to configure high-resolution (nano-second) timing.

Can enable/disable the kernel modules for frequency based schedul-
ing (FBS) or user-level interrupts.
2-28

3
Increasing Determinism

Overview of Determinism . 3-1
Architectural Issues . 3-1

Reducing Contention for the System Bus . 3-2
Interprocessor Interrupts. 3-4

Procedures for Increasing Determinism . 3-5
Locking Pages in Memory . 3-5
Using Local and Global Memory . 3-5
Setting the Program Priority. 3-7
Using High–Resolution Timeout Facilities . 3-8
Waking Another Process . 3-9

PowerMAX OS Real-Time Guide

3
Chapter 3Increasing Determinism

3
3
3

This chapter describes techniques that you can use to create a deterministic environment
for execution of an application program. It examines the advantages and disadvantages of
using those techniques.

Overview of Determinism 3

Determinism refers to a computer system’s ability to execute a particular code path (a set
of instructions that is executed in sequence) in a fixed amount of time. The extent to
which the execution time for the code path varies from one instance to another indicates
the degree of determinism in the system.

Determinism applies not only to the amount of time that is required to execute a time-crit-
ical portion of a user’s application but also to the amount of time that is required to exe-
cute system code in the kernel. The determinism of the process dispatch latency, for
example, depends upon the code path that must be executed to handle an interrupt, wake
the target process, perform a context switch, and allow the target process to exit from the
kernel. (Chapter 2 defines the term process dispatch latency and presents a model for
obtaining the best process dispatch latency that is possible on a particular processor in a
multiprocessor system.)

A variety of issues affects determinism. These issues relate to architecture and interpro-
cessor interrupts. “Architectural Issues” describes the architectural issues. “Interproces-
sor Interrupts” describes the issues related to interprocessor interrupts.

Architectural Issues 3

In a shared memory, multiprocessor system, in which several processes are executing
simultaneously on multiple processors, it is impossible to achieve absolute determinism
because the individual processors share system resources. Contention for shared system
resources during the application’s execution is unpredictable. When a process running on
one processor attempts to access a shared resource that is being used by another process
running on a different processor, it must wait until the other process releases the resource.
The number of times that a conflict will occur in accessing a shared resource is unpredict-
able. As a result, the process’s execution time is indeterminate.

The key system resources that processors share are the system, or frontplane, bus and the
local bus. The system bus provides access to global memory from all of the system’s pro-
cessor boards. The local bus provides access to the system bus from a processor board and
provides access to the local memory pool on that board. Located on a processor board
and contending for access to the buses are one or more CPUs, the cache controllers, and
such I/O daughter boards as the ISE (Integral SCSI/Ethernet). The system bus is the
3-1

PowerMAX OS Real-Time Guide
resource for which contention is highest and is, therefore, the chief source of indetermin-
ism in a system.

Reducing Contention for the System Bus 3

You can reduce contention for the system bus in four ways:

• Using the shielded processor model

• Confining background tasks to a single processor or processor board and
restricting their access to the system bus

• Using direct I/O

• Using user-level device drivers.

The shielded processor model is fully described in Chapter 2. The approach of the model
is to assign high–priority functions to one or more CPUs and to restrict the interrupts
directed to those CPUs. Only the interrupts that signal events important to the high–
priority functions are directed to those CPUs; other interrupts and all system daemons are
assigned to the other CPUs. The processor(s) on which the high–priority functions are
running are shielded from the unpredictable processing associated with most interrupts
and system daemons. Another aspect of the model is to place as much of the application
program as possible in local memory. By using local memory, the processes executing on
the board associated with that local memory pool are shielded from activity on other pro-
cessor boards.

The shielded processor model provides two safeguards against indeterminism:

• Unnecessary interrupts are directed away from the shielded processor(s).
Interrupts are a major source of indeterminism because they preempt the
currently executing process, regardless of its priority.

• High–priority functions assigned to the shielded processor(s) use local
memory as much as possible. Accessing local memory is faster than
accessing global memory and does not add to contention for the system
bus.

Only programs with very limited functionality can be completely shielded from the inde-
terminism that is caused by contention for the system bus. First, kernel data and some-
times kernel text are stored in global memory. Each time a process makes a system call, it
must access global memory and the system bus. Shielding is temporarily lost. Second,
certain types of shared data are stored in global memory. Many real-time applications, for
example, require large shared memory regions for communication among the processes
that cooperate to perform the real-time task. If the processes execute on separate proces-
sor boards, the shared data must be stored in global memory in order to be accessible to all
of the cooperating processes.

Because most tasks will require some access to global memory, you cannot sufficiently
reduce contention for the system bus by simply using the shielded processor model. You
must also attempt to confine the activity of background tasks to a single processor or pro-
cessor board so that they do not contribute to the contention for the system bus. Back-
ground tasks include compilations, functions performed by kernel daemons, and applica-
tion tasks that do not require deterministic execution (for example, logging of input data).
Such tasks typically make numerous system calls, which require access to global memory
3-2

Increasing Determinism
and the system bus. If you assign the background tasks to one or more processors on a sin-
gle processor board, you can restrict their access to the system bus by taking advantage of
the following features of the PowerMAX OS virtual memory subsystem:

• The ability to ensure that kernel text is replicated in the local memory pool
on a particular processor board by using a system tunable parameter

This is an advantage when background tasks are making many system calls
because accesses to kernel instructions will be local memory accesses.

• The ability to influence the kernel’s page placement decisions by selecting
the hard-local NUMA (non-uniform memory access) policy for different
portions of a background task’s address space

When the local memory pool is full, the hard-local policy causes a process to block
until the pages become available. This feature allows you to confine the pages used
by background tasks to local memory. Consequently, background tasks do not com-
pete for the system bus and cause contention with the real-time tasks on other pro-
cessors.

The hard-local policy cannot guarantee that file pages will be placed in a local mem-
ory pool. File pages will not be placed in a local memory pool, for example, if they
are writable and are being accessed from different processor boards. They will be
placed in the global memory pool instead.

For an overview of primary memory and an explanation of NUMA policies and the
procedures for selecting them, refer to the PowerMAX OS Programming Guide.

To ensure that kernel text is replicated in the local memory pool on the processor board on
which the background tasks are executing, set the value of the corresponding
KTEXTLOCALn system tunable parameter to 1 (n denotes a number ranging from 1 to 4,
where 1 represents the first local memory pool, 2 the second, and so on, in order according
to processor board slot number). You can examine and modify the values of system tun-
able parameters by using the config(1M) utility. For an explanation of the procedures
for using this utility, refer to the “Configuring and Building the Kernel” chapter of System
Administration Volume 2. After changing a tunable parameter, you must rebuild the kernel
and then reboot your system.

To select the hard-local NUMA policy for the background tasks’ pages, use one of the fol-
lowing methods:

1. Invoke the memdefaults(2) system call, specify the MDF_SETNUMA

command, and specify a flag that sets all of the following bits:

MDF_TEXT_HARDLOCAL select the hard-local NUMA policy for text

MDF_PRDATA_HARDLOCAL select the hard-local NUMA policy for pri-
vate data

MDF_SHDATA_HARDLOCAL select the hard-local NUMA policy for
shared data

MDF_UBLOCK_HARDLOCAL select the hard-local NUMA policy for the
U-block
3-3

PowerMAX OS Real-Time Guide
2. Invoke the run(1) or rerun(1) command from the shell and specify
the -m NUMA option.

NUMA specifies one or more keywords that select the NUMA policies for parts of
the process’s address space. Specify the keyword hard or all of the following key-
words:

text_hard select the hard-local NUMA policy for text

prdata_hard select the hard-local NUMA policy for private data

shdata_hard select the hard-local NUMA policy for shared data

ublock_hard select the hard-local NUMA policy for the U-block

For additional information on use of the memdefaults(2) system call and the run and
rerun commands, refer to the corresponding system manual pages.

Confining background tasks to a single processor or processor board not only reduces con-
tention for the system bus but also causes access to the system bus from the shielded pro-
cessor(s) to be deterministic.

The Integral SCSI Ethernet (ISE) interface provides an inexpensive disk and Ethernet con-
troller. When the ISE is used for direct I/O to raw disk partitions and the data are trans-
ferred to or from the local memory pool on the processor board on which the ISE is
mounted, there is no access to global memory or the system bus. This technique provides a
means of performing large disk transfers without affecting the determinism of any of the
processors on other processor boards. When an application contains one or more processes
that perform large disk transfers, using direct I/O from an ISE to local memory on the
same processor board provides an I/O mechanism that reduces contention on the system
bus. Note that the process performing disk I/O must be bound to a processor on the same
processor board as the ISE and the buffers that are used for I/O must be in local memory.

Interprocessor Interrupts 3

The operating system uses a special set of interrupt lines—one per CPU—to build a
simple interprocessor communication facility. With this facility, one CPU can cause
another CPU to perform an action in its behalf. Interprocessor interrupts (IPIs) are among
the highest priority interrupts in the system. Although they are usually short in duration,
they can be a source of jitter for some real-time processes.

The extent to which interprocessor interrupts are used is less in PowerMAX OS than it has
been in previous operating system releases. It is no longer necessary for the kernel to per-
form interprocessor interrupt operations to maintain cache coherency. The operating sys-
tem uses interprocessor interrupts only when a process invokes the POSIX
clock_settime(3C) library routine to modify CLOCK_REALTIME. In this case, the
interval timer must be modified—an operation that can be performed only on the boot pro-
cessor. If clock_settime is called on a different processor, the operating system must
issue an interprocessor interrupt to the boot processor to perform the operation.
3-4

Increasing Determinism
Procedures for Increasing Determinism 3

You can increase determinism of a program’s execution by locking a process’s pages in
memory and by using local memory. These techniques are described in “Locking Pages in
Memory” and “Using Local and Global Memory.” When certain programs require very
deterministic response times, you should use static priorities and assign the most favorable
priorities to the tasks that require the most deterministic response. This technique is
explained in “Setting the Program Priority.” Certain system calls and library routines that
block the calling process contain timeouts to control the length of time that the process is
blocked. You can obtain a high resolution on the timeout by using the facilities that are
described in “Using High–Resolution Timeout Facilities.” When an application uses mul-
tiple tasks that require deterministic communication through use of shared memory
regions, you should use the server system calls. This technique is explained in “Wak-
ing Another Process.”

Locking Pages in Memory 3

You can avoid the overhead that is associated with paging and swapping by using the
mlockall(3C), munlockall(3C), mlock(3C), and munlock(3C) library rou-
tines and the userdma(2) system call.

The mlockall(3C), munlockall(3C), mlock(3C), and munlock(3C) library
routines allow you to lock and unlock all or a portion of a process’s virtual address space
in physical memory. These interfaces are based on UNIX System V Release 4 and IEEE
Standard 1003.1b-1993

The userdma system call allows you to use an I/O controller’s DMA (Direct Memory
Access) capabilities directly from user mode. It prepares an I/O buffer located in a user
process’s virtual address space for DMA transfers. It locks the I/O buffer in physical
memory, returns the buffer’s physical location, and ensures that the mapping of virtual to
physical addresses does not change. If you indicate whether the I/O buffer is to be used
for writing to or reading from the device, userdma sets the cache modes of the pages
containing the buffer to keep memory and cache coherent.

With each of these calls, pages that are not resident at the time of the call are faulted into
memory and locked. To use the mlockall(3C), munlockall(3C), mlock(3C),
and munlock(3C) library routines and the userdma system call, you must have the
P_PLOCK privilege (for additional information on privileges, refer to the intro(2) sys-
tem manual page and the PowerMAX OS Programming Guide.

Procedures for using these library routines and system calls are fully explained in the
PowerMAX OS Programming Guide; reference information is provided in the correspond-
ing system manual pages.

Using Local and Global Memory 3

Local memory is available on all Model 6800 systems. It is designed to improve the per-
formance of multiprocessor systems by reducing system bus traffic and contention.
3-5

PowerMAX OS Real-Time Guide
Local memory is a pool of memory that is physically located on a processor board. Each
processor has a data path to its local memory pool that does not require use of the system
bus. Note that local memory is actually shared among all processors on each processor
board.

Global memory, or memory that is shared by all processors in the system, is located on a
separate board and is available to all processors via the system bus.

Local memory has a number of advantages that benefit program responsiveness, but it also
has some disadvantages. The advantages of local memory are as follows:

• Local memory provides faster memory access times than global memory.

• No system bus traffic is generated when accessing local memory. Because
the system bus is a resource that is shared by all processors, use of local
memory improves determinism for the system as a whole.

The disadvantages of local memory are as follows:

• I/O operations to and from local memory can slow memory accesses from
the processors located on the same board.

• Accesses from a processor on one processor board to local memory on a
different processor board are very slow and can affect the performance of
the entire system.

In general, the more portions of a process's address space that you place in local memory,
the more deterministic that the execution of that process will be. Because the amount of
local memory in a system is limited, it may not be possible to place all portions of a partic-
ular process’s address space in local memory. The PowerMAX OS Programming Guide
provides an overview of the hardware and software features of primary memory and the
NUMA (non-uniform memory access) policies that govern the type of memory in which
different portions of a process’s address space may be placed. It includes guidelines for
you to use in determining the policies that are appropriate for your application. It is rec-
ommended that you read the “Primary Memory” section of the “Memory Management”
chapter of that manual and that you refer to the memory(7) system manual page as back-
ground for the material that is presented here.

The paragraphs that follow highlight special concerns that should be taken into consider-
ation when determining the appropriate NUMA policy for various portions of a real-time
application's address space.

If shared, writable pages created via the mmap(2) system call are placed in local memory
and those pages are subsequently accessed from a remote processor board, the pages will
migrate to global memory. All accesses to a page while it is migrating will stall until the
migration is complete. Note that such migrations occur even if the page has been locked
in memory. Mmap allows a process to override the default NUMA policy for writable
pages so that they are placed in global memory. Shared, writable pages that are placed in
global memory never migrate. If these migrations are undesirable, shared, writable pages
should be placed in local memory only when all accesses to the pages are performed by
processes that are running on the processor board on which the local memory pool is
located.

Shared, writable pages in System V IPC shared memory segments are handled differently:
they never migrate because of accesses from remote processor boards. In general, access
from a remote processor board to a shared memory segment that is bound to a local mem-
3-6

Increasing Determinism
ory pool is not permitted—the shmat(2) system call will fail with an EACCES error. It
is possible to obtain access to a remote shared memory segment by setting the
SHM_FLMEM bit in the shmflg argument on the call to shmat; however, even in this case,
the pages will not migrate to global memory. Instead, the calling process will access the
pages remotely. Because of the properties of remote memory accesses, use of this feature
is not generally recommended.

In addition, pages mapped by using the usermap(2) system call will never migrate
because of accesses by the calling process. Usermap is intended to be a debugging or
monitoring tool; consequently, it attempts to provide access to the target process’s pages
without affecting the process itself.

Note that use of the any-pool policy is strongly discouraged because it allows remote
memory accesses. Remote memory accesses are especially detrimental to system deter-
minism because they must use the paths to two local memories as well as the system bus.
Contention results from attempts to gain control of each of the buses. In addition, when
remote accesses occur, a single word rather than an entire cache line is transferred on each
access. Consequently, every time a word of remote memory is accessed, contention for
each of the buses arises.

For details about the procedures for selecting NUMA policies for the different parts of a
process’s address space, refer to the memory(7) system manual page and the Power-
MAX OS Programming Guide.

Setting the Program Priority 3

The PowerMAX OS kernel accommodates static priority scheduling––that is, processes
scheduled under certain POSIX scheduling policies or System V scheduler classes do not
have their priorities changed by the operating system in response to their run–time behav-
ior.

Processes that are scheduled under one of the POSIX real–time scheduling policies always
have static priorities. (The real–time scheduling policies are SCHED_RR and SCHED_FIFO;
they are explained in the PowerMAX OS Programming Guide.) To change a process’s
scheduling priority, you may use the sched_setscheduler(3C) and the
sched_setparam(3C) library routines. Note that to use these routines to change the
priority of a process to a higher (more favorable) value, you must have the P_RTIME privi-
lege (for complete information on privilege requirements for using these routines, refer to
the corresponding system manual pages and the PowerMAX OS Programming Guide).

Processes that are scheduled under the System V fixed-priority or fixed class also have
static priorities. The fixed-priority class is the highest priority scheduling class in the sys-
tem; it is used only for the most important real-time tasks in an application. The fixed
class is used for tasks that require a fixed priority that is not influenced by such factors as
CPU usage but that are not considered important enough to be scheduled in the fixed-pri-
ority class. To assign a process to the fixed class or the fixed-priority class, you must use
the priocntl(2) system call (for information on scheduler classes and use of this sys-
tem call, refer to the corresponding system manual page and the PowerMAX OS Program-
ming Guide).

The highest priority process running on a particular processor will have the best process
dispatch latency. If a process is not assigned a higher priority than other processes running
3-7

PowerMAX OS Real-Time Guide
on a processor, its process dispatch latency will be affected by the time that the higher pri-
ority processes spend running. As a result, if you have more than one process that requires
good process dispatch latency, it is recommended that you distribute those processes
among several processors. Refer to Chapter 2 for an explanation of the procedures for
assigning processes to particular processors.

Process scheduling is fully described in the PowerMAX OS Programming Guide. Proce-
dures for using the sched_setscheduler and sched_setparam library routines to
change a process’s priority are also explained.

Using High–Resolution Timeout Facilities 3

You can obtain a finer resolution on certain types of blocking requests by configuring a
real–time clock to be used for triggering events in the high–resolution callout queue. By
default, a real–time clock is configured into the system for this purpose. Consequently,
you can obtain a resolution of one microsecond instead of 1/60 of a second, which is the
resolution provided by the system–wide 60 Hz clock.

The real–time clock is set up to generate an interrupt when the time of the next entry in the
high–resolution callout queue expires. When the interrupt occurs, an associated interrupt
service routine arranges for execution of the specified routine and removal of the entry
from the callout queue. The interfaces that use the high-resolution callout queue are the
server_block(2) a n d client_block(2) s y s t e m ca l l s an d t h e
nanosleep(3C) and the timer_settime(3C) library routines.

Entries are placed in the high–resolution callout queue as a result of blocking requests
made by using the server_block(2) and client_block(2) system calls. These
calls are briefly described as follows:

client_block block the calling thread (a client) and pass its priority to another
thread (a server)

server_block block the calling thread only if no wake–up request has occurred
since the last return from server_block

Each of these calls allows you to supply a timeout argument that specifies the maximum
length of time that the calling thread will be blocked. If a real–time clock has been config-
ured for use with the high–resolution callout queue, you will obtain a resolution of one
microsecond on the timeout request; otherwise, you will obtain a resolution of 1/60 of a
second. Procedures for using the client_block and server_block system calls are
fully explained in Chapter 6.

Entries are also placed in the high–resolution callout queue as a result of blocking requests
made by using the nanosleep(3C) library routine. The interface to this routine is
based on IEEE Standard 1003.1b-1993. The nanosleep routine causes execution of the
calling process to be suspended until (1) a specified period of time elapses or (2) a signal
is received and the associated action is to execute a signal–handling routine or terminate
the process. If a real–time clock has been configured for use with the high–resolution call-
out queue, you will obtain a resolution of one microsecond on the blocking request; other-
wise, the call will fail. Procedures for using the nanosleep library routine are fully
explained in Chapter 6 of this guide.
3-8

Increasing Determinism
An entry is also placed in the high–resolution callout queue as a result of a call to the
timer_settime(3C) library routine. This routine is based on IEEE Standard
1003.1b-1993. It allows a process to set the time at which a POSIX timer will expire. If a
real-time clock is not configured for the high-resolution callout queue, the
timer_settime routine will fail. An explanation of POSIX clocks and timers and the
related clock and timer library interfaces is provided in Chapter 7 of this guide.

Waking Another Process 3

In multiprocess applications, you often need to wake a process to perform a particular
task. One measure of the system’s responsiveness is the speed with which one process can
wake another process. The fastest method that you can use to perform this switch to
another task is to use the server_block(2) system call to block the current process
and the server_wake1(2) system call to wake the blocked process. These calls are
briefly described as follows:

server_block block the calling thread only if no wake–up request has occurred
since the last return from server_block

server_wake1 wake a single server that is blocked in the server_block
system call; if the specified server is not blocked in this call, the
wake–up request is applied to the server ’s next call to
server_block

A process may use the server_wake1 system call to wake a higher priority process that
is blocked waiting for a specific event to occur. A process may use the server_block
system call to block itself in order to allow a lower priority process to run.

Procedures for using the server system calls are fully explained in Chapter 6 of this guide.
3-9

PowerMAX OS Real-Time Guide
3-10

4
Using the ktrace Utility

Overview of ktrace . 4-1
Configuring a Kernel for Kernel Tracing . 4-1
Procedures for Using ktrace . 4-2

PowerMAX OS Real-Time Guide

4
Chapter 4Using the ktrace Utility

4
4
4

This chapter provides an overview of the ktrace utility and explains the procedures for
using it.

Overview of ktrace 4

When you are executing a real–time application, it is important to know what the operat-
ing system overhead is. The ktrace(1) program allows you to determine the amount of
time that is devoted to processing within the operating system––time that is spent servic-
ing system calls (including I/O system calls to devices) and handling interrupts and excep-
tions. The ktrace program provides a summary of all of the system activity that occurs
while it is being used to log system events.

To be able to use the ktrace program, you must have the NightTraceTM product, and you
must ensure that the kernel trace module (trace) is configured into the kernel. You can
use the config(1M) utility to (1) determine whether or not the trace module is
enabled in your kernel, (2) enable or disable the trace module, and (3) rebuild the ker-
nel. Note that you must be the root user to enable a module and rebuild the kernel. After
rebuilding the kernel, you must then reboot your system. For an explanation of the proce-
dures for using config(1M), refer to the “Configuring and Building the Kernel” chapter
of System Administration Volume 2.

If your application requires very fast real–time response, you are advised not to have the
kernel trace module configured when you are building a kernel for production purposes.
When the kernel trace module is configured into the kernel, overhead associated with
checks for the enabling of trace points is added to context switches, interrupt entry and
exit, and system calls (including I/O system calls to devices).

Configuring a Kernel for Kernel Tracing 4

Kernel tracing is optional. To configure a kernel with kernel tracing enabled, you must
modify the trace file in the /etc/conf/sdevice.d directory. Set the configure
field in the trace file to Y, and build a kernel with the idbuild(1M) utility. (Refer to
the idbuild(1M) system manual page for specific details.) To disable kernel tracing, set
the configure field in the trace file to N, and build a new kernel with the
idbuild(1M) utility.

Even if trace points are compiled into the kernel, a trace point will not log data until it has
been enabled via an octl call. (See /usr/include/sys/ktrace.h for details
about this octl call.) By default, ktrace enables the following kernel trace points:
4-1

PowerMAX OS Real-Time Guide
- Interrupt entry/exit

- Exception entry/exit

- Context switch

- System call entry

- I/O service call entry

- Shared interrupt handler dispatch

- Naming of a process

The default trace points are required to get meaningful performance data. You must have
kernel source to compile trace points other than the defaults into a kernel.

The most common way to run ktrace is to collect the raw trace data in an output file,
then use ktrace to analyze the raw data and produce its summary.

Procedures for Using ktrace 4

It is recommended that you run the ktrace program once to log data about system events
and then run it again to analyze the data and obtain a summary of the statistics. Using
ktrace to analyze ktrace data consumes CPU time. You should avoid using it to per-
form data gathering and analysis at the same time for the following reasons:

• The CPU time used for ktrace analysis will affect the workload being
measured.

• The ktrace program is more likely to lose ktrace records because
those records will be read from the kernel at a slower rate.

To use the ktrace program, perform the following steps:

1. Run ktrace in the background to gather raw data from a running kernel.

An example of the format that you can use to run ktrace for this purpose
is as follows:

ktrace –output raw_data_file &

The -output option allows you to specify the name of a file to which you wish
raw trace data to be written. When you are ready to obtain an analysis of the data,
you can use this file as input to ktrace. Note that when you specify the –output
option, analysis of the trace data is not performed.

 It is recommended that you use a file system that is local to the system being traced
rather than an NFS file system.

2. While ktrace is running in the background, run the workload that you
wish to monitor.

3. Terminate the ktrace program by sending it the SIGINTR signal.
4-2

Using the ktrace Utility
4. Run ktrace again to analyze the raw data gathered in Step 1.

An example of the format that you can use to run ktrace for this purpose is
as follows:

ktrace –input raw_data_file > summary_data_file

The -input option allows you to specify the name of a file that contains the raw
trace data to be used as input. You may specify the name of a file to which you wish
summary data output to be redirected. The ktrace program has many other
options. These options are fully described in the ktrace(1) system manual page.
Among the other options that you may find useful are the following:

–cpu cpu_id display trace point data only for the logical
CPU identifier specified by cpu_id

The default is all CPUs.

–process pid display trace point data only for the process
whose process identification number (PID)
is specified by pid

The default is all PIDs.

–wall calculate all times in terms of wall time

When you use the -wall option, the times
reported for system calls (including I/O
calls) and other exceptions include (1) the
time that other processes are running if the
current process blocks in the kernel and (2)
the time spent handling interrupts that pre-
empt execution of the current process. The
times reported for interrupts include the time
spent handling higher priority interrupts that
preempt execution of the current interrupt.

-priority priority run ktrace at the real-time priority speci-
fied by priority

The ktrace program always runs under the
fixed-priority scheduler class. You can deter-
mine the range of acceptable priority values
for this class by invoking the run(1) com-
mand without specifying any options or by
invoking the priocntl(1) command and
specifying the -l option.

The default is the maximum real-time prior-
ity.

-clock source Specifies the clock to use as the source of
event time stamps. If this option is given on
the command line, then source must be
given. If this option is not specified on the
4-3

PowerMAX OS Real-Time Guide
command line, then the system’s interval
timer (Night Hawk Series 6000, PowerMax-
ion, TurboHawk) or the Time Base Register
(Power Hawk Series 600/700/900, Power-
Stack II and III) will be used to obtain trace
event time stamps.

Valid source names are:

default The default system clock

rcim_tick The RCIM synchronized
tick clock

NOTE: If you specify rcim_tick for the
source and the system on which you are
tracing does not have an RCIM installed or
configured or if the RCIM synchronized tick
clock on the system on which you are tracing
is stopped, ktrace will exit with an error.

The summary that is produced when you use the ktrace program to analyze raw
ktrace data includes the following types of information. Note that times are reported in
microseconds unless otherwise indicated; elapsed time is measured from the time that
ktrace started running.

• A configuration summary that provides details about the configuration of
the system at the time that ktrace was run to gather the data

• A system call summary that lists the system calls that were made; the
number of times that each call was invoked; the minimum, average, and
maximum amounts of time that were spent executing a particular call; and
the elapsed time in seconds at which the calls taking the minimum and
maximum amounts of time occurred

• An exception summary that lists the types of exceptions that occurred; the
number of times that each type occurred; the minimum, average, and maxi-
mum amounts of time that were required for handling a particular type of
exception; and the elapsed time in seconds at which the exceptions requir-
ing the minimum and maximum amounts of time occurred

• An interrupt summary that lists the types of interrupts that occurred; the
CPUs on which they were received; the minimum, average, and maximum
amounts of time that were required for handling a particular type of inter-
rupt; and the elapsed time in seconds at which the interrupts requiring the
minimum and maximum amounts of time occurred

• A summary of the total time spent handling each interrupt and exception
and the total time spent handling all interrupts and exceptions

• An I/O system call summary that lists the system calls that were made to
devices; the number of times that they were invoked; the minimum, aver-
age, and maximum amounts of time that were spent executing a particular
call; and the elapsed time in seconds at which the calls requiring the mini-
mum and maximum amounts of time occurred
4-4

Using the ktrace Utility
Examples of the output for each type of summary are provided in the NightTrace Manual.
You are encouraged to use the ntfilter and ntrace tools, which are included in the
NightTrace product, for graphical displays, searches, and summaries of kernel and user
trace events.

It is important to note that the maximum times that the ktrace program reports are
greater than the times that accrue in a kernel configured without the kernel trace module.
Refer to the NightTrace Manual for additional information.
4-5

PowerMAX OS Real-Time Guide
4-6

5
Real-Time Interprocess Communication

Understanding Message Queue Concepts . 5-1
Understanding Basic Concepts. 5-2
Understanding Advanced Concepts . 5-3
Performance Issue . 5-4
Remote Message Queues . 5-4

Understanding Message Queue Library Routines . 5-5
Understanding the Message Queue Attribute Structure 5-5
Using the Library Routines . 5-6

Using the mq_open Routine . 5-6
Using the mq_send Routine . 5-10
Using the mq_receive Routine . 5-12
Using the mq_notify Routine . 5-13
Using the mq_setattr Routine . 5-15
Using the mq_getattr Routine . 5-16
Using the mq_close Routine . 5-16
Using the mq_unlink Routine . 5-17
Using the mq_remote_timeout Routine . 5-19

Remote Message Queue Debugging . 5-20

PowerMAX OS Real-Time Guide

5
Chapter 5Real-Time Interprocess Communication

5
5
5

Interprocess communication refers to transferring data between processes. Interprocess
synchronization refers to coordinating the execution of processes. This chapter describes
PowerMAX OS support for real-time interprocess communication. Chapter 6 describes
PowerMAX OS support for interprocess synchronization.

PowerMAX OS real-time interprocess communication support includes POSIX message-
passing facilities that are based on IEEE Standard 1003.1b-1993. The POSIX message
passing facilities provide a means of passing arbitrary amounts of data between cooperat-
ing processes. Use of the POSIX message-passing facilities is supported by a group of
interfaces that is presented in “Using the Library Routines.”

PowerMAX OS also provides the System V Interprocess Communication (IPC) package,
which includes the following mechanisms: messages, semaphores, and shared memory.
Each of these mechanisms is supported by a set of system calls. Refer to the PowerMAX
OS Programming Guide for a detailed explanation of the procedures for using these mech-
anisms and the related system calls.

POSIX message queues are the recommended message-passing mechanism. The perfor-
mance of System V message queues is an order of magnitude slower than the POSIX mes-
sage queues.

POSIX message queues can also be used to communicate between processes that are run-
ning on separate boards in a closely-coupled system.

Understanding Message Queue Concepts 5

An application may consist of multiple cooperating processes, possibly running on sepa-
rate processors. These processes may use system-wide POSIX message queues to effi-
ciently communicate and coordinate their activities.

The primary use of POSIX message queues is for passing data between processes. In con-
trast, there is little need for functions that pass data between cooperating threads in the
same process because threads within the same process already share the entire address
space. However, nothing prevents an application from using message queues to pass data
between threads in one or more processes.

“Understanding Basic Concepts” presents basic concepts related to the use of POSIX mes-
sage queues. “Understanding Advanced Concepts” presents advanced concepts.
5-1

PowerMAX OS Real-Time Guide
Understanding Basic Concepts 5

A message queue consists of message slots. To optimize message sending and receiving,
all message slots within one message queue are the same size. A message slot can hold
one message. The message size may differ from the message slot size, but it must not
exceed the message slot size. Messages are not padded or null-terminated; message length
is determined by byte count. Message queues may differ by their message slot sizes and
the maximum number of messages they hold. Figure 5-1 illustrates some of these facts.

Figure 5-1. Example of Two Message Queues and Their Messages

POSIX message queue library routines allow a process to:

• Create, open, query, close, and destroy a message queue

• Send messages to and receive messages from a message queue

• Associate a priority with a message to be sent

• Request asynchronous notification via a user-specified signal when a mes-
sage arrives at a specific empty message queue

Processes communicate with message queues via message queue descriptors. A child pro-
cess created by a fork(2) system call inherits all of the parent process’s open message
queue descriptors. The exec(2) and exit(2) system calls close all open message
queue descriptors.

When one thread within a process opens a message queue, all threads within that process
can use the message queue if they have access to the message queue descriptor.

A process attempting to send messages to or receive messages from a message queue may
have to wait. Waiting is also known as being blocked.

Message Queue 2

Message Queue 1

Message

163230

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • • • • • • • •þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•

• • • • • • • • • • •• • • • • • • • • • •
• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •

Message
Slot
5-2

Real-Time Interprocess Communication
Two different types of priority play a role in message sending and receiving: message pri-
ority and process-scheduling priority. Every message has a message priority. The oldest,
highest-priority message is received first by a process.

Every process has a scheduling priority. Assume that multiple processes are blocked to
send a message to a full message queue. When a message slot becomes free in that mes-
sage queue, the system wakes the highest-priority process that has been blocked the long-
est; this process sends the next message. Assume that multiple processes are blocked to
receive a message from an empty message queue. When a message arrives at that mes-
sage queue, the system wakes the highest-priority process that has been blocked the long-
est; this process receives the message.

Understanding Advanced Concepts 5

Message queues are implemented at user level rather than in the kernel to provide for the
most efficient means of passing data between processes. The storage space for a message
queue is in a memory-mapped file. The following paragraphs describe the effects of this
implementation on processes and system resource usage.

User-level spin locks synchronize access to the message queue, protecting message queue
structures. While a spin lock is locked, most signals are blocked to prevent the application
from aborting. However, certain signals cannot be blocked. Assume that an application
uses message queues and has a lock. If a signal aborts this application, the message queue
becomes unusable by any process; all processes attempting to access the message queue
hang attempting to gain access to the lock. For successful accesses to be possible again, a
process must destroy the message queue via mq_unlink(3) and re-create the message
queue via mq_open(3). For more information on mq_unlink and mq_open, see
“Using the mq_unlink Routine” and “Using the mq_open Routine”, respectively. For
more information on signals, see the PowerMAX OS Programming Guide.

To prevent a process from spinning forever while attempting to gain access to a message
queue, the message queue routines spin for a while, then block for a short period of time.
To allow a process to block for periods of time less than 1/60 of a second (one 60Hz clock
tick), you must ensure that a real-time clock is configured for use with the high-resolution
callout queue. For more information, see the section on using high-resolution timeout
facilities in Chapter 3 of this guide.

The message queue implementation uses a rescheduling variable to protect the critical sec-
tions inside the message queue interfaces. If you do not have the access required to initial-
ize a rescheduling variable, then none will be used. In this case, the functionality of the
message queue interfaces does not change; however, it is possible to be preempted by
higher priority processes from within critical sections. Performance of the message queue
operations may be degraded as a result. (You must have the P_RTIME privilege to initialize
a rescheduling variable. Use of rescheduling variables is explained in Chapter 6 of this
guide.)

The sections that follow describe the POSIX message queue interfaces and provide addi-
tional information about these interfaces. “Understanding the Message Queue Attribute
Structure” describes the message queue attribute structure. “Using the Library Routines”
presents the POSIX message queue library routines. Appendix A provides a sample pro-
gram that uses many of the POSIX message queue library routines.
5-3

PowerMAX OS Real-Time Guide
Performance Issue 5

The message queue implementation uses a rescheduling variable to protect the critical sec-
tions inside the message queue interfaces. If you do not have the privilege required to ini-
tialize a rescheduling variable, then none will be used. In this case, the functionality of the
message queue interfaces does not change; however, it is possible to be preempted by
higher priority processes from within critical sections. If such a preemption occurs,
another LWP or process that is attempting an operation on the message queue will block
until the preempted LWP or process is able to run again and complete the critical section.
Performance of the message queue operations may be substantially degraded as a result.

The privilege that is required to initialize a rescheduling variable is P_RTIME. In time-
critical applications, it is important to ensure that this privilege is granted to all of the pro-
cesses that access a particular message queue.

Note that the page where a rescheduling variable is located will be locked down in mem-
ory. This locked page may prevent the changing of a process's or LWP's CPU bias, if the
new CPU bias value requires migrating to a different CPU board on a Night Hawk system.

The procedures and limitations for using rescheduling variables are fully explained in
Chapter 6, “Rescheduling Control” on page 6-18.

Remote Message Queues 5

A closely-coupled system is composed of multiple single board computers (SBC) that
share a VMEbus. For more information on closely-coupled systems see the Power Hawk
Series 600 or 700 Diskless Systems Administrator’s Guide. Several families of interfaces
are supported for communicating between processes running on separate SBCs in a
closely-coupled system. One of those interface families is remote message queues. Refer
to the Power Hawk Series 600 or 700 Closely-Coupled Programming Guide for more
information on the interfaces available in a closely-coupled configuration.

Remote message queues can be used to pass data between processes that are executing on
separate SBCs in a closely-coupled configuration. When it is opened, a remote message
queue is defined to be resident on one of the SBCs in the closely-coupled configuration.
Processes on other SBCs in the closely-coupled configuration can operate on the remote
message queue using standard Posix message queue operations, which result in RPC-like
messages being passed to the SBC where the remote message queue is resident. It is
important to note that the data passed through a remote message queue is stored in buffers
on the SBC where the message queue has been defined to be resident. Therefore the SBC
where a message queue is resident should be chosen to be the SBC that is most active in
sending or receiving data.

The full functionality of the Posix message queue interfaces is available when using a
remote message queue.

When programming with remote message queues, the only significant difference in the
Posix message queue interfaces is in the specification of the message queue name when
creating and removing a remote message queue. For remote message queues, the name of
a remote message queue reflects the name of the SBC where the message queue resides.
The host name of the SBC where the remote message queue is defined to be resident is
5-4

Real-Time Interprocess Communication
prepended to the name of the message queue. Refer to the section on “Using the mq_open
Routine” for more information.

The remote message queue implementation utilizes a server process that runs on the SBC
where a remote message queue resides. A unique connection is established between a pro-
cess that opens a remote message queue and this server process. The server process
responds to RPC requests to perform operations on the remote message queue. The server
process is named sbc_msgd(3). Sbc_msgd(3) will start up by default on the server
SBC in a closely-coupled configuration. On client SBCs, sbc_msgd(3) does not start
up by default , so it must be configured to start up by enabling the CCS_IPC

vmebootconfig(1M) s u b s y s t em . Re f e r t o th e sbc_msgd(3) and
vmebootconfig(1M) manual pages for more information on this subject.

Understanding Message Queue Library Routines 5

The POSIX library routines that support message queues depend on a message queue
attribute structure. “Understanding the Message Queue Attribute Structure” describes this
structure. “Using the Library Routines” presents the library routines.

All applications that call message queue library routines must link in the thread library.
You may link this library either statically or dynamically. (For information about static
and dynamic linking, see the “Link Editor and Linking” chapter in Compilation Systems
Volume 1 (Tools).) The following example shows the typical command-line format:

cc [options] -D_REENTRANT file -lthread

Understanding the Message Queue Attribute Structure 5

The message-queue attribute structure mq_attr holds status and attribute information
about a specific message queue. When a process creates a message queue, it automati-
cally creates and initializes this structure. Every attempt to send messages to or receive
messages from this message queue updates the information in this structure. Processes
can query the values in this structure.

You supply a pointer to an mq_attr structure when you invoke mq_getattr(3) and
optionally when you invoke mq_open(3). “Using the mq_getattr Routine” and “Using
the mq_open Routine”, respectively, describe these POSIX message queue library rou-
tines.

The mq_attr structure is defined in <mqueue.h> as follows:

struct mq_attr {
 long mq_flags;
 long mq_maxmsg;
 long mq_msgsize;
 long mq_curmsgs;
};

The fields in the structure are described as follows.
5-5

PowerMAX OS Real-Time Guide
mq_flags a flag that indicates whether or not the operations associated
with this message queue are in nonblocking mode

mq_maxmsg the maximum number of messages this message queue can
hold

mq_msgsize the maximum size in bytes of a message in this message
queue. This is also the message slot size for this message
queue.

mq_curmsgs the number of messages currently in this message queue

Using the Library Routines 5

The POSIX library routines that support message queues are briefly described as follows:

mq_open create and open a new message queue or open an existing
message queue

mq_close close an open message queue

mq_unlink remove a message queue and any messages in it

mq_send write a message to an open message queue

mq_receive read the oldest, highest-priority message from an open mes-
sage queue

mq_notify register for notification of the arrival of a message at an
empty message queue such that when a message arrives, the
calling process is sent a user-specified signal

mq_setattr set the attributes associated with a message queue

mq_getattr obtain status and attribute information about an open
message queue

mq_remote_timeout
specify the timeout value for a remote message queue
descriptor

Procedures for using each of the routines are presented in the sections that follow.

Using the mq_open Routine 5

The mq_open(3) library routine establishes a connection between a calling process and
a message queue. Depending on flag settings, mq_open may create a message queue.
The mq_open routine always creates and opens a new message-queue descriptor. Most
other library routines that support message queues use this message-queue descriptor to
refer to a message queue.
5-6

Real-Time Interprocess Communication
The specifications required for making the mq_open call are as follows:

#include <mqueue.h>

mqd_t mq_open(name, oflag [,mode, attr, remote_debug])

char *name;
int oflag;
mode_t mode;
struct mq_attr *attr;
int remote_debug

The arguments are defined as follows:

name a null-terminated string that specifies the name of a message queue.

The general syntax is:

 [/] <ipc_name>

ipc_name may contain a maximum of 255 characters. It may contain a
leading slash (/) character, but it may not contain embedded slash char-
acters. Note that this name is not a part of the file system; neither a
leading slash character nor the current working directory affects inter-
pretations of it. If you wish to write code that can be ported to any sys-
tem that supports POSIX interfaces, however, it is recommended that a
leading slash character is provided.

Processes calling mq_open with the same value of name refer to the
same message queue. If the name argument is not the name of an exist-
ing message queue and you did not request creation, mq_open fails and
returns an error.

 As a non-POSIX extension, remote message queues are also supported.
The syntax for specifying a remote message queue is as follows:

[/] <hostname> / <ipc_name>

This specifies the message queue called ipc_name on the SBC named
hostname. Remote message queues are only valid on closely-coupled
systems. For more information refer to the section on “Remote Mes-
sage Queues".

On Power Hawk 620/640 CCS systems, hostname must correspond to a
valid SBC within the current cluster, and it must match one of the
"VME Hostname " f i e ld s o f o n e o f t h e en t r i e s in t h e
/etc/dtables/nodes.vmeboot configuration file.

On Power Hawk Series 700 CCS systems, if the message queue resides
on a client SBC, then hostname must match the corresponding client
profile file name located in the /etc/profiles directory. If the
message queue resides on the server SBC, then hostname must match
the nodename of the server SBC (the node name returned by
uname(1) with the -n option).
5-7

PowerMAX OS Real-Time Guide
hostname may contain a maximum of 255 characters. hostname may
also be the host name of the local system. Note that the remote message
queue syntax is valid even on systems that are not part of a cluster, if the
local system's host name is specified.

When specifying a remote message queue, ipc_name is the message
queue name and has the same interpretation as in the general syntax
case.

oflag an integer value that shows whether the calling process has send
and receive access to the message queue; this flag also shows whether
the calling process is creating a message queue or establishing a connec-
tion to an existing one.

The mode a process supplies when it creates a message queue may limit
the oflag settings for the same message queue. For example, assume
that at creation, the message queue mode permits processes with the
same effective group ID to read but not write to the message queue. If a
process in this group attempts to open the message queue with oflag set
to write access (O_WRONLY), mq_open returns an error.

The only way to change the oflag settings for a message queue is to call
mq_close and mq_open to respectively close and reopen the message
queue descriptor returned by mq_open.

Processes may have a message queue open multiple times for sending,
receiving, or both. The value of oflag must include exactly one of the
three following access modes:

O_RDONLY Open a message queue for receiving messages. The
calling process can use the returned message-queue
descriptor with mq_receive but not mq_send. For
information on mq_send and mq_receive, see
“Using the mq_send Routine” and “Using the
mq_receive Routine”, respectively.

O_WRONLY Open a message queue for sending messages. The
calling process can use the returned message-queue
descriptor with mq_send but not mq_receive.

O_RDWR Open a message queue for both receiving and sending
messages. The calling process can use the returned
message-queue descriptor with mq_send and
mq_receive.

O_CCS_DEBUG This flag is only meaningful when opening a remote
message queue. It indicates that a debug level will be
provided, via the parameter remote_debug. The
debug level remains in affect as long as the file is
open.

For more on remote message queue debug levels,
refer to the section “Remote Message Queue Debug-
ging".
5-8

Real-Time Interprocess Communication
The value of oflag may include any combination of the remaining flags:

O_CREAT Create and open an empty message queue if it does
not already exist. If message queue name is not cur-
rently open, this flag causes mq_open to create an
empty message queue. If message queue name is
already open on the system, the effect of this flag is as
noted under O_EXCL. When you set the O_CREAT

flag, you must also specify the mode and attr argu-
ments.

A newly-created message queue has its user ID set to
the calling process’s effective user ID and its group
ID set to the calling process’s effective group ID.

O_EXCL Return an error if the calling process attempts to cre-
ate an existing message queue. The mq_open routine
fails if O_EXCL and O_CREAT are set and message
queue name already exists. The mq_open routine
succeeds if O_EXCL and O_CREAT are set and message
queue name does not already exist. The mq_open
routine ignores the setting of O_EXCL if O_EXCL is set
but O_CREAT is not set.

O_NONBLOCK On an mq_send, return an error rather than wait for a
message slot to become free in a full message queue.
On an mq_receive, return an error rather than wait
for a message to arrive at an empty message queue.

mode an integer value that sets the read, write, and execute/search permission
for a message queue if this is the mq_open call that creates the message
queue. The mq_open routine ignores all other mode bits (for example,
setuid). The setting of the file-creation mode mask, umask, modifies
the value of mode. For more information on mode settings, see the
chmod(1) and umask(2) system manual pages.

When you set the O_CREAT flag, you must specify the mode argument to
mq_open.

attr the null pointer constant or a pointer to a structure that sets message-
queue attributes--for example, the maximum number of messages in a
message queue and the maximum message size. For more information
on the mq_attr structure, see “Understanding the Message Queue
Attribute Structure.”

If attr is NULL, the system creates a message queue that contains 80
message slots of 40 bytes each. If attr is not NULL, the system creates
the message queue with the attributes specified in this field. If attr is
specified, it takes effect only when the message queue is actually cre-
ated.

remote_debug
This parameter is only meaningful when opening a remote message
queue. It specifies the debug level. This parameter is only interpreted if
5-9

PowerMAX OS Real-Time Guide
O_CCS_DEBUG is specified in oflag. The debug level remains in affect as
long as the remote message queue is open.

For more on remote message queue debug levels, refer to the section
“Remote Message Queue Debugging”.

A return value of a message-queue descriptor shows that the message queue has been suc-
cessfully opened. A return value of ((mqd_t) -1) shows that an error has occurred; errno
is set to show the error. Refer to the mq_open(3) system manual page for a listing of
the types of errors that may occur.

Using the mq_send Routine 5

The mq_send(3) library routine writes a message into an empty message slot in a spe-
cific message queue. The mq_send routine is an async-safe operation; that is, you can
call it within a signal-handling routine.

A successful mq_send to an empty message queue causes the system to wake the highest
priority process that is blocked to receive from that message queue. If a message queue
has a notification request attached and no processes blocked to receive, a successful
mq_send to that message queue causes the system to send a signal to the process that
attached the notification request. For more information, read about mq_receive in
“Using the mq_receive Routine” and mq_notify in “Using the mq_notify Routine.”

The specifications required for making the mq_send call are as follows:

#include <mqueue.h>

int mq_send(mqdes, msg_ptr, msg_len, msg_prio)

mqd_t mqdes;
char *msg_ptr;
size_t msg_len;
unsigned int msg_prio;

The arguments are defined as follows:

mqdes a message-queue descriptor obtained from an mq_open. If the speci-
fied message queue is full and O_NONBLOCK is set in mqdes, the mes-
sage is not queued, and mq_send returns an error. If the specified mes-
sage queue is full and O_NONBLOCK is not set in mqdes, mq_send
blocks until a message slot becomes available to queue the message or
until mq_send is interrupted by a signal.

Assume that multiple processes are blocked to send a message to a full
message queue. When a message slot becomes free in that message
queue (because of an mq_receive), the system wakes the highest-pri-
ority process that has been blocked the longest. This process sends the
next message.

For mq_send to succeed, the mq_open call for this message queue
descriptor must have had O_WRONLY or O_RDWR set in oflag. For infor-
mation on mq_open, see “Using the mq_open Routine.”
5-10

Real-Time Interprocess Communication
msg_ptr a string that specifies the message to be sent to the message queue repre-
sented by mqdes.

msg_len an integer value that shows the size in bytes of the message pointed to
by msg_ptr. The mq_send routine fails if msg_len exceeds the
mq_msgsize message-size attribute of the message queue set on the cre-
ating mq_open. Otherwise, the mq_send routine copies the message
pointed to by the msg_ptr argument to a message slot in the message
queue.

msg_prio an unsigned integer value that shows the message priority. The system
keeps messages in a message queue in order by message priority. A
newer message is queued before an older one only if the newer message
has a higher message priority. The value for msg_prio ranges from 0
through 31, where 0 represents the least favorable priority. For correct
usage, the message priority of an urgent message should exceed that of
an ordinary message. Note that message priorities give you some ability
to define the message-receipt order but not the message recipient.

Figure 5-2 illustrates message priorities within a message queue and situations where pro-
cesses are either blocked or are free to send a message to a message queue. Specifically,
the following facts are depicted:

• The operating system keeps messages in each message queue in order by
message priority.

• Several messages within the same message queue may have the same mes-
sage priority.

• By default, a process trying to send a message to a full message queue is
blocked.

Figure 5-2. The Result of Two mq_sends

A return value of 0 shows that the message has been successfully sent to the designated
message queue. A return value of -1 shows that an error has occurred; errno is set to
show the error. Refer to the mq_send(3) system manual page for a listing of the types
of errors that may occur.

Process
p1

Priority
5

Message

Process
p2

Message Queue 1

Message Queue 2

Priority
31

Message

Priority
10

Message

Priority
0

Message
(older)

Priority
0

Message
(newer)

Send
OK

Send
Blocked

163210
5-11

PowerMAX OS Real-Time Guide
Using the mq_receive Routine 5

The mq_receive(3) library routine reads the oldest of the highest-priority messages
from a specific message queue, thus freeing a message slot in the message queue. The
mq_receive routine is an async-safe operation; that is, you can call it within a signal-
handling routine.

A successful mq_receive from a full message queue causes the system to wake the
highest-priority process that is blocked to send to that message queue. For more informa-
tion, read about mq_send in “Using the mq_send Routine.”

The specifications required for making the mq_receive call are as follows:

#include <mqueue.h>

int mq_receive(mqdes, msg_ptr, msg_len, msg_prio)

mqd_t mqdes;
char *msg_ptr;
size_t msg_len;
unsigned int *msg_prio;

The arguments are defined as follows:

mqdes a message-queue descriptor obtained from an mq_open. If
O_NONBLOCK is set in mqdes and the referenced message queue is
empty, nothing is read, and mq_receive returns an error. If
O_NONBLOCK is not set in mqdes and the specified message queue is
empty, mq_receive blocks until a message becomes available or until
mq_receive is interrupted by a signal.

Assume that multiple processes are blocked to receive a message from
an empty message queue. When a message arrives at that message
queue (because of an mq_send), the system wakes the highest-priority
process that has been blocked the longest. This process receives the
message.

For mq_receive to succeed, the process’s mq_open call for this mes-
sage queue must have had O_RDONLY or O_RDWR set in oflag. For
information on mq_open, see “Using the mq_open Routine.”

Figure 5-3 shows two processes without O_NONBLOCK set in mqdes.
Although both processes are attempting to receive messages, one pro-
cess is blocked because it is accessing an empty message queue. In the
figure, the arrows indicate the flow of data.
5-12

Real-Time Interprocess Communication
Figure 5-3. The Result of Two mq_receives

msg_ptr a pointer to a character array (message buffer) that will receive the mes-
sage from the message queue represented by mqdes. The return value of
a successful mq_receive is a byte count. This byte count is (1) the
message length, (2) the number of characters transferred from the mes-
sage slot, and (3) the number of characters overwritten in the message
buffer. Neither the message nor the message buffer is padded; the mes-
sage is not null-terminated.

msg_len an integer value that shows the size in bytes of the array pointed to by
msg_ptr. The mq_receive routine fails if msg_len is less than the
mq_msgsize message-size attribute of the message queue set on the cre-
ating mq_open. Otherwise, the mq_receive routine removes the
message from the message queue and copies it to the array pointed to by
the msg_ptr argument.

msg_prio the null pointer constant or a pointer to an unsigned integer variable that
will receive the priority of the received message. If msg_prio is NULL,
the mq_receive routine discards the message priority. If msg_prio is
not NULL, the mq_receive routine stores the priority of the received
message in the location referenced by msg_prio. The received message
is the oldest, highest-priority message in the message queue.

A return value of -1 shows that an error has occurred; errno is set to show the error and
the contents of the message queue are unchanged. A non-negative return value shows the
length of the successfully-received message; the received message is removed from the
message queue. Refer to the mq_receive(3) system manual page for a listing of the
types of errors that may occur.

Using the mq_notify Routine 5

The mq_notify(3) library routine allows the calling process to register for notification
of the arrival of a message at an empty message queue. This functionality permits a pro-
cess to continue processing rather than blocking on a call to mq_receive to receive a

Process
p1

Priority
10

Message

Process
p2

Priority
0

Message

Message Queue 1

Message Queue 2

Receive
OK

Receive
Blocked

163220
5-13

PowerMAX OS Real-Time Guide
message from a message queue (see “Using the mq_receive Routine” for an explanation
of this routine). Note that for a multithreaded program, a more efficient means of attaining
this functionality is to spawn a separate thread that issues an mq_receive call.

At any time, only one process can be registered for notification by a message queue.
However, a process can register for notification by each mqdes it has open except an
mqdes for which it or another process has already registered. Assume that a process has
already registered for notification of the arrival of a message at a particular message
queue. All future attempts to register for notification by that message queue will fail until
notification is sent to the registered process or the registered process removes its registra-
tion. When notification is sent, the registration is removed for that process. The message
queue is again available for registration by any process.

Assume that one process blocks on mq_receive and another process registers for notifi-
cation of message arrival at the same message queue. When a message arrives at the mes-
sage queue, the blocked process receives the message, and the other process’s registration
remains pending.

The specifications required for making the mq_notify call are as follows:

#include <mqueue.h>

int mq_notify(mqdes, notification)

mqd_t mqdes;
struct sigevent *notification;

The arguments are defined as follows:

mqdes a message-queue descriptor obtained from an mq_open.

notification
the null pointer constant or a pointer to a structure that specifies the way
in which the calling process is to be notified of the arrival of a message
at the specified message queue. If notification is not NULL and neither
the calling process nor any other process has already registered for noti-
fication by the specified message queue, mq_notify registers the call-
ing process to be notified of the arrival of a message at the message
queue. When a message arrives at the empty message queue (because
of an mq_send), the system sends the signal specified by the notifica-
tion argument to the process that has registered for notification. Usually
the calling process reacts to this signal by issuing an mq_receive on
the message queue.

When notification is sent to the registered process, its registration is
removed. The message queue is then available for registration by any
process.

If notification is NULL and the calling process has previously registered
for notification by the specified message queue, the existing registration
is removed.

If the value of notification is not NULL, the only meaningful value that
notification->sigevent.sigev_notify can specify is SIGEV_SIGNAL. With
this value set, a process can specify a signal to be delivered upon the
5-14

Real-Time Interprocess Communication
arrival of a message at an empty message queue.

If you specify SIGEV_SIGNAL, notification->sigevent.sigev_signal must
specify the number of the signal that is to be generated, and notification-
>sigevent.sigev_value must specify an application-defined value that is
to be passed to a signal-handling routine defined by the receiving pro-
cess. A set of symbolic constants has been defined to assist you in spec-
ifying signal numbers. These constants are defined in the file
<signal.h>. The application-defined value may be a pointer or an
integer value. If the process catching the signal has invoked the
sigaction(2) system call with the SA_SIGINFO flag set prior to the
time that the signal is generated, the signal and the application-defined
value are queued to the process when a message arrives at the message
queue. For complete information on signal management facilities, the
sigevent structure, and support for specification of an application-
defined value, refer to the PowerMAX OS Programming Guide.

A return value of 0 shows that the calling process has successfully registered for notifica-
tion of the arrival of a message at the specified message queue. A return value of -1 shows
that an error has occurred; errno is set to show the error. Refer to the mq_notify(3)
system manual page for a listing of the types of errors that may occur.

Using the mq_setattr Routine 5

The mq_setattr(3) library routine allows the calling process to set the attributes asso-
ciated with a specific message queue.

The specifications required for making the mq_setattr call are as follows:

#include <mqueue.h>

int mq_setattr(mqdes, mqstat, omqstat)

mqd_t mqdes;
struct mq_attr *mqstat;
struct mq_attr *omqstat;

The arguments are defined as follows:

mqdes a message-queue descriptor obtained from an mq_open. The
mq_setattr routine sets the message queue attributes for the message
queue associated with mqdes.

mqstat a pointer to a structure that specifies the flag attribute of the message
queue referenced by mqdes. The value of this flag may be zero or an
integer value that sets the following bit:

O_NONBLOCK causes the mq_send and mq_receive operations
associated with the message queue to operate in non-
blocking mode

MQ_REG_PERSIST causes the registration for notification to persist
across notifications. If this flag is not set, the registra-
tion is removed when a notification is delivered.
5-15

PowerMAX OS Real-Time Guide
The following fields are ignored on this call: mqstat->mq_maxmsg,
mqstat->mq_msgsize, and mqstat->mq_curmsgs.

For information on the mq_attr structure, see “Understanding the
Message Queue Attribute Structure.” For information on the mq_send
and mq_receive routines, see “Using the mq_send Routine” and
“Using the mq_receive Routine,” respectively.

omqstat the null pointer constant or a pointer to a structure to which information
about the previous attributes and the current status of the message queue
referenced by mqdes is returned. For information on the mq_attr
structure, see “Understanding the Message Queue Attribute Structure.”

A return value of 0 shows that the message-queue attributes have been successfully set as
specified. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to the mq_setattr(3) system manual page for a listing of the types of
errors that may occur.

Using the mq_getattr Routine 5

The mq_getattr(3) library routine obtains status and attribute information associated
with a specific message queue.

The specifications required for making the mq_getattr call are as follows:

#include <mqueue.h>

int mq_getattr(mqdes, mqstat)

mqd_t mqdes;
struct mq_attr *mqstat;

The arguments are defined as follows:

mqdes a message-queue descriptor obtained from an mq_open. The
mq_getattr routine provides information about the status and
attributes of the message queue associated with mqdes.

mqstat a pointer to a structure that receives current information about the status
and attributes of the message queue referenced by mqdes. For informa-
tion on the mq_attr structure, see “Understanding the Message Queue
Attribute Structure.”

A return value of 0 shows that the message-queue attributes have been successfully
attained. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to the mq_getattr(3) system manual page for a listing of the types of
errors that may occur.

Using the mq_close Routine 5

The mq_close(3) library routine breaks a connection between a calling process and a
message queue. The mq_close routine does this by removing the message-queue
5-16

Real-Time Interprocess Communication
descriptor that the calling process uses to access a message queue. The mq_close rou-
tine does not affect a message queue itself or the messages in a message queue.

 Note

If a process requests notification about a message queue and later
closes its connection to the message queue, this request is
removed; the message queue is available for another process to
request notification. For information on notification requests via
mq_notify, see “Using the mq_notify Routine.”

The specifications required for making the mq_close call are as follows:

#include <mqueue.h>

int mq_close(mqdes)

mqd_t mqdes;

The argument is defined as follows:

mqdes a message-queue descriptor obtained from an mq_open.

A return value of 0 shows that the message queue has been successfully closed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mq_close(3) system manual page for a listing of the types of errors that may occur.

Using the mq_unlink Routine 5

The mq_unlink(3) library routine prevents further mq_open calls to a message queue.
When there are no other connections to this message queue, mq_unlink removes the
message queue and the messages in it.

CAUTION

If a process that is accessing a message queue receives a signal,
the process may abort and leave the message queue locked.
Before another process can use this message queue, a process
must remove the message queue via mq_unlink and re-create it
via mq_open. For more information about how message queues
use spin locks and react to signals, see “Understanding Advanced
Concepts.”

The specifications required for making the mq_unlink call are as follows:

#include <mqueue.h>

int mq_unlink(name)
5-17

PowerMAX OS Real-Time Guide
char *name;

The argument is defined as follows:

name a null-terminated string that specifies the name of the message queue to
be removed. This string must match the one specified on an mq_open
call.

The general syntax is:

[/] <ipc_name>

ipc_name may contain a maximum of 255 characters. It may contain a
leading slash (/) character, but it may not contain embedded slash char-
acters. Note that this name is not a part of the file system; neither a
leading slash character nor the current working directory affects inter-
pretations of it. If you wish to write code that can be ported to any sys-
tem that supports POSIX interfaces, however, it is recommended that a
leading slash character is provided.

If a process has message queue name open when mq_unlink is called,
mq_unlink immediately returns; destruction of message queue name
is postponed until all references to the message queue have been closed.
A process can successfully remove message queue name only if the
mq_open that created this message queue had a mode argument that
granted the process both read and write permission.

As a non-POSIX extension, remote message queues are also supported.
The syntax for specifying a remote message queue is as follows:

[/] <hostname> / <ipc_name>

This indicates that the message queue called ipc_name on the SBC
named hostname is removed. Remote message queues are only valid on
closely-coupled systems. For more information refer to the section on
“Remote Message Queues".

On Power Hawk 620/640 CCS systems, hostname must correspond to a
valid SBC within the current cluster, and it must match one of the
"VME Hostname " f i e ld s o f o n e o f t h e en t r i e s in t h e
/etc/dtables/nodes.vmeboot configuration file.

On Power Hawk Series 700 CCS systems, if the message queue resides
on a client SBC, then hostname must match the corresponding client
profile file name located in the /etc/profiles directory. If the
message queue resides on the server SBC, then hostname must match
the nodename of the server SBC (the node name returned by
uname(1) with the -n option).

hostname may contain a maximum of 255 characters. hostname may
also be the host name of the local system. Note that the remote message
queue syntax is valid even on systems that are not part of a cluster, if the
local system's host name is specified.
5-18

Real-Time Interprocess Communication
ipc_name is the message queue name and has the same interpretation as
in the general syntax case.

A return value of 0 shows that a message queue has been successfully removed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mq_unlink(3) system manual page for a listing of the types of errors that may occur.

Using the mq_remote_timeout Routine 5

The mq_remote_timeout(3) library routine establishes a timeout value for a remote
message queue descriptor.

Once established, the timeout value will be applied to every operation done to a remote
message queue. A timeout occurs if a request is done remotely but a response is not
received from the server within the specified time.

When a timeout occurs, the message queue library routines will fail and will return an
errno value of ETIMEDOUT.

The specifications required for making the mq_remote_timeout call are as follows:

#include <mqueue.h>

int mq_remote_timeout(mqdes, timeout)

mqd_t mqdes;
int timeout;

The arguments are defined as follows:

mqdes a message queue descriptor obtained from mq_open. This must be a
remote message queue (i.e. located on a remote SBC within a closely-
coupled cluster). For more information on remote message queues
refer to “Remote Message Queues”.

The mq_remote_timeout routine establishes a timeout value for the
message queue descriptor, mqdes. Note that each descriptor for a com-
mon message queue can have a unique timeout value.

timeout timeout value in seconds. A value of zero indicates that timeouts will
not occur. A negative value is not legal.

A return value of 0 indicates that the timeout value has been modified.
A return value of -1 shows that an error has occurred; errno is set to
show the error. Refer to the mq_remote_timeout(3) manual page
for a listing of the types of errors that may occur.

The default timeout value is zero; i.e. no timeouts.

It should be noted that there are cases where a message queue routine would normally
block. The two most prevalent are:

1. A mq_receive(3) call is done on an empty message queue and
the O_NONBLOCK flag is not set.
5-19

PowerMAX OS Real-Time Guide
In this case, the process blocks until a message arrives.

2. A mq_send(3) call is done on a full message queue and the
O_NONBLOCK flag is not set.

In this case, the process blocks until a message is remove.

When such operations are done on a remote message queue, the remote server will block.
If a timeout value has been established, then the operation may timeout if the remote
server blocks for a long period of time.

Remote Message Queue Debugging 5

Debugging information is available when using remote message queues. This information
can be used to determine the status of messages sent to and replies received from the
server located on the SBC where the message queue resides.

Debugging is enabled when the message queue is opened, using mq_open(3). The flag
O_CCS_DEBUG must be specified in the flags parameter. In this case, an additional param-
eter is provided that is the debug level. Debugging information, at the requested level,
will be displayed for all operations on the message queue descriptor until it is closed.
Messages are sent to stderr.

Debugging messages have different degrees of importance. Each message has an associ-
ated debug number. Lower numbered messages have more importance than higher num-
bered messages. A message will only be displayed if the debug number associated with
the message is lower or equal to the current debug level.

Debug messages are numbered as follows:

It should be noted that there is some amount of overhead involved when debugging is
enabled. Debugging should not be enabled in time-critical operations.

It is also possible to obtain debugging information on the server side. This is done by
specifying a debug level when invoking the daemon sbc_msgd. Refer to the
sbc_msgd(3) manual page for more information.

 10 connection failures
vme-messaging mailbox reservation failures

 20 connections/disconnections with remote servers

 30 signal notification requests and removals

 40 general client requests
vme-messaging mailbox reservations

 60 remote server replies to client requests
host name lookups

 70 vme-mailbox messages (sends and receives)
nodes file operations
5-20

6
Interprocess Synchronization

Understanding POSIX Counting Semaphores. 6-1
Implementation Issue . 6-3
Performance Issue . 6-3
Remote Semaphores . 6-3
Interfaces . 6-4

Using the sem_init Routine . 6-5
Using the sem_destroy Routine. 6-6
Using the sem_open Routine. 6-7
Using the sem_close Routine . 6-10
Using the sem_unlink Routine . 6-10
Using the sem_wait Routine . 6-12
Using the sem_trywait Routine . 6-12
Using the sem_post Routine . 6-13
Using the sem_getvalue Routine. 6-13
Using the sem_remote_timeout Routine . 6-14

Remote Semaphore Debugging . 6-15
Understanding Synchronization Problems . 6-16
Using Interprocess Synchronization Tools . 6-18

Rescheduling Control . 6-18
Understanding Rescheduling Variables. 6-19
Using the resched_cntl System Call . 6-20
Using the Rescheduling Control Macros . 6-22
Applying Rescheduling Control Tools . 6-23
Rescheduling Variables and Ada. 6-24
Rescheduling Variables and Processor Migration. 6-24

Busy-Wait Mutual Exclusion . 6-25
Understanding the Busy-Wait Mutual Exclusion Variable 6-26
Using the Busy-Wait Mutual Exclusion Macros. 6-26
Applying Busy-Wait Mutual Exclusion Tools . 6-28

Client-Server Coordination . 6-29
Using the Client System Calls. 6-29
Constructing Sleepy-Wait Mutual Exclusion Tools 6-32
Using the Server System Calls . 6-33
Applying Condition Synchronization Tools . 6-36

PowerMAX OS Real-Time Guide

6
Chapter 6Interprocess Synchronization

6
6
6

Interprocess synchronization refers to coordinating the execution of processes. Interpro-
cess communication refers to transferring data between processes. This chapter describes
the tools that PowerMAX OS provides to meet a variety of interprocess synchronization
needs. All of the interfaces that are described here provide the means for cooperating pro-
cesses to synchronize access to shared resources. Chapter 5 describes support for real-time
interprocess communication.

“Understanding POSIX Counting Semaphores” describes a group of interfaces that pro-
vide synchronization through the use of POSIX counting semaphores. These interfaces
are based on IEEE Standard 1003.1b-1993. They provide a portable means of synchroniz-
ing processes.

“Understanding Synchronization Problems” describes the problems associated with syn-
chronizing cooperating processes’ access to data in shared memory. “Using Interprocess
Synchronization Tools” describes the tools that have been developed by Concurrent to
provide solutions to those problems, and it explains the procedures for using them. The
interfaces that are described in “Using Interprocess Synchronization Tools” provide the
most efficient means of avoiding priority inversion—a problem that is explained in
“Understanding Synchronization Problems.”

PowerMAX OS also supports the System V semaphore facilities. These facilities include
a set of system calls that is described in the PowerMAX OS Programming Guide. These
interfaces are much less efficient than the POSIX counting semaphores or the synchroni-
zation tools developed by Concurrent.

Understanding POSIX Counting Semaphores 6

Real-time applications require a synchronization mechanism that allows cooperating pro-
cesses to coordinate access to the same set of resources—for example, a number of I/O
buffers, units of a hardware device, or a critical section of code. A counting semaphore is
an object that has an integer value and a limited set of operations defined for it. These
operations and the corresponding POSIX interfaces include the following:

• An initialization operation that sets the semaphore to zero or a positive
value—sem_init or sem_open

• A lock operation that decrements the value of the semaphore—sem_wait.
If the resulting value is negative, the process performing the lock operation
blocks.

• An unlock operation that increments the value of the semaphore—
sem_post. If the resulting value is less than or equal to zero, one of the
processes blocked on the semaphore is wakened. If the resulting value is
greater than zero, no processes were blocked on the semaphore.
6-1

PowerMAX OS Real-Time Guide
• A conditional lock operation that decrements the value of the semaphore
only if the value is positive—sem_trywait. If the value is zero or nega-
tive, the operation fails.

• A query operation that provides a snapshot of the value of the semaphore—
sem_getvalue

The lock, unlock, and conditional lock operations are atomic.

A counting semaphore may be used to control access to any resource that can be used by
multiple cooperating processes. It is a global entity that is not associated with any pro-
cess. A counting semaphore may be unnamed or named. A process creates an unnamed
semaphore by allocating space for the semaphore in memory that can be shared by multi-
ple processes and initializing the semaphore through a call to the sem_init routine. The
semaphore is initialized to a value that is specified on the call. Any process that has access
to the memory that contains the unnamed semaphore then has access to the semaphore. A
process creates a named semaphore by invoking the sem_open routine and specifying a
unique name that is simply a null-terminated string. The semaphore is initialized to a
value that is supplied on the call to sem_open to create the semaphore. No space is allo-
cated by the process for a named semaphore because the sem_open routine will include
the semaphore in the process’s virtual address space. Other processes can gain access to
the named semaphore by invoking sem_open and specifying the same name. When an
unnamed or a named semaphore is initialized, its value should be set to the number of
available resources. To use a counting semaphore to provide mutual exclusion, the sema-
phore’s value should be set to one.

A cooperating process that wants access to a critical resource must lock the semaphore
that protects that resource. When the process locks the semaphore, it knows that it can use
the resource without interference from any other cooperating process in the system. You
must write your application so that the resource is accessed only after the semaphore that
protects it has been acquired.

As long as the semaphore value is positive, resources are available for use; one of the
resources is allocated to the next process that tries to acquire it. When the semaphore
value is zero or negative, none of the resources are available; a process trying to acquire a
resource must wait until one becomes available. If the semaphore value is negative, its
absolute value is equal to the number of processes that are blocked waiting to acquire one
of the resources. When a process completes use of a resource, it unlocks the semaphore,
indicating that the resource is available for use by another process.

The concept of ownership does not apply to a counting semaphore. One process can lock
a semaphore; another process can unlock it.

The semaphore unlock operation is async-safe; that is, a process can unlock a semaphore
from a signal-handling routine without causing deadlock.

The absence of ownership prevents priority inheritance. Because a process does not
become the owner of a semaphore when it locks the semaphore, it cannot temporarily
inherit the priority of a higher-priority process that blocks trying to lock the same sema-
phore. As a result, unbounded priority inversion can occur. (The priority inversion prob-
lem and priority inheritance are explained in detail in “Understanding Synchronization
Problems.” Procedures for using synchronization tools and the client system calls to con-
struct sleepy-wait mutual exclusion mechanisms with bounded priority inversion are
explained in “Using Interprocess Synchronization Tools.”)
6-2

Interprocess Synchronization
Implementation Issue 6

Counting semaphores are implemented at user level with some kernel-level support.
When a process performs a lock operation that does not require it to block, the process
does not enter the kernel. This type of uncontested lock operation is performed very
quickly. The counting semaphore implementation affects processes in the following way:

User-level spin locks are used inside the sem_wait(3) and sem_post(3) routines to
synchronize access to the counting semaphore. While a spin lock is locked, most signals
are blocked in order to prevent the application from aborting; however, certain signals
cannot be blocked. If a signal causes an application that is using counting semaphores to
abort while the spin lock is locked, the counting semaphore cannot be used by any pro-
cess; all processes that are attempting to access the counting semaphore hang when
attempting to gain access to the spin lock. In order for processes to be able to access the
counting semaphore again, a process must remove the counting semaphore by invoking
sem_destroy(3) or sem_unlink(3) and recreate it by invoking sem_init(3) or
sem_open(3).

Performance Issue 6

The counting semaphore implementation uses a rescheduling variable to protect the
critical sections inside the semaphore interfaces. If you do not have the privilege
required to initialize a rescheduling variable, then none will be used. In this case,
the functionality of the semaphore interfaces does not change; however, it is possi-
ble to be preempted by higher priority processes from within critical sections. If
such a preemption occurs, another LWP or process that is attempting an operation
on the counting semaphore will block until the preempted LWP or process is able to
run again and complete the critical section. Performance of the semaphore opera-
tions may be substantially degraded as a result.

The privilege that is required to initialize a rescheduling variable is P_RTIME. In
time-critical applications, it is important to ensure that this privilege is granted to all
of the processes that access a particular counting semaphore.

Note that the page where a rescheduling variable is located will be locked down in
memory. This locked page may prevent the changing of a process's or LWP's CPU
bias, if the new CPU bias value requires migrating to a different CPU board on a
Night Hawk system.

The procedures for using rescheduling variables are fully explained in “Reschedul-
ing Control” on page 6-18.

Remote Semaphores 6

A closely-coupled system is composed of multiple single board computers (SBC) that
share a VMEbus. For more information on closely-coupled systems see the Power Hawk
Series 600 or 700 Diskless Systems Administrator’s Guide. Several families of interfaces
are supported for communicating between processes that running on separate SBCs in a
closely-coupled system. One of those interface families is remote semaphores. Refer to
6-3

PowerMAX OS Real-Time Guide
the Power Hawk Series 600 or 700 Closely-Coupled Programming Guide for more infor-
mation on the interfaces available in a closely-coupled configuration.

Remote semaphores allow processes on separate SBCs to synchronize their access to
shared memory data structures or to asynchronously notify a process of some event. A
remote semaphore is predefined to be resident on one of the SBCs in the closely-coupled
configuration. Processes on other SBCs in the closely-coupled configuration can operate
on the remote semaphore using standard Posix semaphore operations which result in RPC-
like messages being passed to the SBC where the remote semaphore is resident. A test
and set operation is performed locally, on the processor where the remote semaphore is
resident, to guarantee that only one process can lock the semaphore at any given point in
time.

The full functionality of the Posix semaphore interfaces is available when using a remote
semaphore.

When programming with remote semaphores, the only difference in the Posix semaphore
interfaces is in the creation and attaching to the remote semaphore. The name of a remote
semaphore reflects the name of the SBC where the remote semaphore resides. The host
name of the SBC where the remote semaphore is resident is prepended to the name of the
semaphore. Refer to the section “Using the sem_open Routine” on page 6-7 for more
information. The sem_init(3) routine cannot be used to create of access a remote
semaphore.

The remote semaphore implementation utilizes a server process that runs on the SBC
where a remote semaphore resides. A unique connection is established between a process
that opens a remote semaphore and this server process. The server process responds to
RPC requests to perform operations on the remote semaphore. The server process is
named sbc_msgd(3). On client SBCs, sbc_msgd(3) does not start up by default, so
it must be configured to start up by enabling the CCS_IPC vmebootconfig(1M)
subsystem. Refer to the sbc_msgd(3) and vmebootconfig(1M) manual pages for
more information on this subject.

Interfaces 6

The sections that follow explain the procedures for using the POSIX counting semaphore
interfaces. These interfaces are briefly described as follows:

sem_init initialize an unnamed counting semaphore

sem_destroy remove an unnamed counting semaphore

sem_open create, initialize, and establish a connection to a named
counting semaphore

sem_close relinquish access to a named counting semaphore

sem_unlink remove the name of a named counting semaphore

sem_wait lock a counting semaphore

sem_trywait lock a counting semaphore only if it is currently unlocked
6-4

Interprocess Synchronization
sem_post unlock a counting semaphore

sem_getvalue obtain the value of a counting semaphore

sem_remote_timeout
specify the timeout value for a remote semaphore descriptor

Note that to use these interfaces, you must link your application with the threads library.
You may link with this library statically or dynamically (refer to Compilation Systems
Volume 1 (Tools) for information on static and dynamic linking). The following example
shows the typical command-line instruction:

cc [options] -D_REENTRANT file -lthread

Using the sem_init Routine 6

The sem_init(3) library routine allows the calling process to initialize an unnamed
counting semaphore by setting the semaphore value to the number of available resources
being protected by the semaphore. To use an unnamed counting semaphore for mutual
exclusion, the process sets the value to one.

If you wish to use an unnamed counting semaphore for interprocess synchronization, the
semaphore must exist in memory that can be shared by multiple processes. After one pro-
cess creates and initializes an unnamed semaphore, other cooperating processes can oper-
ate on the semaphore by using the sem_wait, sem_trywait, sem_post, and
sem_getvalue library routines (see “Using the sem_wait Routine,” “Using the
sem_trywait Routine,” “Using the sem_post Routine,” and “Using the sem_getvalue Rou-
tine,” respectively, for an explanation of these routines). A child process created by a
fork(2) system call inherits access to an unnamed semaphore that has been initialized
by the parent. A process loses access to an unnamed semaphore after invoking the
exec(2) or exit(2) system calls.

CAUTION

The IEEE 1003.1b-1993 standard does not indicate what happens
when multiple processes invoke sem_init for the same sema-
phore. Currently, the PowerMAX OS implementation returns an
EEXIST error on sem_init calls that are made subsequent to
the initial call to sem_init. Other implementations of
sem_init may simply reinitialize the semaphore to the value
specified on sem_init calls made subsequent to the initial call.
To be certain that application code can be ported to any system
that supports POSIX interfaces (including future Concurrent sys-
tems), cooperating processes that use sem_init should ensure
that a single process initializes a particular semaphore and that it
does so only once.

An unnamed counting semaphore is removed by invoking the sem_destroy routine (see
“Using the sem_destroy Routine” for an explanation of this routine).

The sem_init(3) library routine cannot be used to create or access a remote sema-
phore.
6-5

PowerMAX OS Real-Time Guide
The specifications required for making the sem_init call are as follows:

#include <semaphore.h>

int sem_init(sem, pshared, value)

sem_t *sem;
int pshared;
unsigned int value;

The arguments are defined as follows:

sem a pointer to a sem_t structure that represents the unnamed counting
semaphore that is to be initialized

pshared an integer value that indicates whether or not the semaphore to which
sem points is to be shared by other processes. If pshared is set to a non-
zero value, then the semaphore is shared among processes. If pshared is
set to zero, then the semaphore is shared only among threads within a
process.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot
exceed the value of SEM_VALUE_MAX (see the file <limits.h> to
determine this value).

A return value of 0 indicates that the call to sem_init has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the sem_init(3) system manual page for a listing of the types of errors that may
occur.

Using the sem_destroy Routine 6

The sem_destroy(3) library routine allows the calling process to remove an unnamed
counting semaphore.

CAUTION

An unnamed counting semaphore should not be removed until
there is no longer a need for any process to operate on the sema-
phore and there are no processes currently blocked on the sema-
phore. Following a successful call to sem_destroy, attempts to
operate on the semaphore will result in an error, and processes
that are blocked waiting for the semaphore cannot be wakened.

The sem_destroy(3) library routine cannot be used to destroy a remote semaphore.

The specifications required for making the sem_destroy call are as follows:

#include <semaphore.h>

int sem_destroy(sem)
6-6

Interprocess Synchronization
sem_t *sem;

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore that is to be removed.
Only a counting semaphore that has been created through a call to
sem_init(3) may be removed by invoking sem_destroy.

A return value of 0 indicates that the call to sem_destroy has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the sem_destroy(3) system manual page for a listing of the types of errors that
may occur.

Using the sem_open Routine 6

The sem_open(3) library routine allows the calling process to create, initialize, and
establish a connection to a named counting semaphore. When a process creates a named
counting semaphore, it associates a unique name with the semaphore. It also sets the
semaphore value to the number of available resources being protected by the semaphore.
To use a named counting semaphore for mutual exclusion, the process sets the value to
one.

After a process creates a named semaphore, other processes can establish a connection to
that semaphore by invoking sem_open and specifying the same name. Upon successful
completion, the sem_open routine returns the address of the named counting semaphore.
A process subsequently uses that address to refer to the semaphore on calls to sem_wait,
sem_trywait, and sem_post (see “Using the sem_wait Routine,” “Using the
sem_trywait Routine,” and “Using the sem_post Routine,” respectively, for an explana-
tion of these routines). A process may continue to operate on the named semaphore until
it invokes the sem_close routine or the exec(2) or exit(2) system calls. On a call
to exec or exit, a named semaphore is closed as if by a call to sem_close. A child
process created by a fork(2) system call inherits access to a named semaphore to which
the parent process has established a connection.

If a single process makes multiple calls to sem_open and specifies the same name, the
same address will be returned on each call unless (1) the process itself has closed the
semaphore through intervening calls to sem_close or (2) some process has removed the
name through intervening calls to sem_unlink (see “Using the sem_close Routine” and
“Using the sem_unlink Routine,” respectively, for explanations of these routines).

If multiple processes make calls to sem_open and specify the same name, the address of
the same semaphore object will be returned on each call unless some process has removed
the name through intervening calls to sem_unlink. (Note that the same address will not
necessarily be returned on each call.) If a process has removed the name through an inter-
vening call to sem_unlink, the address of a new instance of the semaphore object will
be returned.

The specifications required for making the sem_open call are as follows:

#include <semaphore.h>

sem_t *sem_open(name, oflag [mode, value, remote_debug])
6-7

PowerMAX OS Real-Time Guide
char *name;
int oflag;
mode_t mode;
unsigned int value;
int remote_debug;

The arguments are defined as follows:

name a null-terminated string that specifies the name of a semaphore.

The general syntax is:

[/] <ipc_name>

ipc_name may contain a maximum of 255 characters. It may contain a
leading slash (/) character, but it may not contain embedded slash char-
acters. Note that this name is not a part of the file system; neither a
leading slash character nor the current working directory affects inter-
pretations of it (/named_sema and named_sema are interpreted as
the same name). If you wish to write code that can be ported to any sys-
tem that supports POSIX interfaces, however, it is recommended that a
leading slash character is provided.

As a non-POSIX extension, remote semaphores are also supported. The
syntac for specifying a remote semaphore is as follows:

[/] <hostname> / <ipc_name>

This specifies the semaphore called ipc_name on the SBC named host-
name. Remote semaphores are only valid on closely-coupled systems.
For more information refer to the section on "Remote Semaphores".

On Power Hawk 620/640 CCS systems, hostname must correspond to a
valid SBC within the current cluster, and it must match one of the
"V ME H o s tn a m e " f i e l d s o f o n e o f t h e en t r i e s i n t h e
/etc/dtables/nodes.vmeboot configuration file.

On Power Hawk Series 700 CCS systems, if the remote semaphore
resides on a client SBC, then hostname must match the corresponding
client profile file name located in the /etc/profiles directory. If
the remote semaphore resides on the server SBC, then hostname must
match the nodename of the server SBC (the node name returned by
uname(1) with the -n option).

hostname may contain a maximum of 255 characters. hostname may
also be the host name of the local system. Note that the remote
semaphore syntax is valid even on systems that are not part of a cluster,
if the local system's host name is specified.

When specifying a remote semaphore, ipc_name is the semaphore name
and has the same interpretation as in the general syntax case.

oflag an integer value that indicates whether the calling process is creating a
named counting semaphore or establishing a connection to an existing
one. The following bits may be set:
6-8

Interprocess Synchronization
O_CREAT causes the counting semaphore specified by name to be cre-
ated if it does not exist. The semaphore’s user ID is set to
the effective user ID of the calling process; its group ID is
set to the effective group ID of the calling process; and its
permission bits are set as specified by the mode argument.
The semaphore’s initial value is set as specified by the value
argument. Note that you must specify both the mode and
the value arguments when you set this bit.

If the counting semaphore specified by name exists, setting
O_CREAT has no effect except as noted for O_EXCL.

O_EXCL causes sem_open to fail if O_CREAT is set and the counting
semaphore specified by name exists. If O_CREAT is not set,
this bit is ignored.

Note that the sem_open routine returns an error if flag bits
other than O_CREAT and O_EXCL are set in the oflag argu-
ment.

O_CCS_DEBUG

This flag is only meaningful when opening a remote sema-
phore. It indicates that a debug level will be provided, via
the parameter remote_debug. The debug level remains
in affect as long as the file is open.

 For more on remote semaphore debug levels, refer to the
section on "Remote Semaphore Debugging".

mode an integer value that sets the permission bits of the counting semaphore
specified by name with the following exception: bits set in the process’s
file mode creation mask are cleared in the counting semaphore’s mode
(refer to the umask(2) and chmod(2) system manual pages for addi-
tional information). If bits other than the permission bits are set in mode,
they are ignored. A process specifies the mode argument only when it is
creating a named counting semaphore.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot
exceed the value of SEM_VALUE_MAX (see the file <sys/limits.h>
to determine this value). A process specifies the value argument only
when it is creating a named counting semaphore.

remote_debug
This parameter is only meaningful when opening a remote semaphore.
It specifies the debug level. This parameter is only interpreted if
O_CCS_DEBUG is specified in oflag. The debug level remains in affect
as long as the semaphore is open.

 For more on remote semaphore debug levels, refer to the section on
"Remote Semaphore Debugging".

If the call is successful, sem_open returns the address of the named counting semaphore.
A return value of –1 indicates that an error has occurred; errno is set to indicate the
6-9

PowerMAX OS Real-Time Guide
error. Refer to the sem_open(3) system manual page for a listing of the types of errors
that may occur.

Using the sem_close Routine 6

The sem_close(3) library routine allows the calling process to relinquish access to a
named counting semaphore. The sem_close routine frees the system resources that
have been allocated for the process’s use of the semaphore. Subsequent attempts by the
process to operate on the semaphore may result in delivery of a SIGSEGV signal.

The count associated with the semaphore is not affected by a process’s call to
sem_close.

The specifications required for making the sem_close call are as follows:

#include <semaphore.h>

int sem_close(sem)

sem_t *sem;

The argument is defined as follows:

sem a pointer to the named counting semaphore to which access is to
be relinquished. Only a counting semaphore to which a connec-
tion has been established through a call to sem_open(3) may be
specified.

A return value of 0 indicates that the call to sem_close has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the sem_close(3) system manual page for a listing of the types of errors that may
occur.

Using the sem_unlink Routine 6

The sem_unlink(3) library routine allows the calling process to remove the name of a
counting semaphore. A process that subsequently attempts to establish a connection to the
semaphore by using the same name will establish a connection to a different instance of
the semaphore. A process that has a reference to the semaphore at the time of the call may
continue to use the semaphore until it invokes sem_close(3) or the exec(2) or
exit(2) system call.

The specifications required for making the sem_unlink call are as follows:

#include <semaphore.h>

int sem_unlink(name)

char *name;

The argument is defined as follows:
6-10

Interprocess Synchronization
name a null-terminated string that specifies the name of the counting sema-
phore to be removed.

The general syntax is

[/] <ipc_name>

 ipc_name may contain a maximum of 255 characters. It may contain a
leading slash (/) character, but it may not contain embedded slash char-
acters. Note that this name is not a part of the file system; neither a
leading slash character nor the current working directory affects inter-
pretations of it (/named_sema and named_sema are interpreted as
the same name). If you wish to write code that can be ported to any sys-
tem that supports POSIX interfaces, however, it is recommended that a
leading slash character is provided.

As a non-POSIX extension, remote semaphores are also supported. The
syntac for specifying a remote semaphore is as follows:

[/] <hostname> / <ipc_name>

This indicates that the semaphore called ipc_name on the SBC named
hostname is removed. Remote semaphores are only valid on closely-
coupled systems. For more information refer to the section on "Remote
Semaphores".

On Power Hawk 620/640 CCS systems, hostname must correspond to a
valid SBC within the current cluster, and it must match one of the
"VME Hostname " f i e ld s o f o n e o f t h e en t r i e s in t h e
/etc/dtables/nodes.vmeboot configuration file.

On Power Hawk Series 700 CCS systems, if the remote semaphore
resides on a client SBC, then hostname must match the corresponding
client profile file name located in the /etc/profiles directory. If the
remote semaphore resides on the server SBC, then hostname must
match the nodename of the server SBC (the node name returned by
uname(1) with the -n option).

hostname may contain a maximum of 255 characters. hostname may
also be the host name of the local system. Note that the remote
semaphore syntax is valid even on systems that are not part of a cluster,
if the local system's host name is specified.

A return value of 0 indicates that the call to sem_unlink has been suc-
cessful. A return value of –1 indicates that an error has occurred; errno
is set to indicate the error. Refer to the sem_unlink(3) system man-
ual page for a listing of the types of errors that may occur.

When specifying a remote semaphore, ipc_name is the semaphore name
and has the same interpretation as in the general syntax case.
6-11

PowerMAX OS Real-Time Guide
Using the sem_wait Routine 6

The sem_wait(3) library routine allows the calling process to lock a named or
unnamed counting semaphore. If the semaphore value is less than or equal to zero, the
semaphore is already locked. In this case, the process blocks until it is interrupted by a
signal or the semaphore is unlocked. If the semaphore value is greater than zero, the pro-
cess locks the semaphore and proceeds. In either case, the semaphore value is decre-
mented.

The specifications required for making the sem_wait call are as follows:

#include <semaphore.h>

int sem_wait(sem)

sem_t *sem;

The argument is defined as follows:

sem a pointer to the named or unnamed counting semaphore that is to be
locked

A return value of 0 indicates that the process has succeeded in locking the specified sema-
phore. A return value of –1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sem_wait(3) system manual page for a listing of the types of
errors that may occur.

Using the sem_trywait Routine 6

The sem_trywait(3) library routine allows the calling process to lock a counting
semaphore only if the semaphore value is greater than zero, indicating that the semaphore
is unlocked. If the semaphore value is less than or equal to zero, the semaphore is already
locked, and the call to sem_trywait fails. If a process succeeds in locking the sema-
phore, the semaphore value is decremented; otherwise, it does not change.

The specifications required for making the sem_trywait call are as follows:

#include <semaphore.h>

int sem_trywait(sem)

sem_t *sem;

The argument is defined as follows:

sem a pointer to the named or unnamed counting semaphore that the calling
process is attempting to lock

A return value of 0 indicates that the calling process has succeeded in locking the speci-
fied semaphore. A return value of –1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem_trywait(3) system manual page for a listing of
the types of errors that may occur.
6-12

Interprocess Synchronization
Using the sem_post Routine 6

The sem_post(3) library routine allows the calling process to unlock a counting sema-
phore. If one or more processes are blocked waiting for the semaphore, the waiting pro-
cess with the highest priority is wakened when the semaphore is unlocked.

The specifications required for making the sem_post call are as follows:

#include <semaphore.h>

int sem_post(sem)

sem_t *sem;

The argument is defined as follows:

sem a pointer to the named or unnamed counting semaphore that is to be
unlocked

A return value of 0 indicates that the call to sem_post has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the sem_post(3) system manual page for a listing of the types of errors that may
occur.

Using the sem_getvalue Routine 6

The sem_getvalue(3) library routine allows the calling process to obtain the value of
a named or unnamed counting semaphore. If the specified semaphore is locked at the time
of the call, the value that the sem_getvalue routine returns will be zero or a negative
number whose absolute value is equal to the number of processes that were blocked wait-
ing for the semaphore at some unspecified time during the call.

The specifications required for making the sem_getvalue call are as follows:

#include <semaphore.h>

int sem_getvalue(sem, sval)

sem_t *sem;
int *sval;

The arguments are defined as follows:

sem a pointer to the named or unnamed counting semaphore for which you
wish to obtain the value

sval a pointer to a location to which the value of the specified named or
unnamed counting semaphore is to be returned. The value that is
returned represents the actual value of the semaphore at some unspeci-
fied time during the call. It is important to note, however, that this value
may not be the actual value of the semaphore at the time of the return
from the call.
6-13

PowerMAX OS Real-Time Guide
A return value of 0 indicates that the call to sem_getvalue has been successful. A
return value of –1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sem_getvalue(3C) system manual page for a listing of the types of
errors that may occur.

Using the sem_remote_timeout Routine 6

The sem_remote_timeout(3) library routine establishes a timeout value for a
remote semaphore descriptor.

Once established, the timeout value will be applied to every operation done on a remote
semaphore. A timeout occurs if a request is done remotely but a response is not received
from the server within the specified time. When a timeout occurs, the semaphore interface
routines will fail and will return an errno value of ETIMEDOUT.

The specifications required for making the sem_remote_timeout call are as follows:

 #include <semaphore.h>

int sem_remote_timeout(sem, timeout)

sem_t *sem;
int timeout;
6-14

Interprocess Synchronization
The arguments are defined as follows:

sem a pointer to a remote semaphore as returned by sem_open. For more
information on remote semaphores refer to the section on "Remote
Semaphores".

timeout timeout value in seconds. A value of zero indicates that timeouts will
not occur. A negative value is not legal.

A return value of 0 indicates that the timeout value has been modified.
A return value of -1 shows that an error has occurred; errno is set to
show the error. Refer to the sem_remote_timeout(3) manual
page for a listing of the types of errors that may occur.

The default timeout value is zero; i.e. no timeouts.

It should be noted that there are cases where a semaphore routine would normally block.
The most prevalent is:

A sem_wait(3) call is done on a locked semaphore.

In this case, the process blocks until the semaphore can be obtained.

When this operation is done on a remote semaphore, the remote server will block. If a
timeout value has been established, then the operation may timeout if the remote server
blocks for a long period of time.

Remote Semaphore Debugging 6

Debugging information is available when using remote semaphores. This information can
be used to determine the status of messages sent to and replies received from the server
located on the SBC where the semaphore resides.

Debugging is enabled when the semaphore is opened, using sem_open(3). The flag
O_CCS_DEBUG must be specified in the flags parameter. In this case, an additional param-
eter is provided that is the debug level. Debugging information, at the requested level,
will be displayed for all operations on the semaphore until it is closed. Messages are sent
to stderr.

Debugging messages have different degrees of importance. Each message has an associ-
ated debug number. Lower numbered messages have more importance than higher num-
bered messages. A message will only be displayed if the debug number associated with
the message is lower or equal to the current debug level.
6-15

PowerMAX OS Real-Time Guide
Debug messages are numbered as follows:

It should be noted that there is some amount of overhead involved when debugging is
enabled. Debugging should not be enabled in time-critical operations.

It is also possible to obtain debugging information on the server side. This is done by
specifying a debug level when invoking the daemon sbc_msgd. Refer to the
sbc_msgd(3) manual page for more information.

Understanding Synchronization Problems 6

Application programs that consist of two or more processes sharing portions of their vir-
tual address space through use of shared memory need to be able to coordinate their access
to shared memory efficiently. Two fundamental forms of synchronization are used to
coordinate processes’ access to shared memory: mutual exclusion and condition synchro-
nization. Mutual exclusion mechanisms serialize cooperating processes’ access to shared
memory. Condition synchronization mechanisms delay a process’s progress until an appli-
cation-defined condition is met.

Mutual exclusion mechanisms ensure that only one of the cooperating processes can be
executing in a critical section at a time. Three types of mechanisms are typically used to
provide mutual exclusion—those that involve busy waiting, those that involve sleepy
waiting, and those that involve a combination of the two when a process attempts to enter
a locked critical section. Busy-wait mechanisms are appropriate if critical sections are
quite short and delays are expected to be less than the time required for two context
switches. Sleepy-wait mechanisms are preferable if critical sections are quite long and
delays are expected to be lengthy.

Critical sections are often very short. To keep the cost of synchronization comparatively
small, synchronizing operations performed on entry to and exit from a critical section can-
not enter the kernel. The execution overhead associated with entering and leaving the crit-
ical section can be longer than the length of the critical section itself.

In order for busy-wait mutual exclusion to be an effective tool, the expected delay must be
not only brief but also predictable. Such unpredictable events as page faults, signals, and
CPU rescheduling cause the real elapsed time in a critical section to exceed the virtual
execution time. At best, such events may cause other CPUs to delay longer than antici-

 10 connection failures
inter-SBC messaging mailbox reservation failures

 20 connections/disconnections with remote servers

 40 general client requests
inter-SBC messaging mailbox reservations

 60 remote server replies to client requests
host name lookups

 70 inter-SBC mailbox messages (sends and receives)
nodes file operations
6-16

Interprocess Synchronization
pated; at worst, they may cause deadlock. Although some of these events can be con-
trolled with system calls, system call overhead is prohibitive. To ensure that delays are
predictable, a low-overhead means of controlling such events needs to be provided.

In the context of mutual exclusion, the priority inversion problem surfaces. Priority inver-
sion occurs when one or more low-priority processes prevent the progress of a high-
priority process. The problem is illustrated by the following example. Assume that H is a
high-priority process, M a medium-priority process, L a low-priority process, and mutex
a mutual exclusion synchronizing variable; assume also that L is the currently running
process.

L locks mutex and enters a critical section

M preempts L

M begins a lengthy computation

H preempts M

H attempts to lock mutex

H blocks, waiting for L to leave the critical section and release mutex

M regains the CPU and continues its computation

H cannot continue until L leaves the critical section; L is prevented from running by M.
For all practical purposes, H assumes L’s low priority and blocks for an unpredictable,
unbounded period of time.

One approach to preventing priority inversion in such situations as this is to raise the pri-
ority of L when it enters a critical section. If raising the priority is inexpensive, this
approach may be preferable when a critical section is short and busy-wait mutual exclu-
sion can be used. If a critical section is long enough to warrant use of sleepy-wait mutual
exclusion, however, this approach may be too conservative: it will defer the preemption of
a low-priority process in situations in which inversion would not have occurred.

Another approach is to provide a means for correcting a priority inversion when it occurs.
An approach known as priority inheritance involves passing the priority of a waiting pro-
cess to the process that is in the critical section. The process in the critical section “inher-
its” the priority of the processes waiting to enter the critical section. The net effect is to
allow the low-priority process to execute long enough to leave the critical section.

Priority inheritance needs to be transitive. If high-priority process H were blocked on a
critical section occupied by medium-priority process M and if M were blocked on a dif-
ferent critical section occupied by low-priority process L, both M and L should inherit
H’s priority.
6-17

PowerMAX OS Real-Time Guide
Using Interprocess Synchronization Tools 6

To provide solutions to the problems described in “Understanding Synchronization Prob-
lems,” PowerMAX OS supplies a variety of interprocess synchronization tools. These
tools are based on the concept of a lightweight process. They are designed to be used by
single-threaded processes or bound threads.

The synchronization tools that are supplied include tools for controlling an LWP’s vulner-
ability to rescheduling, serializing LWPs’ access to critical sections with busy-wait mutual
exclusion mechanisms, and coordinating interaction among LWPs. From these tools, a
mechanism for providing sleepy-wait mutual exclusion with bounded priority inversion
can be constructed. Tools for providing rescheduling control are described in “Reschedul-
ing Control.” Tools for implementing busy-wait mutual exclusion are explained in “Busy-
Wait Mutual Exclusion.” Tools for coordinating interaction between LWPs are described
in “Client-Server Coordination.” Procedures for implementing sleepy-wait mutual exclu-
sion are presented in “Constructing Sleepy-Wait Mutual Exclusion Tools.” An example
program that illustrates use of the interprocess synchronization tools is provided in
Appendix B.

The interprocess synchronization tools can be used to synchronize execution of LWPs in
any process in the system. In this respect, they differ from most other PowerMAX OS
in t e r f ac e s t h a t ope ra t e on LW Ps (priocntl(2) , cpu_bias(2) ,
_lwp_suspend(2), for example) because those interfaces allow an LWP to operate
only on LWPs in the same process. The rescheduling control and client-server coordina-
tion tools that are described in subsequent sections of this chapter use a unique, global
identifier to identify an LWP. The global LWP identifier (global_lwpid_t), which is
defined in <sys/types.h>, differs from the LWP identifier (lwpid_t) in that it
uniquely identifies an LWP system-wide. Note that neither the global LWP ID nor the
LWP ID is the same as the process identifier (PID).

You can obtain the global LWP ID for an LWP with the _lwp_global_self(2)
system call. The specification required for making this call is as follows:

global_lwpid_t _lwp_global_self(void)

The _lwp_global_self system call returns a nonzero value that is the unique global
identifier assigned to the calling LWP. For additional information, refer to the system
manual page _lwp_global_self(2).

Rescheduling Control 6

To use busy-wait mutual exclusion effectively, lock hold times must be small and predict-
able. Rescheduling and signal handling are major sources of unpredictability. To provide
you with the means to control rescheduling and signal handling, a rescheduling variable
has been developed. You allocate the variable in your application, notify the kernel of its
location, and manipulate it directly from your application to disable and re-enable
rescheduling. While rescheduling is disabled, quantum expirations, preemptions, and cer-
tain types of signals are held.
6-18

Interprocess Synchronization
A system call and a set of macros accommodate use of the rescheduling variable. In the
sections that follow, the variable, the system call, and the macros are described, and the
procedures for using them are explained.

Although these interfaces can be used by multithreaded processes, it is recommended that
they be used only by single-threaded processes or bound threads. The reasons are
explained as follows:

A rescheduling variable is valid only for the LWP that informs the kernel of its location
(se e “ U s i n g th e r e s c h e d _ c n t l S ys t e m C a l l ” a n d t h e e x p l a n a t io n o f t he
RESCHED_SET_VARIABLE command). The global LWP ID of a multiplexed thread changes
according to the LWP on which the thread is currently scheduled. A multiplexed thread
cannot reliably determine the LWP on which it is scheduled. As a result, a multiplexed
thread may inform the kernel of the location of its rescheduling variable and then be
assigned to a different LWP before it locks the variable (see “Using the Rescheduling
Control Macros” and the explanation of the resched_lock macro). In such cases, a
multiplexed thread can lock the wrong rescheduling variable. If it does so, it will fail to
receive any of the protection that comes from disabling rescheduling. The problem is a
serious one because the call to resched_lock will succeed; the multiplexed thread will
have no indication that the wrong rescheduling variable has been locked.

For information on threads programming and threads management facilities, refer to the
PowerMAX OS Programming Guide.

Understanding Rescheduling Variables 6

A rescheduling variable is a data structure that controls a lightweight process’s vulnerabil-
ity to rescheduling. In your application program, you must allocate one variable for each
LWP for which you wish to defer rescheduling.

A rescheduling variable is defined as follows:

struct resched_var {
 pid_t rv_pid;
 global_lwpid_t rv_glwpid;

 ...
};

As shown, a rescheduling variable contains both the process identifier and the global LWP
identifier of the LWP that owns the variable. These fields are included for your conve-
nience. Some of the system calls that are used to coordinate interaction among LWPs
require that you specify a global LWP identifier as an argument (see “Client-Server Coor-
dination”). The remaining fields are not meant to be referenced directly by an application.

A system call, resched_cntl(2), enables you to perform a variety of operations spe-
cific to the rescheduling variable. Use of this call is explained in “Using the resched_cntl
System Call.” A set of rescheduling control macros enables you to manipulate the vari-
able from your application. Use of these macros is explained in “Using the Rescheduling
Control Macros.”
6-19

PowerMAX OS Real-Time Guide
NOTE

The Ada environment provides functionality for these services
through the rescheduling_control package. Refer to the
“Additional Support Packages” chapter of the HAPSE Reference
Manual for additional information.

Using the resched_cntl System Call 6

The resched_cntl system call enables you to perform a variety of rescheduling control
operations. These include initializing a rescheduling variable, informing the kernel of its
location, obtaining its location, and setting a limit on the length of time that rescheduling
can be deferred.

The specifications required for using the resched_cntl call are as follows:

#include <sys/types.h>
#include <sys/time.h>
#include <sys/lwp_synch.h>

int resched_cntl(cmd, arg)

int cmd;
char *arg;

Arguments are defined as follows:

cmd the operation to be performed

arg a pointer to an argument whose value depends upon the value of cmd

Cmd can be one of the following. The values of arg that are associated with each com-
mand are indicated.

RESCHED_SET_VARIABLE inform the kernel of the location of the calling LWP’s
rescheduling variable, and initialize the variable

or

dissociate the calling LWP from an existing resched-
uling variable

In the first case, arg points to the rescheduling vari-
able; when the call is completed, the variable will be
initialized, and the page(s) in which it is located will
be locked in physical memory. The rescheduling vari-
able must be located in a process private page, which
excludes pages in shared memory segments or files
that have been mapped MAP_SHARED. Note that two
LWPs within a single process should not specify the
same address for their rescheduling variables.

In the second case, arg is NULL; when the call is com-
pleted, the page(s) that contained the variable is
unlocked.
6-20

Interprocess Synchronization
After a fork(2), the child process inherits a
rescheduling variable from its parent. The rv_pid
and rv_glwpid fields of the child’s rescheduling
variable are updated to the process ID and global
LWP ID of the child. If a child process has inherited
a rescheduling variable and it, in turn, forks one or
more child processes, those child processes will
inherit the rescheduling variable with the rv_pid
and rv_glwpid fields updated. If a rescheduling
variable is locked in the parent process at the time of
the call to fork, the rescheduling variable will be
locked in the child process.

Note that to use this command, the calling LWP must
have the P_RTIME privilege (for additional informa-
tion on privileges, refer to the PowerMAX OS Pro-
gramming Guide and the intro(2) system manual
page).

RESCHED_GET_VARIABLE obtain the location of the calling LWP’s rescheduling
variable

In this case, arg must point to a rescheduling variable
pointer. The pointer referenced by arg is set to NULL

if the caller has no rescheduling variable; otherwise, it
is set to the location of the rescheduling variable.

RESCHED_SET_LIMIT define the maximum length of time that rescheduling
of the calling LWP can be deferred

or

clear a previously specified time limit

In the first case, arg points to a timeval structure
that contains the time limit; when this limit is
exceeded, the SIGRESCHED signal is sent to the call-
ing LWP. The default action of the signal is to termi-
nate the LWP, but the signal can also be caught or
ignored.

In the second case, arg is NULL; when the call is com-
pleted, a previously specified time limit is cleared.

This command is provided as a debugging tool.

RESCHED_YIELD relinquish control of the CPU to other LWPs of equal
priority. If there are no other LWPs of equal priority,
the calling LWP retains control of the CPU. The
value of arg must be zero.
6-21

PowerMAX OS Real-Time Guide
A return of 0 indicates that the requested operation has been successful. A return of –1
indicates that an error has occurred; errno is set to indicate the error. For additional
information on the use of this call, refer to the system manual page resched_cntl(2).

Using the Rescheduling Control Macros 6

A set of rescheduling control macros enables you to disable and re-enable rescheduling
and to determine the number of rescheduling locks in effect. These macros are briefly
described as follows:

resched_lock increment the number of rescheduling locks held by the
calling LWP, and disable rescheduling

resched_unlock decrement the number of rescheduling locks held by the
calling LWP. If the resulting number of rescheduling locks
is zero, rescheduling is re-enabled.

resched_nlocks return the number of rescheduling locks currently held by
the calling LWP

The resched_lock macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>

void resched_lock(r)

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling LWP’s rescheduling variable

Resched_lock does not return a value; it increments the number of rescheduling locks
held by the calling LWP. Calls to resched_lock can be nested. Rescheduling will be
disabled as long as the number of locks held is not zero.

If the calling LWP does not enter the kernel, quantum expirations, preemptions, and sig-
nals other than those representing error conditions are deferred until all of the reschedul-
ing locks held by the LWP are released. Signals that represent error conditions and other
events that should not be deferred do not affect rescheduling locks. These signals are as
follows: SIGILL, SIGTRAP, SIGFPE, SIGKILL, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGXCPU,

SIGXFSZ, and SIGRESCHED.

If the LWP enters the kernel via a page fault or a system call, it will receive signals and be
subject to context switching regardless of the number of rescheduling locks it holds.

The resched_unlock macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>

void resched_unlock(r)

struct resched_var *r;
6-22

Interprocess Synchronization
The argument is defined as follows:

r a pointer to the calling LWP’s rescheduling variable

Resched_unlock does not return a value; it decrements the number of rescheduling
locks held by the calling LWP. If the number of rescheduling locks is zero after the num-
ber is decremented, a pending context switch or signal will be serviced.

NOTE

If the number of resched_unlock requests exceeds the num-
ber of resched_lock requests, the number of locks held by the
ca l l in g LWP wi l l be nega t ive . Yo u m ay wish to use
resched_nlocks to make the appropriate assertion in your
application program. For information on use of assert(3X),
refer to the corresponding system manual page.

The resched_nlocks macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>

int resched_nlocks(r)

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling LWP’s rescheduling variable

Resched_nlocks returns the number of rescheduling locks currently held by the call-
ing LWP. You may wish to use this call in an assert statement to determine whether or
not the number of locks held is negative.

For additional information on the use of these macros, refer to the system manual page
resched_cntl(2).

Applying Rescheduling Control Tools 6

The following C program segment illustrates the procedures for controlling rescheduling
by using the tools described in the preceding sections. This program segment defines a
rescheduling variable (rv) as a global variable; initializes the variable with a call to
resched_cntl ; and disables and re-enables reschedul ing with cal ls to
resched_lock and resched_unlock, respectively.

#include <sys/types.h>
#include <sys/time.h>
#include <sys/lwp_synch.h>

 ...

 struct resched_var rv;
6-23

PowerMAX OS Real-Time Guide
 ...

void
main()
{
 resched_cntl(RESCHED_SET_VARIABLE, &rv);

 resched_lock(&rv);

 ... /* nonpreemptible code */

 assert(resched_nlocks(&rv) > 0);
 resched_unlock(&rv);
}

Rescheduling Variables and Ada 6

ADA applications or applications that make use of POSIX semaphores or POSIX message
queues should not register rescheduling variables from initialization (.initp) sections.
This is because the execution order of Ada initialization sections cannot be guaranteed to
precede other user-defined initialization sections, and also because the threads library's
internal use of rescheduling variables are delayed until needed, as previously mentioned.

Since ADA and the threads library might internally use rescheduling variables, these vari-
ables must be preserved. Before defining a rescheduling variable , use the
RESCHED_GET_VARIABLE command to see if one already exists:

• If already defined, share rather than removing it to register your own.

• If not already defined, define and register your own rescheduling variable.

Rescheduling Variables and Processor Migration 6

The page where a rescheduling variable resides is locked down in memory by the kernel
when the rescheduling variable is defined with the RESCHED_SET_VARIABLE com-
mand. In a multi-CPU board Night Hawk system, a rescheduling variable that is locked
down in a local memory page will prevent the associated process and/or LWP from
migrating to a different CPU board (see cpu_bias(2) or the PowerMAX OS Program-
ming Guide Chapter 4, Process Management). Furthermore, since the address space of a
multi-threaded application is shared between all threads in the process, any thread’s
rescheduling variable that is locked down in a local memory pool will prevent all other
threads/LWPs in the process from migrating to another CPU board.

The threads library internally uses rescheduling variables for POSIX semaphores and
message queues. The threads library delays defining internal rescheduling variables for all
the threads in a process until the first thread in the process makes a sem_open(3),
sem_init(3), sem_wait(3), sem_post(3), or mq_open(3) function call. The
delaying of setting up the rescheduling variables is intended to aid in an application's abil-
ity to change the CPU bias mask of the process or the LWPs within the process before
memory pages are locked down due to these internal rescheduling variables.
6-24

Interprocess Synchronization
Therefore, for applications that make use of POSIX semaphores and/or POSIX message
queues in a multi-CPU board Night Hawk system with local memory binding for their pri-
vate data area, it is highly recommended that the application first change the CPU bias of
the process or any thread within the process before calling the first sem_open(3),
sem_init(3), sem_wait(3), sem_post(3), or mq_open(3) function call.

Also, applications that make use of both POSIX semaphores and/or message queues and
also make direct use of a rescheduling variable should first call a least one of the
sem_open(3), sem_init(3), sem_wait(3), sem_post(3), or mq_open(3)
functions before checking to see if a rescheduling variable is already defined with the
RESCHED_GET_VARIABLE command.

Since rescheduling variables are inherited by child processes across fork(2) calls, the
creation of child processes that will be doing cross-CPU board migrations with local
memory bindings on a Night Hawk system should be created via fork(2) by the parent
process before calling any of the previously mentioned semphore or message queue rou-
tines or before an application defines its own rescheduling variable(s).

Busy-Wait Mutual Exclusion 6

Busy-wait mutual exclusion is achieved by associating a synchronizing variable with a
shared resource. When an LWP wishes to gain access to the resource, it locks the synchro-
nizing variable. When it completes its use of the resource, it unlocks the synchronizing
variable. If another LWP attempts to gain access to the resource while the first LWP has
the resource locked, that LWP must delay by repeatedly testing the state of the lock. This
form of synchronization requires that the synchronizing variable be accessible directly
from user mode and that the lock and unlock operations have very low overhead.

PowerMAX OS busy-wait mutual exclusion tools include a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a corresponding set of macros. In the sections
that follow, the variable and the macros are defined, and the procedures for using them are
explained.

The threads library, libthread, also provides a set of spin lock routines. Those routines
are described in the PowerMAX OS Programming Guide. It is recommended that you use
the macros described in this chapter instead of the routines because the macros are more
efficient and they give you more flexibility; for example, the spin lock macros allow you
to construct a synchronization primitive that is a combination of the busy-wait and sleepy-
wait primitives. If you were to construct such a primitive, the primitive would gain access
to the lock by spinning for some number of spins and then blocking if the lock were not
available. The advantage that this type of lock offers is that you do not have to use
rescheduling variables to prevent deadlock.
6-25

PowerMAX OS Real-Time Guide
Understanding the Busy-Wait Mutual Exclusion Variable 6

The busy-wait mutual exclusion variable is a data structure known as a spin lock. This
variable is defined in <sys/lwp_synch.h> as follows:

struct spin_mutex {

 ...

};

The spin lock has two states: locked and unlocked. When initialized, the spin lock is in
the unlocked state.

If you wish to use spin locks to coordinate access to shared resources, you must allocate
them in your application program and locate them in memory that is shared by the pro-
cesses or LWPs that you wish to synchronize. You can manipulate them by using the mac-
ros described in “Using the Busy-Wait Mutual Exclusion Macros.”

NOTE

The Ada environment provides functionality for these services
through the spin_locks package. Refer to the “Additional
Support Packages” chapter of the HAPSE Reference Manual for
additional information.

Using the Busy-Wait Mutual Exclusion Macros 6

A set of busy-wait mutual exclusion macros allows you to initialize, lock, and unlock spin
locks and determine whether or not a particular spin lock is locked. These macros are
briefly described as follows:

spin_init initialize a spin lock to the unlocked state

spin_trylock attempt to lock a specified spin lock

spin_unlock unlock a specified spin lock

spin_islock determine whether or not a specified spin lock is locked

It is important to note that none of these macros enables you to lock a spin lock uncondi-
tionally. You can construct this capability by using the tools that are provided.

CAUTION

Operations on spin locks are not recursive; an LWP can deadlock
if it attempts to relock a spin lock that it has already locked.

You must initialize spin locks before you use them by calling the spin_init macro.
You call spin_init only once for each spin lock. If the specified spin lock is locked,
spin_init effectively unlocks it. The spin_init macro is specified as follows:
6-26

Interprocess Synchronization
#include <sys/types.h>
#include <sys/lwp_synch.h>

void spin_init(m)

struct spin_mutex *m;

The argument is defined as follows:

m the starting address of the spin lock to be initialized

Spin_init does not return a value; it places the spin lock in the unlocked state.

The spin_trylock macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>

int spin_trylock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock that you wish to try to lock

A return of TRUE indicates that the calling LWP has succeeded in locking the spin lock.
A return of FALSE indicates that it has not succeeded. Spin_trylock does not block
the calling LWP.

Note that the Concurrent C compiler generates in-line code for this routine if you specify
the -F option when you invoke the compiler (for additional information on use of the -F
option, refer to the system manual page cc(1)).

The spin_unlock macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>

void spin_unlock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock that you wish to unlock

Spin_unlock does not return a value.

The spin_islock macro is specified as follows:

#include <sys/types.h>
#include <sys/lwp_synch.h>
6-27

PowerMAX OS Real-Time Guide
int spin_islock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock whose state you wish to determine

A return of TRUE indicates that the specified spin lock is locked. A return of FALSE indi-
cates that it is unlocked. Spin_islock does not attempt to lock the spin lock.

For additional information on the use of these macros, refer to the system manual page
spin_trylock(2).

Applying Busy-Wait Mutual Exclusion Tools 6

Procedures for using the tools for busy-wait mutual exclusion are illustrated by the follow-
ing code segments. The first segment shows how to use these tools along with reschedul-
ing control to acquire a spin lock; the second shows how to release a spin lock. Note that
these segments contain no system calls; they will contain no procedure calls when you
invoke the Concurrent C compiler and specify the -F option (for additional information
on use of the -F option, refer to the system manual page cc(1)).

The _m argument points to a spin lock, and the _r argument points to the calling LWP’s
rescheduling variable. It is assumed that the spin lock is located in shared memory. To
avoid the overhead associated with paging and swapping, it is recommended that the
pages that will be referenced inside the critical section be locked in physical memory (see
the PowerMAX OS Programming Guide for an explanation of the procedures for using the
mlock(3C) library routine and the shmctl(2) system call).

#define spin_acquire(_m,_r) \
{ \
 resched_lock(_r); \
 while (!spin_trylock(_m)) { \

 resched_unlock(_r); \
 while (spin_islock(_m)); \
 resched_lock(_r); \

 } \
}

#define spin_release(_m,_r) \
{ \
 spin_unlock(_m); \
 resched_unlock(_r); \
}

In the first segment, note the use of the spin_trylock and spin_islock macros. If
an LWP attempting to lock the spin lock finds it locked, it waits for the lock to be released
by calling spin_islock. This sequence is more efficient than polling directly with
spin_trylock. The spin_trylock macro contains special instructions to perform
test-and-set atomically on the spin lock. These instructions are less efficient than the sim-
ple memory read performed in spin_islock.
6-28

Interprocess Synchronization
Note also the use of the rescheduling control macros. To prevent deadlock, an LWP dis-
ables rescheduling prior to locking the spin lock and re-enables it after unlocking the spin
lock. An LWP also re-enables rescheduling just prior to the call to spin_islock so that
rescheduling is not deferred any longer than necessary.

Client-Server Coordination 6

PowerMAX OS condition synchronization tools are based on the idea of a client-server
relationship between cooperating LWPs. A client LWP is one that requests service from
another LWP. A server LWP is one that satisfies a client’s request for service. When a cli-
ent requests service, it usually waits for a response from the selected server. When the
server completes the request, it wakes the corresponding client. If another request is pend-
ing, the server handles that request; otherwise, it blocks to wait for the arrival of the next
request. An LWP may act as both client and server during its lifetime.

When a client waits for a server, its priority is passed to that server. Priority inheritance
requires that the priority of a server be at least as high as that of any of its clients.

Interaction between client and server LWPs is handled by two sets of system calls. The
client system calls are described in “Using the Client System Calls”; the server system
calls are described in “Using the Server System Calls.” Examples of their use are pro-
vided in each case.

NOTE

The Ada environment provides functionality for these services
through the client_server_services package. Refer to
the “Additional Support Packages” chapter of the HAPSE Refer-
ence Manual for additional information.

Using the Client System Calls 6

A set of client system calls manipulates LWPs that are acting as clients. These calls pro-
vide a priority inheritance mechanism. They allow an LWP to block and establish a client-
server relationship, and they allow one or more LWPs that are blocked waiting on a partic-
ular server to be wakened. These system calls are briefly described as follows:

client_block block the calling LWP (a client) and pass its priority to
another LWP (a server)

client_wake1 wake a single client that is blocked in the client_block
call

client_wakechan wake all clients that are members of a specified group and
are blocked in the client_block call
6-29

PowerMAX OS Real-Time Guide
CAUTION

These system calls should be used only by single-threaded pro-
cesses or by bound threads. The global LWP ID of a multiplexed
thread changes according to the LWP on which the thread is cur-
rently scheduled. If these interfaces are used by multiplexed
threads, it is possible that the wrong thread will be wakened. For
information on threads programming and threads management
facilities, refer to the PowerMAX OS Programming Guide.

The specifications required for making the client_block call are as follows:

int client_block(server, chan, options, m, r, timeout)

global_lwpid_t server;
int chan, options;
struct spin_mutex *m;
struct resched_var *r;
struct timeval *timeout;

Arguments are defined as follows:

server the global LWP ID of the LWP from which service is being requested

chan an integer value that is used to categorize client LWPs. This argument is
optional; it is used by the client_wakechan system call.

options an integer value that indicates whether or not the LWP specified by
server is to be wakened if it is blocked in the server_block system
call. If the value is 1, the server is wakened as provided by the
server_wake1 system call (see “Using the Server System Calls”); if
the value is 0, the server is not wakened.

m a pointer to a spin lock located in a shared memory region. This argu-
ment is optional; its value can be NULL.

r a pointer to the calling LWP’s rescheduling variable. This argument is
optional; its value can be NULL.

timeout a pointer to a timeval structure that contains the maximum length of
time that the calling LWP will be blocked. This argument is optional; its
value can be NULL. If its value is NULL, there is no time out.

It is important to note that to use the client_block call, the real or effective user ID of
the calling LWP must match the real or effective user ID of the LWP specified by server,
or the calling LWP must have the P_OWNER privilege (for additional information on priv-
ileges, refer to the PowerMAX OS Programming Guide and the intro(2) system man-
ual page).

If the Enhanced Security Utilities are installed and running, one of the following condi-
tions must be met:

• The Mandatory Access Control (MAC) level of the calling LWP must
equal the MAC level of the target LWP.
6-30

Interprocess Synchronization
• The calling LWP must have the P_MACWRITE or the P_COMPAT privilege.

• The target LWP must have the P_COMPAT privilege.

Client_block releases the spin lock specified by m, decrements the number of
rescheduling locks associated with the rescheduling variable specified by rv, and blocks
the calling LWP. The unlock and block operations are executed atomically to ensure that
the calling LWP does not miss a wake-up. While the client is blocked in this system call,
the specified server will have a priority that is at least as high as the client’s.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error. Note that upon return, the calling
LWP should retest the condition that caused it to block; there is no guarantee that the con-
dition has changed.

The specifications required for making the client_wake1 call are as follows:

int client_wake1(server, client, r)

global_lwpid_t server, client;
struct resched_var *r;

Arguments are defined as follows:

server must be zero

client the global LWP ID of a client that has blocked in client_block and
specified the calling LWP as its server

r a pointer to the calling LWP’s rescheduling variable. This argument is
optional.

Client_wake1 wakes the specified client if it is blocked in the client_block call,
requesting service from the calling LWP. If the client is not blocked in this call,
client_wake1 does not affect it. Client_wake1 also decrements the number of
rescheduling locks associated with a rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

The specifications required for making the client_wakechan call are as follows:

int client_wakechan(server, chan, r)

global_lwpid_t server;
int chan;
struct resched_var *r;

Arguments are defined as follows:

server must be zero

chan an integer value that identifies the category of clients to be wakened by
the LWP specified by server. If this value is zero, all of the calling
LWP’s clients will be wakened.
6-31

PowerMAX OS Real-Time Guide
r a pointer to the calling LWP’s rescheduling variable. This argument is
optional.

Client_wakechan wakes the clients in the category specified by chan if they are
blocked in the client_block call, requesting service from the calling LWP. If the
value of chan is zero, it wakes all of the server’s clients. Client_wakechan also decre-
ments the number of rescheduling locks associated with a rescheduling variable specified
by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

For additional information on the use of these calls, refer to the system manual page
client_block(2).

Constructing Sleepy-Wait Mutual Exclusion Tools 6

If the delay at entry to a critical section is expected to be lengthy, sleepy-wait mutual
exclusion is preferable to busy-wait mutual exclusion, where the CPU idles for potentially
long periods of time. Sleepy-wait mutual exclusion mechanisms can be provided by using
both the busy-wait mutual exclusion tools and the client system calls described in the pre-
vious section.

A sleepy-wait mutual exclusion variable can be defined as follows:

 struct sleep_mutex {
 struct spin_mutex mx;
 global_lwpid_t owner;
 int waiters;
 };

The mx field specifies the spin lock that serializes access to the owner and waiters fields.
The owner field identifies the LWP that holds the sleepy-wait mutual exclusion variable.
The waiters field indicates whether or not LWPs are blocked on the mutex.

Using a rescheduling variable (rv) and the spin_acquire and the spin_release
functions defined in “Applying Busy-Wait Mutual Exclusion Tools,” a function for lock-
ing the sleepy-wait mutex can be defined as follows:

void
sleep_lock(s)
 struct sleep_mutex *s;
{

spin_acquire(&s–>mx, &rv);
while (s–>owner) {
 s–>waiters = 1;
 client_block(s–>owner, s, 0, &s–>mx, &rv, 0);
 spin_acquire(&s–>mx, &rv);
}
s–>owner = rv.rv_glwpid;
spin_release(&s–>mx, &rv);

}
6-32

Interprocess Synchronization
Note that in this function, in what is an unusual interpretation of the client-server relation-
ship, the owner of the sleepy-wait mutual exclusion variable acts as server and the waiters
as clients. The call to client_block ensures that the owner’s priority will be at least as
high as that of any of the waiters. In this example, it is assumed that a sleepy-wait mutual
exclusion variable appears at the same location in the shared portion of every LWP’s
address space; consequently, the address of that variable is used to categorize the waiters.

A function for unlocking the sleepy-wait mutual exclusion variable can be defined as fol-
lows:

void
sleep_unlock(s)
 struct sleep_mutex *s;
{

int were_waiters;

 spin_acquire(&s–>mx, &rv);
s–>owner = 0;
were_waiters = s–>waiters;
s–>waiters = 0;
spin_unlock(&s–>mx);

 if (were_waiters)
 client_wakechan(0, s, &rv);
else
 resched_unlock(&rv);

}

Note that in this function, when an owner releases the sleepy-wait mutual exclusion vari-
able, it wakes all of the waiters with a call to client_wakechan. When they execute,
the wakened waiters must recontend for the mutex. One of them will become the new
owner; the others will block and establish new priority-inheritance relationships.

Using the Server System Calls 6

A set of server system calls has been developed to enable you to manipulate LWPs acting
as servers. These system calls are briefly described as follows:

server_block block the calling LWP only if no wake-up request has
occurred since the last return from server_block

server_wake1 wake a single server that is blocked in the server_block
system call; if the specified server is not blocked in this call,
the wake-up request is applied to the server’s next call to
server_block

server_wakevec wake a group of servers that are blocked in the
server_block system call; if a specified server is not
blocked in this call, the wake-up request is applied to the
server’s next call to server_block
6-33

PowerMAX OS Real-Time Guide
CAUTION

These system calls should be used only by single-threaded pro-
cesses or by bound threads. The global LWP ID of a multiplexed
thread changes according to the LWP on which the thread is cur-
rently scheduled. If these interfaces are used by multiplexed
threads, it is possible that the wrong thread will be wakened. For
information on threads programming and threads management
facilities, refer to the PowerMAX OS Programming Guide.

The specifications required for making the server_block call are as follows:

int server_block(options, r, timeout)

int options;
struct resched_var *r;
struct timeval *timeout;

Arguments are defined as follows:

options The value of this argument must be zero.

r a pointer to the calling LWP’s rescheduling variable. This argument is
optional; its value can be NULL.

timeout a pointer to a timeval structure that contains the maximum length of
time that the calling LWP will be blocked. This argument is optional; its
value can be NULL. If its value is NULL, there is no time out.

The server_block system call will return immediately if the calling LWP has a pend-
ing wake-up request; otherwise, it will return when the calling LWP receives the next
wake-up request. A return of 0 indicates that the call has been successful. A return of –1
indicates that an error has occurred; errno is set to indicate the error. Note that upon
return, the calling LWP should retest the condition that caused it to block; there is no guar-
antee that the condition has changed because the LWP could have been prematurely wak-
ened by a signal.

Server_wake1 is invoked to wake a server that is blocked in the server_block call.

The specifications required for making the server_wake1 call are as follows:

int server_wake1(server, r)

global_lwpid_t server;
struct resched_var *r;

Arguments are defined as follows:

server the global LWP ID of the server LWP that is to be wakened

r a pointer to the calling LWP’s rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wake1 call, the real or effective user ID of
the calling LWP must match the real or saved user ID of the LWP specified by server, or
6-34

Interprocess Synchronization
the calling LWP must have the P_OWNER privilege (for additional information on privi-
leges, refer to the PowerMAX OS Programming Guide and the intro(2) system man-
ual page).

If the Enhanced Security Utilities are installed and running, one of the following condi-
tions must be met:

• The Mandatory Access Control (MAC) level of the calling LWP must
equal the MAC level of the target LWP.

• The calling LWP must have the P_MACWRITE or the P_COMPAT privilege.

• The target LWP must have the P_COMPAT privilege.

Server_wake1 wakes the specified server if it is blocked in the server_block call.
If the server is not blocked in this call, the wake-up request is held for the server’s next
call to server_block. Server_wake1 also decrements the number of rescheduling
locks associated with the rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

The server_wakevec system call is invoked to wake a group of servers blocked in the
server_block call.

The specifications required for making the server_wakevec call are as follows:

int server_wakevec(servers, nservers, r)

global_lwpid_t *servers;
int nservers;
struct resched_var *r;

Arguments are defined as follows:

servers a pointer to an array of the global LWP IDs of the server LWPs that are
to be wakened

nservers an integer value specifying the number of elements in the array

r a pointer to the calling LWP’s rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wakevec call, the real or effective user ID
of the calling LWP must match the real or saved user IDs of the LWPs specified by serv-
ers, or the calling LWP must have the P_OWNER privilege (for additional information on
privileges, refer to the PowerMAX OS Programming Guide and the intro(2) system
manual page).

If the Enhanced Security Utilities are installed and running, one of the following condi-
tions must be met for each of the target LWPs:

• The Mandatory Access Control (MAC) level of the calling LWP must
equal the MAC level of the target LWP.

• The calling LWP must have the P_MACWRITE or the P_COMPAT privilege.

• The target LWP must have the P_COMPAT privilege.
6-35

PowerMAX OS Real-Time Guide
Server_wakevec wakes the specif ied servers i f they are blocked in the
server_block call. If a server is not blocked in this call, the wake-up request is applied
to the server’s next call to server_block. Server_wakevec also decrements the
number of rescheduling locks associated with a rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

For additional information on the use of these calls, refer to the system manual page
server_block(2).

Applying Condition Synchronization Tools 6

The rescheduling variable, spin lock, and server system calls can be used to design func-
tions that enable a producer and a consumer LWP to exchange data through use of a mail-
box in a shared memory region. When the consumer finds the mailbox empty, it blocks
until new data arrives. After the producer deposits new data in the mailbox, it wakes the
waiting consumer. An analogous situation occurs when the producer generates data faster
than the consumer can process it. When the producer finds the mailbox full, it blocks until
the data is removed. After the consumer removes the data, it wakes the waiting producer.

A mailbox can be represented as follows:

struct mailbox {
struct spin_mutex mx;
unsigned int data;
int full;
global_lwpid_t producer;
global_lwpid_t consumer;

};

The mx field is used to serialize access to the mailbox. The data field represents the
information that is being passed from the producer to the consumer. The full field is
used to indicate whether the mailbox is full or empty. The producer field identifies the
LWP that is waiting for the mailbox to be empty. The consumer field identifies the LWP
that is waiting for the arrival of data.

Using the spin_acquire and the spin_release functions defined in “Applying
Busy-Wait Mutual Exclusion Tools,” a function to enable the consumer to extract data
from the mailbox can be defined as follows:

void
mailbox_get (mb, data)

struct mailbox *mb;
unsigned int *data;

{
global_lwpid_t producer;

 spin_acquire (&mb–>mx, &rv);

 while (! mb–>full) {
mb–>consumer = rv.rv_glwpid;
spin_unlock (&mb–>mx);
6-36

Interprocess Synchronization
server_block (0, &rv, 0);
spin_acquire (&mb–>mx, &rv);

}

 *data = mb–>data;
mb–>full = 0;

 producer = mb–>producer;
mb–>producer = 0;

 spin_unlock (&mb–>mx);

 if (producer)
server_wake1 (producer, &rv);

else
resched_unlock (&rv);

}

Note that in this function, the consumer LWP locks the mailbox prior to checking for and
removing data. If it finds the mailbox empty, it unlocks the mailbox to permit the pro-
ducer to deposit data, and it calls server_block to wait for the arrival of data. When
the consumer is wakened, it must again lock the mailbox and check for data; there is no
guarantee that the mailbox will contain data—the consumer may have been wakened pre-
maturely by a signal.

A similar function that will enable the producer to place data in the mailbox can be
defined as follows:

void
mailbox_put (mb, data)

struct mailbox *mb;
unsigned int data;

{
global_lwpid_t consumer;

 spin_acquire (&mb–>mx, &rv);

 while (mb–>full) {
mb–>producer = rv.rv_glwpid;
spin_unlock (&mb–>mx);
server_block (0, &rv, 0);
spin_acquire (&mb–>mx, &rv);

}

 mb–>data = data;
mb–>full = 1;

 consumer = mb–>consumer;
mb–>consumer = 0;

 spin_unlock (&mb–>mx);

 if (consumer)
6-37

PowerMAX OS Real-Time Guide
server_wake1 (consumer, &rv);
else

resched_unlock (&rv);
}

In this function, the producer LWP waits for the mailbox to empty before depositing new
data. The producer signals the arrival of data only when the consumer is waiting; note that
it does so after unlocking the mailbox. The producer must unlock the mailbox first so that
the wakened consumer can lock it to check for and remove data. Unlocking the mailbox
prior to the call to server_wake1 also ensures that the mutex is held for a short time.
To prevent unnecessary context switching, rescheduling is disabled until the consumer is
wakened.
6-38

7
Timing Facilities

Understanding POSIX Clocks and Timers . 7-1
Understanding the Time Structures . 7-2
Using the Clock Routines. 7-3

Using the clock_settime Routine. 7-3
Setting the Clock During System Initialization 7-5
Setting the Clock at Init State 2 . 7-6

Using the clock_gettime Routine . 7-6
Using the clock_getres Routine. 7-7

Using the Timer Routines. 7-8
Using the timer_create Routine. 7-8
Using the timer_delete Routine. 7-12
Using the timer_settime Routine. 7-13
Using the timer_gettime Routine . 7-14
Using the timer_getoverrun Routine . 7-15

Using the nanosleep Routine . 7-16
Using the High-Resolution Timing Facility . 7-17

Overview of the High-Resolution Timing Facility. 7-17
Using the hirestmode Library Routine . 7-18

PowerMAX OS Real-Time Guide

7
Chapter 7Timing Facilities

7
7
7

This chapter provides an overview of some of the facilities that can be used for timing.
Presented first is an overview of the POSIX clocks and timers interfaces. These interfaces
are based on IEEE Standard 1003.1b-1993. The POSIX clock interfaces provide a high-
resolution clock, which can be used for such purposes as time stamping or measuring the
length of code segments. The POSIX timer interfaces provide a means of receiving a sig-
nal or process thread wakeup asynchronously at some future time. These interfaces also
allow a thread of execution to block itself until a specified high-resolution time has
elapsed.

This chapter also presents an overview of the high–resolution timing facility. This facility
provides a means of accurately measuring the CPU time utilized by a process or LWP.

Understanding POSIX Clocks and Timers 7

Clocks provide a high-resolution mechanism for measuring and indicating time. Cur-
rently two system-wide clocks are available. They are defined as CLOCK_UNIX and
CLOCK_REALTIME in the file <time.h>. The CLOCK_UNIX clock, a Harris Computer
Systems extension based on the hardclock interrupt, is the timing source for the system
time-of-day clock. The CLOCK_REALTIME clock, based on the hardware interval timer, is
the timing source for POSIX timers.

POSIX timers provide a mechanism for signaling the lapse of a time period. They are cre-
ated by and associated with a particular process. A process can create at most
PTIMER_MAX timers as defined in the file /etc/conf/mtune.d/svc.

There are two types of timers: one-shot and periodic. They are defined in terms of an ini-
tial expiration time and a repetition interval. The initial expiration time indicates when the
timer will first expire. The repetition interval indicates the amount of time that will elapse
between one expiration of the timer and the next. The initial expiration time may be abso-
lute (for example, at 8:30 a.m.) or relative to the current time (for example, in 30 seconds).
If a timer is armed with an absolute time, a timer expiration notification is sent to the pro-
cess when the clock associated with the timer reaches the specified time. If a timer is
armed with a relative time, a timer expiration notification is sent to the process when the
specified period of time, as measured by the clock associated with the timer, elapses.

A one-shot timer is armed with either an absolute or a relative initial expiration time and a
repetition interval of zero. It expires only once--at the initial expiration time--and then is
disarmed.

A periodic timer is armed with either an absolute or a relative initial expiration time and a
repetition interval that is greater than zero. The repetition interval is always relative to the
time at the point of the last timer expiration. When the initial expiration time occurs, the
timer is reloaded with the value of the repetition interval and continues counting. The
timer may be disarmed by setting its initial expiration time to zero.
7-1

PowerMAX OS Real-Time Guide
Access to the clocks and timers is provided by a set of related POSIX library routines that
are located within the C and thread libraries. The structures that are used to specify time
to these routines are explained in “Understanding the Time Structures.” The clock rou-
tines are then presented in “Using the Clock Routines” and the timer routines in “Using
the Timer Routines.”

Understanding the Time Structures 7

The POSIX library routines related to clocks and timers use two structures for time speci-
fications: the timespec structure and the itimerspec structure. These structures are
defined in the file <time.h>. The timespec structure specifies a single time value in
seconds and nanoseconds. The itimerspec structure specifies the initial expiration
time and the repetition interval for a timer.

The timespec structure is defined as follows:

struct timespec {
 time_t tv_sec;
 long tv_nsec;
};

The fields in the structure are described as follows.

tv_sec specifies the number of seconds in the time value

tv_nsec specifies the number of additional nanoseconds in the time value. The
value of this field must be greater than or equal to zero and less than
1,000,000,000.

You supply a pointer to a timespec structure when you invoke the routines that allow
you to set the time of a clock or obtain the time or resolution of a clock (for information on
these routines, see “Using the Clock Routines”).

The itimerspec structure is defined as follows:

struct itimerspec {
 struct timespec it_interval;
 struct timespec it_value;
};

The fields in the structure are described as follows.

it_interval specifies the amount of time that makes up the repetition
interval of a timer

it_value specifies the time of or the amount of time until a timer’s
expiration

You supply a pointer to an itimerspec structure when you invoke the routines that
allow you to set the time at which a timer expires or obtain information about a timer’s
expiration time (for information on these routines, see “Using the Timer Routines”).
7-2

Timing Facilities
Using the Clock Routines 7

The POSIX library routines that allow you to perform a variety of functions related to
clocks are briefly described as follows:

clock_settime set the time of a specified clock

clock_gettime obtain the time from a specified clock

clock_getres obtain the resolution in nanoseconds of a specified clock

Procedures for using each of these routines are explained in the sections that follow.

CLOCK_UNIX is the system time-of-day clock. Its value serves as the time for file system
creation and modification times, accounting and auditing record times, and IPC message
queue and semaphore times. The following commands, library routines, and system calls
read and set CLOCK_UNIX: date(1), gettimeofday(3C), settimeofday(3C),
stime(2), time(2), and adjtime(2). These commands, library routines, and sys-
tem calls do not affect CLOCK_REALTIME or the interval timer.

CLOCK_REALTIME is the timing source for POSIX timers. Its value is based on the hard-
ware interval timer.

Using the clock_settime Routine 7

The clock_settime(3C) library routine allows you to set the time of a specified
clock. Note that to use this routine, the calling process must have the P_SYSOPS privilege
(for additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page).

For instructions about how to safely set a clock, see “Setting the Clock During System Ini-
tialization” and “Setting the Clock at Init State 2.”

CAUTION

The clock_settime routine should not be used to set the time
of CLOCK_REALTIME. The only time that you can use this routine
without adversely affecting facilities that rely on the interval timer
is at system initialization or during a change to init state 2. The
reasons are explained in the following paragraphs.

If you set CLOCK_REALTIME after system start-up, the following facilities do not operate
properly: the ktrace utility, the high-resolution timing facility, the performance moni-
tor, and the high-resolution callout queue. The following paragraphs describe the prob-
lems that occur with each facility.

The ktrace(1) utility allows you to determine the amount of time that is devoted to
processing within the operating system. It uses the interval timer to include in each trace
record a time stamp that corresponds to the time at which a kernel event occurred. It then
calculates relative times by computing the difference between time stamps in two records.
Changing the value of the interval timer causes errors in the times that the ktrace utility
7-3

PowerMAX OS Real-Time Guide
reports. (For additional information on the ktrace utility, refer to the corresponding sys-
tem manual page and Chapter 4 of this guide.) Note that in future releases, there will be
other facilities that utilize the interval timer; these facilities will be adversely affected by
changing CLOCK_REALTIME.

The high-resolution timing facility uses the system’s interval timer as the timing source to
keep track of each process’s and LWP’s elapsed system and elapsed user time. It uses the
interval timer to associate time stamps with the times of entry into and exit from the ker-
nel, the times of entry into and exit from interrupt service routines, and the time between
context switches. It allows accurate measurement of CPU utilization. Changing the value
of the interval timer causes errors in the times that the high-resolution timing facility
records. (For additional information on the high-resolution timing facility, refer to “Using
the High-Resolution Timing Facility.”)

The performance monitor facility is a feature of PowerMAX OS that allows you to moni-
tor use of the CPU by processes or LWPs that are scheduled on a frequency-based sched-
uler (the performance monitor and the frequency-based scheduler are documented in the
PowerMAX OS Guide to Real-Time Services). On PowerMAX OS systems, the perfor-
mance monitor relies on the high-resolution timing facility to obtain its timing values.
Changing the value of the interval timer affects the performance monitor in the same way
that it affects the high-resolution timing facility.

The high-resolution callout queue contains entries that specify routines that are to be
called at some time in the future and the amount of time that is to elapse before they are
called. The expiration time for an entry in the high-resolution callout queue is stored as an
interval timer value. Changing the value of the interval timer affects the expiration times
for entries in this queue in the following manner: (1) queue entries that are set to expire at
an absolute time will still expire at that time according to the new time which has been set
via clock_settime(3C) and (2) queue entries that are set to expire at a relative time
will be adjusted so that they expire at the same relative time. Examples of routines that
cause entries to be placed in the high-resolution callout queue include the POSIX
timer_settime(3C) and nanosleep(3C) routines, which are presented in “Using
the timer_settime Routine” and “Using the nanosleep Routine,” respectively. (For addi-
tional information on the high-resolution callout queue, refer to Chapter 3 of this guide.)

If you set the system time-of-day clock, CLOCK_UNIX, after system start-up, the following
times may not be accurate: file system creation and modification times, times in account-
ing and auditing records, the expiration times for callout queue entries, and the Time of
Century setting. The following paragraphs describe the problems that can occur.

When you modify the system time, file system creation and modification times and times
in accounting and auditing records that were recorded before the time change are no
longer accurate relative to the new time-of-day system time.

Unlike high-resolution callout queue entries with expiration times based on the interval
timer, callout queue entries (and cron(1) jobs) have expiration times based on the sys-
tem time. Changing the system time value affects the expiration times for entries in this
queue. Examples of routines that cause entries to be placed in the callout queue include
the setitimer(3C) and getitimer(3C) routines. (For additional information on
the callout queue, refer to Chapter 3 of this guide.)

During a system reboot, the system initializes CLOCK_REALTIME and CLOCK_UNIX to
roughly the same time, the value of the Time of Century clock at a resolution of one sec-
ond. Setting CLOCK_UNIX sets the Time of Century clock. Incorrectly setting
CLOCK_UNIX invalidates the Time of Century clock value for the next system reboot.
7-4

Timing Facilities
The specifications required for making the clock_settime call are as follows:

#include <time.h>

int clock_settime(clock_id, tp)

clockid_t clock_id;
struct timespec *tp;

The arguments are defined as follows:

clock_id the identifier for the clock for which you wish to set the time. The value
of clock_id must be CLOCK_REALTIME or CLOCK_UNIX.

tp a pointer to a structure that specifies the time to which the clock identi-
fied by clock_id is to be set. When clock_id is CLOCK_REALTIME, the
interval timer is set to a new value. When clock_id is CLOCK_UNIX, the
t ime-of-day clock is set to a new value. Note that you set
CLOCK_REALTIME and CLOCK_UNIX independently.

The values in the structure represent the amount of time in seconds and
nanoseconds that have passed since 00:00:00 GMT (Greenwich mean
time), January 1, 1970. In reality, the system is not synchronized to any
standard time reference; however, the application can treat this time as if
it represents the number of seconds between the referenced time and
00:00:00 GMT, January 1, 1970. Time values that are between two con-
secutive non-negative integer multiples of the resolution of the specified
clock are truncated to the smaller multiple of the resolution. See the
clock_getres(3C) system manual page and “Using the
clock_getres Routine.”

A return value of 0 indicates that the specified clock has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the clock_settime(3C) system manual page for a listing of the types of errors that
may occur.

Setting the Clock During System Initialization 7

If you always wish to set CLOCK_UNIX or CLOCK_REALTIME as you boot the system into
single user mode, perform the following steps:

1. Write a program that sets the clock or clocks. This program should be stat-
ically linked and located either in the / or /var file systems because the
/usr file system will not be mounted when your program will be exe-
cuted.

2. Edit the /etc/inittab file.

3. Search for the following line (where the 2 may be a 3):

is:2:initdefault:

4. If your program is named /sbin/setclk, then insert the following line
above the line you just found.

sk::sysinit:/sbin/setclk >/dev/sysmsg
7-5

PowerMAX OS Real-Time Guide
(For more information about adding entries in the inittab file, see the
inittab(4) system manual page.)

5. Repeat steps 2 through 4 for the /etc/conf/init.d/kernel file.

During system initialization, init will dispatch your program for execution.

Setting the Clock at Init State 2 7

If you always wish to set CLOCK_UNIX or CLOCK_REALTIME as you enter init state 2,
perform the following steps:

1. Write a program that sets the clock or clocks.

2. Change directory to /etc/rc2.d.

3. Create a script file with a name that adheres to the following convention for
files in this directory.

S##name

where:

S indicates that the script will be executed whenever the system
enters init state 2 from init state 0.

is a two-digit number that indicates script execution order, where
low numbers are executed first. If you wish to execute your set
clock program after all other init 2 scripts have run, then use a
number that is higher than those of existing scripts. For example,
the S75rpc script will be executed before the S85setclock
script.

name is a user-supplied file name suffix.

4. Edit this script so that it will execute the program or programs that you
wish to have run. The following example shows the possible contents of
this script for a set clock program named /sbin/setclk.

#
Run program to set the clock.
#
echo /sbin/setclk
/sbin/setclk

Assume that your set clock program runs at init state 2, and the script that calls it has the
highest number in the directory. Networking and non-NFS file systems will both be avail-
able to your program. This is not true of programs started at system initialization.

Using the clock_gettime Routine 7

The clock_gettime(3C) library routine allows you to obtain the time from a speci-
fied clock.
7-6

Timing Facilities
The specifications required for making the clock_gettime call are as follows:

#include <time.h>

int clock_gettime(clock_id, tp)

clockid_t clock_id;
struct timespec *tp;

The arguments are defined as follows:

clock_id the identifier for the clock from which you wish to obtain the time. The
value of clock_id must be CLOCK_REALTIME or CLOCK_UNIX.

tp a pointer to a structure to which the time of the clock identified by
clock_id is returned. The values returned represent the amount of time
in seconds and nanoseconds that has passed since 00:00:00 GMT
(Greenwich mean time), January 1, 1970. In reality, the system is not
synchronized to any standard time reference; however, the application
can treat this time as if it represents the number of seconds between the
referenced time and 00:00:00 GMT, January 1, 1970. Note that you
m a y c h a n g e t h e v a l u e o f t h i s c lo c k b y u s i n g t h e
clock_settime(3C) library routine (see “Using the clock_settime
Routine” for an explanation of this routine).

A return value of 0 indicates that the call to clock_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_gettime(3C) system manual page for a listing of the types of
errors that may occur.

Using the clock_getres Routine 7

The clock_getres(3C) library routine allows you to obtain the resolution in nano-
seconds of a specified clock.

Processes cannot set clock resolutions. The resolution for CLOCK_REALTIME is one
microsecond (1,000 nanoseconds), and the resolution for CLOCK_UNIX on PowerMAX OS
systems is 60 Hz (16,666,667 nanoseconds).

The specifications required for making the clock_getres call are as follows:

#include <time.h>

int clock_getres(clock_id, res)

clockid_t clock_id;
struct timespec *res;

The arguments are defined as follows:

clock_id the identifier for the clock for which you wish to obtain the resolution.
The value of clock_id must be CLOCK_REALTIME or CLOCK_UNIX.
7-7

PowerMAX OS Real-Time Guide
res a pointer to a structure to which the resolution of the clock identified by
clock_id is returned

A return value of 0 indicates that the call to clock_getres has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_getres(3C) system manual page for a listing of the types of
errors that may occur.

Using the Timer Routines 7

The POSIX library routines that allow you to perform a variety of functions related to
POSIX timers are briefly described as follows:

timer_create create a timer using a specified clock

timer_delete remove a specified timer

timer_settime arm or disarm a specified timer by setting the
expiration time

timer_gettime obtain the repetition interval for a specified
timer and the time remaining until the timer
expires

timer_getoverrun obtain the overrun count for a specified peri-
odic timer

nanosleep allow threads to block until a specified
period of time elapses

Procedures for using each of these routines are explained in the sections that follow.

NOTE

Processes can create, remove, set, and query timers and may
receive notification when a timer expires. When a process has
multiple threads, each of these threads can access each timer the
process creates. Signals delivered to a process are asynchronous
in nature. This signal delivery follows the normal threads library
method of selecting a thread within a process for receiving a sig-
nal (see “Programming with the Threads Library” in the Power-
MAX OS Programming Guide).

Using the timer_create Routine 7

The timer_create(3C) library routine allows the calling process to create a timer
using a specified clock as the timing source. By default, the system is configured to allow
32 timers per process. A POSIX-compliant program can use a maximum of 32 timers
only. You can use the config(1M) utility to change the PTIMER_MAX tunable parameter
to allows up to 2048 timers per process. Note that after changing a tunable parameter, you
must rebuild the kernel and then reboot your system. For an explanation of the procedures
7-8

Timing Facilities
for using config, refer to the “Configuring and Building the Kernel” chapter of System
Administration Volume 2.

A timer is disarmed when it is created. It is armed when the process invokes the
timer_settime(3C) library routine (see “Using the timer_settime Routine” for an
explanation of this routine).

It is important to note the following:

• When a process invokes the fork system call, the timers that it has created
are not inherited by the child process.

• When a process invokes the exec system call, the timers that it has created
are disarmed and deleted.

• When a process has multiple threads, each of these threads can access each
timer the process creates.

The specifications required for making the timer_create call are as follows:

#include <time.h>
#include <signal.h>

int timer_create(clock_id, evp, timerid)

clockid_t clock_id;
struct sigevent *evp;
timer_t *timerid;

The arguments are defined as follows:

clock_id the identifier for the clock that is to serve as the timing source for the
timer. The value of clock_id must be CLOCK_REALTIME, which has a
resolution of one microsecond.

evp the null pointer constant or a pointer to a structure that specifies the way
in which the calling process is to be asynchronously notified of the expi-
ration of the timer. Table 7-1 summarizes these notification methods.
7-9

PowerMAX OS Real-Time Guide
NOTE

The signal denoting expiration of the timer may cause the process
to terminate unless it has specified a signal-handling routine. To
determine the default action for a particular signal, refer to the
signal(5) system manual page.

Table 7-1. Notification Mechanisms for Timer Expirations

Assignment Effect and Required Actions

evp = NULL The default signal, SIGALRM, is to be sent to the process when the timer expires. If the
process is catching the SIGALRM signal and has set the SA_SIGINFO flag on a call to
sigaction(2) to declare an action for the signal, then the expired timer’s identifier is the
value and SI_TIMER is the code that is delivered with the signal.

evp->sigev_notify =
 SIGEV_SIGNAL

A specified signal and application-defined value are to be sent to the process when the timer
expires.

Your application must set evp->sigev_signo to the signal number that is to be sent to the pro-
cess upon expiration of the timer. A set of symbolic constants has been defined to assist you
in specifying signal numbers. These constants are defined in the file <signal.h>.

Your application must also set evp->sigev_value to an application-defined value that is to be
used by a signal-handling routine. This value may be a pointer or an integer value.

Assume that the process catching the signal invoked the sigaction(2) system call with
the SA_SIGINFO flag set prior to the time that the timer is created. The signal, the applica-
tion-defined value, and the SI_TIMER code are queued to the process when the timer expires.

continued on next page
7-10

Timing Facilities
timerid a pointer to the location to which timer_create returns the identifier
for the timer that is created. This identifier is required by the other
POSIX timer routines and is unique within the calling process until the
timer is deleted by the timer_delete(3C) routine.

evp->sigev_notify =
 SIGEV_CALLBACK

At the time of the timer_create call, a bound daemon thread is to be created for han-
dling timer expirations. When the timer expires, this thread is to execute the process’s
timer-expiration routine.

Your application must set evp->sigev_func to the address of a user-defined timer-expiration
routine. Your application must also set evp->sigev_value to an application-defined value
that is to be used by a signal-handling routine. This value may be a pointer or an integer
value. The following interface describes how the timer-expiration routine will be called:

 void user_expiration_routine(void *evp->sigev_value)

If your timer-expiration routine calls other routines, the timer expiration thread must exit
these routines via an explicit or implicit return. Expiration routines for periodic timers
should not call thr_exit(3thread) because this will cause the timer to be deleted
within the kernel. Additionally, applications should not call functions that would block or
put the thread to sleep for long periods of time because timer overruns would be likely to
occur in these situations (see timer_getoverrun(3C)). To help ensure that the timer-
expiration thread functions properly, application code should not change the signal mask of
the timer-expiration thread.

This Harris Computer Systems extension, which is not POSIX-compliant, provides a much
quicker and more deterministic notification method for timer expirations than the signal
delivery of SIGEV_SIGNAL method. The SIGEV_CALLBACK method wakes up an already
blocked, bound daemon thread in the kernel. This thread immediately returns to user space
to execute your timer-expiration routine.

If the SIGEV_CALLBACK notification method is used, then the application must link in the
thread library. Failure to adhere to this requirement will result in a run-time error return
of -1 from the timer_create(3C) call with errno set to EINVAL. You may link this
library either statically or dynamically. (For information about static and dynamic linking,
see the “Link Editor and Linking” chapter in Compilation Systems Volume 1 (Tools).) The
following example shows the typical command-line format:

cc [options] -D_REENTRANT file -lthread

evp->sigev_notify =
 SIGEV_NONE

No notification is to be delivered when the timer expires.

Table 7-1. Notification Mechanisms for Timer Expirations (Cont.)

Assignment Effect and Required Actions
7-11

PowerMAX OS Real-Time Guide
CAUTION

If the real-time clock driver is not configured in the kernel that is
currently executing or if the hrtconfig(1M) program has not
been executed in order to set up a timer interrupt source for the
high-resolution callout queue, then this routine fails and sets
errno to ENODEV. (For additional information on the high-
resolution callout queue, refer to Chapter 3 of this guide.)

A return value of 0 indicates that the call to timer_create has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_create(3C) system manual page for a listing of the types of
errors that may occur.

Using the timer_delete Routine 7

The timer_delete(3C) library routine allows the calling process to remove a speci-
fied timer. If the selected timer is armed when the process invokes this routine, the timer
is first disarmed and then removed.

If the timer-expiration notification method is SIGEV_SIGNAL, then a signal that is already
pending due to a previous timer expiration for this timer will still be delivered to this pro-
cess.

If the timer-expiration notification method is SIGEV_CALLBACK and timer_delete
successfully returns, then the timer-expiration routine will not be run again for the deleted
timer. Additionally, if a timer-expiration thread is currently executing the timer-expiration
routine at the time that the timer_delete call is made, the thread will be allowed to
complete execution of the routine before the caller returns from timer_delete.

The specifications required for making the timer_delete call are as follows:

#include <time.h>

int timer_delete(timerid)

timer_t timerid;

The argument is defined as follows:

timerid the identifier for the timer that is to be removed. This identifier comes
from a previous call to timer_create(3C) (see “Using the
timer_create Routine” for an explanation of this routine).

A return value of 0 indicates that the specified timer has been successfully removed. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_delete(3C) system manual page for a listing of the types of
errors that may occur.
7-12

Timing Facilities
Using the timer_settime Routine 7

The timer_settime(3C) library routine allows the calling process to arm a specified
disarmed timer by setting the time at which it will expire. A calling process can use this
routine on an armed timer to (1) disarm the timer or (2) reset the time until the next expira-
tion of the timer to the value specified on the call.

CAUTION

If the real-time clock driver is not configured in the kernel that is
currently executing or if the hrtconfig(1M) program has not
been executed in order to set up a timer interrupt source for the
high-resolution callout queue, then this routine fails and sets
errno to ENODEV. (For additional information on the high-
resolution callout queue, refer to Chapter 3 of this guide.)

The specifications required for making the timer_settime call are as follows:

#include <time.h>

int timer_settime(timerid, flags, value, ovalue)

timer_t timerid;
int flags;
struct itimerspec *value;
struct itimerspec *ovalue;

The arguments are defined as follows:

timerid the identifier for the timer that is to be set. This identifier comes from a
previous call to timer_create(3C) (see “Using the timer_create
Routine” for an explanation of this routine).

flags an integer value that specifies one of the following:

TIMER_ABSTIME causes the selected timer to be armed with an
absolute expiration time. The timer will expire
when the clock associated with the timer
reaches the value->it_value actual time. If this
time has already passed, timer_settime
succeeds, and the timer-expiration notification
is made.

0 causes the selected timer to be armed with a rel-
ative expiration time. The timer will expire
when the clock associated with the timer
advances value->it_value seconds and nanosec-
onds from the time when the timer_settime
call was made.

value a pointer to a structure that contains the repetition interval and the initial
expiration time of the timer.
7-13

PowerMAX OS Real-Time Guide
If you wish to have a one-shot timer, specify a repetition interval,
value->it_interval, of zero. In this case, the timer expires once, when the
initial expiration time occurs, and then is disarmed.

If you wish to have a periodic timer, specify a repetition interval,
value->it_interval, that is not equal to zero. In this case, when the initial
expiration time occurs, the timer is reloaded with the value of the repeti-
tion interval and continues to count.

In either case, you may set the initial expiration time, value->it_value,
to a value that is equal to a certain time (for example, at 3:00 p.m.) or
relative to the current time (for example, in 30 seconds). To set the ini-
tial expiration time to a certain time, you must have set the
TIMER_ABSTIME bit in the flags argument. When the timer-expiration
notification method is SIGEV_CALLBACK, all executions of the timer
expiration routine that occur after the timer_settime call will be
due only to expirations based on the new time setting. When the timer-
expiration notification method is not SIGEV_CALLBACK, then any signal
that is already pending due to a previous timer expiration for the speci-
fied timer will still be delivered to the process.

Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified timer are rounded up to the
larger multiple of the resolution.

To disarm the timer, set the initial expiration time, value->it_value, to
ze ro . Wh en the t i me r- exp i r a t ion no t i f i c a t i on me thod i s
SIGEV_CALLBACK, the timer-expiration routine will not be run again
until a subsequent timer_settime call is made to set the timer.
W h e n th e t i m e r- e x p i r a t i o n n o t i f i c a t io n m e t h o d i s n o t
SIGEV_CALLBACK, then any signal that is already pending due to a pre-
vious timer expiration for this timer will still be delivered to the process.

ovalue the null pointer constant or a pointer to a structure to which the previous
repetition interval and initial expiration time of the timer are returned.
If the timer has been disarmed, the value of the initial expiration time,
ovalue->it_value, is zero. The members of ovalue are subject to the res-
olution of the timer and are the same values that would be returned by a
timer_gettime(3C) call at that point in time.

A return value of 0 indicates that the specified timer has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the timer_settime(3C) system manual page for a listing of the types of errors that
may occur.

Using the timer_gettime Routine 7

The timer_gettime(3C) library routine allows the calling process to obtain the repe-
tition interval for a specified timer and the amount of time remaining until the timer
expires.

The specifications required for making the timer_gettime call are as follows:
7-14

Timing Facilities
#include <time.h>

int timer_gettime(timerid, value)

timer_t timerid;
struct itimerspec *value;

The arguments are defined as follows:

timerid the identifier for the timer for which you wish to obtain the repetition
interval and the amount of time remaining until the timer expires. This
identifier comes from a previous call to timer_create(3C) (see
“Using the timer_create Routine” for an explanation of this routine).

value a pointer to a structure to which the repetition interval and the amount of
time remaining on the timer are returned. The amount of time remain-
ing is relative to the current time. If the timer is disarmed, the value is
zero.

A return value of 0 indicates that the call to timer_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_gettime(3C) system manual page for a listing of the types of
errors that may occur.

Using the timer_getoverrun Routine 7

The timer_getoverrun(3C) library routine allows the calling process to obtain the
overrun count for a particular periodic timer. The overrun count indicates the number of
times that the timer has expired between:

• The generation (queueing) of the timer expiration signal and delivery of the
signal. For each timer expiration signal that is generated, the overrun count
is zero if there is no delay between generation and delivery of the signal.

• The beginning and end of a timer-expiration thread’s execution of the
timer-expiration routine.

Assume that a signal is already queued or pending for a process with a timer using timer-
expiration notification SIGEV_SIGNAL. If this timer expires while the signal is queued or
pending, a timer overrun occurs, and no additional signal is sent.

Assume that a timer-expiration routine is running for a timer using timer-expiration notifi-
cation SIGEV_CALLBACK. If this timer expires while the timer-expiration routine is run-
ning, a timer overrun occurs, and no additional instance of the timer-expiration routine is
run.

NOTE

You must invoke this routine from the timer-expiration signal-
handling or timer-expiration thread execution routine. If you
invoke it outside this routine, the overrun count that is returned is
not valid for the timer-expiration signal last taken.
7-15

PowerMAX OS Real-Time Guide
The specifications required for making the timer_getoverrun call are as follows:

#include <time.h>

int timer_getoverrun(timerid)

timer_t timerid;

The argument is defined as follows:

timerid the identifier for the periodic timer for which you wish to obtain the
overrun count. This identifier comes from a previous call to
timer_create(3C) (see “Using the timer_create Routine” for an
explanation of this routine).

If the call is successful, timer_getoverrun returns the overrun count for the specified
timer. This count cannot exceed DELAYTIMER_MAX in the file <limits.h>. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the timer_getoverrun(3C) system manual page for a listing of the types of errors
that may occur.

Using the nanosleep Routine 7

The nanosleep(3C) routine provides a high-resolution sleep mechanism that causes
execution of the calling process or thread to be suspended until (1) a specified period of
time elapses or (2) a signal is received and the associated action is to execute a signal-han-
dling routine or terminate the process. The use of nanosleep has no effect on the action
or blockage of any signal.

The sleep time resolution for calls made to nanosleep by multiplexed threads is less
deterministic than calls made by bound threads. Therefore, use bound threads if your mul-
tithreaded application requires a high-resolution sleep time on nanosleep calls.

The specifications required for making the nanosleep call are as follows:

#include <time.h>

int nanosleep(rqtp, rmtp)

struct timespec *rqtp;
struct timespec *rmtp;

Arguments are defined as follows:

rqtp a pointer to a timespec structure that contains the length of time that
the process is to sleep. The suspension time may be longer than
requested because the rqtp value is rounded up to an integer multiple of
the sleep resolution or because of the scheduling of other activity by the
system. Except for the case of being interrupted by a signal, the sus-
pension time will not be less than the time specified by rqtp, as mea-
sured by CLOCK_REALTIME. You will obtain a resolution of one micro-
second on the blocking request.
7-16

Timing Facilities
rmtp the null pointer constant or a pointer to a timespec structure to which
the amount of time remaining in the sleep interval is returned if
nanosleep is interrupted by a signal. If rmtp is NULL and nanos-
leep is interrupted by a signal, the time remaining is not returned.

CAUTION

If the real-time clock driver is not configured in the kernel that is
currently executing or if the hrtconfig(1M) program has not
been executed in order to set up a timer interrupt source for the
high-resolution callout queue, then this routine fails and sets
errno to ENODEV. (For additional information on the high-
resolution callout queue, refer to Chapter 3 of this guide.)

A return value of 0 indicates that the requested period of time has elapsed. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
nanosleep(3C) system manual page for a listing of the types of errors that may occur.

Using the High-Resolution Timing Facility 7

This section provides an overview of the high–resolution timing facility and explains the
procedures for using the related library routine, hirestmode(3C).

Overview of the High-Resolution Timing Facility 7

The high–resolution timing facility is a feature of PowerMAX OS systems. It provides a
means of measuring each process’s or LWP’s execution time. The high–resolution timing
facility is available only if it is configured into the currently executing kernel. By default,
it is not configured into the kernel. If the high-resolution timing facility is not configured,
execution time is estimated by sampling the program counter 60 times a second. The
high-resolution timing facility uses the interval timer to accurately measure the processor
time that a process or LWP uses while executing in both system and user mode. It is
important to note that the high-resolution timing facility adds a small amount of overhead
to interrupt entry and exit, exception entry and exit, and context switches.

To configure the high–resolution timing facility, you must change the value of the
HIGHRESTIMING system tunable parameter from 0 to 1. You can use the config utility
to (1) determine whether the high-resolution timing facility is configured into you kernel,
(2) change the value of the HIGHRESTIMING tunable parameter, and (3) rebuild the kernel.
Note that you must be the root user to change the value of a tunable parameter and rebuild
the kernel. After rebuilding the kernel, you must then reboot your system. For an expla-
nation of the procedures for using config(1M), refer to the “Configuring and Building
the Kernel” chapter of System Administration Volume 2.
7-17

PowerMAX OS Real-Time Guide
The high–resolution timing facility has two modes of operation: one that includes inter-
rupt time in timing values and one that excludes interrupt time from timing values. The
two modes are defined as follows:

Include interrupt time A process’s or LWP’s user and system times
total the elapsed time that accrues when the
process or LWP is currently running. This
elapsed time includes time spent servicing
interrupts and performing context switches.
Time spent servicing interrupts is added to
the process’s or LWP’s system time. Time
spent switching to a new process or LWP is
included in the new process’s or LWP’s sys-
tem time.

Exclude interrupt time A process’s or LWP’s user and system times
total the time that accrues when the process
or LWP is currently running. This time
excludes time spent servicing interrupts, but
it includes time spent performing context
switches. Time spent switching to a new pro-
cess or LWP is included in the new process’s
or LWP’s system time.

The default mode is to exclude interrupt time.

The high–resolution timing facility is supported by a library routine, hirestmode(3C),
that enables you to set the timing mode for the system. Procedures for using this routine
are explained in “Using the hirestmode Library Routine.”

When the high–resolution timing facility is configured, it affects the times reported by
time(1), times(2), _lwp_info(2), timex(1), the performance monitor, and
/proc. On a read of the /proc/pid/status file, the pr_utime, pr_stime,
pr_cutime, and pr_cstime fields in the pstatus_t structure are affected. On a
read of the /proc/pid/lwp/lwpid/lwpsinfo fi le, the pr_time field in the
lpwsinfo_t structure is affected. (For additional information on these fields, refer to
the proc(4) system manual page.)

In each case, the timing values that are returned and represent a process’s and LWP’s sys-
tem time will be affected by the mode in which the high–resolution timing facility is oper-
ating; that is, they will either include or exclude time spent servicing interrupts. (To deter-
mine the type of information that is returned in each case, refer to the corresponding
system manual pages.)

Using the hirestmode Library Routine 7

The hirestmode library routine enables you to set the timing mode or obtain the current
timing mode for the high–resolution timing facility on a PowerMAX OS system. It is
important to note that to use this call to set the timing mode, the calling process must have
the P_RTIME privilege (for additional information on privileges, refer to the intro(2)
System Manual and the PowerMAX OS Programming Guide.
7-18

Timing Facilities
CAUTION

The timing mode for the high–resolution timing facility is set sys-
tem–wide. It affects all processes and LWPs running on all CPUs.

The specifications required for making the hirestmode call are as follows:

int hirestmode(mode)

int mode;

The value of mode indicates the type of operation that you wish to perform and must be
one of the following:

<0 Get the current system timing mode.

 0 Set the system timing mode to exclude time spent servicing interrupts.

>0 Set the system timing mode to include time spent servicing interrupts.

If the value of mode is less than zero, the hirestmode call returns the current system
timing mode. If the value of mode is greater than or equal to zero, hirestmode returns
the previous timing mode. A return value of 0 indicates that time spent servicing interrupts
is excluded. A return value of 1 indicates that time spent servicing interrupts is included.
A return value of –1 indicates that an error has occurred; errno is set to indicate the
error. For a listing of the types of errors that may occur, refer to the system manual page
hirestmode(3C).
7-19

PowerMAX OS Real-Time Guide
7-20

8
User-Level Interrupt Routines

Overview of User-Level Interrupt Routines . 8-1
Configuration Requirements . 8-3
Operating System Support . 8-3

Connecting to an Interrupt Vector . 8-4
Obtaining an Interrupt Vector. 8-5

Using the IOCTLVECNUM ioctl System Call . 8-6
Modifying the Interrupt Vector Table . 8-6

Using the iconnect Library Routine . 8-7
Defining an Interrupt Vector Connection . 8-9
Disconnecting a Process from an Interrupt Vector 8-10
Allocating Interrupt Vectors . 8-11
Obtaining the Status of Interrupt Vectors . 8-12

Locking Library Memory Pages. 8-14
Using the ienable Library Routine . 8-15

Viewing User-Level Interrupt Connections. 8-16
Using Local Memory. 8-17
Interrupt-Handling Routine Constraints . 8-19
Debugging the Interrupt-Handling Routine. 8-20
Understanding the Processor IPL . 8-22
Using the spl Support Routines . 8-23

Using the spl_map Routine . 8-25
Using the spl_request Routine . 8-25
Using the spl_request_macro . 8-26
Using the spl_unmap Routine . 8-27

Using the eti Support Routines . 8-28
Using the eti_map Routine . 8-28
Using the eti_request Routine . 8-29
Using the eti_unmap Routine . 8-30

Using the Distributed Interrupt Support Routines . 8-30
Using the vme_address Routine . 8-31

PowerMAX OS Real-Time Guide

8
Chapter 8User-Level Interrupt Routines

8
8
8

This chapter provides an overview of user-level interrupt routines and the ways in which
they may be used. It describes the system calls, library routines, and utilities that have
been developed to support the use of user-level interrupt routines, and it explains the pro-
cedures for using them.

Overview of User-Level Interrupt Routines 8

The PowerMAX OS operating system provides the support necessary to allow a process to
define a connection to an interrupt vector generated by a selected device and to enable that
connection. When a process defines an interrupt vector connection, it specifies the inter-
rupt vector number to which it is connecting, the address of a user interrupt-handling rou-
tine that will be executed upon each occurrence of the connected interrupt, and a parame-
ter tht is passed to that routine. When a process enables the connection to an interrupt
vector, it blocks in the kernel; it no longer executes at normal program level. It executes
only at interrupt level—executing the specified interrupt-handling routine when the con-
nected interrupt becomes active.

Throughout this chapter, the term user-level interrupt process denotes the process or pro-
cess thread that defines and enables an interrupt vector connection; the term interrupt-
handling routine denotes the routine that is executed each time the connected interrupt
occurs or becomes active. Constraints imposed on the user-level interrupt process are
described in this section. Constraints imposed on the interrupt-handling routine are
described in “Interrupt-Handling Routine Constraints.”

For a single-threaded process, a user-level interrupt process may define a connection to
only one interrupt vector at a time. For a multithreaded process, multiple interrupt con-
nections may be made by using a separate bound thread for each connection. Only one
user-level interrupt process may define a connection to a particular interrupt vector at a
time.

The device driver for the real-time clock (rtc) provides support for connecting a process
to an interrupt vector generated by the real-time clock. Prior to connecting a process to an
interrupt vector generated by this device, you must ensure that the device is configured in
your system. For information on the use of this device, refer to Chapter 12 of this guide
and the rtc(7) system manual page.

On PowerMAXION systems, an application program can use the fifth real-time clock on
each processor board as a watch-dog timer. When programmed as a watch-dog timer, this
real-time clock's time-out generates a nonmaskable exception to the PPC604 processor on
that board. The application can connect a user-level interrupt routine to this exception.
When the timer expires, the operating system passes program control to the user-level
interrupt routine at interrupt level.

The application sets up the watch-dog timer by performing the following steps:
8-1

PowerMAX OS Real-Time Guide
1. The fifth real-time clock's interrupt must be disabled on the processor's
interrupt controller. The application does this by mapping the interrupt
controller's enable register using the shared memory mechanism. Refer to
the “Interprocess Communication” chapter of the PowerUX Programming
Guide for an explanation of the procedures for using shared memory. The
physical addresses for the interrupt enable registers on the PowerMAXION
are as follows:

0x96200020 local processor
0x9D000020 processor board 0
0x9D100020 processor board 1
0x9D200020 processor board 2
0x9D300020 processor board 3

The fifth real-time clock interrupt is disabled by resetting bit 17 in the
enable register. This is a 32-bit register. The application must not change
other bits in the interrupt controller's enable register. This can be achieved
by reading the enable register, masking out bit 17 only, and then rewriting
the contents to the enable register.

The application is responsible for re-enabling this interrupt after use of the
watch-dog timer is complete. This is achieved by setting bit 17 in the
enable register. Failure to do so will prevent the fifth real-time clock on
that processor board from being used as a timer.

2. The interrupt signal from the fifth real-time clock must be routed directly
to a nonmaskable exception input on the PPC604 processor. The applica-
tion does this by mapping the processor’s control and status register
(PCSR) using the shared memory mechanism. This is a 16-bit register.
The physical addresses for the PCSRs are as follows:

0xB2000000 processor 0
0xB2000008 processor 1
0xB6000000 processor 2
0xB6000008 processor 3

Routing of the fifth real-time clock interrupt is achieved by setting bit 11 in
the PCSR for the respective processor board. The application must not
change other bits in the PCSR. This can be achieved by reading the regis-
ter, setting bit 11, and rewriting the contents to the register.

The application is responsible for restoring bit 11 of the PCSR to 0 after
use of the watch-dog timer is complete. Failure to do so will prevent the
fifth real-time clock on that processor board from being used as a timer.

3. The application must connect and enable the user-level interrupt routine.
This is achieved by using the interfaces that are described in “Operating
System Support” (page 8-3). The application must also lock all memory
resources used by the user-level interrupt routine. These resources include
shared memory segments, library text and data, and process text and data.

4. The fifth real-time clock must be programmed by the application with the
correct count and frequency.
8-2

User-Level Interrupt Routines
Prior to enabling an interrupt connection, a user-level interrupt process must lock into
memory portions of its virtual address space that will be referenced by the interrupt-han-
dling routine. Exceptions that occur during execution of the interrupt-handling routine are
fatal (see “Interrupt-Handling Routine Constraints” for more detailed information).

It is recommended that a user-level interrupt process avoid using system calls and library
routines that enable you to obtain an execution profile (for example, profil(2) and
monitor(3C)) because the resulting information will be incorrect.

You may use local memory with a user-level interrupt process, but you should take into
consideration the CPU that will be receiving the connected interrupt prior to defining and
enabling the interrupt vector connection. Guidelines for using local memory with user-
level interrupt processes are presented in “Using Local Memory.”

User-level interrupt routines provide a user-level process with the capability to react
quickly and deterministically to an external event that arrives as an interrupt. Some of the
ways in which you may use user-level interrupt routines are as follows:

• To write a user-level device driver

• To connect to an external interrupt for purposes of process scheduling or
event notification

Configuration requirements related to the use of user-level interrupt routines are presented
in “Configuration Requirements.” Operating system support for user-level interrupt rou-
tines is described in “Operating System Support.”

Configuration Requirements 8

The user-level interrupt module (ui) is optional. By default, the ui module is not config-
ured. This means that the ui kernel driver containing the user-level interrupt kernel sup-
port code is not configured into the kernel. You can use the config(1M) utility to (1)
determine whether or not the ui module is enabled in your kernel, (2) enable the ui mod-
ule, and (3) rebuild the kernel. Note that you must be the root user to enable a module and
rebuild the kernel. After rebuilding the kernel, you must then reboot your system. For an
explanation of the procedures for using config(1M), refer to the “Configuring and
Building the Kernel” chapter of System Administration Volume 2.

You can also remove user-level interrupt support from the kernel by using config. In
this case also, you must then rebuild the kernel and reboot your system.

Operating System Support 8

Operating system support for user-level interrupt routines consists of system calls, a util-
ity, and C and threads library routines. The iconnect(3C) and the ienable(3C)
library routines enable you to define a connection between a user-level interrupt process
and an interrupt vector and to enable that connection. Use of these system calls is
explained in “Connecting to an Interrupt Vector.” The operating system allows you to
reserve an entry in the system interrupt vector table for a VME board whose interrupt vec-
8-3

PowerMAX OS Real-Time Guide
tor is fixed. Procedures for doing so are also explained in “Connecting to an Interrupt
Vector.”

The uistat(1) utility allows you to (1) display user-level interrupt vector connections
that have been defined on your system, (2) remove interrupt vector connection definitions,
and (3) disconnect user-level interrupt processes for which a connection has been enabled.
Procedures for using this utility are explained in “Viewing User-Level Interrupt Connec-
tions.”

A set of libud library routines enables you to raise and lower a processor’s interrupt pri-
o r i ty l e v e l f r o m u s e r l ev e l . T h e s e r o u t in e s i n c l u d e spl_map(3X) ,
spl_request(3X), and spl_unmap(3X). Procedures for using these routines and
the related spl_request_macro are explained in “Using the spl Support Routines.”

The vme_address(3C) library routine enables you to obtain a 32-bit physical address
for a specified device’s A24 or A16 VME address. Use of this routine is described in
“Using the vme_address Routine.”

Appendix C contains an example C program that demonstrates use of the system calls and
selected library routines by a user program that executes a user-level interrupt process and
interrupt-handling routine.

Connecting to an Interrupt Vector 8

Defining a connection between a user-level interrupt process and an interrupt vector and
enabling that connection requires the following steps:

1. Provide for communication between the user-level interrupt process and
other processes by creating or attaching a shared memory region. You can
do so by using the shmget(2) and the shmat(2) system calls, respec-
tively. Use of these calls is fully explained in the PowerMAX OS Program-
ming Guide. Note that in a multithreaded process that does not require
interprocess communication, this step is not necessary because the address
space is shared among the threads.

2. Determine the interrupt vector to which you wish to connect the user-level
interrupt process. Procedures for performing this step are explained in
“Obtaining an Interrupt Vector.”

3. Set up an interrupt connection structure, and define a connection between
the user-level interrupt process and the interrupt vector obtained in Step 2.

The interrupt connection structure is defined in the header file
<sys/iconnect.h>. Among the fields that this structure contains are
those that specify the interrupt vector and the address of the interrupt-han-
dling routine. You define the interrupt vector connection by using the
iconnect(3C) library routine and specifying the interrupt connection
structure. The fields in the structure and the procedures for using this call
are explained in “Using the iconnect Library Routine.”

4. Lock the user-level interrupt process’s pages in physical memory. You can
do so by using the mlock(3C) or mlockall(3C) library routines. It is
8-4

User-Level Interrupt Routines
recommended that you lock the entire process in memory by using
mlockall(3C). Use of this routine is fully explained in the PowerMAX
OS Programming Guide.

5. Enable the user-level interrupt process’s interrupt vector connection
defined in Step 3. You can do so by using the ienable(3C) library rou-
tine. Procedures for using this routine are explained in “Using the ienable
Library Routine.”

Note that the user-level interrupt process will not return from this call
unless an error occurs during the ienable(3C) call or another process or
process thread disconnects it from the interrupt vector. It will execute only
at interrupt level in the interrupt-handling routine when the connected
interrupt occurs.

Obtaining an Interrupt Vector 8

To use the iconnect library routine to define an interrupt vector connection, you must
be able to specify the interrupt vector number to be connected to the user-level interrupt
process. You can obtain the interrupt vector number by using one of the following meth-
ods:

1. Use the ioctl system call, and specify the IOCTLVECNUM command.

You use this method if you are connecting to an interrupt vector generated
by a device that has a kernel device driver that supports the IOCTLVECNUM

ioctl command. (The kernel device drivers for the real-time clock and
edge-triggered interrupt support this command.) Procedures for using this
method are explained in “Using the IOCTLVECNUM ioctl System Call.”

2. Use the ICON_IVEC iconnect call to allocate an interrupt vector.

You use this method if you are connecting to an interrupt vector generated
by a device that allows its interrupt vector number to be programmed and
does not have a kernel device driver that supports the IOCTLVECNUM

ioctl command. Procedures for using this method are explained in
“Allocating Interrupt Vectors.”

NOTE

After using this method to allocate an interrupt vector, you must
program the device so that it interrupts at that vector.

3. Reserve an interrupt vector by modifying the interrupt vector table associ-
ated with your machine.

You use this method if you are connecting to an interrupt vector that is gen-
erated by a device that interrupts at a fixed vector number and does not
have a kernel device driver that supports the IOCTLVECNUM ioctl com-
8-5

PowerMAX OS Real-Time Guide
mand. Procedures for using this method are explained in “Modifying the
Interrupt Vector Table.”

Using the IOCTLVECNUM ioctl System Call 8

To use the IOCTLVECNUM ioctl call, you must first make an open(2) call to obtain
a file descriptor for the device special file corresponding to the real-time clock (rtc) or
edge-triggered interrupt (eti) or RCIM distributed interrupt. For information on the
device special file names associated with these devices, refer to Chapter 12 of this guide.

After you have obtained a file descriptor, use the following specifications to make the
ioctl call:

#include <sys/ioctl.h>

int ioctl(fildes, IOCTLVECNUM, arg)
int fildes;
int *arg;

Arguments are defined as follows:

fildes the file descriptor for the device special file corresponding
to the selected device

IOCTLVECNUM the command to place the interrupt vector number of the
device in the location pointed to by arg

arg a pointer to the location to which the interrupt vector num-
ber of the device will be returned

After you have obtained the interrupt vector, you may free the specified file descriptor by
using the close(2) system call; you are not required to do so prior to defining and
enabling the interrupt vector connection, however.

NOTE

Certain device drivers (the driver for rtc, for example) reset the
device when the last close(2) is issued for the device’s file
descriptor; as a result, you are advised to use caution when closing
a device file descriptor.

Modifying the Interrupt Vector Table 8

On Series 6000 systems, there is one interrupt vector table: ivt, which is contained in
file: /etc/conf/cf.d/ivt.s.

You can modify the interrupt vector table by using a text editor of your choice.

Procedures for modifying the interrupt vector table for Series 6000 systems are as follows:

1. Search the table for entries that are marked STRAY.
8-6

User-Level Interrupt Routines
2. Select a STRAY entry that corresponds to one of the highest vector numbers,
and modify it by entering the following:

RESERVED

3. Repeat Step 2 for each of the interrupt vector entries that you need to
reserve.

4. If you have modified an entry that includes a number of interrupt vectors
(for example, STRAY4, STRAY8, STRAY16, and STRAY32, where 4,
8, 16, and 32 denote the number of interrupt vector entries represented),
then use the appropriate combination of STRAY, STRAY4, STRAY8,
STRAY16, and STRAY32 to modify succeeding STRAY entries to indicate the
remaining unused vector numbers.

5. Run idbuild(1M) to rebuild the kernel. Refer to the idbuild(1M)
system manual page for details.

Using the iconnect Library Routine 8

The iconnect library routine allows the calling process to perform the following func-
tions:

• Define a connection between the user-level interrupt process and an inter-
rupt vector.

• Disconnect a user-level interrupt process from an interrupt vector.

• Allocate and free interrupt vectors.

• Obtain information about the status of an interrupt vector.

• Lock or unlock memory pages internal to the C or threads library that are
referenced during the entry to and exit from the user-level interrupt routine.

NOTE

To use the iconnect library routine, the kernel must have been
configured with the ui kernel driver.

The specifications required for making the iconnect call are as follows:
8-7

PowerMAX OS Real-Time Guide
#include <sys/types.h>
#include <sys/iconnect.h>

int iconnect(command, arg)

int command;

union {
 struct icon_conn *ic;
 struct icon_ivec *ii;
 struct icon_stat *is;
 int vector;
} arg;

Arguments are defined as follows:

command the operation to be performed

arg an interrupt vector number or a pointer to a structure. The value of arg
depends upon the operation specified by cmd.

Command can be one of the following. The values of arg that are associated with each
command are indicated.

ICON_CONN define an interrupt vector connection. Arg points to an
icon_conn structure.

ICON_DISC disconnect the connected interrupt process from the inter-
rupt vector and remove the defined user-level interrupt vec-
tor connection. Arg specifies the interrupt vector number.

ICON_IVEC allocate or free interrupt vector(s). Arg points to an
icon_ivec structure.

ICON_STAT obtain information about the status of an interrupt vector.
Information can be obtained for the following types of inter-
rupt vectors: (1) those that have been connected to a user-
level interrupt process with an ICON_CONN iconnect call,
(2) those for which an interrupt vector connection has been
enabled with an ienable call, (3) those that have been
allocated with an ICON_IVEC iconnect call, and (4) those
that are undergoing a transition from the iconnected to
the ienabled state. Arg points to an icon_stat struc-
ture.

ICON_LOCK lock or unlock pages internal to the C or threads library that
are referenced during the entry to and exit from a user-level
interrupt routine.

Procedures for using these commands are explained in the sections that follow. Use of the
ICON_CONN command to define an interrupt vector connection is explained in “Defining
an Interrupt Vector Connection”; use of the ICON_DISC command is explained in “Discon-
necting a Process from an Interrupt Vector”; use of the ICON_IVEC command is explained
in “Allocating Interrupt Vectors”; use of the ICON_STAT command is explained in “Obtain-
8-8

User-Level Interrupt Routines
ing the Status of Interrupt Vectors”; use of the ICON_LOCK command is explained in
“Locking Library Memory Pages”

Defining an Interrupt Vector Connection 8

To define a connection between an interrupt vector and a user-level interrupt process, you
specify the ICON_CONN command on an iconnect call and provide a pointer to an
icon_conn structure. In a multithreaded process, the calling thread must be a bound
(THR_BOUND) thread. See thr_create(3thread) for more information. Note that to
use the ICON_CONN command, the calling process or thread must have the P_USERINT priv-
ilege.

The icon_conn structure is defined as follows:

struct icon_conn {
 int ic_version;
 u_int ic_flags;
 int ic_vector;
 void (*ic_routine)();
 int ic_stack;
 int ic_value;
 int ic_ipl;
};

The fields in the structure are described as follows.

ic_version must currently contain the value IC_VERSION1 for Night Hawk
and IC_VERSION2 for Power Hawk (requires additional argument
in ICON_CONN -- see IC_IPL)

ic_flags contains zero or an integer value that sets one or more of the fol-
lowing bits:

IC_KROUTINE causes the kernel device driver’s interrupt
routine to be called for the specified inter-
rupt after the user-level interrupt-handling
routine has been executed

IC_NOSAVEXFP prevents the floating-point registers from
being saved before executing the user-
level interrupt-handling routine and from
being restored after executing the user-
level interrupt-handling routine. This
means that in return for faster interrupt
response time, the user-level interrupt-
handling routine must not modify any
floating-point registers that it does not
save and restore to their original values.

IC_SAVEFP is silently ignored but exists for backward
compatibility
8-9

PowerMAX OS Real-Time Guide
IC_DEBUG enables you to enter the console processor
debugger on the first occurrence of the
connected interrupt

ic_vector contains the interrupt vector number to be connected to the user-
level interrupt process. You must have obtained this number pre-
viously by using one of the following methods: (1) by making an
IOCTLVECNUM ioctl system call, (2) by making an ICON_IVEC

iconnect call, or (3) by reserving a particular interrupt vector.
These methods are described in “Obtaining an Interrupt Vector.”

ic_routine contains the virtual address of the process’s user-level interrupt-
handling routine

ic_stack contains the virtual address of the process’s data area that will be
used as a stack area during execution of the user-level interrupt-
handling routine (remember to specify the address of the top of
the stack because the stack grows from higher addresses to lower
addresses). At a minimum, allocate 1024 bytes for the stack area.
If the routine makes many nested subroutine calls or involves rou-
tines that use many local variables, a larger stack size may be nec-
essary.

ic_value contains a value to be passed to the user-level interrupt-handling
routine on each occurrence of the connected interrupt

ic_ipl on Power Hawk systems only, specifies the processor interrupt
priority level at which to execute the user-level interrupt-handling
routine. Refer the file <sys/ipl.h> for a set of symbolic con-
stants that has been dined to assist you in specifying this value.

A return value of 0 indicates that the ICON_CONN iconnect call has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the iconnect(3C) system manual page for a listing of the types of errors that
may occur.

NOTE

After a user-level interrupt process has defined a connection to an
interrupt vector by using the ICON_CONN command, no other pro-
cess is allowed to define a connection to the same interrupt vector
until a corresponding ICON_DISC command has been issued or the
connected interrupt process has exited.

Disconnecting a Process from an Interrupt Vector 8

To disconnect a user-level interrupt process from an interrupt vector and remove the
defined interrupt vector connection, you specify the ICON_DISC command on an
iconnect call and provide the interrupt vector number to be disconnected. Note that to
use this command, the calling process must have the P_USERINT privilege.

A user-level interrupt process that has defined an interrupt vector connection but has not
yet made a related ienable call can use this command to remove the defined connection.
8-10

User-Level Interrupt Routines
If a process that has defined an interrupt vector connection terminates prior to calling
ienable, the defined connection is automatically removed from the system; in this case,
another process is allowed to define an interrupt vector connection for the previously used
interrupt vector number.

If the ICON_DISC iconnect call is successful, the return value is 0. A process that is
blocked in an ienable call for the specified interrupt is unblocked.

A return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the iconnect(3C) system manual page for a listing of the types of errors that
may occur.

Allocating Interrupt Vectors 8

To allocate or free an interrupt vector, you specify the ICON_IVEC command on an
iconnect call and provide a pointer to an icon_ivec structure. Note that to use this
command, the calling process must have the P_USERINT privilege.

The icon_ivec structure is defined as follows:

struct icon_ivec {
 u_int ii_flags;
 int ii_nvect;
 int ii_vector;
};

The fields in the structure are described as follows.

ii_flags contains zero or an integer value that sets one or more of the following
bits:

II_ALLOCATE causes interrupt vectors to be allocated. This is
the default action if neither II_ALLOCATE nor
II_DEALLOCATE is set.

The following two bits may be set in conjunc-
tion with the II_ALLOCATE bit:

II_EVEN_VECTOR ensures that the first interrupt vector that is allo-
cated is an even number. This bit is silently
ignored if II_VECSPEC is also set.

II_VECSPEC enables you to specify the first interrupt vector
number to be allocated. The requested interrupt
vector number is returned if it is available; oth-
erwise, the call fails, and a value of -1 is
returned.

II_DEALLOCATE causes the specified interrupt vectors to be freed

ii_nvect specifies the number of interrupt vectors to be allocated or freed. Note
that interrupt vectors are always allocated or freed in a contiguous
block.
8-11

PowerMAX OS Real-Time Guide
ii_vector specifies the first vector to be allocated if the II_VECSPEC bit is set in the
ii_flags field or specifies the first vector to be freed if the
II_DEALLOCATE bit is set.

If the specified number of interrupt vectors is successfully allocated, the ICON_IVEC

iconnect call returns the first interrupt vector number that has been allocated. If the
II_DEALLOCATE bit is set and the specified interrupt vectors are successfully freed, the
ICON_IVEC iconnect call returns a value of zero. A return value of -1 indicates that an
error has occurred; errno is set to indicate the error. Refer to the iconnect(3C) sys-
tem manual page for a listing of the types of errors that may occur.

After you have used the ICON_IVEC command to allocate an interrupt vector, you can use
the ICON_CONN command to connect a user-level interrupt process to the allocated inter-
rupt vector. It is important to note that the interrupt vector continues to be allocated until
an ICON_IVEC iconnect call is made with the II_DEALLOCATE bit set. The process that
calls iconnect to allocate an interrupt vector is not directly associated with the interrupt
vector. Another process that has the appropriate privilege can connect to the interrupt vec-
tor or free it.

Obtaining the Status of Interrupt Vectors 8

To obtain information about the status of one or more interrupt vectors, you specify the
ICON_STAT command on an iconnect call and provide a pointer to an icon_stat
structure. Note that to use this command, the calling process must have the P_SYSOPS

privilege.

The icon_stat structure is defined as follows:

struct icon_stat {
 u_int is_flags;
 int is_vector;
 pid_t is_pid;
 u_int is_state;
 lwpid_t is_lwpid;
};

The fields in the structure are described as follows.

is_flags contains zero or an integer value that sets one of the following mutually
exclusive bits:

IS_SPEC enables you to indicate that status information about the
interrupt vector specified in the is_vector field is to be
returned

IS_SCAN enables you to indicate that the system table of user-level
interrupt information is to be scanned for the next interrupt
vector that has been allocated or the next interrupt vector for
which an interrupt vector connection has been defined or
enabled. The table is indexed by interrupt vector number
and scanned in ascending order. The point at which scan-
ning of the table begins is determined by the value con-
tained in the is_vector field.
8-12

User-Level Interrupt Routines
is_vector contains the interrupt vector number for which status information is to
be returned if the IS_SPEC bit in the is_flags field is set.

If the IS_SPEC bit is not set or the IS_SCAN bit is set, this field contains -1
or the interrupt vector number from which scanning is to begin. If this
field contains -1, scanning begins with the entry for interrupt vector 0;
otherwise, scanning begins with the entry for the interrupt vector num-
ber obtained by adding 1 to the number specified in this field. In either
case, on return, this field contains the next interrupt vector number that
has been allocated or for which an interrupt vector connection has been
defined or enabled.

Note that to obtain information on the status of all of the interrupt vec-
tors that have been allocated or for which an interrupt vector connection
has been defined or enabled, you must repeatedly call iconnect(3C)
and specify the same icon_stat structure until a value of -1 is
returned and errno is set to ENOTCONN.

is_pid on return, contains -1 or a process identification number (PID). This
field contains -1 if the IS_IVEC bit in the is_state field is set and the
IS_CONN bit is not set; in this case, the interrupt vector contained in the
is_vector field is not currently connected to a user-level interrupt
process.

If one or both of the IS_CONN and IS_ENABLED bits in the is_state
field are set, this field contains the PID of the process that made the
ICON_CONN iconnect call to connect a user-level interrupt process to
the interrupt vector.

If the IS_PENDING bit in the is_state field is set, this field contains
the PID of the process that made the ICON_CONN iconnect call to con-
nect a user-level interrupt process to the interrupt vector.

is_lwpid on return, contains -1 or a lightweight process identifier (LPW ID).
This field contains -1 if the IS_IVEC bit in the is_state field is set and
the IS_CONN bit is not set; in this case, the interrupt vector contained in
the is_vector field is not currently connected to a user-level interrupt
process.

If one or both of the IS_CONN and IS_ENABLED bits in the is_state
field are set, this field contains the LWP ID associated with the bound
thread that made the ICON_CONN iconnect call to connect a user-level
interrupt process to the interrupt vector.

If the IS_PENDING bit in the is_state field is set, this field contains
the LWP ID associated with the bound thread that made the ICON_CONN

iconnect call to connect a user-level interrupt process to the interrupt
vector.

is_state on return, contains an integer value that sets one or more of the follow-
ing bits:

IS_CONN indicates that the interrupt vector contained in
the is_vector field has been successfully
8-13

PowerMAX OS Real-Time Guide
connected to a user-level interrupt process with
an ICON_CONN iconnect call.

IS_ENABLED indicates that an interrupt vector connection for
th e in t e r r u p t v e c t o r c o n ta in e d in t h e
is_vector f ield has been successfully
enabled with an ienable call.

IS_IVEC indicates that the interrupt vector contained in
the is_vector field has been successfully
allocated with an ICON_IVEC iconnect call.

IS_PENDING indicates that the interrupt vector contained in
the is_vector field is currently undergoing a
transition from the iconnected to the ienabled
state. Because this transition state is short-
lived, the IS_PENDING bit is not normally set.

Locking Library Memory Pages 8

One restriction placed on a user-level interrupt routine is that all memory references must
be only to memory-locked pages. You may lock down the entire application's address
space with the mlockall(3C) library routine or the memcntl(2) system call, or you
may selectively lock portions of the application’s address space with mlock(3C),
userdma(2), or memcntl(2). If your application is large, you may wish to selec-
tively lock down those portions of the user-level interrupt routine’s instructions and data
that are referenced during the user-level interrupt routine’s execution.

In addition to the memory accessed by your user-level interrupt routine code, there are
additional instruction and data accesses made within the C or threads library. These addi-
tional memory accesses are made as the user-level interrupt process or process thread
enters into and exits out of your user-level interrupt routine.

In order to provide better selective page-locking support for user-level interrupt applica-
tions, a ICON_LOCK iconnect(3C) command may be used to either lock or unlock
those pages of the program internal to the C or threads libraries that will be referenced as
the process or process thread enters and exits the user-level interrupt routine. Note that to
use this command, the calling process must have the P_PLOCK privilege.

Note that you will still be responsible for locking down those portions of the application
that are referenced by the code that you have written that is executed by your user-level
interrupt routine.

To lock or unlock the library pages, you specify the ICON_LOCK command on an
iconnect call and provide a pointer to an icon_lock structure. The icon_lock
structure is defined as follows:

 struct icon_lock {
 u_int il_flags;
 };

The field in the icon_lock structure is described as follows.
8-14

User-Level Interrupt Routines
il_flags contains a value that has one of the following mutually exclusive bits
set:

IL_LOCK Lock the library pages in memory.

IL_UNLOCK Unlock the library pages.

When the IL_LOCK bit in the il_flags field is set, then all the data structures and
instructions that are referenced within the C or threads library during a process's or pro-
cess thread's entry into and exit from a user-level interrupt routine will be locked down.
For multithreaded processes, if more than one interrupt connection definition exists, then
all data structures used by all the currently existing interrupt connections will be locked
down.

Multiple ICON_LOCK commands that are made with the IL_LOCK bit set will nest; that is,
the same number of ICON_LOCK command calls with the IL_UNLOCK bit set will be
required to remove the internal library page locks associated with user-level interrupt rou-
tines.

When the IL_UNLOCK bit in the il_flags field is set and the preceding nesting require-
ment has been met, then all instructions and data structures internally used by the C or
threads library for user-level interrupt routine processing will be unlocked. For multi-
threaded applications that have more than one interrupt connection definition, all internal
data structures will be unlocked. The unlock call should not be made until the process or
process thread has been disconnected from the interrupt.

Using the ienable Library Routine 8

The ienable library routine allows the user-level interrupt process to enable a defined
interrupt vector connection. The calling process must previously have made an
iconnect call to define the interrupt vector connection. In a multithreaded process, the
calling thread must be the same thread that made the previous corresponding iconnect
call to define the interrupt vector connection.

The specifications required for making the ienable call are as follows:

#include <sys/types.h>
#include <sys/iconnect.h>

int ienable(vector_number)

int vector_number;

The argument is defined as follows:

vector_number the interrupt vector number for which the defined connec-
tion is to be enabled. This number must be the same as that
specified on a previous ICON_CONN iconnect call.

The ienable library routine places the calling process or process thread in a blocked
state in the kernel and then enables the process’s interrupt vector connection. While the
process or process thread is in this state, all signals are ignored. The process or process
thread no longer executes at normal program level. Each time the connected interrupt
8-15

PowerMAX OS Real-Time Guide
becomes active, the CPU that is receiving the interrupt switches to the context of the con-
nected interrupt process or process thread within the kernel. The kernel then jumps to the
beginning of the interrupt-handling routine with the connected interrupt still active.
Although the connected interrupt is active, the process or process thread will be executing
in user mode rather than kernel mode; all of the process’s virtual address space that has
previously been locked into physical memory is accessible.

The calling process will continue to block until another process or process thread makes
an ICON_DISC iconnect call and specifies the interrupt vector to which the blocked pro-
cess is connected. The blocked process can also be disconnected from the interrupt vector
by using the uistat command and specifying the -d option (see “Viewing User-Level
Interrupt Connections” for an explanation of the procedures for using this command).
When the blocked process is wakened, the ienable routine returns a value of zero.

If the ienable routine is not successful, the user-level interrupt process does not block.
A return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the ienable(3C) system manual page for a listing of the types of errors that
may occur.

Viewing User-Level Interrupt Connections 8

The uistat(1) utility enables you to display information about the following types of
interrupt vectors: (1) those that have been connected to a user-level interrupt process with
an ICON_CONN iconnect call, (2) those for which an interrupt vector connection has
been enabled with an ienable call, and (3) those that have been allocated with an
ICON_IVEC iconnect call. It also allows you to disconnect a connected interrupt process
from an interrupt vector and free an interrupt vector that has been allocated with the
ICON_IVEC iconnect call.

The format for executing the uistat utility is as follows:

 uistat [-d vector] [-f vector]

If you execute uistat without specifying an option, you can view information for each
interrupt connection in the system. The following information is displayed on your termi-
nal screen:

• The interrupt vector number

• The process identification number (PID) of the connected or enabled pro-
cess

• The lightweight process identifier (LWP ID) of the connected or enabled
process or process thread

• The status of the vector

The status that is displayed for user-level interrupt processes is either iconnected or
ienabled. If a process has defined a connection to an interrupt vector, the status is
iconnected. If a process has both defined a connection and enabled it, the status is
ienabled. If an interrupt vector has been allocated by using the ICON_IVEC iconnect
8-16

User-Level Interrupt Routines
call, the status that is displayed is ivec; in this case, the PID and LWP ID are displayed
only if a process has defined a connection to the interrupt vector.

If you execute uistat, information similar to the following is displayed on your terminal
screen:

Vector # Proc Id LWP Id Status
-------- ------- ------ ------
 101 14238 1 ienabled
 132 15482 1 iconnected
 152 2326 2 ienabled ivec
 153 14241 4 iconnected ivec
 154 ----- --- ivec

The -d option enables you to disconnect a process that is in the iconnected or ienabled
state from the interrupt vector and remove the defined user-level interrupt connection.
The vector argument specifies the interrupt vector number from which the process is to be
disconnected. When the process is disconnected, it will return from the ienable call.

The -f option enables you to free an interrupt vector that has been allocated by using an
ICON_IVEC iconnect call but is not in the iconnected or ienabled state. The vector
argument specifies the interrupt vector number that is to be freed. If you wish to free an
interrupt vector that is in the iconnected or the ienabled state, you must first use the -d
option to disconnect the process from the interrupt vector.

NOTE

To use uistat without any options, you must have the P_SYSOPS

privilege. To use the -d and the -f options, you must have the
P_USERINT privilege.

If an error occurs when you execute uistat, a message indicating the reason for the fail-
ure is displayed.

Using Local Memory 8

If a process binds some portion of its address space to local memory and then issues the
iconnect(3C) and ienable(3C) calls in order to connect to an interrupt, the CPU
that processes the interrupt may not be located on the same CPU board where the process's
address space bindings were created. In this case, some of the local memory references
that were not previously remote may now become remote memory references. Similarly,
some of the previously remote local memory references may now no longer be remote ref-
erences. In these cases, data incoherencies may occur when the user-level interrupt pro-
cess references these portions of its address space.

Note that remote memory references are not an issue on Series 6000 systems that have
only one processor board.
8-17

PowerMAX OS Real-Time Guide
For those user-level interrupt applications that wish to bind some portion of their address
space to local memory on a Series 6000 system that has more than one CPU board, the fol-
lowing steps must be taken in order to prevent data incoherencies.

1. Determine which CPU is receiving the interrupt to which you wish to con-
nect the user-level interrupt process.

You can do so by using one of the following methods: (1) use the
intstat(1M) utility, or (2) invoke the mpadvise(3C) library routine
from a program and specify the MPA_CPU_INTVEC or the MPA_CPU_VMELEV

command. (For (H)VME interrupts, use the MPA_CPU_VMELEV command;
for other interrupts, use the MPA_CPU_INTVEC command.) For additional
information, refer to the intstat(1M) and mpadvise(3C) system
manual pages.

2. Set the process's CPU bias to include, at most, those CPUs that reside on
the same processor board where the interrupt is received.

You can do so by using the mpadvise(3C) library routine and specify-
ing the MPA_CPU_LMEM and MPA_PRC_SETBIAS or MPA_PRC_SETRUN com-
mands as explained in the corresponding system manual page.

3. If desirable, create one or more shared memory regions that are bound to
local memory.

You can do so by using the shmget(2) system call, the shmde-
fine(1) utility, or the shmconfig(1M) utility as explained in the
PowerMAX OS Programming Guide.

Data from local or global memory can be stored in a CPU's data cache; however data from
remote memory cannot because there is no hardware mechanism to keep cached, remote
data coherent. To prevent remote data from being stored in a CPU's data cache, the oper-
ating system builds virtual-to-physical translations to remote memory in a special way (a
bit is set in the page table entry to inform the hardware that the data cache should not be
used).

The terms local and remote describe a relationship between a page frame and a CPU. If
translations were built with respect to one CPU and subsequently used from a different
CPU, it is possible that data from remote memory would be stored in the cache. In most
circumstances, the operating system's load-balancing and process-migration algorithms
prevent the situation just described from occurring. It can occur, however, when a pro-
cess running on one CPU board connects to an interrupt serviced by a different CPU
board. It is for this reason that the steps outlined above are recommended for applications
using local memory.

On Series 6000 systems, all external interrupts are connected to particular pins on the ter-
minator board. Associated with each pin are CPU, priority, and vector attributes that are
configured by the operating system at system initialization time. You can ensure that a
certain logical CPU receives interrupts occurring from a particular pin by configuring the
CPU attribute associated with that pin. To assign specific interrupts sources to specific
CPUS, see the section "Assigning Interrupts to CPUs" in Chapter 2 of this manual.
8-18

User-Level Interrupt Routines
NOTE

The kernel tunables that are associated with interrupt source CPU
assignments are initially set to be round-robin by default. In these
cases, the operating system will assign these interrupt sources to
the available CPUs in the system in a round-robin fashion, in an
attempt to spread out these configurable interrupt CPU assign-
ments across all CPUs in the system. Therefore, note that
changing certain interrupt source tunables to be set to specific
CPUs may also have the side-affect of altering the CPU
assignments made for one or more of the round-robin interrupt
sources.

The local memory to which a process’s address space is bound is that of the CPU on which
the process is executing. You can ensure that the CPU on which the user-level interrupt
process executes is the same as the CPU that will receive the connected interrupt by using
the MPA_PRC_SETBIAS mpadvise(3C) library routine and specifying only that CPU or
those CPUs on the same processor board in the process’s bit mask.

An overview of local memory and an explanation of the procedures for using it are pro-
vided in the memory management chapter of the PowerMAX OS Programming Guide. If
you wish to use local memory with user-level interrupt processes, it is recommended that
you review that chapter and refer to the memory(7) , memdefaults(2),
mpadvise(3C), and shmget(2) system manual pages for additional information.

Interrupt-Handling Routine Constraints 8

One parameter is passed to a user-level interrupt-handling routine: the value that is speci-
f ied in the ic_value f ie ld of the icon_conn s t ructure supplied on the
iconnect(3C) call that defines the connection between the user-level interrupt process
and an interrupt vector. The interrupt-handling routine is entered in user mode with the
connected interrupt still active.

An interrupt-handling routine can reference any memory location that is in the virtual
address space of the user-level interrupt process--including VME I/0 memory space to
which the process’s virtual address space has previously been bound. Note, however, that
portions of the user-level interrupt process’s address space that are referenced by the inter-
rupt-handling routine must have been locked into physical memory prior to enabling the
interrupt vector connection with an ienable(3C) call.

Any type of exception (page fault, floating-point exception, and so on) is fatal during exe-
cution of an interrupt-handling routine. In the kernel, the exception-handling code checks
for interrupt-handling routines. If an interrupt-handling routine causes an exception, the
kernel indicates this occurrence by printing a message on the console and specifying the
type of trap and the value of the program counter; it then executes a system panic().
The system must panic because the state of the process that was executing at the time that
the connected interrupt occurred cannot be recovered. An example of the output that is
displayed on the system console is as follows:

System trap from user interrupt routine:
8-19

PowerMAX OS Real-Time Guide
type = Misaligned Access Exception, pc = 0x000209A8,
interrupt vector = 93

PANIC: User-level interrupt trap.

A multithreaded process that has one or more threads that are currently blocked in an
ienable(3C) call (connected to an external interrupt) must not make a fork(2) or
forkall(2) system call. In this case, the fork(2) or forkall(2) call returns -1
and sets errno to EINTR. However, the fork1(2) system call is allowed from a multi-
threaded process that currently has one or more ienabled threads within it.

For multithreaded processes, all threads library functions that might block the calling
thread, such as thr_yield(3thread) and thr_join(3thread), must not be
used within a user-level interrupt routine. The _spin_lock(3sync) and
_spin_unlock(3sync) primitives may be called from a user-level interrupt routine,
provided that the program-level threads have properly used the spl(3X) functions
around the spin lock, thus avoiding any potential deadlock with the user-level interrupt
routine's acquisition of the lock. All other threads synchronization primitives, such as
mutexes and rwlocks, for example, should be avoided.

An interrupt-handling routine may make only two system calls: server_wake1(2) and
server_wakevec(2). These calls enable the calling process to wake one or more pro-
cesses that are blocked in the server_block(2) system call. (Use of these system
calls is fully explained in Chapter 6.)

 If an interrupt-handling routine makes a system call other than server_wake1 or
server_wakevec, the kernel will set errno to EINVAL and return to the routine with-
out executing the call.

If you write assembly language code that is executed during processing of the interrupt-
handling routine, you must save and restore the nonvolatile registers that are used. Appli-
cable registers are identified as follows:

• Register r16 must be saved and restored if it is used.

• If the IC_NOSAVEXFP flag is set, all floating-point registers must be saved
and restored if they are modified by the interrupt-handling routine.

The interrupt-handling routine may call other routines, but it must eventually exit via an
explicit or implicit return from inside the routine whose address is specified in the
ic_routine field of the icon_conn structure supplied on the iconnect(3C) call.

Debugging the Interrupt-Handling Routine 8

Because the interrupt-handling routine executes at interrupt level, you may not use such
user-level debuggers as adb(1) and nview(1) to debug it; however, you may use the
console processor to obtain some debugging capability for this routine. You may use the
console processor as an assembler-level debugger that enables you to display and modify
the contents of registers and memory, set breakpoints, single step through instructions,
disassemble instructions, and reference variables and routines by using their symbolic
names. You can use it to debug multiple interrupt-handling routines simultaneously.
8-20

User-Level Interrupt Routines
CAUTION

User-level interrupt-handling routines can potentially cause the
system to hang or panic. You must initially debug them on a sin-
gle-user system.

To debug an interrupt-handling routine, you must set the IC_DEBUG bit in the ic_flags
field of the icon_conn structure that you specify on the ICON_CONN iconnect(3C)
call. If you set this bit, the console processor is entered the first time that the connected
interrupt becomes active. The console processor is entered in an intermediate C or threads
library routine--several instructions before the beginning of your interrupt-handling rou-
tine. By using several single-step processor commands (the z command), you can place
the process at the beginning of the user-level interrupt-handling routine.

Any console breakpoints that are set in order to debug the user-level interrupt code may
also be encountered by other processes running the same program at user level. If any of
these user level processes encounters one of the console breakpoints, the process will be
core dumped and terminated with a SIGTRAP signal.

Therefore, care should be taken to not set breakpoints in code that is common to both
interrupt level and non-interrupt level processes that are executing the same program at
the same point in time. This can be accomplished by either:

• Temporarily creating a duplicate of the program for debugging the user-
level interrupt routine

or

• Rewriting the user-level interrupt routine so that it does not use any code
that is executed at non-interrupt level by other processes.

If you have not stripped symbol table information from the object program that you are
debugging (by specifying the -s option when executing the ld(1) command, for exam-
ple), then you will be able to use the symbolic names of variables and routines while
debugging the interrupt-handling routine. When you first enter the interrupt-handling rou-
tine, you must use the di % console processor command (disassemble instructions using
the value of the program counter) to load the user’s symbol table into the console proces-
sor’s internal structures. If the kernel’s symbol table were loaded at boot time and you do
not issue this command, then the console processor attempts to use the kernel’s symbol
table.

In the kernel, the address and the symbol count of the user’s symbol table must be stored
at appropriate console processor memory locations upon entry of each connected inter-
rupt. When the interrupt processing is completed, the kernel must restore the previous
values of the symbol table address and symbol count in the console processor’s memory.
You should avoid this additional kernel interrupt processing overhead by removing the
IC_DEBUG flag after you have debugged the interrupt-handling routine.

Interrupts that occur after the first connected interrupt are not automatically forced into the
console processor. If you must debug additional interrupts, you must set and leave break-
points in the interrupt-handling routine. You should remove all interrupt-handling routine
breakpoints before the connected interrupt process is disconnected. The removal of these
breakpoints should be done while the console processor has the CPU stopped within the
interrupt-handling routine.
8-21

PowerMAX OS Real-Time Guide
On multiprocessor systems, you should not attempt to set breakpoints or single step user-
level code on a different processor unless it is currently executing a user-level interrupt-
handling routine. If you wish to set breakpoints or single step an interrupt-handling rou-
tine on a different processor, then you must first switch the console processor to that CPU.

On PowerMAX OS systems, you should not attempt to set breakpoints in kernel text or
display kernel data while in user mode. It is important to note that on PowerMAX OS
systems, the query stack (qs) console command does not work properly if it is issued
while in an interrupt-handling routine.

For additional information on procedures for using console processor debugging com-
mands, refer to the console manual that is applicable to your machine (see the Preface for
the list of Referenced Publications).

Understanding the Processor IPL 8

A process can ensure that interrupts at or below a certain level are held out by temporarily
raising a processor’s interrupt priority level (IPL). A CPU’s IPL is normally set to zero for
user-level program operation. By raising a CPU’s IPL to PL4, for example, a process can
hold out all VME level 4 interrupts and thereby prevent level 4 VME devices (the HPS
Serial Controller, for example) from interrupting the CPU.

The IPL is specific to a particular CPU. Setting the IPL on one CPU does not affect the
IPL on another CPU. Interrupts at or below the value to which the IPL is set on one CPU
may continue to be received on other CPUs--whether or not such interrupts continue to be
received on another CPU depends upon the value of the IPL on that CPU.

A set of symbolic constants has been defined to assist you in setting the processor inter-
rupt priority level on the machine. These constants are defined in the fi le
/usr/include/sys/ipl.h. They are presented in Table 8-1.

Table 8-1. IPL Values

Value Effect

PLXCALL Holds out most interrupts. These include (H)VME interrupts; edge-
triggered interrupts; interprocessor interrupts; I/O bus error inter-
rupts; sysfault and console wakeup interrupts; real-time clock inter-
rupts; and hardclock interrupts. Use of this level is strongly discour-
aged.

PL8 Holds out (H)VME interrupts; edge-triggered interrupts; real-time
clock interrupts; and hardclock interrupts. This level also holds out
sysfault interrupts.

PLPROBE Holds out (H)VME interrupts; edge-triggered interrupts; real-time
clock interrupts; and hardclock interrupts. This level can be used to
hold out all interrupts that are not critical.
8-22

User-Level Interrupt Routines
For information on the interrupt levels assigned to specific (H)VME boards, refer to the
architecture manual that is applicable to your system (see the Preface for the list of Refer-
enced Publications).

Using the spl Support Routines 8

The user-level device driver library, libud, contains a set of library routines and a macro
that allow you to modify the processor interrupt priority level (IPL) from user level. You
can modify the IPL by mapping the physical address of the IPL register to a process’s vir-
tual address space and then writing directly to the hardware register. The routines and
macro are documented in the section 3X system manual pages and are briefly described as
follows:

PL7 Holds out (H)VME level 1-7 interrupts on the primary bus and the
secondary bus. Note that this level and lower levels do not hold out
any edge-triggered interrupts. This level does not hold out real-time
clock and hardclock interrupts.

PL6 Holds out (H)VME level 6 interrupts on the primary bus and the sec-
ondary bus.

PL5 Holds out (H)VME level 5 interrupts on the primary bus on all sys-
tems and on the secondary bus. This is the lowest IPL level that will
hold out the console terminal send and receive interrupts.

PL4 Holds out (H)VME level 4 interrupts on the primary bus on all sys-
tems and on the secondary bus.

PL3 Holds out (H)VME level 3 interrupts on the primary bus on all sys-
tems and on the secondary bus.

PL2 Holds out (H)VME level 2 interrupts on the primary bus on all sys-
tems and on the secondary bus.

PL1 Holds out (H)VME level 1 interrupts on the primary bus on all sys-
tems and on the secondary bus.

PLTIMEOUT This is the lowest IPL level that will hold out the softclock interrupt.
This level does not hold out (H)VME interrupts.

PLSWTCH This is the lowest IPL level that will hold out context switch resched-
uling interrupts. This level does not hold out (H)VME interrupts or
edge-triggered interrupts.

PL0 This value is used to return the IPL to zero. The IPL is normally set
to zero for user-level program operation. User-level programs that
temporarily raise the IPL to values greater than PL0 should return the
IPL to this value.

Table 8-1. IPL Values (Cont.)

Value Effect
8-23

PowerMAX OS Real-Time Guide
spl_map map the physical address of the IPL register
or processor level register to a process’s vir-
tual address space

spl_request set the processor IPL to a specified level

spl_request_macro set the processor IPL to a specified level

spl_unmap unmap the IPL register or processor level
register with an spl_map call

Use of the spl_map routine is explained in “Using the spl_map Routine.” Use of the
spl_request routine is explained in “Using the spl_request Routine.” Use of the
spl_request_macro is explained in “Using the spl_request_macro.” Use of the
spl_unmap routine is explained in “Using the spl_unmap Routine.”

You typically use the spl routines and macro to allow a user-level process and an associ-
ated interrupt-handling routine to coordinate their access to shared data. You can ensure
that a user-level process executing in user mode executes on its current CPU without
being interrupted by an associated interrupt-handling routine by raising the IPL up to or
higher than the interrupt priority level of the connected interrupt.

On multiprocessor systems, you must use an additional user-level spin lock to synchronize
the processes’ access to shared data among multiple CPUs. It is recommended that you
use the spin_init, spin_trylock, spin_islock, and spin_unlock macros for
this purpose. Procedures for using these macros are explained in Chapter 6 of this guide;
reference information is provided in the spin_trylock(2) system manual page.

On a multiprocessor system, a user-level process that shares data with an associated inter-
rupt-handling routine can synchronize its access to the data by performing the following
steps:

STEP 1: Raise the IPL to the appropriate level.

STEP 2: Lock the user-defined spin lock.

STEP 3: Access or modify the shared data.

STEP 4: Unlock the user-defined spin lock.

STEP 5: Lower the IPL to zero.

The associated interrupt-handling routine can access the same data by performing the fol-
lowing steps:

STEP 1: Lock the user-defined spin lock.

STEP 2: Access or modify the shared data.

STEP 3: Unlock the user-defined spin lock.

An example C program that demonstrates how a program executing at user level and an
associated interrupt-handling routine can synchronize access to shared data by using these
steps and the spl support routines is provided in Appendix D.
8-24

User-Level Interrupt Routines
Using the spl_map Routine 8

The spl_map(3X) routine enables you to map the physical address of the IPL register
onto a process’s virtual address space. The mapping is achieved by using the mmap(2)
system call to establish a mapping to /dev/spl, the pseudo-device associated with the
register. It is important to note that to use this routine, you must have read and write
access to /dev/spl -- i.e. if not running as root, then the calling process must have
P_DACWRITE and P_DACREAD privilege.

The specifications required for making this call are as follows:

#include <sys/types.h>
#include <sys/ipl.h>

caddr_t spl_map(addr)

caddr_t addr;

The argument is defined as follows:

addr the virtual address at which the register is to be mapped. If you wish the
kernel to select the address, specify a value of zero. If not, specify a
nonzero value.

If no errors occur, the spl_map routine returns the virtual address of the IPL register.
Otherwise, a value of -1 is returned, and errno is set to indicate the error. Refer to the
spl_request(3X) system manual page for a listing of the types of errors that may
occur.

NOTE

Such library routines as those contained in a user-level device
driver may make spl_map calls in addition to those made by the
nonlibrary code portion of the program. Therefore, if a process
makes more than one call to spl_map before making a call to
spl_unmap, an attempt will be made to use the previously
mapped register. In this case, spl_map will simply increment an
internal reference count and return the previously bound virtual
address. However, if the addr argument is specified on an addi-
tional spl_map call and the address does not match the previ-
ously bound spl register’s address, an error will be returned.

Using the spl_request Routine 8

The spl_request(3X) routine enables you to set the IPL to a specified level. It is rec-
ommended that you lock the process’s pages into physical memory prior to calling this
routine. You can do so by using the mlock(3C) or mlockall(3C) library routines.
Procedures for using these routines are explained in the PowerMAX OS Programming
Guide.
8-25

PowerMAX OS Real-Time Guide
The specifications required for calling spl_request are as follows:

#include <sys/types.h>
#include <sys/ipl.h>

void spl_request(value, addr)

u_int value;
caddr_t addr;

The arguments are defined as follows:

value an IPL value as defined in the file <sys/ipl.h> and presented in
Table 8-1

addr the virtual address of the IPL or processor level register, which has been
obtained on a previous call to spl_map(3X)

The spl_request routine returns the value that the IPL or processor level register con-
tained prior to the call; it does not return an error status.

A process should raise the IPL to a value greater than zero only for a short time. While a
process has the IPL raised, it should not perform any of the following operations:

• Make a system call.

• Reference a memory location that will produce a page fault.

• Set debugger breakpoints or single-step in a section of code where the IPL
has been set to a value that is greater than zero.

CAUTION

A user-level process that raises the IPL should always reset it to
zero. An interrupt-handling routine that temporarily raises the
IPL should restore it to the value to which it was set at entry to the
interrupt-handling routine--that is the same value that was
returned on the interrupt-handling routine’s initial call to
spl_request.

Using the spl_request_macro 8

The spl_request_macro provides you with a faster means of modifying the value of
the IPL or processor level register than the spl_request(3X) routine does. It can be
called only from C programs; it cannot be called from Ada and Fortran programs.

The specifications required for calling this macro are as follows:

#include <sys/types.h>
#include <sys/ipl.h>

spl_request_macro(value, addr, pv)
8-26

User-Level Interrupt Routines
u_int value;
caddr_t addr;
u_int pv;

The arguments are defined as follows:

value an IPL value as defined in the file <sys/ipl.h> and presented in
Table 8-1

addr the virtual address of the IPL or processor level register, which has been
obtained on a previous call to spl_map(3X)

pv a variable to which the macro returns the previous value of the IPL or
processor level register. You must provide this argument.

Using the spl_unmap Routine 8

The spl_unmap(3X) routine enables you to unmap the IPL register that has been
mapped on a previous call to spl_map(3X) (see “Using the spl_map Routine” for an
explanation of this routine). Note that if the process invokes the exec(2) or exit(2)
system call, the operating system removes the mapping.

The specifications required for calling this routine are as follows:

#include <sys/types.h>
#include <sys/ipl.h>

int spl_unmap(addr)

caddr_t addr;

The argument is defined as follows:

addr the virtual address of the IPL or processor level register that has been
returned on a previous spl_map(3X) call

A return value of 0 indicates that the spl_unmap call has been successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the spl_request(3X) system manual page for a listing of the types of errors that may
occur.

If the process has made multiple calls to spl_map before calling spl_unmap, the spl
register will not actually be unmapped until the corresponding number of spl_unmap
calls has been made.
8-27

PowerMAX OS Real-Time Guide
Using the eti Support Routines 8

A set of C library routines have been developed to allow you to control a particular edge-
triggered interrupt. You can do so by binding the physical address of the edge-triggered
interrupt to a process’s virtual address space and then directly performing the desired con-
trol operation. The routines are briefly described as follows:

eti_map bind the physical address of an edge-trig-
gered interrupt to a process’s virtual address
space

eti_request perform a control operation for an edge-trig-
gered interrupt

eti_unmap detach a shared memory region that has been
bound to the edge-triggered interrupt with an
eti_map call

Use of the eti_map routine is explained in “Using the eti_map Routine.” Use of the
eti_request routine is explained in “Using the eti_request Routine.” Use of the
eti_unmap routine is explained in “Using the eti_unmap Routine.”

Using the eti_map Routine 8

The eti_map(3C) routine enables you to map the physical address of an edge-triggered
interrupt onto a process’s virtual address space. The mapping is achieved by creating a
shared memory region, binding it to the physical address of the edge-triggered interrupt,
and attaching it to the process’s virtual address space. It is important to note that to use this
routine, you must have the P_SHMBIND privilege.

The specifications required for making this call are as follows:

#include <sys/types.h>
#include <sys/pin.h>

caddr_t eti_map(pin, addr)

int pin;
caddr_t addr;

The arguments are defined as follows:

pin the pin number of the edge-triggered interrupt whose address you wish
to map onto the process’s virtual address space.

For Night Hawk systems, the following values may be specified on each
system:

0-3 edge-triggered interrupts on CPU board 0

4-7 edge-triggered interrupts on CPU board 1
8-28

User-Level Interrupt Routines
8-11 edge-triggered interrupts on CPU board 2

12-15 edge-triggered interrupts on CPU board 3

On Power Hawk Series 600/700/900 systems, edge-triggered interrupts
are provided by the Real-Time Clocks and Interrupts Module (RCIM), if
installed. Four edge-triggered interrupts are available on each RCIM.

0-3 RCIM edge-triggered interrupts

addr the virtual address at which the shared memory region is to be attached.
If you wish the kernel to select the address, specify a value of zero. If
not, specify a nonzero value. The address is automatically rounded to a
SHMLBA boundary (SHMLBA is defined in <sys/shm.h>).

If no errors occur, the eti_map routine returns the virtual address that has been mapped
to the interrupt controller’s physical address space that controls the specified edge-trig-
gered interrupt. Otherwise, a value of -1 is returned, and errno is set to indicate the error.

Using the eti_request Routine 8

The eti_request(3C) routine enables you to perform a control operation for an edge-
triggered interrupt pin that has been mapped onto a process’s virtual address space. By
using this routine, you can arm, disarm, enable, disable, and request a particular edge-trig-
gered interrupt.

The specifications required for calling eti_request are as follows:

#include <sys/types.h>
#include <sys/pin.h>

void eti_request(func, addr)

u_int func;
caddr_t addr;

The arguments are defined as follows:

func a pin function as defined in the file <sys/pin.h>. This function may
be one of the following:

PIN_ARM allow interrupt to be recognized

PIN_DISARM prevent interrupt from being recognized

PIN_ENABLE allow interrupt to be received

PIN_DISABLE prevent interrupt from being received

PIN_REQUEST generate an interrupt on an enabled pin

addr the virtual address for controlling the edge-triggered interrupt, which
has been obtained on a previous call to eti_map(3C).

The eti_request(3C) routine does not return a value.
8-29

PowerMAX OS Real-Time Guide
Using the eti_unmap Routine 8

The eti_unmap(3C) routine enables you to detach a shared memory region that has
been attached to a process’s virtual address space on a previous call to eti_map(3C)
(see“Using the eti_map Routine” for an explanation of this routine). (Note that when a
process exits or makes one of the exec(2) system calls, a shared memory region that is
attached to its virtual address space is automatically detached.)

The specifications required for calling this routine are as follows:

#include <sys/types.h>
#include <sys/pin.h>

int eti_unmap(addr)

caddr_t addr;

The argument is defined as follows:

addr the virtual address for controlling the edge-triggered interrupt, which
has been returned on a previous eti_map(3C) call

A return value of 0 indicates that the eti_unmap call has been successful. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
eti_request(3C) system manual page for a listing of the types of errors that may
occur.

Using the Distributed Interrupt Support Routines 8

There are a set of C library routines that are used to control distributed interrupts provided
by the Real-Time Clocks and Interrupts Module (RCIM).

This is done by binding the physical address of the distributed interrupt control registers
into the address space of a process and then directly performing the desired operation.

The routines provided are briefly describe:

distrib_intr_map bind the physical address of a distributed interrupt
into a process’s virtual address space.

distrib_intr_request perform a control operation for a distributed interrupt.

distrib_intr_unmap detach a shared memory region that has been bound to a dis-
tributed interrupt with a distrib_intr_map call.

The man page distrib_intr_request(3c) provides a full description.

Distributed interrupts are similar to and handled in a similar fashion to edge-triggered
interrupts. .See Section “Using the eti Support Routines” on page 8-28 for more informa-
tion.
8-30

User-Level Interrupt Routines
Using the vme_address Routine 8

The vme_address(3C) routine enables you to obtain a 32-bit physical address for an
A16 or an A24 (H)VME address generated by a particular device. A 32-bit physical
address is required when you use the shmbind(2) system call or the shmconfig(1M)
command to bind a shared memory region to a section of physical (H)VME memory.
(Procedures for using this system call and command are explained in the PowerMAX OS
Programming Guide.) You may find this routine particularly helpful, for example, if you
are writing a user-level device driver and wish to bind a shared memory region to the
physical address of the (H)VME board.

The specifications required for calling this routine are as follows:

#include <sys/types.h>
#include <sys/pin.h>

u_int vme_address(addr, bus, type)

u_int addr;
int bus;
int type;

The arguments are defined as follows:

addr a device’s A16 or A24 address for which you wish to generate a 32-bit
address

bus an integer value that indicates the (H)VME bus to which the device is
connected. A 0 denotes the primary bus; a 1 denotes the secondary bus.

type an integer value that indicates whether the device’s address specified by
addr is an A16 or an A24 address. A 0 denotes an A16 address; a 1
denotes an A24 address.

If the call is successful, vme_address returns a 32-bit VME address. A return value of
-1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
vme_address(3C) system manual page for a listing of the types of errors that may
occur.
8-31

PowerMAX OS Real-Time Guide
8-32

9
Virtual Interrupt System

Introduction . 9-1
Understanding VIS Signals and Queued Signals . 9-1

VIS Overview . 9-1
The Channel . 9-2

Sense and Source Connections . 9-2
System Timer Channel . 9-3

Connecting to a Timer Channel with vi_sense(2) . 9-3
VIS Calls and Routines . 9-3
VIS Interface—Procedural Overview . 9-4

Creating a Virtual Interrupt Channel . 9-4
Deleting a Virtual Interrupt Channel . 9-6
Establishing a Source Connection. 9-6
Sourcing an Interrupt. 9-7
Removing a Source Channel . 9-8
The action_t Structure . 9-8
Allocating and Initializing an action_t Structure . 9-9
Establishing a Sense Connection. 9-10

Timer Connections . 9-10
Removing a Sense Connection . 9-11
VIS Control Operations. 9-11

Command-Level VIS Administration . 9-13

PowerMAX OS Real-Time Guide

9
Chapter 9Virtual Interrupt System

9
9
9

Introduction 9

This chapter describes a facility for supporting asynchronous notification known as the
Virtual Interrupt System (VIS), which provides a cohesive, symmetric subsystem for con-
trolling software interrupts.

Intertask notification mechanisms can be controlled and coordinated through the Virtual
Interrupt System (VIS), a generalized facility for supporting system-wide asynchronous
notification.

The VIS provides a cohesive, symmetric subsystem for controlling software interrupts.
Use the VIS to control asynchronous notification when performing new development
under the PowerMAX OS. Although you need not impose the VIS on existing code, you
may choose to do so in some cases to facilitate portability to future Concurrent platforms.

Understanding VIS Signals and Queued Signals 9

The Virtual Interrupt System (VIS) is a facility for the efficient use of signals and queued
signals to provide asynchronous notification.

Signals are a software interrupt mechanism that notify one or more recipients of an event.
A non-queued signal may not be reliable, i.e., if an instance of that particular signal is
already pending for the recipient, the new instance is not sent. If sent, it may optionally
have additional information that is delivered with the signal. Queued signals are reliable,
i.e., even if other instances of the signal are pending, the new instance is sent. Queued sig-
nals can always be sent with additional information that is delivered with the signal.
Queued signals conform to the POSIX 1003.1b standard.

VIS Overview 9

This section is an overview of the VIS interface and command-level VIS administration.
9-1

PowerMAX OS Real-Time Guide
The Channel 9

A virtual interrupt channel (channel) is the object upon which software interrupts are sent
(sourced) and received (sensed). This channel can be created by a user task, a device
driver, or the kernel. (Currently, the PowerMAX OS kernel and device drivers do not cre-
ate VIS channels.) Once created, the channel is identified by a unique handle and option-
ally by a unique name. The channel naming simplifies intertask access to the channel.

A channel is normally owned by the creating entity and hence exists for the life of its cre-
ator. It can, however, be adopted by the kernel, in which case it exists until it is explicitly
removed or until the system is rebooted.

Sense and Source Connections 9

Entities can register to receive or send interrupts on a channel. Successfully registering to
receive interrupts establishes a sense connection and results in the entity’s joining the
channel’s sense membership list. The connection can subsequently be removed by either
the connecting entity or by the channel owner. Otherwise, the connection exists for the life
of the channel or the life of the connector, whichever is shorter.

The interrupt sensor also specifies (and provides) the notification mechanism, as well as
the type of parameters to be received with that mechanism. The interrupt sensor accom-
plishes this by allocating and initializing an ACTION structure, which supplies all the
information necessary for the kernel to generate a queued signal or a non queued signal on
behalf of the sensor. Allocation and initialization of the ACTION structure may be per-
formed with a library routine.

Successfully registering to send an interrupt establishes a source connection. A source
connection causes an input mapping to the channel. (A single map of all source connec-
tions to all channels is maintained for each user task by VIS.) A mapping table of all
source connections to channels is maintained for each user process by the VIS. This table
and its usage is shared by all lightweight processes (LWPs) in a process. The (integer) map
index that is returned by the source connection operation permits an efficient authentica-
tion of each subsequent request to post an interrupt.

A source connection can be removed by the sourcing entity as well as by the owner of the
channel. Such removal is achieved by invalidating the mapping table slot that corresponds
to the map index.

In addition to the per-process input map, a source membership list is maintained by the
VIS for each channel. Each source connection causes a member to be added to this list,
which serves as a reference for all source connections that target this channel.

VIS is designed to ensure graceful and coherent behavior under all conditions. The
removal of channels or channel connections during usage is permitted without compro-
mising system integrity. An application may, however, need to tolerate missed interrupts
in this case.

At the time of its creation, a channel can be assigned attributes and permissions that regu-
late subsequent connections to it. In particular, the channel can be established for either
broadcast sense connections, event-monitoring sense connections, or timer sense connec-
tions.
9-2

Virtual Interrupt System
Event monitoring enables conditional receipt of interrupts, depending on the value of an
event word. Each sense connection on the channel can register a particular logical test to
be performed on the channel’s event word. If the test evaluates true, the sense connection
receives the interrupt.

Timer channels can only be created by the system or device driver, but allow arbitrary
sense connections to exist on this type of channel. VIS timer channels allow efficient and
hardware-independent support of time-based notification. (This feature is currently
unused by PowerMAX OS.)

System Timer Channel 9

NOTE

System timer channels are currently not supported by PowerMAX
OS; this may change in future releases.

The system timer channel is a kernel-established high-performance timing mechanism for
the generation of one-shot and periodic system processing. The system timer channel sup-
ports VIS sense connections and POSIX 1003.4-conformant timers.

VIS timer channels internally maintain time for all associated sense connections via an
aperiodic time base. An aperiodic time base reduces the interrupt load to the absolute min-
imum required for a given connection list while allowing time to be specified with a high
degree of precision.

Connecting to a Timer Channel with vi_sense(2) 9

The vi_sense(2) function connects to a virtual interrupt channel as an interrupt
receiver. vi_sense(2) can create a timer connection on a timer channel and define an
initial pause and reload value.

VIS Calls and Routines 9

The two basic interfaces to VIS are:

• User

• Kernel/Driver
9-3

PowerMAX OS Real-Time Guide
This manual describes only the user interface. See the device driver manual pages for
information about the kernel/driver interface. The user task system calls and library rou-
tines are:

VIS Interface—Procedural Overview 9

This section presents a procedural overview of the VIS calls listed above.

Creating a Virtual Interrupt Channel 9

A user task creates a virtual interrupt channel by calling vi_create(2). This estab-
lishes a system-wide virtual interrupt channel to which tasks and other system entities can
subsequently connect. Pending creation, connections may be established upon a channel
to sense or source interrupts.

The syntax for vi_create(2) is

#include <sys/vi.h>
int vi_create(name, maxcon, perm, [, evword])
unsigned char *name;
int maxcon;
unsigned int perm;
unsigned long evword;

Table 9-1. VIS User Task System Calls and Routines

Call or Routine Description

vi_create(2) Creates a system-wide virtual interrupt channel for the sourc-
ing and sensing of software interrupts.

vi_delete(2) Deletes a system-wide virtual interrupt channel.

vi_map(2) Establishes a map to a virtual interrupt channel for subse-
quent sending (or posting or sourcing) software interrupts.

vi_mapsource(2) Sends (or post or sources) a software interrupt on a virtual
interrupt channel.

vi_unmap(2) Disconnects a map from a virtual interrupt channel.

actsig(3) Initializes an ACTION structure as a signal specification.

vi_sense(2) Connects to a virtual interrupt channel for receiving (or sens-
ing) software interrupts.

vi_nonsense(2) Disconnects an established sense connection from a virtual
interrupt channel.

vi_ctl(2) Performs control and housekeeping operations on a virtual
interrupt channel. These operations include fetching and set-
ting channel data (such as permissions, limitations, and sta-
tistics).
9-4

Virtual Interrupt System
where:

name if non-null, specifies a character string up to MAXPATHLEN characters in
length, to be used as a system-wide tag to address the channel.

maxcon is the channel sense connection limit.

perm defines the following creation attributes and connection permissions:

VIP_SO_ANY
Channel will allow unrestricted source connections.

VIP_SO_PRIV
Caller is required to have appropriate privilege to connect as an inter-
rupt source. Appropriate privilege requires either that the caller have an
effective user ID of 0 (root) or that the current kernel allow users to
assign real-time priorities to their tasks. The latter property is achieved
by configuring a kernel with the vis_privenb parameter set to a
value of 1, the PowerMAX OS default.

VIP_SO_KERNEL
Connection for source is restricted to kernel.

VIP_SE_ANY
Channel will allow unrestricted sense connections.

VIP_SE_PRIV
Caller is required to have appropriate privilege to sense channel inter-
rupts. See the description above of VIP_SO_PRIV.

VIP_SE_KERNEL
Connection for sense is restricted to kernel.

VIP_NODESPACE
Created channel is owned by the system and exists beyond the life of the
creating task unless explicitly deleted. Normally an interrupt channel is
removed when the creating task exits or executes. This operation
requires the appropriate privilege. See the description above of
VIP_SO_PRIV.

VIP_DORMANT
Channel when created is dormant, which will pause or inhibit
vi_map(2) attempts. A vi_ctl(2) call is required to activate the
channel and allow source mappings to succeed. This mechanism allows
sense connections to be established on a newly created channel before
source interrupts occur; otherwise, these sense connections would effec-
tively be lost.

VIP_EVENT
evword is interpreted as the initial value to assign to the channel’s event
word; if VIP_EVENT is not specified, evword is ignored. Creation of a
channel with VIP_EVENT is not required for event monitoring on the
channel; it only indicates whether the channel’s event word is to be
assigned an initial value.
9-5

PowerMAX OS Real-Time Guide
evword
is an optional argument that specifies an initial value for the channel’s event
word. evword is interpreted only if VIP_EVENT is specified in perm.

Deleting a Virtual Interrupt Channel 9

A user task deletes a system-wide virtual interrupt channel by calling vi_delete(2):

#include <sys/vi.h>

int vi_delete(chanid)
int chanid;

where chanidis removed after removing any connections previously established for source
and sense, respectively. A return value of 0 indicates a successful removal; a return value
of -1 indicates an error.

Establishing a Source Connection 9

A task that wants to source interrupts must establish an input mapping connection to the
desired virtual interrupt channel by calling vi_map(2):

#include <sys/vi.h>
int vi_map(chanid, flags, id)

int chanid;
unsigned int flags, id;

where:

chanid specifies the target virtual interrupt channel.

flags is used to define optional behavior for this call:

- If flags & VIMAP_NOWAIT, the call will not block and returns an
error if chanid is currently dormant.

- If flags & VIMAP_EVENT, the source connection is established for
eve n t wor d ac ce ss . Th i s c a use s s ubs eque n t c a l l s t o
vi_mapsource(2) to be interpreted as channel event word modi-
fications rather than as broadcast interrupts.

- If flags & VIMAP_ID is TRUE, the field id is saved in the input map
to facilitate identifying the map in subsequent vi_mapsource(2)
calls. Visibility of the value is dependent on the ACTION convention
chosen for the sense connection. See the action(5) man page for
details.

The caller must meet the channel permission requirements establ ished by
vi_create(2).

Input mappings are required to detect invalid channel handles (chanid)—and to authenti-
cate valid ones—when they are used to post interrupts. This is accomplished by translating
from a user-owned map structure to a virtual interrupt channel handle.
9-6

Virtual Interrupt System
A user process has a private input mapping table used for vi_map(2) calls. This input
mapping table is shared by all LWPs in a process. Upon the first vi_map(2) call, if an
input mapping table has not been established for the caller, a table is allocated; by default,
the table’s size is VIDEF_IM mapping entries, as defined in <sys/vi.h>. As this table
is fixed in size and will limit the number of outstanding input mapping connections, a task
may allocate a table of sufficient size beforehand.

vi_map(2) returns an index into the caller’s mapping table, which identifies the connec-
tion. This index is used by vi_mapsource(2) to source (post) an interrupt on a virtual
interrupt channel. This index is common to all LWPs in a process and is analogous to file
descriptors.

Sourcing an Interrupt 9

A task calls vi_mapsource(2) to source (post) an interrupt on, or modify the event
word of, a virtual interrupt channel. The call takes the form:

#include <sys/vi.h>

int vi_mapsource(mapid, arg [, op, val])
int mapid;
int arg, op;
unsigned int val;

where:

mapid specifies a local input map to a virtual interrupt channel. If mapid is not estab-
lished for event word access, op and val are ignored, and a broadcast interrupt
is generated on mapid.

arg is offered to the connections sensing on the channel.

op is assumed to be a logical operation to be performed on mapid’s event word.
The following table lists the operations defined for op:

val is assumed to be a logical operation to be performed on mapid’s event word.

op Operation Result

EVM_ASSIGN evword = val Assigns val to event word

EVM_AND evword &= val AND bits of val with event word

EVM_OR evword |= val OR bits of val with event word

EVM_XOR evword ^= val XOR bits of val with event word

EVM_NAND evword = ~(evword & val) NAND bits of val with event word

EVM_NOR evword = ~(evword | val) NOR bits of val with event word

EVM_XNOR evword = ~(evword ^ val) XNOR bits of val with event word
9-7

PowerMAX OS Real-Time Guide
Removing a Source Channel 9

A task removes a channel input mapping by calling vi_unmap(2):

#include <sys/vi.h>

int vi_unmap(mapid)
int mapid;

where mapid is the input mapping table entry to be disconnected from its virtual interrupt
channel. The caller must meet the channel permission requirements established by
vi_create(2). vi_unmap(2) frees the map entry in the task’s input mapping table
claimed by vi_map(2).

The action_t Structure 9

The interface for sensing an interrupt allows the choice of notification mechanism, speci-
fied with an action_t structure:

#include <sys/signal.h>
#include <sys/vi.h>

typedef union {
int _pad[16];
struct {

int act_type;
unsigned int act_flags;
union {

struct {
int signum;
int arg;
} sig;

} act_spec;
unsigned int (*act_init) ();
union {

void *ptr;
int scal;
} act_arg;

void *act_member;
ushort act_limit;
} act;

struct sigevent sevt;
} action_t;

#define action_type act.act_type
#define action_flags act.act_flags
#define action_spec act.act_spec
#define action_init act.act_init
#define action_arg act.act_arg
#define action_member act.act_member
#define action_limit act.act_limit
9-8

Virtual Interrupt System
The field action_t.action_type selects the mechanism from ACT_SIG and
ACT_QSIG, which correspond to non-queued signals or queued signals.

The field action_t.action_flags defines optional behavior for the mechanism.
action_t.action_spec is initialized by the caller before passing its address to the
system as appropriate for the selected notification mechanism.

The field action_t.action_init and action_t.action_arg are reserved for
use by the kernel; they should be ignored by the user.

The field action_t.action_arg is passed to a non-queued signal as the signal han-
dler’s argument. Queued signals will pass the argument used in a vi_mapsource(2)
call to the signal handler.

Use of the action_t convention is facilitated by the library call actsig(3). See the
actsig(3) and action(5) man pages for details.

Allocating and Initializing an action_t Structure 9

The actsig(3) library call initializes an action_t structure as a signal specification

#include <sys/vi.h>

action_t *actsig(act, sig, flags, nqueue, func, arg)
action_t *act;
int sig;
unsigned int flags, nqueue;
void (*func) ();
unsigned int arg;

where:

act if NULL, an action_t structure is allocated by actsig(3); otherwise, act
is assumed to be the address of a valid action_t structure.

sig is the number of the signal to be depicted in the action.

nqueue if 0 or 1, causes act to represent a conventional single recurrence signal
(ACT_SIG). Otherwise, nqueue is taken to be the maximum number of signals
that can be outstanding for act and the action is set to ACT_QSIG.

flags If flags & ACT_SIG_HAND is specified, actsig(3) registers func to be a
persistent user signal handler invoked when sig occurs. Additionally, sig is
blocked during the duration of func. If sig is a member of the queued signals
set, actsig(3) masks the set of [sig...SIGRTMAX] during func in order
to enforce the delivery prioritization specified by POSIX 1003.1b. The prior-
ity masking may be overridden, if desired, by flags & (ACT_SIG_NOPRI
| ACT_SIG_HAND).

If !(flags & ACT_SIG_HAND), the signal handler must be registered via
one of signal(2), sigset(2), or sigaction(2) (preferred) if other
than default behavior is desired for sig.

See the actsig(3) man page for details.
9-9

PowerMAX OS Real-Time Guide
Establishing a Sense Connection 9

Assuming the action_t structure is initialized appropriately for the desired mecha-
nism, a task passes its address by calling vi_sense(2):

#include <sys/vi.h>

int vi_sense(chanid, pact, flags
[, arg1, arg2])
int chanid;
action_t *pact;
unsigned long flags;
unsigned int arg1, arg2;

where:

chanid is the virtual interrupt channel that vi_sense(2) attempts to connect to.

pact is an action_t structure specifying the asynchronous notification mecha-
nism used to deliver the interrupt.

flags, arg1, and arg2
If VISE_EVENT is set in flags, vi_sense(2) creates an event monitor on
chanid and interprets arg1 and arg2 as a logical operation and an event word
mask, respectively. When an event is posted on chanid, the event word in that
channel is masked against arg2, and the result is tested according to the opera-
tion specified by arg1. If the test results in True, an interrupt is received by
the sense connection.

Upon successful completion, vi_sense(2) returns the connection ID unique for the
selected channel.

Timer Connections 9

If flags and VISE_TIMER is specified and chanid is a multiplexed timer channel,
vi_sense(2) will create a timer connection on the channel and interpret arg1 as CLK-
SPEC *arg1, which defines an initial pause and reload value:

typedef struct {
.
.
abstime_t cs_pause;/*delay to first connection expiration */
abstime_t cs_period;/*periodic reload value */
.
.
} clkspec_t;

The data structure abstime_t is intended to be wide enough to hold existing and fore-
seeable hardware-instituted representations of time as:

typedef union {
unsigned long at_l;
struct timestruc at_ts;
struct uptime_clk at_utc;
9-10

Virtual Interrupt System
unsigned long at_longlong[2];
} abstime_t;

The actual data definition used on a particular timer channel is totally dependent on both
the hardware and in-kernel driver servicing the channel.

Removing a Sense Connection 9

A task removes a sense connection by calling vi_nonsense(2):

#include <sys/vi.h>

int vi_nonsense(chanid, conid)
int chanid;
int conid;

where:

chanid is the virtual interrupt channel

conid is the previously established channel connection.

vi_nonsense(2)attempts to remove the previously established channel connection
conid from the virtual interrupt channel chanid. The caller must meet the channel permis-
sion requirements established by vi_create(2).

VIS Control Operations 9

vi_ctl(2) provides user-level access for virtual interrupt channel administration:

#include <sys/vi.h>

int vi_ctl(cmd, arg1, arg2, arg3, arg4)
int cmd, arg1, arg2, arg3, arg4

where cmd specifies the desired functionality, currently defined as:

VICTL_MAXCHAN
Sets/gets the system-wide creation limit on virtual interrupt channels when
arg1 is zero/nonzero, respectively. When setting, arg2 specifies the limit
and the limit before modification is returned. Setting is a privileged operation.

VICTL_MAXSECON
Sets/gets the sense connection limit to be checked when creating a virtual
interrupt channel when arg1 is zero/nonzero, respectively. When setting,
arg2 specifies the limit and the limit before modification is returned. Setting
is a privileged operation.

VICTL_NCHAN
Returns the number of system channels currently established.
9-11

PowerMAX OS Real-Time Guide
VICTL_IMAPSZ
Creates/gets the calling task’s input mapping table size when arg1 is zero/
nonzero, respectively. When creating, arg2 specifies the size of the table. A
table can be created only if one does not already exist.

VICTL_DELMYTASK
Deletes all virtual interrupt channels created by the caller.

VICTL_DELUSR
Deletes user-created virtual interrupt channels. The caller is required to have
the appropriate privilege.

VICTL_DELALL
Deletes all nonpermanent user and system virtual interrupt channels. This is a
privileged operation.

VICTL_MAXSENSE
Returns the sense connection limit for the int specified by arg1 (the chan-
nel id).

VICTL_NSENSE
Returns the sense connection count for the int specified by arg1 (the
channel id).

VICTL_NMAP
Returns the source connection count for the int specified by arg1 (the
channel id).

VICTL_PERM
Returns the creation permissions for the int specified by arg1 (the channel
id).

VICTL_NAMETOID
Returns the virtual channel id (int) of the channel tagged as unsigned
char *arg1, where *arg1 is the name used to tag a virtual interrupt via
vi_create(2). If arg2 is nonzero, vi_ctl(2) waits indefinitely for
*arg1 to exist. This forms a virtual interrupt channel intertask rendezvous
mechanism keyed on a user-specified name.

VICTL_ACTIVATE
Activates/deactivates the virtual channel arg1 when arg2 is nonzero/zero,
respectively. Activation is required when a channel has been created dormant.
This mechanism will pause or inhibit vi_map(2) connections until all sense
connections have been established.

VICTL_ARM
Sets the idle timer of the connection specified by the connection arg2 to
clkspec_t *arg3 on the channel in arg1.

VICTL_IDLE
Disables the timer connection specified by arg2 on the channel specified in
arg1. The timer connection is not deleted by this operation.
9-12

Virtual Interrupt System
VICTL_NEXTTIME
If arg3 is not NULL, it is assumed to be a clkspec_t*arg3. If arg4 is
not NULL, it is assumed to be an unsigned long *arg2. For the timer
connection whose connection id is in arg2 on the channel arg1, return a
snapshot of the timing parameters in *arg3 and additionally the overrun
count in *arg4.

Command-Level VIS Administration 9

NOTE

This command is not currently available on PowerMAX OS.

vis(1) provides a command-level interface for virtual interrupt channel administration.
This facility lets you inspect and modify VIS resources: channels, channel creation and
sense limits, channel activations, and system-wide VIS parameters.

The arguments to the vis(1) command belong to one of three categories: set, action,
or options:

vis [set] [action] [options]

where:

set specifies resources to which the subsequent action arguments will be
applied.

action specifies operations to be applied to the selected resources. Specifically:

- Channels can be activated and deactivated.

- Channel creation limits and channel sense limits can be modi-
fied.

- Channels can be deleted.

- Various resources can be examined.

options qualify the set and action flags in specific ways.

The following command prints out the number of channels that are active and owned by
the system:

vis -q -sys -act -v

VICHANID OWNER STATUS SOURCE SENSE NAME
0xd0000020 system active 1 0 DUARTCLOCK1
0xd000acec system active 1 0 DUARTCLOCK2
0xd000ad2c system active 1 0 DUARTCLOCK3
3 channels currently exist
9-13

PowerMAX OS Real-Time Guide
In this command,

• -sys and -act are select flags.

• -q is an action flag requesting a one-line synopsis of each channel.

• -v is an option flag requesting verbosity.

The following command removes a dormant user-owned channel named xyz:

vis -rm -usr -inact -nxyz

 In this command:

• -inact, -usr, and -nxyz are select flags.

• -rm is an action flag requesting channel removal.

Used without arguments, vis(1) prints the current number of existing virtual interrupt
channels. For example:

vis
7 channels currently exist

See the vis(1) man page for more information.
9-14

10
Hardclock Interrupt Handling

Understanding Hardclock . 10-1
Controlling Clock Interrupt Handling . 10-3

Controlling System-Wide Timing Functions . 10-3
Controlling Local Timing Functions . 10-4

Using the mpadvise Library Routine . 10-4
Using the hardclock Command. 10-5

Understanding Functional Changes. 10-6
The Process Scheduler . 10-6
The Processor File System . 10-6
System Calls, Routines, Commands, and Utilities . 10-6

PowerMAX OS Real-Time Guide

10
Chapter 10Hardclock Interrupt Handling

10
10
10

This chapter describes the 60 Hz clock interrupt and its interrupt service routine. It
describes the methods for controlling 60 Hz clock interrupt handling on particular CPUs
in a system and the reasons for using them. An overview of the clock interrupt and the
interrupt handler is provided in “Understanding Hardclock.” Procedures for controlling
clock interrupt handling are explained in “Controlling Clock Interrupt Handling.” Result-
ing changes in the functionality of system calls, routines, commands, and utilities are
described in “Understanding Functional Changes.”

Understanding Hardclock 10

The system-wide 60 Hz clock interrupts every CPU in the system 60 times per second.
Hardclock refers to the operating system mechanism that services the 60 Hz clock inter-
rupts on each processor.

Hardclock performs two sets of functions: those that are performed for the entire system
and those that are performed for all currently running lightweight processes.

On the boot CPU only, hardclock carries out the following system-wide timing functions:

• Keeping the time of day

• Keeping the number of clock ticks since the last boot

• Keeping the number of seconds since 00:00:00 GMT (Greenwich mean
time), January 1, 1970.

• Updating the time remaining for events in the local and global callout
queues (The local callout queue contains functions that can run only on the
local processor; the global callout queue contains functions that can run on
any processor in the system.)

• Waking a daemon to run the expired events in the local callout queue

• Triggering a low–priority software interrupt to run the expired events in the
global callout queue

• Keeping the amount of free memory

On all CPUs, hardclock performs the following local timing functions:

• Keeping process CPU usage statistics and sending the SIGXCPU signal

• Expiring the process virtual interval timer and sending the SIGVTALRM sig-
nal

• Expiring the process profiling timer and sending the SIGPROF signal
10-1

PowerMAX OS Real-Time Guide
• Initiating process and kernel profiling functions

• Aging process rescheduling locks and sending the SIGRESCHED signal

• Keeping track of process resident memory usage

• Expiring the current quantum, which forces a context switch on interrupt
completion. Quantum expiration is necessary for round–robin scheduling
within a priority level.

• Calculating per process and per lightweight process user and system times

Mean and median times for hardclock() to service interrupts generated by the 60 Hz
clock are nearly identical; however, worst case times can deviate from the mean by as
much as 400 percent. The hardclock() routine’s periodic and nondeterministic behav-
ior can introduce unacceptable levels of jitter in applications with stringent timing require-
ments.

Some applications require the execution of a task within some period At. The task will
execute for some duration Ax. Every period, there will be some slack time As, during
which the task does not execute. This can be expressed as:

At = Ax + As

Like the task, the hardclock interrupt must also execute within some period, Ht, and for
some duration Hx. If the hardclock interrupt and the tasks are to execute on the same
CPU, the amount of CPU time available for execution of the task process will be reduced.
If At is much smaller than Ht, there will be task periods where there is no loss in available
CPU time and some where there is. If all tasks must complete in their allotted period, a
task period must be long enough for execution of the task plus execution of the hardclock
interrupt. This can be expressed as:

Ax + Hx < At = Ax + As

If the slack time in the task period, As, is larger than the execution time of the hardclock
interrupt, Hx, all tasks have enough time to complete before the next task period. Other-
wise, some tasks will not complete before the next task period, producing jitter in the
application.

The purpose of hardclock(1M) is to disable local timing functions on CPUs where
contention between the hardclock interrupt and a periodic real–time task is likely to occur.
With Hx ≈ 0, the second expression becomes:

Ax < At = Ax + As

This expression is always true where As > 0.

The jitter and overhead associated with servicing the 60 Hz clock interrupt can be reduced
by disabling local timing functions on specified CPUs. Reducing the number of functions
performed for a particular CPU will improve performance on that CPU.

An interface that allows you to specify dynamically which CPUs will service the clock
interrupts is provided. If a CPU does not service the 60 Hz clock interrupt, hardclock func-
tions for lightweight processes running on that CPU are not performed. This interface is
described in “Controlling Local Timing Functions.”
10-2

Hardclock Interrupt Handling
Controlling Clock Interrupt Handling 10

You can control clock interrupt handling in two ways: (1) by enabling a system daemon to
perform system-wide timing functions on the boot CPU and (2) by disabling local timing
functions on selected CPUs. “Controlling System-Wide Timing Functions” explains the
procedures for using the system daemon. “Controlling Local Timing Functions” explains
the procedures for disabling local timing functions on selected CPUs.

Controlling System-Wide Timing Functions 10

By default, hardclock system-wide timing functions are performed in an interrupt routine
on the boot processor. You can configure your system so that the following system-wide
timing functions are performed by a system daemon:

• Running the expired events in the global callout queue

• Keeping the amount of free memory

You can ensure that these functions are performed by a system daemon by setting the
value of the TODCINTRDAEMON system tunable parameter to 1.

On a multiprocessor system, you may also wish to ensure that the daemon runs on a partic-
ular processor. You can do so by setting the value of the TODCINTR_ENGBIAS system
tunable parameter. The value of this parameter is a bit mask in which bits 0 through 7 cor-
respond to processors 0 through 7. The default value for this parameter is -1, which
denotes all available processors. Processors are selected by changing the value of the
parameter to a hexadecimal value that sets the bit(s) corresponding to the desired proces-
sor(s) in the mask.

You can use the config(1M) utility to (1) determine whether the values of these param-
eters have been modified for your system, (2) change the values of these parameters, and
(3) rebuild the kernel. Note that you must be the root user to change the value of a tunable
parameter and rebuild the kernel. After rebuilding the kernel, you must then reboot your
system.

It is important to note that the following system-wide timing functions are always per-
formed at interrupt level:

• Keeping the time of day

• Keeping the number of clock ticks since the last boot

• Keeping the number of seconds since 00:00:00 GMT (Greenwich mean
time), January 1, 1970.

• Updating the time remaining for events in the global callout queue

• On multiprocessor systems, updating the time remaining for events in the
local callout queue

• On multiprocessor systems, waking a daemon to run the expired events in
the local callout queue
10-3

PowerMAX OS Real-Time Guide
Controlling Local Timing Functions 10

You can enable and disable local timing functions on all CPUs by using the
mpadvise(3C) library routine or the hardclock(1M) command. Use of the
mpadvise routine is explained in “Using the mpadvise Library Routine.” Use of the
hardclock command is explained in “Using the hardclock Command.”

Using the mpadvise Library Routine 10

The mpadvise(3C) routine performs two functions pertaining to the 60 Hz clock inter-
rupt. Mpadvise reads a CPU mask to determine which CPUs are currently handling the
clock interrupt and writes a CPU mask to specify which CPUs are to service the clock
interrupt.

The specifications required for using the mpadvise system call to handle the 60 Hz clock
interrupt are as follows:

int mpadvise (cmd, which, who, mask)

int cmd, which, who;
cpuset_t *mask;

Arguments are defined as follows:

cmd the operation to be performed. To handle the 60 Hz clock interrupt, cmd
must be one of the following:

MPA_CPU_GETHRDCLK Return a mask indicating which CPUs are
servicing the 60 Hz clock interrupt.

MPA_CPU_SETHRDCLK Specify which CPUs are to service the 60 Hz
clock interrupt. It is intended that this com-
mand be used in a real–time environment
only. Services normally performed by the
clock interrupt handler will not be performed
on CPUs where clock interrupt handling is
disabled. Services not performed are the
local functions performed for a particular
CPU that are described in “Understanding
Hardclock.” Note that the calling process
must have the P_SYSOPS privilege to use this
command.

which must be zero

who must be zero

mask A pointer to a location where a bit mask is returned if cmd is
MPA_CPU_GETHRDCLK or a pointer to a bit mask that specifies which
C PU s a r e t o s e r v i ce th e 6 0 H z c lo c k i n t e r r u p t i f cmd i s
MPA_CPU_SETHRDCLK. The system identifies CPUs by integers in the
range 0 to 31. Collections of CPUs are specified by a 32–bit mask,
where the value (1<<i) represents CPU i.
10-4

Hardclock Interrupt Handling
Upon successful completion of an MPA_CPU_GETHRDCLK mpadvise call, a mask indicat-
ing the CPUs that are handling the 60 Hz clock interrupt is returned to the location pointed
to by mask. Upon successful complet ion of an MPA_CPU_G ETHRDCLK or an
MPA_CPU_SETHRDCLK mpadvise call, the return value of mpadvise is the number of
bits set in mask. Attempts to enable clock interrupt handling for CPUs that are not active
are silently ignored. If the call is not successful, the return value is –1, and errno is set to
indicate the error. For additional information on the use of this routine, refer to the system
manual page mpadvise(3C).

Using the hardclock Command 10

The hardclock(1M) command allows you to perform two functions:

• Determine the CPUs that are servicing the 60 Hz clock interrupt.

• Specify the CPUs that are to service the 60 Hz clock interrupt.

The format for executing the hardclock command is as follows:

hardclock [cpu–list]

Cpu–list is an optional, comma–separated list of CPU IDs or CPU ID ranges (for example,
1,3–5,7). Cpu–list can also be one of the constants all, none, or boot, where all represents
all active CPUs, none represents no CPUs, and boot represents the boot CPU. Services
normally performed by the hardclock() interrupt routine are not available on CPUs
that have the handling of the 60 Hz clock interrupt disabled; these services are the func-
tions performed for lightweight processes running on a particular CPU that are described
in “Understanding Hardclock.” Note that you must have the P_SYSOPS privilege to specify
cpu–list.

To determine the CPUs that are servicing the 60 Hz clock interrupt, use the hardclock
command without specifying an argument.

The output will be similar to the following:

hardclock enabled: 0–3

To specify the CPUs on which handling of the 60 Hz clock interrupt is enabled, use the
hardclock command, and provide cpu–list. The hardclock command enables clock
interrupt handling for the specified CPUs and disables clock interrupt handling for the
unspecified CPUs. It is intended that this command be used only in a real–time environ-
ment.

The hardclock command returns a CPU list specifying the CPUs on which clock inter-
rupt handling was previously enabled and is currently enabled.

To enable clock interrupt handling on only the boot CPU, enter:

hardclock boot

The output will be similar to the following:

hardclock enabled: old 0–3, new 0
10-5

PowerMAX OS Real-Time Guide
To enable clock interrupt handling on CPUs 0, 2, and 3, enter:

hardclock 0,2–3

The output will be similar to the following:

hardclock enabled: old 1–3, new 0,2–3

Understanding Functional Changes 10

Disabling hardclock() changes functionality in the PowerMAX OS process scheduler
and in certain system calls, routines, commands, and utilities. The ways in which func-
tionality is affected are described in the sections that follow.

The Process Scheduler 10

The time quantum associated with a process or an LWP is adjusted and expired by the
local clock handler. If hardclock() is disabled on a CPU, the time that a process or an
LWP spends executing on that CPU will not be accumulated. Consequently, the process’s
or LWP’s quantum may expire late. The quantum of a process or LWP that runs only on a
CPU on which hardclock() is disabled, will never expire; in this case, the process or
LWP will run to completion unless it blocks or is preempted by a higher priority process.

Refer to the PowerMAX OS Programming Guide for complete information on the process
scheduler; scheduler classes, POSIX scheduling policies, and scheduler priorities; and the
program interfaces and commands that support process scheduling and management.

The Processor File System 10

Disabling hardclock() affects some of the values that are returned by the /proc file
system. Selected fields in the pstatus_t and lwpsinfo_t structures are incorrect for
processes and LWPs executing on a CPU on which clock interrupt handling is disabled.
The fields that are affected in the pstatus_t structure are as follows: pr_utime,
pr_stime, pr_cutime, and pr_cstime. The field that is affected in the
lwpsinfo_t structure is pr_time.

System Calls, Routines, Commands, and Utilities 10

Disabling clock interrupt handling by using the mpadvise(3C) library routine or the
hardclock(1M) command affects the system calls and routines that are presented in
10-6

Hardclock Interrupt Handling
Table 10-1. When hardclock() functions are disabled, the information presented in
the table is not maintained.

Table 10-1. System Calls and Routines Affected by Disabling hardclock

System Calls Effects

getrlimit(2)
setrlimit(2)

When RLIMIT_CPU is set, hardclock() normally checks to
see if the limit has been exceeded by the current process. If
exceeded, hardclock() sends the SIGXCPU signal to the
current process. While a process is executing on a CPU on
which clock interrupt handling is disabled, time is not accu-
mulated toward the CPU limit. The SIGXCPU signal may be
delivered sometime after the limit has been exceeded, or it
may not be delivered.

getitimer(2)
setitimer(2)

The ITIMER_PROF and ITIMER_VIRTUAL timers are normally
expired by hardclock(). For processes executing on
CPUs on which clock interrupt handling is disabled, these
timers expire late or do not expire, and the SIGPROF and
SIGVTALRM signals are delivered late or are not delivered.

acct(2) Accounting information for a process’s physical memory
usage is normally acquired in hardclock(). For processes
executing on CPUs on which clock interrupt handling is dis-
abled, the ac_mem information written to the accounting file
is incorrect. Accounting information related to a process’s
CPU usage is normally acquired in hardclock(). For pro-
cesses executing on CPUs on which clock interrupt handling
is disabled, the ac_utime and ac_stime information writ-
ten to the accounting file is incorrect.

profil(2) The profil(2) system service works by sampling the
application’s program counter in the hardclock() inter-
rupt routine. While a process is executing on a CPU on which
hardclock() is disabled, no profiling will occur.

resched_cntl(2) The RESCHED_SET_LIMIT command normally allows a process
to specify the maximum length of time it expects to defer
rescheduling. When this time limit is reached, the process is
sent the SIGRESCHED signal. While a process is executing on
a CPU on which hardclock() is disabled, time is not accu-
mulated toward the rescheduling limit. Expiration of the set
time limit and delivery of the SIGRESCHED signal will be late
or will not occur.

times(2) Fields in the tms structure, which are calculated from system
and user process times, are incorrect. (This structure is
defined in <sys/times.h>.)
10-7

PowerMAX OS Real-Time Guide
Any library routine or command that uses the system calls presented in Table 10-1 may
produce unexpected results. In addition, commands and utilities that use the system’s tim-
ing facilities may not function correctly. Some of the library routines, commands, and
utilities that may not function correctly are as follows:

For more information about these commands and utilities, refer to the corresponding sys-
tem manual pages.

_lwp_info(2) Fields in the lwpinfo_t structure, which are calculated
from lightweight process times, are incorrect. These fields
are: lwp_utime and lwp_stime. (This structure is
defined in <sys/lwp.h>.)

read(2) A read(2) operation on a file named /proc/pid/status,
where pid represents any process in the system, provides the
status for the process associated with pid and one of its LWPs.
For a description of the effects of disabling hardclock(),
refer to “The Processor File System.”

clock(3C) sh(1) acct(1M)

monitor(3C) time(1) acctcms(1M)

lastcomm(1) timex(1) acctcon(1M)

mpstat(1) top(1) acctprc(1M)

ps(1) truss(1) prfpr(1M)

prof(1) w(1) sar(1M)

whodo(1) uucico(1M)

uuxqt(1M)

Table 10-1. System Calls and Routines Affected by Disabling hardclock

System Calls Effects
10-8

11
Disk I/O

Direct Disk I/O . 11-1
Contiguous Files . 11-3

Creating Contiguous Files . 11-3
I/O With Contiguous Files . 11-3

File Advisories. 11-4
fadvise(3X) . 11-4

Virtual Partition . 11-5
Understanding POSIX Synchronized I/O . 11-6

Configuring POSIX Synchronized I/O. 11-7
Using POSIX Synchronized I/O. 11-8

Using open and fcntl . 11-8
Using fdatasync . 11-9
Using fsync . 11-9

Real-Time Disk Scheduling. 11-10
Miscellaneous Disk I/O Tunables. 11-11

PowerMAX OS Real-Time Guide

11
Chapter 11Disk I/O

11
11
11

This chapter explains the procedures for performing direct disk I/O and the creation of
contiguous files using fallocate(3) and the contig(1M) utility. This chapter also
describes the virtual partition enhancement and provides an overview of the synchronized
I/O interfaces that are based on IEEE Standard 1003.1b–1993. Real-time disk scheduling
is discussed along with the disk I/O tunables.

NOTE

The synchronized I/O facility is an option available only on systems using the
_POSIX_SYNCHRONIZED_IO option. “Configuring POSIX Synchronized I/O” (p. 11-7)
contains the procedure to configure this option.

Direct Disk I/O 11

PowerMAX OS enables a user process to both read directly from--and write directly to--
disk into its virtual address space, bypassing intermediate operating system buffering and
increasing disk I/O speed. Direct disk I/O also reduces system overhead by eliminating
copying of the transferred data.

To set up a disk file for direct I/O use the open(2) or fcntl(2) system call; for xfs
disk files only, use fadvise(3x). Use one of the following procedures:

• Invoke the open system call from a program; specify the path name of a
disk file; and set the O_DIRECT bit in the oflag argument.

• For an open file, invoke the fcntl system call; specify an open file
descriptor; specify the F_SETFL command, and set the O_DIRECT bit in
the arg argument.

• For an open xfs file, invoke the fadvise() library routine and set the
NOREUSE advisory. Enabling direct disk I/O ensures that subsequent
read(2), readv(2), aio_read(3), pread(2), write(2),
writev(2), aio_write(3), and pwrite(2) calls using the same
file descriptor bypass the buffer cache and transfer data directly to and
from the user’s virtual address space.

Direct disk I/O transfers must meet all of the following requirements:

• The user buffer must be aligned on a byte boundary that is an integral mul-
tiple of the _PC_REC_XFER_ALIGN pathconf(2) variable.

• The current setting of the file pointer locates the offset in the file at which
to start the next I/O operation. This setting must be an integral multiple of
11-1

PowerMAX OS Real-Time Guide
the value returned for the _PC_MIN_ALLOC_SIZE pathconf(2) vari-
able.

• The number of bytes transferred in an I/O operation must be an integral
multiple of the value returned for the _PC_MIN_ALLOC_SIZE
pathconf(2) variable.

CAUTION

For files under the ufs or sfs file system, a transfer byte count is
allowed which is less than _PC_MIN_ALLOC_SIZE. This is not
recommended as the operating system pads the remainder of the
last sector with undefined padding data which affects write opera-
tions in the following ways:

- The padding data might overwrite existing data.

- The file pointer only advances to the end of the user-requested
data written to the disk, so the padding data written does not
extend the logical file size.

The maximum transfer size allowed for direct disk I/O defaults to the value of
MAXBIOSIZE (defined in sys/param.h). However, for NCR controllers,
the maximum transfer size can be raised by using the NCRMAXTRNSFR tun-
able.

The default and minimum values of NCRMAXTRNSFR are MAXBIOSIZE
which is 0x20000 (128Kb). Other accepted values are 0x40000 (256Kb) and
0x80000 (512Kb). Any other values will be rounded down to one of these val-
ues with a minimum of MAXBIOSIZE.

PowerMAX OS supports direct I/O for regular files on the xfs, ufs and sfs file systems
only. Note that fadvise(3X) is only available for files under the xfs file system. See
“File Advisories” on page 11-4. Enabling direct I/O for files under other file systems or on
nonregular files on one of the supported file systems returns an error. Trying to enable
direct disk I/O on a file in a file system mounted with the file system-specific soft option
also causes an error. The soft option specifies that the file system need not write data
from cache to the physical disk until just before unmounting.

Although not recommended, you can open a file in both direct and cached (nondirect)
modes simultaneously, at the cost of degrading the performance of both modes.

Using direct I/O does not ensure that a file can be recovered after a system failure. You
must set the POSIX synchronized I/O flags to do so. For information on these flags, refer
to “Using POSIX Synchronized I/O” (p. 11-8).

You cannot open a file in direct mode if a process currently maps any part of it with the
mmap(2) system call. Similarly, a call to mmap() fails if the file descriptor used in the
call is for a file opened in direct mode.

Whether direct I/O provides better I/O throughput for a task depends on the application:

• All direct I/O requests are synchronous, so I/O and processing by the appli-
cation cannot overlap.
11-2

Disk I/O
• Since the operating system cannot cache direct I/O, no read-ahead or write-
behind algorithm improves throughput.

However, direct I/O always reduces system-wide overhead because data moves directly
from user memory to the device with no other copying of the data. Savings in system over-
head is especially pronounced when doing direct disk I/O between an embedded SCSI
disk controller (a disk controller on the processor board) and local memory on the same
processor board.

Contiguous Files 11

xfs is the only file system supported under PowerMAX OS that can create contiguous
files. xfs allocates space in extents, where the size of the next extent is twice the size of
the previous extent, up to a limit. This ensures that space remains as nearly contiguous as
possible while minimizing wasted space. A contiguous file has all its disk space allocated
as a single extent.

Creating Contiguous Files 11

Contiguous files can be created using fallocate(3X), or by using the contig(1)
utility. The fallocate(3X) call tries to allocate the specified amount of space in a sin-
gle extent (if the offset is 0), thus producing a contiguous file. A successful return from
fallocate ensures that subsequent attempts to write to the specified data do not fail
due to lack of free space. You can add space to the file by writing beyond its end. xfs then
tries to create a contiguous extent twice the size of the previous extent up to a limit. That
limit is the larger of the first extent size and the configured extent size.

Setting the FADV_SEQUENTIAL advisory for the range ensures that a subsequent call to
fallocate(3X) fails if the file system cannot allocate the entire amount as a single
contiguous extent. See “File Advisories” on page 11-4.

Calling ffree(3X) clears the allocated space to 0, releasing extents when possible.

To create a contiguous file of 10 megabytes using contig(1), you should enter:

contig -c <filename> 20480

The size in 512-byte blocks of the contiguous extent created will be reported. If the -c
flag and the size argument are omitted, contig(1) can be used to report on whether or
not an existing regular file is contiguous, and give the size in 512-byte blocks of the first
extent in the file.

I/O With Contiguous Files 11

Use fallocate(3) to create contiguous files, which provide the following advantages:
11-3

PowerMAX OS Real-Time Guide
• Write operations are faster, since they need not allocate space during the
write.

• No indirect blocks are read, simplifying and speeding disk address map-
ping.

• Head movement for contiguous files is low, especially for sequential
access, when there is no other disk activity.

File Advisories 11

File advisories use the fadvise(3X) call which is currently a part of a proposed POSIX
draft standard. PowerMAX OS only supports the fadvise(3X) call for files on the xfs
file system.

With advisories, an application advises the file system of its intended use of a file; based
on the advisory information, the file system performs requests in the most efficient way.
For example, if the application advises the file system that it shall access a data file
sequentially, the file system pre-fetches the next sequential block of data to speed the
operation.

This advisory approach enhances portability: an application’s advisory need not change
from one port to the next, even though the response to the advisory might differ substan-
tially from one system to another, depending on the file system capabilities. For example,
a file system that cannot prefetch ignores the sequential access advisory and still performs
correctly, although more slowly, than a file system that does provide prefetching.

fadvise(3X) 11

To u se t h e fadvise(3X) c a l l , y o u m u s t i n c l u d e th e h e a d e r f i l e
<sys/fs/xfs_space.h> in your source files. The call takes the following form:

int fadvise(
int fd,
off_t offset,
size_t len,
int advice

);

where:

fd is an open file descriptor. fadvise advises the file system on the expected
use of the data in the file associated with fd.

offset specifies the start of the data to access.

len specifies the number of bytes of data to access. The range between offset and
len need not currently exist in the file. If len is 0, specifies all data following
offset.
11-4

Disk I/O
advice indicates the expected behavior of the specified data, which can be:

FADV_NORMAL The application has no advice on its use of the speci-
fied data. Note that FADV_NORMAL nullifies the
effect of any previous fadvise() call on the speci-
fied range.

FADV_SEQUENTIAL The application shall access the specified data
sequentially, so the file system should do read-ahead
caching.

FADV_RANDOM The application shall access the specified data in a
random order.

FADV_WILLNEED The application shall need the specified data soon, so
the file system should go ahead and cache it.

FADV_DONTNEED The application shall not need the specified data any-
time soon.

FADV_NOREUSE The file system should not keep the data from the read
or write cached after completing the request. When
you specify this advisory and follow the rules for
direct disk I/O, this advisory causes the file system to
write data from user virtual address space directly to
disk. See “Direct Disk I/O” on page 11-1.

Virtual Partition 11

PowerMAX OS provides an enhancement to mass storage called virtual partition. Virtual
partition, vp(7), is a pseudo disk device driver that combines multiple disk partitions
into a single virtual partition. A configured virtual partition appears to the rest of the sys-
tem as a single partition although it is actually made up of multiple member partitions.

A striped vp divides the contiguous data of the virtual partition into slices. The default
slice size can be configured; it is 32K bytes by default. This size works best for environ-
ments with large, sequential disk accesses using a file system that has been created with a
block size of 32K bytes.

Up to 16 partitions are combined into a single virtual partition by distributing slices across
the member partitions in an alternating fashion. This is called disk striping. If a vp has two
member partitions, all of the even-numbered slices are on the first partition, and all of the
odd-numbered slices are on the second partition.

The advantages of striped virtual partitions are as follows:

• Disk striping for some applications can significantly increase performance
by parallelizing large I/O operations across multiple disks.

When multiple processes on different processors are writing to different
partitions located on different physical disks, performance is improved
because of the parallelism gained in performing the I/O operations.
11-5

PowerMAX OS Real-Time Guide
• A single file system can be distributed across multiple disks, thereby
increasing the maximum file system size (up to two gigabytes). Without
virtual partition, the file system size is limited to the size of a single parti-
tion.

A disadvantage of striped virtual partitions is that the reliability of the file system as a
whole is decreased because a single file system is distributed across multiple disks. (The
probability of a file system’s failing increases with the number of disks used by the file
system.)

Your system may benefit from the use of virtual partitions if the file system is heavily
used. By distributing a heavily-used file system across multiple disks, the system adminis-
trator can balance the use of disk drives in the system. If the heavily-used file system is
accessed in single streams of large, sequential requests, the best performance will be
obtained with the default configuration of a 32K slice size for the virtual partition and a
32K block size for the file system.

To improve performance, you can configure your system in several different ways. You
can use the vpinit(1m) and vpstat(1m) utilities for this purpose. The vpinit util-
ity is used to configure a vp. The vpstat utility displays information about a particular
virtual partition. For an explanation of the procedure for configuring a virtual partition,
refer to System Administration Volume 2.

Understanding POSIX Synchronized I/O 11

POSIX synchronized I/O provides the means for ensuring the integrity of an application’s
data and files. A synchronized output operation ensures that the data that are written to an
output device are actually recorded by the device. A synchronized output operation is
blocking––that is, the write function does not return control to the calling process until the
write operation has been completed, or in the case of an asynchronous write operation,
notification of I/O completion is not delivered to the calling process until the write opera-
tion has been completed. A synchronized input operation ensures that the data that are
read from a device are an image of the data that currently reside on the device. Pending
write requests that affect the data being read are completed prior to performing the read
operation.

Synchronized I/O facilities allow you to specify that I/O operations performed on disk
files are to be forced to the synchronized I/O completion state. You can specify whether
the type of completion is to be synchronized I/O data integrity completion or synchronized
I/O file integrity completion. The types of synchronized I/O completion are defined as fol-
lows:

 Synchronized I/O data integrity completion

A synchronized I/O data integrity completion occurs for a read or a write operation
when the operation has been successfully completed or the reason for failure has
been diagnosed.

A read operation has been successfully completed only when an image of the data
has been successfully transferred to the requesting process. If write requests affect-
ing the data to be read are pending at the time that the synchronized read operation is
11-6

Disk I/O
requested, the data specified in the write requests are transferred to the disk prior to
reading the data.

A write operation has been successfully completed only when the data specified in
the write request and all file system information necessary to retrieve the data have
been successfully transferred.

With either a read or a write operation, file attributes that are not necessary for data
retrieval (for example, access time, modification time, and status change time) may
not have been updated.

 Synchronized I/O file integrity completion

A synchronized I/O file integrity completion occurs for a read or a write operation
when the operation has been successfully completed or the reason for failure has
been diagnosed.

A read operation has been successfully completed only when an image of the data
has been successfully transferred to the requesting process and all file attributes
related to the I/O operation have been successfully updated. If write requests affect-
ing the data to be read are pending at the time that the synchronized read operation is
requested, the data specified in the write requests are transferred to the disk prior to
reading the data.

The write operation has been successfully completed only when the data specified in
the write request have been successfully transferred and all file attributes related to
the I/O operation have been updated.

NOTE

In the PowerMAX OS implementation of synchronized I/O, data
integrity is functionally the same as file integrity.

Configuring POSIX Synchronized I/O 11

POSIX synchronized I/O must guarantee that data can be retrieved after a system crash.
To guarantee that directory information is updated with current file information in all
cases, the fsync(2) system call’s flushing of directory data must be more thorough than
is normally the case for the standard UNIX file system. This extra flushing causes perfor-
mance of the fsync system call to be degraded. Consequently, extra flushing is per-
formed only when _POSIX_SYNCHRONIZED_IO is configured in your system.

To enable the POSIX synchronized I/O facility, you must change the value of the
POSIX_SYNC_IO tunable parameter from 0 to 1. You can modify the values of system
tunable parameters by using the config(1M) utility. For an explanation of the proce-
dures for using this utility, refer to the “Configuring and Building the Kernel” chapter of
System Administration Volume 2. Note that after changing a tunable parameter, you must
rebuild the kernel and then reboot your system.

To determine whether or not the POSIX synchronized I/O facility is enabled in the cur-
rently executing kernel, you can use the sysconf(3C) routine. To determine whether or
not POSIX synchronized I/O is supported for a particular file, you can use the
11-7

PowerMAX OS Real-Time Guide
fpathconf(2) system call. For additional information on the use of sysconf and
fpathconf, refer to the corresponding system manual pages.

Using POSIX Synchronized I/O 11

You can indicate that synchronized I/O is to be performed on a disk file by using one of
the following functions: open(2), fcntl(2), fdatasync(3C), or fsync(2). The
open and fcntl system calls allow you to ensure that every I/O operation that is per-
formed on a specified file is forced to the synchronized I/O completion state. The fdata-
sync routine and the fsync system call allow you to ensure that every pending I/O oper-
ation that is associated with a file at the time of the call to fdatasync or fsync is
forced to the synchronized I/O completion state.

Procedures for using open(2) and fcntl(2) are presented in “Using open and fcntl”
(p. 11-8). Procedures for using fdatasync(3C) and fsync(2) are presented in
“Using fdatasync” and “Using fsync,” respectively (p. 11-9).

An additional POSIX interface, aio_fsync(3), allows you to perform asynchronous
file synchronization. Procedures for using this routine are fully explained in Chapter 11 of
this guide.

Using open and fcntl 11

Procedures for using the open(2) and the fcntl(2) system calls to indicate that syn-
chronized I/O is to be performed on a disk file are as follows:

• Invoke the open system call from a program, specify the path name of a
disk file, and set one or more of the following bits in the file status flag:
O_DSYNC, O_SYNC, O_RSYNC.

• Invoke the fcntl system call from a program, specify the file descriptor
for an open disk file, and specify the F_SETFL command. The F_SETFL

command allows you to set the file status flags for an open file. For syn-
chronized I/O, set one or more of the following: O_DSYNC, O_SYNC,
O_RSYNC.

The synchronized I/O settings for the file status flags are defined as follows:

O_DSYNC specifies that write operations are to be completed as defined for I/O
data integrity completion.

O_SYNC specifies that write operations are to be completed as defined for I/O file
integrity completion.

O_RSYNC specifies that read operations are to be completed with the same type of
integrity as that specified by the O_DSYNC or the O_SYNC bit.

If both O_RSYNC and O_DSYNC are set, all I/O operations are to be com-
pleted as defined for I/O data integrity completion.

If both O_RSYNC and O_SYNC are set, all I/O operations are to be com-
pleted as defined for I/O file integrity completion.
11-8

Disk I/O
Note that when you set the O_RSYNC bit, you must also set the O_DSYNC

or the O_SYNC bit.

Note that using fcntl to indicate that synchronized I/O is to be performed on a disk file
increases system overhead and causes performance of the fcntl system call to be
degraded. It is recommended that you use the open system call instead of fcntl for this
purpose when possible.

For additional information on use of the open and fcntl system calls, refer to the corre-
sponding system manual pages.

Using fdatasync 11

The fdatasync(3C) interface is available if the system is configured with the
_POSIX_SYNCHRONIZED_IO option. It allows the calling process to force all I/O oper-
ations associated with a particular disk file to the synchronized I/O completion state. All
I/O operations are completed as defined for synchronized I/O data integrity completion
(see “Understanding POSIX Synchronized I/O,” p. 11-6, for an explanation of the mean-
ing of this term). Only the I/O operations that are queued at the time of the call to fdata-
sync are certain to be forced to the completion state; subsequent operations associated
with the file may not be.

The specifications required for making the fdatasync call are as follows:

#include <unistd.h>

int fdatasync(fildes)

int fildes;

The argument is defined as follows:

fildes the file descriptor for the open file whose data are to be transferred to
the storage device associated with the file.

A return value of 0 indicates that the call to fdatasync has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the fdatasync(3C) system manual page for a listing of the types of errors that may
occur.

Using fsync 11

If the _POSIX_SYNCHRONIZED_IO option is enabled, the fsync(2) system call
allows the calling process to force all I/O operations associated with a particular disk file
to the synchronized I/O completion state. All I/O operations are completed as defined for
synchronized I/O file integrity completion (see “Understanding POSIX Synchronized I/O”
for an explanation of the meaning of this term). Only the I/O operations that are queued at
the time of the call to fsync are certain to be forced to the completion state; subsequent
operations associated with the file may not be. Both file data and directory information are
guaranteed to be updated upon return from fsync.
11-9

PowerMAX OS Real-Time Guide
If the _POSIX_SYNCHRONIZED_IO option is not enabled, the fsync function will
flush data to the device as expected except when data are being written to a newly-created
file. In this case, flushing of the directory entry for the file is not guaranteed upon return
from fsync.

The specifications required for making the fsync call are as follows:

#include <unistd.h>

int fsync(fildes)

int fildes;

The argument is defined as follows:

fildes the file descriptor for the open file whose data are to be transferred to
the storage device associated with the file.

A return value of 0 indicates that the call to fsync has been successful. A return value of
–1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
fsync(2) system manual page for a listing of the types of errors that may occur.

Real-Time Disk Scheduling 11

The disk scheduling algorithm used with NCR controllers is configurable. Four different
algorithms are available, based on the state of two system tunables:

DISK_PRIO_ORDER if set, disk requests are queued in process priority order, i.e.,
requests from higher priority processes are generally satis-
fied before those from lower priority processes.

if not set, priority is not a factor in disk scheduling.

DISK_FIFO_ORDER if set, disk requests are queued in first come, first served
order (FCFS).

if not set, disk requests are queued using a shortest seek
time algorithm, CSCAN

With these tunables, 4 algorithms are available:

CSCAN (DISK_PRIO_ORDER set to zero, DISK_FIFO_ORDER set to zero)
All requests are scheduled using pure CSCAN algo-
rithm. This is the default.

FIFO (DISK_PRIO_ORDER set to zero, DISK_FIFO_ORDER set to one)
All requests are scheduled using pure FCFS algo-
rithm.

Priority ordering with CSCAN within priority band (DISK_PRIO_ORDER set
to one, DISK_FIFO_ORDER set to zero)
11-10

Disk I/O
Disk requests are scheduled in priority order with
CSCAN used for requests at the same priority.

Priority ordering with FIFO within priority band (DISK_PRIO_ORDER set to
one, DISK_FIFO_ORDER set to one)

Disk requests are scheduled in priority order with
FCFS used for requests at the same priority.

For optimal real-time performance, one of the priority ordering algorithms should be
selected, since these algorithms favor disk requests by higher priority processes. For best
system-wide disk throughput, where real-time is less important, the CSCAN algorithm
would generally be the best choice.

When priority ordering is enabled, a third tunable indicates which priority classes are
affected:

DISK_PRIO_ALL_CLASS if set and DISK_PRIO_ORDER is set, disk requests
from all processes are priority ordered. Otherwise,
only FP class requests are priority ordered (and are
satisfied before other priority classes).

Miscellaneous Disk I/O Tunables 11

The following tunables apply only to NCR controllers:

MCBS_PER_CONTROLLER specifies the number of Master Control Blocks
(MCBs) per disk controller. This limits the total num-
ber of pending operations per controller. A higher
number may help on disk intensive environments.

MAX_IO_PER_DISK maximum number of queued I/O requests to a drive at
one time. A higher number may help on disk intensive
environments. However, as more requests are queued
to a disk, the scheduling becomes less than optimal,
because I/O requests can only be ordered prior to the
handoff to the disk controller. This is especially true
with priority disk scheduling.
11-11

PowerMAX OS Real-Time Guide
11-12

12
Real-Time I/O

Overview of Asynchronous I/O. 12-1
Using Asynchronous I/O . 12-2

The Asynchronous I/O Control Block . 12-4
Threads-Based Asynchronous I/O . 12-6
Asynchronous I/O to Raw Disk Partitions . 12-7

The aio_alignment Routine . 12-8
The aio_memlock Routine . 12-9

Using the POSIX Asynchronous I/O Interfaces . 12-10
The aio_read Routine . 12-11
The aio_write Routine . 12-12
The lio_listio Routine . 12-14
The aio_error and aio_return Routines. 12-16
The aio_cancel Routine . 12-17
The aio_suspend Routine . 12-18
The aio_fsync Routine . 12-19

Using Notification Mechanisms . 12-20
Polling . 12-20
Call-Back Notification . 12-22
Signal Notification . 12-24

PowerMAX OS Real-Time Guide

12
Chapter 12Real-Time I/O

12
12
12

This chapter describes PowerMAX OS asynchronous I/O facilities. These facilities allow
a process to overlap CPU and I/O processing.

Asynchronous I/O is supported for:

• Regular disk files

• Special disk files

• Raw disk partitions

Asynchronous I/O is the most efficient means of performing large file transfers because
I/O is performed directly to and from the user buffer without any buffering by the operat-
ing system.

Overview of Asynchronous I/O 12

The asynchronous I/O feature enhances performance by allowing applications to overlap
processing with I/O operations. Using asynchronous I/O enables an application to have
more CPU time available to perform other processing while the I/O is taking place.

With the asynchronous I/O capability, an application can submit an I/O request without
waiting for its completion. It can perform other CPU work either until it is asynchro-
nously notified of the completion of the I/O operation or until it wishes to poll for the
completion. For applications that involve large amounts of I/O data, this CPU and I/O
overlapping can offer significant improvement on throughput.

With asynchronous I/O, one process can have many I/O operations in progress while it is
executing other code. In contrast, with synchronous I/O, the process will be blocked wait-
ing for each I/O operation.

A read (2) system call is considered logically synchronous because the call cannot
return to the user until the requested data are read into the specified buffer in the calling
process’s address space.

A write(2) system call is considered logically synchronous because the call does not
return to the user until the requested data are written into the file system cache. After
returning from the call, the user is free to reuse the buffers; however, the data are actually
written to disk asynchronously at a later time. If the caller has set the O_SYNC flag on the
call to open(2) or fcntl(2), the call to write is truly synchronous and does not
return to the user until the requested data are written out to disk. In contrast, a successful
call to begin an asynchronous write queues a write request and returns immediately with-
out waiting for the I/O to be completed. When returning from the call, the data are not
copied from the user buffers, so the caller should not reuse the buffers until the I/O has
completed.
12-1

PowerMAX OS Real-Time Guide
An asynchronous read enables you to control the amount of read-ahead that is performed
so that the data can already be available when needed by the application. Often the writ-
ing out of data can be done asynchronously although you may need to know when the I/O
has completed. The notification mechanisms provided in PowerMAX OS fulfill this need.

Using Asynchronous I/O 12

PowerMAX OS provides support for threads-based asynchronous I/O and asynchronous
I/O to raw disk partitions. Threads-based asynchronous I/O can be performed to regular
files, device special files, and STREAMS-based files.

Access to both types of asynchronous I/O is provided by the POSIX asynchronous I/O
interfaces, which are based on IEEE Standard 1003.1b–1993. These interfaces allow a
process to perform asynchronous read and write operations, wait for completion of an
asynchronous I/O operation, and cancel a pending asynchronous I/O operation. They pro-
vide the following additional features:

• Use of an asynchronous I/O control block, which specifies the parameters
for an asynchronous I/O operation and, as the operation progresses, con-
tains information about its status

• The ability to start an asynchronous read or write operation at a user–spec-
ified offset in a file

• The ability to initiate multiple asynchronous I/O operations with a single
call

• The ability to specify which signal is used to notify a process of completion
of an asynchronous I/O operation

• Support for asynchronous file synchronization

The POSIX asynchronous I/O interfaces are included in the threads library, libthread.
They are briefly described as follows:

aio_read perform an asynchronous read operation

aio_write perform an asynchronous write operation

lio_listio perform a list of asynchronous I/O operations

aio_error obtain the error status of an asynchronous I/O operation

aio_return obtain the return status of an asynchronous I/O operation

aio_cancel cancel an asynchronous I/O operation

aio_suspend wait for completion of an asynchronous I/O operation

aio_fsync perform asynchronous file synchronization
12-2

Real-Time I/O
The following asynchronous I/O interfaces are provided for use on files whose size
exceeds (or may exceed) 2GB:

These interfaces have the same functionality as the POSIX interfaces but the asynchro-
nous I/O control block used as an argument to these functions should be declared as type
struct aiocb64. The aiocb64 structure is defined in aio.h and differs from aiocb
only in that the aio_offset member is declared with type off64_t instead of off_t.

To support asynchronous I/O to raw disk partitions, PowerMAX OS provides two addi-
tional routines: aio_alignment(3) and aio_memlock(3) . The aio-
_alignment routine allows the calling process to obtain the buffer alignment require-
ment for asynchronous I/O to raw disk partitions. The aio_memlock routine allows the
calling process to lock in memory the portion of its virtual address space that is to be used
for asynchronous I/O to raw disk partitions.

Table 12-1 indicates whether a particular asynchronous I/O interface is used for threads-
based asynchronous I/0, asynchronous I/O to raw disk partitions, or both.

The sections that follow describe the asynchronous I/O control block, threads-based asyn-
chronous I/O, and asynchronous I/O to raw disk partitions. No reference to the large file
interfaces is made in the sections that follow because each function behaves just like the
corresponding standard POSIX asynchronous I/O function.

aio_read64 aio_return64

aio_write64 aio_cancel64

lio_listio64 aio_suspend64

aio_error64 aio_fsync64

Table 12-1. Interfaces Supporting Asynchronous I/O

Type of Asynchronous I/O

Asynchronous I/O Interfaces Threads-Based Raw Disk

aio_read(3) x x

aio_write(3) x x

lio_listio(3) x x

aio_error(3) x x

aio_return(3) x x

aio_cancel(3) x

aio_suspend(3) x

aio_fsync(3) x x

aio_alignment(3) x

aio_memlock(3) x
12-3

PowerMAX OS Real-Time Guide
The Asynchronous I/O Control Block 12

The asynchronous I/O control block structure aiocb specifies the parameters for an asyn-
chronous I/O operation. You supply a pointer to an aiocb structure when you invoke the
POSIX asynchronous I/O routines that are described in “Using the POSIX Asynchronous
I/O Interfaces.”

The aiocb structure is defined in <aio.h> as follows:

typedef volatile struct aiocb aiocb_t;
struct aiocb {

int aio_fildes;
volatile void* aio_buf;
size_t aio_nbytes;
off_t aio_offset;
int aio_reqprio;
struct sigevent aio_sigevent;
int aio_lio_opcode;
ssize_t aio__return;
int aio__error;
int aio_flags;
void *aio__next;
int aio_pad[1];

} aiocb_t;

The fields in the structure are described as follows.

aio_fildes the file descriptor for the file from which data are to be read
or to which data are to be written

aio_buf the virtual address of the first byte of the I/O buffer into
which data are to be read or from which data are to be writ-
ten

aio_nbytes the number of bytes to be read or written

aio_offset the byte offset in the file where the asynchronous read or
write operation is to begin

aio_reqprio must be zero

aio_sigevent specifies the way in which a process is to be notified of the
completion of an asynchronous I/O operation. The value of
aio_sigevent.sigev_notify must be SIGEV_NONE,
SIGEV_SIGNAL, or SIGEV_CALLBACK.

SIGEV_NONE specifies that no notification is to be delivered
upon completion of an asynchronous I/O operation. In this
case, the error status and the return status for the operation
are set as appropriate. A process can poll for completion of
the opera t ion by us ing the aio_error(3) and
aio_return(3) library routines (see “The aio_error and
aio_return Routines,” p. 12-16 , for explanations of these
library routines).
12-4

Real-Time I/O
SIGEV_SIGNAL specifies that a signal is to be sent to the pro-
cess upon completion of an asynchronous I/O operation. In
this case, the aio_sigevent.sigev_signal compo-
nent must specify the number of the signal that is to be sent
to the process when the I/O operation is completed, and the
aio_sigevent.sigev_value component must specify
an application-defined value that is to be passed to the
routine declared as the signal handlerl. A set of symbolic
constants has been defined to assist you in specifying signal
numbers. These constants are defined in the file <sig-
nal.h>. The application-defined value may be a pointer
or an integer value. If the process catching the signal has
invoked the sigaction(2) system call with the
SA_SIGINFO flag set before the signal is generated, the sig-
nal and the application-defined value are queued to the pro-
cess when the I/O operation is completed. If the value of
aio_sigevent.sigev_signo is zero (the null signal),
a signal is not sent to the process upon completion of the
asynchronous I/O operation. For complete information on
signal management facilities, the sigevent structure, and
support for specification of an application-defined value,
refer to the PowerMAX OS Programming Guide.

SIGEV_CALLBACK specifies that an application-defined
call-back routine is to be called asynchronously upon com-
pletion of an asynchronous I/O operation. In this case, the
aio_sigevent.sigev_func component specifies the
a d d r e s s o f t h e c a l l - b a ck r o u t in e , a n d t h e
aio_sigevent.sigev_value component specifies an
application-defined value that is to be passed as an argu-
ment to that routine.

CAUTION

The user-specified call-back routine must return rather then exit
when processing is complete. The asynchronous I/O library
invokes clean-up procedures after the call-back routine has com-
pleted and returned. Failure to return means that internal struc-
tures used by asynchronous I/O will not be freed.

aio_lio_opcode only on a call to the lio_listio(3) library routine,
specifies the asynchronous I/O operation to be performed.
The values that may be specified are as follows:

LIO_READ indicates that an asynchronous read
operation is to be performed

LIO_WRITE indicates that an asynchronous
write operation is to be performed
12-5

PowerMAX OS Real-Time Guide
LIO_NOP indicates that no operation is to be
performed

For an explanation of the lio_listio library routine and
more detailed information about the use of this field, refer to
“The lio_listio Routine.”

aio_flags the flags that are associated with the asynchronous I/O
request. Flag values are defined in <aio.h>. The
AIO_RAW flag indicates that I/O is to be performed to a raw
disk partition (for information on asynchronous I/O to raw
disk partitions, see p. 12-7). The routines for which this flag
may be set are as follows: aio_read, aio_write, and
lio_listio (for information on the use of these routines,
see “Using the POSIX Asynchronous I/O Interfaces”).

The following fields in the aiocb structure are not intended to be used directly by a pro-
cess. A process should obtain the information in the aio__error and the
aio__return fields by using the aio_error(3) and the aio_return(3) library
routines and supplying a pointer to the aiocb structure associated with the operation.
The information that is obtained by using the library routines is fully described in “The
aio_error and aio_return Routines.”

aio__return contains the return status of an asynchronous I/O operation

aio__error contains the error status of an asynchronous I/O operation

aio__next a pointer to a list of aiocb structures that the library uses

aio_pad[1] is reserved for future use

Threads-Based Asynchronous I/O 12

This section describes how threads-based asynchronous I/O operates on regular files,
device special files, and STREAMS-based files. Threads-based asynchronous I/O is not
limited to specific file system types. Any device that supports read and write will
accept asynchronous read and write requests.

The aio_read and aio_write interface routines correspond to the read and write
system calls to support asynchronous read and write operations.

CAUTION

It is important that multiple threads performing I/O to the same
file cooperate because the order of operations is nondeterministic.
Even one thread should be careful not to mix synchronous I/O
requests with asynchronous I/O requests because the order of
operations is implementation-dependent.

The asynchronous read and write interfaces allow you to specify the file offset indicating
where the I/O should begin. It is possible to specify absolute file offsets for each I/O
12-6

Real-Time I/O
request, and this type of access is defined to be random. It is also possible to indicate that
the I/O should begin at the current file offset. Sequential access is defined to be multiple
I/O requests from a single thread of control to the same file descriptor indicating that I/O
should begin at the current file offset. See “The Asynchronous I/O Control Block” (p.
12-4) for more information.

Determining the value of the file pointer when asynchronous I/O operations are in
progress is difficult. Considering that there may be multiple outstanding asynchronous
I/O operations, each of which may update the file pointer at any time, things may become
complex for an application. An application should be careful not to mix calls to read and
write or lseek, for example, with asynchronous I/O operations. If sequential I/O is not
requested, the order of I/O operations is indeterminate.

An application can request cancellation of one or more asynchronous I/O requests that the
application has previously queued. The aio_cancel interface enables an application to
cancel one or more outstanding asynchronous I/O operations. Those that have not been
started are cancelled, but those in progress may or may not be cancelled.

An application can wait for asynchronous I/O completion. If an application has completed
all its other work, it may relinquish control of the CPU until some of its outstanding asyn-
chronous I/O requests have completed.

An application can obtain completion status information by calling aio_error and
aio_return.

NOTE

The completion of an asynchronous write on any device has the
same semantics as a synchronous write to that device; for exam-
ple, completion of a write to a STREAMS-based device means
that the data have been copied into the stream's queue and does
not imply that the data have been written to a device.

When an asynchronous I/O request is made, the application can also request that it be noti-
fied when the I/O completes. This lets the application know immediately that the I/O has
completed rather than having the application poll for completion status.

Asynchronous I/O may be used by single-threaded or multithreaded applications. In mul-
tithreaded applications, multiple threads within a process share the same address space
and, therefore, have access to the asynchronous I/O control blocks of any other thread
within that process. One thread, for example, may begin an asynchronous read on an open
file, and another thread within that process may use the aio_suspend interface to wait
for that read operation to be completed. If this occurs, the application must make sure that
the cooperating threads are synchronized.

Asynchronous I/O to Raw Disk Partitions 12

Asynchronous I/O to raw disk partitions allows a user process to transfer data directly
between its I/O buffers and disk, thereby bypassing intermediate operating system buffer-
ing. The benefits are higher performance and throughput.
12-7

PowerMAX OS Real-Time Guide
To perform asynchronous I/O to a raw disk partition, you must meet the following con-
straints:

• The user I/O buffer must be properly aligned. The aio_alignment(3)
routine allows you to obtain the buffer alignment requirement for your sys-
tem (see p. 12-8 for an explanation of this routine and a code fragment that
shows how to allocate an I/O buffer on the proper alignment).

• The size of the user I/O buffer must be a multiple of the system’s logical
disk sector size. The system’s logical disk sector size, which is represented
by the symbolic constant NBPSCTR, is defined in <sys/param.h>.

• The user I/O buffer must be locked in memory before performing an asyn-
chronous I/O operation. The aio_memlock(3) routine is provided for
this purpose (see p. 12-9 for an explanation of this routine).

• The aio_flags field of the aiocb structure supplied on a call to
aio_read, aio_write, or lio_listio must be set to AIO_RAW (see
p. 12-4 for an explanation of the aiocb structure). The upper limit on the
size of a single raw asynchronous I/O transfer depends on both the virtual
to physical translation of the I/O buffer and on the disk controller that con-
trols the disk on which the file is stored. The reason is that a raw asynchro-
nous I/O request is performed as a single disk transfer.

The maximum number of physical memory fragments that can be handled
on a single disk transfer is 32. Therefore, if the buffer specified for a raw
asynchronous I/O request contains more than 32 physical fragments, the
I/O request will return an error. To meet the restriction of 32 physical frag-
ments in a single raw asynchronous I/O transfer, you have two options: (1)
specify a buffer size that is less that 32 pages (131072 bytes), or (2) ensure
that the physical memory to which the buffer is mapped is contiguous.

You can create a physically contiguous buffer by first defining a reserved
section of physical memory and then creating a shared memory segment
and binding it to the reserved section of physical memory (for an explana-
tion of the procedures, refer to the section entitled “Binding a Shared Mem-
ory Segment to Physical Memory” in the “Interprocess Communication”
chapter of the PowerMAX OS Programming Guide).

Furthermore, the maximum transfer size for disks on an ISE (Integral SCSI
Ethernet) controller can never exceed 16 megabytes. The maximum trans-
fer size for disks on a VIA (VME Interface Adapter) or an HSA (HVME
SCSI Adapter) can never exceed 2 megabytes (for additional information
on these adapters, refer to the via(7) and hsa(7) system manual
pages).

The sections that follow explain the procedures for using the aio_alignment routine
and the aio_memlock routine.

The aio_alignment Routine 12

The aio_alignment(3) routine allows the calling process to obtain the buffer align-
ment requirement for performing asynchronous I/O to raw disk partitions on the system.
12-8

Real-Time I/O
The specification required for making the aio_alignment call is as follows:

int aio_alignment();

The return value is the buffer alignment requirement for your system.

You may use the following algorithm to allocate an I/O buffer of size bytes on the proper
alignment for performing asynchronous I/O to raw disk partitions:

/* obtain correct alignment */
align = aio_alignment();

/* allocate enough space to adjust start of buffer */
addr = malloc(size + align);

/* addr is set to start of aligned buffer */
addr = ((int)addr + (align - 1)) & ~(align - 1);

The aio_memlock Routine 12

The aio_memlock(3) routine allows the calling process to lock in memory the pages
within its virtual address space that are to be used for asynchronous I/O operations to raw
disk partitions. Mappings for the pages may be private, writable mappings to files or any
mapping to an unnamed memory object (for complete information on memory-mapping
facilities, refer to the PowerMAX OS Programming Guide).

CAUTION

A process may invoke aio_memlock only once in its lifetime.
After a specified range of the process’s virtual pages has been
locked in memory, it cannot be unlocked or changed. The range
of pages will remain resident until the process exits. Invoking
aio_memlock does not require special privilege.

The specifications required for making the aio_memlock call are as follows:

#include <aio.h>

int aio_memlock(avaddr, asize)

void *avaddr;
size_t asize;

The arguments are defined as follows:

avaddr the starting address of the range of virtual address space that is to be
locked in memory

asize the length in bytes of the range of virtual address space that is to be
locked in memory
12-9

PowerMAX OS Real-Time Guide
The value of this argument depends on the number of asynchronous I/O
requests that will be outstanding at one time. If the value of asize is too
large, it may adversely affect system performance.

A return value of 0 indicates that the range of pages between avaddr and avaddr + asize -1
is locked in memory. A return value of –1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the aio_memlock(3) system manual page for a list-
ing of the errors that may occur.

Using the POSIX Asynchronous I/O Interfaces 12

The sections that follow explain the procedures for using each of the POSIX asynchronous
I/O interfaces. Note that to use these interfaces, you must link your application with the
threads library, libthread.

Asynchronous I/O operations may be affected by the fork(2), forkall(2),
exit(2), exec(2), and close(2) system calls. The ways in which they may be
affected are described as follows:

fork and forkall No asynchronous I/O is inherited by the child process after
the fork and forkall system calls. Asynchronous I/O
operations that occur after a fork or forkall call do not
affect the copy of the aiocb control block in the child's
address space, and the child does not receive any notifica-
tion from the completion of the parent's I/O. If, for exam-
ple, the parent process does a forkall while an I/O opera-
tion is in progress, the I/O completion will not be delivered
to the child process.

exit and exec The exit function will wait for all outstanding asynchro-
nous I/O operations to complete before returning. It will
un l ock t h e a r ea o f me mory l o ck ed by t h e
aio_memlock(3) call.

The exec function will fail if there are any outstanding
asynchronous I/O operations. Before calling exec, you
must ensure that no requests are outstanding by waiting for
the operations to be completed or by cancelling them.

The sbrk(2), brk(2) and shmdt(2) functions will
return EBUSY if the areas of locked memory are within the
memory locked by aio_memlock(3).

close When using the AIO_RAW flag on raw disk partitions,
close will block until all outstanding asynchronous I/O
operations are completed. When the call returns, the appli-
cation is free to reuse the control block and buffers.

If the AIO_RAW flag is not used, the close(fd) function
will cancel all outstanding requests to fd.
12-10

Real-Time I/O
The aio_read Routine 12

The aio_read(3) library routine allows the calling process to perform an asynchronous
read operation. The call returns after the asynchronous read operation has been queued. If
an error occurs while the operation is being queued, aio_read returns without queueing
or initiating the operation.

The specifications required for making the aio_read call are as follows:

#include <aio.h>

int aio_read(aiocbp)

struct aiocb *aiocbp;

The argument is defined as follows:

aiocbp A pointer to an asynchronous I/O control block structure that specifies
the parameters for the asynchronous read operation. Each of the fields
in this structure is fully described in “The Asynchronous I/O Control
Block” (see p. 12-4).

The control block to which aiocbp points should not be used by simulta-
neous asynchronous I/O operations.

After the asynchronous read operation has been queued (that is,
aio_read has successfully returned), the value of the file offset can-
not be determined. When the read operation has been successfully com-
pleted, the value of the file offset will be at the end of the file if the
O_APPEND bit is set in the file status flag. Otherwise, on devices capable
of seeking, the file offset will be equal to the offset specified by aiocbp–
>aio_offset plus the number of bytes read. The file offset is undefined
for devices incapable of seeking. If your application needs to issue mul-
tiple I/O requests, you must use append mode (by setting the O_APPEND

bit on a call to open(2) or fcntl(2)), or you must carefully manage
the offset specified for each asynchronous I/O operation in the aiocbp–
>aio_offset field.

As the asynchronous read operation progresses, information about its
status is placed in the aiocbp–>aio_error field. A process can obtain the
contents of this field by invoking the aio_error(3) routine and
specifying a pointer to this aiocb structure (see “The aio_error and
aio_return Routines” for an explanation of this routine).

If the O_RSYNC and the O_DSYNC or the O_RSYNC and the O_SYNC bits
have been set in the file status flag for the file specified by aiocbp-
>aio_fildes, completion of the aio_read operation occurs when an
image of the data has been successfully transferred to the requesting
process and all file system information has been updated. (For addi-
tional information on the use of these bits, refer to Chapter 10 of this
guide and to the open(2) and fcntl(2) system manual pages.)

When the asynchronous read operation has been successfully com-
pleted, the number of bytes read is placed in the aiocbp–>aio_return
12-11

PowerMAX OS Real-Time Guide
field. A process can obtain the contents of this field by invoking the
aio_return(3) routine and specifying a pointer to this aiocb struc-
ture (see “The aio_error and aio_return Routines” for an explanation of
this routine).

CAUTION

The memory referenced by aiocbp or the buffer pointed to by aio-
cbp–>aio_buf must remain a valid part of the application’s
address space until the asynchronous I/O operation has been com-
pleted, or results will be undefined.

A return value of 0 indicates that the asynchronous read operation has been successfully
queued. A return value of –1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the aio_read(3) system manual page for a list of errors that may
occur.

After the asynchronous read operation has been successfully queued, a process may cancel
the operation, or an error may occur. A process can cancel an asynchronous I/O operation
with a call to the aio_cancel(3) library routine (see “The aio_cancel Routine” for an
explanation of this routine). If the process cancels the operation, the aiocbp–>aio_error
field contains ECANCELED. If an error occurs, the aiocbp–>aio_error field contains one of
the error codes that may be returned by the read(2) system call (see the corresponding
system manual page for a listing of the types of errors that may occur).

The aio_write Routine 12

The aio_write(3) library routine allows the calling process to perform an asynchro-
nous write operation.

The specifications required for making the aio_write call are as follows:

#include <aio.h>

int aio_write(aiocbp)

struct aiocb *aiocbp;

The argument is defined as follows:

aiocbp a pointer to an asynchronous I/O control block structure that specifies
the parameters for the asynchronous write operation. Each of the fields
in this structure is fully described in “The Asynchronous I/O Control
Block” (see p. 12-4).

If the O_APPEND bit has been cleared in the file status flag for the file
specified by aiocbp–>aio_fildes, the write operation begins at the posi-
tion in the file specified by aiocbp–>aio_offset. If the O_APPEND bit has
been set, the write operation appends the data to the end of the file.
12-12

Real-Time I/O
After the asynchronous write operation has been queued (that is,
aio_write has successfully returned), the value of the file offset can-
not be determined. When the write operation has been successfully
completed, the value of the file offset will be at the end of the file if the
O_APPEND bit is set in the file status flag. Otherwise, on devices that are
capable of seeking, the file offset will be equal to the offset specified by
aiocbp–>aio_offset plus the number of bytes written. The file offset is
undefined for devices incapable of seeking. If your application needs to
issue multiple asynchronous I/O requests, you must either use append
mode (by setting the O_APPEND bit on a call to open(2) or
fcntl(2)) or carefully manage the offset specified for each asynchro-
nous I/O operation in the aiocbp–>aio_offset field.

As the asynchronous write operation progresses, information about its
status is placed in the aiocbp–>aio_error field. A process can obtain the
contents of this field by invoking the aio_error(3) routine and
specifying a pointer to this aiocb structure (see “The aio_error and
aio_return Routines” for an explanation of this routine).

If the O_DSYNC or the O_SYNC bit has been set in the file status flag for
the file specified by aiocbp->aio_fildes, completion of the aio_write
operation occurs when the data specified on the call have been success-
fully transferred and all file system information has been updated. (For
additional information on the use of these bits, refer to Chapter 10 of
this guide and to the open(2) and fcntl(2) system manual pages.)

When the asynchronous write operation has been successfully com-
pleted, the number of bytes written is placed in the aiocbp–>aio_return
field. A process can obtain the contents of this field by invoking the
aio_return(3) routine and specifying a pointer to this aiocb struc-
ture.

CAUTION

The memory referenced by aiocbp or the buffer pointed to by aio-
cbp–>aio_buf must remain a valid part of the application’s
address space until the asynchronous I/O operation has been com-
pleted, or results will be undefined.

A return value of 0 indicates that the asynchronous write operation has been successfully
queued. A return value of –1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the aio_write(3) system manual page for a listing of the types of
errors that may occur.

After the asynchronous write operation has been successfully queued, a process may can-
cel the operation, or an error may occur. A process can cancel an asynchronous I/O oper-
ation with a call to the aio_cancel(3) library routine (see “The aio_cancel Routine”
for an explanation of this routine). If the process cancels the operation, the aiocbp–
>aio_error field contains ECANCELED. If an error occurs, the aiocbp–>aio_error field
contains one of the error codes that may be returned by the write(2) system call (see
the corresponding system manual page for a listing of the types of errors that may occur).
12-13

PowerMAX OS Real-Time Guide
The lio_listio Routine 12

The lio_listio(3) library routine allows the calling process to initiate a list of asyn-
chronous I/O operations with a single call. A process can obtain the maximum number of
operations that can be included in a list by using the sysconf(3C) library routine and
specifying SC_AIO_LISTIO_MAX as the name.

The specifications required for making the lio_listio call are as follows:

#include <aio.h>

int lio_listio(mode, aiocbp, count, signal)

int mode;
struct aiocb **aiocbp;
int count;
struct sigevent *signal;

The arguments are defined as follows:

mode an integer value that indicates whether the routine is to return when the
requested I/O operations have been queued or when they have been
completed. This value may be one of the following:

LIO_WAIT return after all of the requested I/O operations
have been completed

LIO_NOWAIT return as soon as the requested I/O operations
have been queued. The signal argument speci-
fies a signal that is to be delivered to the process
when all of the I/O operations have been com-
pleted.

aiocbp a pointer to an array of pointers to asynchronous I/O control block struc-
tures. Elements in the array may contain the null pointer constant; such
elements are ignored. Each control block to which an element in the
array points specifies the parameters for an asynchronous I/O operation.
The aio_lio_opcode field in the control block identifies the type of
operation to be performed: asynchronous read (LIO_READ), asynchro-
nous write (LIO_WRITE), or no operation (LIO_NOP). If this field con-
tains LIO_NOP, the control block is ignored.

The other parameters specified by a control block include the file
descriptor for the file from which data are to be read or to which data are
to be written, the byte offset at which the read or write operation is to
begin, the number of bytes to be read or written, and the virtual address
of the I/O buffer into which data are to be read or from which data are to
be written. The aio_sigevent field in each control block is used to
notify the caller of completion of the individual I/O operation. See the
description of the signal argument for information on the way in which
the caller is notified of completion of the list of I/O operations.

If asynchronous I/O is to be performed to raw disk partitions, the
aio_flags field in every control block in the list must be set to
12-14

Real-Time I/O
AIO_RAW (for information on asynchronous I/O to raw disk partitions,
see p. 12-7).

If the O_RSYNC bit and the O_DSYNC or O_SYNC bit have been set in the
file status flag for the file specified by the aio_fildes field in the
control block, completion of that I/O operation occurs as described in
“The aio_read Routine” for aio_read(3). If only the O_DSYNC or
O_SYNC bit has been set, completion of that I/O operation occurs as
described in “The aio_write Routine” for aio_write(3).

count an integer value that indicates the number of elements in the array to
which aiocbp points

signal the null pointer constant or a pointer to a structure that specifies the way
in which the calling process is to be notified of the completion of the list
of asynchronous I/O operations. The value of signal–>sigev_notify may
be SIGEV_NONE, SIGEV_SIGNAL, or SIGEV_CALLBACK. SIGEV_NONE

specifies that no notification is to be delivered upon completion of the
I/O operations. SIGEV_SIGNAL indicates that a signal is to be sent to the
process upon completion of the I/O operations. SIGEV_CALLBACK indi-
cates that an application-defined routine is to be invoked upon comple-
tion of the I/O operations.

If you specify SIGEV_SIGNAL, signal–>sigev_signo specifies the number
of the signal that is to be sent to the process when the list of asynchro-
nous I/O operations has been completed, and signal–>sigev_value speci-
fies an application–defined value that is to be used by a signal–handling
routine defined by the receiving process. A set of symbolic constants
has been defined to assist you in specifying signal numbers. These con-
stants are defined in the file <signal.h>. The application-defined
value may be a pointer or an integer value. If the process catching the
signal has invoked the sigaction(2) system call with the
SA_SIGINFO flag set prior to the time that the signal is generated, the sig-
nal and the application-defined value are queued to the process when the
I/O operations are completed. For complete information on signal man-
agement facilities, the sigevent structure, and support for specifica-
tion of an application–defined value, refer to the PowerMAX OS Pro-
gramming Guide.

If you specify SIGEV_CALLBACK, signal->sigev_func specifies the
address of an application-defined call-back routine that is to be called
asynchronously upon completion of an asynchronous I/O operation, and
signal->sigev_value specifies an application-defined value that is to be
passed to that routine.

If the value of mode is LIO_WAIT, the signal argument is ignored. If the
value of mode is LIO_NOWAIT and the value of signal is NULL, the value
of signal–>sigev_notify is SIGEV_NONE, or the value of signal–
>sigev_signo is zero (the null signal), no signal is delivered to the call-
ing process when the asynchronous I/O operations have been com-
pleted.

If the value of the mode argument is LIO_WAIT, a return value of 0 indicates that all of the
asynchronous I/O operations have been successfully completed. If the value of the mode
12-15

PowerMAX OS Real-Time Guide
argument is LIO_NOWAIT, a return value of 0 indicates that the asynchronous I/O opera-
tions have been successfully queued. In either case, a return value of –1 indicates that an
error has occurred; errno is set to indicate the error. Refer to the lio_listio(3)
system manual page for a listing of the types of errors that may occur.

Whether the value of mode is LIO_WAIT or LIO_NOWAIT, the return value does not indicate
the status of the individual asynchronous I/O operations. If any of the operations has
failed, the lio_listio routine returns a value of –1. If the value of mode is LIO_WAIT,
errno is set to EIO. If the value of mode is LIO_NOWAIT, errno is set to EFAIL. A pro-
cess can determine the status of a particular asynchronous I/O operation by invoking the
aio_error(3) routine and specifying a pointer to the asynchronous I/O control block
associated with that operation (see “The aio_error and aio_return Routines” for an expla-
nation of this routine).

The aio_error and aio_return Routines 12

The aio_error(3) and aio_return(3) routines allow the calling process to obtain
the status of a particular asynchronous I/O request. The process identifies the asynchro-
nous I/O request by specifying a pointer to the aiocb structure associated with the
request.

A process first invokes aio_error to determine whether the operation has been success-
fully completed. If it has not been successfully completed, aio_error returns the error
code. When aio_error indicates that the operation has been successful, the process can
invoke aio_return to determine the number of bytes that have been transferred.

The specifications required for making the aio_error call are as follows:

#include <aio.h>

int aio_error(aiocbp)

struct aiocb *aiocbp;

The argument is defined as follows:

aiocbp a pointer to the asynchronous I/O control block structure associated with
the I/O operation for which the status is to be returned

If the specified asynchronous I/O operation has been successfully completed, the return
value is 0. If the operation is in progress, the return value is EINPROGRESS. If an error has
occurred, the return value is the associated error code as defined in the file <errno.h>.
For a description of the types of errors that may occur, refer to the aio_read(3),
aio_write(3), and aio_fsync(3) system manual pages.

The specifications required for making the aio_return call are as follows:

#include <aio.h>

int aio_return(aiocbp)

struct aiocb *aiocbp;
12-16

Real-Time I/O
The argument is defined as follows:

aiocbp a pointer to the asynchronous I/O control block structure associated with
the I/O operation for which the status is to be returned

If the asynchronous I/O operation is still in progress or has resulted in an error, the return
value is –1. If the operation has been successfully completed, the return value is the same
as that defined for the aio_read(3), aio_write(3), and aio_fsync(3) routines.
For aio_read, it is the number of bytes of data that have been read. For aio_write, it
is the number of bytes of data that have been written. For aio_fsync, it is zero. See
“The aio_read Routine,” “The aio_write Routine,” and “The aio_fsync Routine,” respec-
tively, for explanations of these routines.

The aio_cancel Routine 12

The aio_cancel(3) routine allows the calling process to cancel one or more asynchro-
nous I/O operations.

The specifications required for making the aio_cancel call are as follows:

#include <aio.h>

int aio_cancel(fildes, aiocbp)

int fildes;
struct aiocb *aiocbp;

The arguments are defined as follows:

fildes the file descriptor for the file for which asynchronous I/O operations are
to be cancelled

aiocbp the null pointer constant or a pointer to the asynchronous I/O control
block structure associated with the operation that is to be cancelled. If
the value of aiocbp is NULL, then all of the asynchronous I/O operations
for the file specified by fildes are cancelled.

If the asynchronous I/O operation or operations for the specified file descriptor have been
successfully cancelled, the return value is AIO_CANCELED. If one or more of the asynchro-
nous I/O operations for the specified file descriptor cannot be cancelled because they are
still in progress, the return value is AIO_NOTCANCELED. The process can determine the
status of such asynchronous I/O operations by invoking the aio_error(3) routine and
specifying a pointer to the appropriate asynchronous I/O control block (see “The aio_error
and aio_return Routines” for an explanation of this routine). If all of the asynchronous I/O
operations for the specified file descriptor have already been completed, the return value is
AIO_ALLDONE.

If an error occurs on the call, the return value is –1; errno is set to indicate the error.
Refer to the aio_cancel(3) system manual page for a listing of the types of errors that
may occur.
12-17

PowerMAX OS Real-Time Guide
The aio_suspend Routine 12

The aio_suspend(3) routine allows the calling process to suspend execution until one
of the following occurs:

• One or more of the specified asynchronous I/O operations are completed.

• The process is interrupted by a signal.

• A specified period of time elapses.

If any of the specified operations has already been completed at the time of the call, the
routine returns without suspending the process. If the process is interrupted by a signal,
note that the signal may have been generated because one of the specified asynchronous
I/O operations has been completed.

This routine is flexible because it enables any thread within a process to ask about one or
more outstanding asynchronous I/O operations and to specify how long to wait.

The specifications required for making the aio_suspend call are as follows:

#include <aio.h>

int aio_suspend(aiocbp, count, timeout)

struct aiocb **aiocbp;
int count;
struct timespec *timeout;

The arguments are defined as follows:

aiocbp a pointer to an array of pointers to asynchronous I/O control block struc-
tures. Each of the control blocks to which the elements in the array
point must have been specified on a call to aio_read(3),
aio_write(3), or lio_listio(3) (see “The aio_read Routine,”
“The aio_write Routine,” and “The lio_listio Routine,” respectively, for
explanations of these calls).

count an integer value that indicates the number of elements in the array to
which aiocbp points

timeout the null pointer constant or a pointer to a structure that specifies the
length of time that the process is to wait for completion of the specified
asynchronous I/O operations. If the structure to which timeout points
contains zeros or if the specified period of time elapses prior to comple-
tion of any of the specified operations, an error occurs.

A return value of 0 indicates that one or more of the specified asynchronous I/O opera-
tions has been completed. A process can determine whether or not a particular operation
has been successful by invoking the aio_return(3) routine and specifying a pointer to
the appropriate asynchronous I/O control block. It can obtain the status of the operation
by invoking the aio_error(3) routine. (See “The aio_error and aio_return Routines”
for explanations of these routines).
12-18

Real-Time I/O
A return value of –1 indicates that an error has occurred; errno is set to indicate the
error. Refer to the aio_suspend(3) system manual page for a listing of the types of
errors that may occur.

The aio_fsync Routine 12

The aio_fsync(3) routine allows the calling process to force all I/O operations associ-
ated with a particular disk file to the synchronized I/O completion state. You can specify
whether the type of completion is to be synchronized I/O data integrity completion or syn-
chronized I/O file integrity completion. POSIX synchronized I/O completion states are
fully explained in Chapter 10 of this guide.

Only the I/O operations that are queued at the time of the call to aio_fsync are certain
to be forced to the specified completion state; subsequent I/O operations associated with
the file may not be.

The specifications required for making the aio_fsync call are as follows:

#include <aio.h>

int aio_fsync(opcode, aiocbp)

int opcode;
struct aiocb *aiocbp;

The arguments are defined as follows:

opcode an integer value that specifies the type of synchronized I/O completion
to be performed. This value may be one of the following:

O_DSYNC specifies synchronized I/O data integrity completion

O_SYNC specifies synchronized I/O file integrity completion

aiocbp a pointer to an asynchronous I/O control block structure that specifies
the file descriptor for the disk file for which synchronized I/O comple-
tion is to be performed. The aiocbp–>aio_sigevent field may specify (1)
the type of notification mechanism that is to be used when all of the I/O
operations associated with the specified file have achieved synchronized
I/O completion, (2) the number of a signal that is to be used to notify the
process that all of the I/O operations associated with the specified file
have achieved synchronized I/O completion, and (3) an application–
defined value that is to be passed to the signal–handling routine.

The following fields are ignored on this call: aiocbp–>aio_offset, aio-
cbp–>aio_buf, aiocbp–>aio_nbytes, aiocbp–>aio_reqprio, aiocbp–
>lio_opcode, aiocbp–>aio_return.

The control block to which aiocbp points must be a valid address within
the calling process’s virtual address space. It is important to note that
the control block must remain valid until the asynchronous file synchro-
nization operation completes; otherwise, a memory fault may occur.
12-19

PowerMAX OS Real-Time Guide
A process can obtain the error status of this operation by invoking the
aio_error(3) routine and specifying a pointer to this aiocb struc-
ture (see “The aio_error and aio_return Routines” for an explanation of
this routine).

For a detailed description of each of the fields in the aiocb structure,
refer to “The Asynchronous I/O Control Block.”

A return value of 0 indicates that the asynchronous file synchronization operation has
been successfully queued. A return value of –1 indicates that an error has occurred;
errno is set to indicate the error. Refer to the aio_fsync(3) system manual page for
a listing of the types of errors that may occur.

Using Notification Mechanisms 12

You can synchronize process execution with completion of asynchronous I/O operations
by polling for completion of the operations, by using call-back notification, or by using a
signal to notify the process that an operation has been completed. “Polling” (p. 12-20)
illustrates use of polling. “Call-Back Notification” (p. 12-22) illustrates use of call-back
notification. “Signal Notification” (p. 12-24) illustrates use of signal notification.

Polling 12

A process can poll for completion of a particular asynchronous I/O operation by using the
aio_error(3) routine to check the error status of the operation and the
aio_return(3) routine to obtain the return status of the operation (refer to “The
aio_error and aio_return Routines” for explanations of these routines). While the opera-
tion is in progress, aio_error returns EINPROGRESS; when the operation has been suc-
cessfully completed, aio_return returns the number of bytes of data that have been
transferred.

The following C program segment illustrates the procedures for using these routines to
poll for completion of an asynchronous write operation.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <siginfo.h>
#include <signal.h>
#include <aio.h>

#define FILE_SIZE 500

main()
{

/* open() */
int fi_desc;

/* aio_write() */
aiocb_t aiocbp_x;
12-20

Real-Time I/O
char out_buf[FILE_SIZE];

/* misc */
int i;
int error;
int ret;

/*
 * Fill up the buffer that will be written out
 */
for(i=0; i<FILE_SIZE;i++)
{

out_buf[i] = ’x’;
}

/*
 * Create the output file
 */
fi_desc = open(”async.output”, O_CREAT | O_WRONLY);
if (fi_desc == –1)
{

printf(”cannot open file\n”);
exit(1);

}

/*
 * Initialize fields in the asynchronous I/O control block
 */
aiocbp_x.aio_offset = 0;
aiocbp_x.aio_buf = out_buf;
aiocbp_x.aio_nbytes = FILE_SIZE;
aiocbp_x.aio_reqprio = 0;
aiocbp_x.aio_sigevent.sigev_notify = SIGEV_NONE;
aiocbp_x.aio_fildes = fi_desc;

/*
 * Write to the file
 */
error = aio_write(&aiocbp_x);
if (error < 0)
{

perror(”aio_write”);
exit(1);

}

/*
 * Wait for completion (polling)
 */
while (aio_error(&aiocbp_x) == EINPROGRESS)
{
/*do work*/

printf(”.”);
}

/*
 * Check for errors
 */
if ((ret = aio_return(&aiocbp_x)) == –1)
{

printf(”aio_write error errno=%d\n”, aio_error(&aiocbp_x));
12-21

PowerMAX OS Real-Time Guide
exit(1);
}

printf(”aio_write wrote %d bytes\n”, ret);

}

Call-Back Notification 12

A process can arrange for an application-defined call-back routine to be invoked upon
completion of a single asynchronous I/O operation or a list of asynchronous I/O opera-
tions by specifying SIGEV_CALLBACK as the notification mechanism and by providing the
address of the call-back routine on a call to aio_read(3), aio_write(3), or
lio_listio(3). In addition to providing the address of the call-back routine, it can
specify an application–defined value that is to be passed to the call-back routine. (See
“The aio_read Routine,” “The aio_write Routine,” and “The lio_listio Routine” for expla-
nations of the aio_read, aio_write, and lio_listio routines.)

The C program segment that follows shows how a process can arrange for a call-back rou-
tine to be executed when an asynchronous read operation has been completed.

#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>
#include <siginfo.h>
#include <ucontext.h>

/*
 * MAXBSIZE is the size of the receiving buffer
 * MAGIC_NUMBER can be used for verification of the received call-back
 */
#define MAXBSIZE 8192
#define MAGIC_NUMBER 5317

/*
 * The input file will be read into this buffer
 */
char buffer[MAXBSIZE];

/*
 * Call-back Handler
 */
void
callback_handler(cb_info)
union sigval cb_info;

{
/* misc */
int i;

printf(”callback_handler: callback received\n”);
printf(”infop–>si_signo = %d\n”, infop–>si_signo);
printf(”infop–>si_code = %d\n”, infop–>si_code);
printf(”infop–>si_value = %d\n”, infop–>si_value);
printf(”cb_info.sival_int = %d\n”, cb_info.sival_int);
/*
12-22

Real-Time I/O
 * Verify what was read
 */
printf(”\nThe following was read:\n”);
for(i=0; i<MAXBSIZE; i++)
{

printf(”%c”, buffer[i]);
}

}

main()
{

/* aio_read() */
aiocb_t aiocbp_x;
int buffsize = MAXBSIZE;
int error;

/* fopen() & fclose() */
FILE *fi;
int fi_desc;

/*
 * Open the input file
 */
fi_desc = open(”async.input”, O_RDONLY);
if (fi_desc == –1)
{

printf(”cannot open file\n”);
exit(–1);

}

/*
 * Initialize fields in the asynchronous I/O control block
 */
aiocbp_x.aio_fildes = fi_desc;
aiocbp_x.aio_offset = 0;
aiocbp_x.aio_buf = buffer;
aiocbp_x.aio_nbytes = buffsize;
aiocbp_x.aio_reqprio = 0;
aiocbp_x.aio_sigevent.sigev_notify = SIGEV_CALLBACK;
aiocbp.x.aio_sigevent.sigev_func = callback_handler;
aiocbp_x.aio_sigevent.sigev_value.sival_int = MAGIC_NUMBER;

/*
 * Do the read
 */
error = aio_read(&aiocbp_x);
if (error < 0)
{

perror(”aio_read”);
exit(–1);

}

/* Perform unrelated work */
/* . . . */

exit(0);
}
12-23

PowerMAX OS Real-Time Guide
Signal Notification 12

A process can arrange for delivery of a signal to notify it of completion of a single asyn-
chronous I/O operation or a list of asynchronous I/O operations by specifying
SIGEV_SIGNAL as the notification mechanism and by providing the number of the desired
signal on a call to aio_read(3), aio_write(3), or lio_listio(3). In addition
to providing the signal number, it can specify an application–defined value that is to be
passed to the signal–handling routine when the signal is delivered. (See “The aio_read
Routine,” “The aio_write Routine,” and “The lio_listio Routine” for explanations of the
aio_read, aio_write, and lio_listio routines.) To use this method of notifica-
tion, the process must define a signal–handling routine and declare that routine as the han-
dler for the signal.

The C program segment that follows shows how a process can arrange for delivery of a
signal to notify it that an asynchronous read operation has been completed. It illustrates
some aspects of POSIX real–time signal behavior that are described in the PowerMAX OS
Programming Guide. It shows how to declare the signal handler by invoking the sigac-
tion(2) system call and setting the SA_SIGINFO flag. It also shows how to define the
signal–handling routine with the particular interface that is required when the SA_SIGINFO

flag is set.

The SA_SIGINFO flag is set to indicate (1) that the signal–handling routine is to be passed a
siginfo_t structure providing information about the signal and (2) that when a subse-
quent occurrence of a pending signal is generated, another siginfo_t structure is
queued with that instance of the signal. Note that the conditions for queuing a signal are
met: the aio_read routine sends queued signals, and the process that is receiving the
signal invokes sigaction with the SA_SIGINFO set prior to the time that the signal is
generated. The signal number, a code that identifies the reason for the signal
(SI_ASYNCIO), and the application–defined value are passed to the signal–handling routine
in the siginfo_t structure.

#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>
#include <siginfo.h>
#include <ucontext.h>

/*
 * MAXBSIZE is the size of the receiving buffer
 * MAGIC_NUMBER can be used for verification of the received signal
 */
#define MAXBSIZE 8192
#define MAGIC_NUMBER 5317

/*
 * The input file will be read into this buffer
 */
char buffer[MAXBSIZE];

/*
 * Signal Handler
 */
void
sigaction_handler(sig, infop, ucp)
int sig;
siginfo_t *infop;
12-24

Real-Time I/O
ucontext_t *ucp;

{
/* misc */
int i;

printf(”sigaction_handler: signal received\n”);
printf(”sig = %d\n”, sig);
printf(”infop–>si_signo = %d\n”, infop–>si_signo);
printf(”infop–>si_code = %d\n”, infop–>si_code);
printf(”infop–>si_value = %d\n”, infop–>si_value);

/*
 * Verify what was read
 */
printf(”\nThe following was read:\n”);
for(i=0; i<MAXBSIZE; i++)
{

printf(”%c”, buffer[i]);
}

}

main()
{

/* aio_read() */
aiocb_t aiocbp_x;
int buffsize = MAXBSIZE;
int error;

/* sigaction() */
struct sigaction action;

/* fopen() & fclose() */
FILE *fi;
int fi_desc;

/*
 * Open the input file
 */
fi_desc = open(”async.input”, O_RDONLY);
if (fi_desc == –1)
{

printf(”cannot open file\n”);
exit(–1);

}

/*
 * Initialize fields in the asynchronous I/O control block
 */
aiocbp_x.aio_fildes = fi_desc;
aiocbp_x.aio_offset = 0;
aiocbp_x.aio_buf = buffer;
aiocbp_x.aio_nbytes = buffsize;
aiocbp_x.aio_reqprio = 0;
aiocbp_x.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
aiocbp_x.aio_sigevent.sigev_signo = SIGUSR1;
aiocbp_x.aio_sigevent.sigev_value.sival_int = MAGIC_NUMBER;

/*
 * Set signal handler
 */
12-25

PowerMAX OS Real-Time Guide
action.sa_handler = sigaction_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO;
sigaction(SIGUSR1, &action, 0);

/*
 * Do the read
 */
error = aio_read(&aiocbp_x);
if (error < 0)
{

perror(”aio_read”);
exit(–1);

}

/* Perform unrelated work */
/* . . . */

exit(0);
}

12-26

13
Peripherals

Using a Real–Time Clock . 13-2
Understanding the Real–Time Clock Device . 13-2
Understanding the User Interface. 13-5
Watch-Dog Timer Function . 13-6

Using an Edge–Triggered Interrupt Device. 13-7
Understanding the Edge–Triggered Interrupt Device . 13-8
Understanding the User Interface. 13-9

Using a Distributed Interrupt Device. 13-9
Understanding Distributed Interrupts . 13-10
Understanding the User Interface. 13-10

Using the High–Speed Data Enhanced Device (HSDE) . 13-11
Understanding the High–Speed Data Enhanced (HSDE) Device 13-11
Understanding the HSDE User Interface . 13-13
Using a Master–Slave Transfer Protocol . 13-14
Using the HSDE Command Chaining Mode . 13-15
Using the HSDE Data Chaining Mode. 13-19

Using a DR11W Emulator. 13-20
Understanding the DR11W Emulator. 13-21
Understanding the DR11W User-Level Device Driver 13-22
Configuration and Installation Requirements. 13-22
Understanding the User Interface. 13-24

Application Requirements. 13-24
Compiling and Linking Procedures. 13-24

Using the Driver Routines . 13-25
dr11w_acheck . 13-25
dr11w_aread . 13-27
dr11w_attn_check . 13-28
dr11w_attn_wait . 13-29
dr11w_await . 13-29
dr11w_awrite. 13-30
dr11w_close. 13-31
dr11w_disable_interrupts . 13-32
dr11w_dump . 13-32
dr11w_enable_interrupts . 13-33
dr11w_get_modes . 13-34
dr11w_get_status. 13-34
dr11w_ienabled . 13-35
dr11w_open . 13-35
dr11w_pio_read. 13-37
dr11w_pio_write . 13-38
dr11w_reset . 13-38
dr11w_sendgo . 13-39
dr11w_sendintr . 13-39
dr11w_set_modes . 13-40
dr11w_setsdir . 13-41
dr11w_set_status . 13-41

PowerMAX OS Real-Time Guide
Using the 1553 Advanced Bus Interface . 13-42
Understanding the 1553 Advanced Bus Interface . 13-42
Understanding the User Interface . 13-43
Using the 1553 ABI User-Level Device Driver . 13-44

Configuration and Installation Requirements . 13-44
Application Requirements . 13-45
Compiling and Linking Procedures . 13-46

Using the 1553 ABI User-Level Driver Routines. 13-46
abi_attn_check . 13-47
abi_attn_wait . 13-47
abi_close . 13-48
abi_disable_interrupts . 13-49
abi_dump . 13-49
abi_enable_interrupts. 13-50
abi_ienabled. 13-51
abi_open. 13-51
abi_pio_read . 13-52
abi_pio_write . 13-53
abi_reset. 13-54

Using Real–Time Serial Communications . 13-54
Understanding the HPS Controller . 13-54
Configuration and Installation Requirements . 13-55
Understanding the User Interface . 13-55

Using the Ioctl System Call . 13-56
Using Read and Write System Calls . 13-58

Optimizing the Performance of Real-Time TTY Devices 13-59
Memory Mapping for HSDE and DR11W . 13-60

Reserving Physical Memory. 13-60
Binding a Shared Memory Segment to Physical Memory 13-61
Obtaining an Identifier for a Shared Memory Segment 13-61
Attaching a Shared Memory Segment . 13-62

13
Chapter 13Peripherals

13
13
13

This chapter contains the procedures for using a variety of devices.

• The real–time clock can be used for timing and frequency control func-
tions. An overview of the device and the user interface to it is provided in
“Using a Real–Time Clock.”

• The edge–triggered interrupt device enables a computer system to detect an
external interrupt coming into the system from a user device that generates
a signal pulse. A description of the edge–triggered interrupt and the user
interface to it is provided in “Using an Edge–Triggered Interrupt Device.”

• The Real-Time Clocks and Interrupts Module (RCIM) provides distributed
interrupts. These are interrupts sent to all systems connected via a RCIM
chain. Distributed interrupts are similar to edge-triggered interrupts. A
description of distributed interrupts and the user interface to them is pro-
vided in “Using a Distributed Interrupt Device”

• The High–Speed Data Enhanced interface, or HSDE, is provided to accom-
modate use of 32–bit external devices that use the Encore High Speed Data
(HSD) interface Model 9132 protocol. The HSDE provides you with the
ability to perform data chaining and command chaining. Procedures for
using the HSDE are presented in “Using the High–Speed Data Enhanced
Device (HSDE).” Memory mapping requirements are explained in “Mem-
ory Mapping for HSDE and DR11W.”

• The DR11W emulator is provided to accommodate use of external devices
that use the Digital Equipment Corporation DR11W interface. An over-
view of the device and the procedures for using its associated user-level
device driver are presented in “Using a DR11W Emulator.” Memory map-
ping requirements are explained in “Memory Mapping for HSDE and
DR11W.”

• The 1553 Advanced Bus Interface (ABI) is a real-time interface between a
PowerMAX OS system and a MIL-STD-1553 bus. It provides the host sys-
tem with such advanced 1553 interface capabilities as independent and
simultaneous bus controller simulation, remote terminal simulation, and
1553 bus monitoring. An overview of the 1553 ABI and the user interface
to it are provided in “Using the 1553 Advanced Bus Interface.”

• The SYSTECH High Performance Serial (HPS) controller has the capabil-
ity of being used with a standard STREAMS-based TTY driver and a spe-
cial real-time device driver. This capability makes it possible for standard
TTY activities and real-time communications to occur on the same port at
different times. The information needed to use a real-time TTY device on
the HPS controller is provided in “Using Real–Time Serial Communica-
tions.”
13-1

PowerMAX OS Real-Time Guide
Using a Real–Time Clock 13

In this section, two types of information are provided to facilitate use of a real–time clock.
An overview of the real–time clock device, rtc, is presented in “Understanding the Real–
Time Clock Device.” A description of the user–interface to the device is provided in
“Understanding the User Interface.”

Understanding the Real–Time Clock Device 13

The real–time clock device, rtc, is designed to be used for a variety of timing and fre-
quency control functions. It provides a range of clock count values and a set of resolutions
that taken together produce many different timing intervals––a feature that makes it par-
ticularly appropriate for frequency–based scheduling.

On Power Hawk Series 600/700/900 systems, there are integral real-time clocks located
on the CPU board and additional clocks available through the Real-Time Clocks and Inter-
rupts Module (RCIM), if installed.

On Power Hawk Series 600 systems, the integral clocks consist of tick timers and Zilog
Z8536 timers. On Power Hawk Series 700/900 systems, the integral clocks consist of
only tick timers. The number of each available varies based on system type. Only the tick
timers can be used as the timing source for a frequency-based scheduler. For complete
information on both types of timers refer to the rtc(7) system manual page and also to
the system header file /usr/include/sys/rtc.h.

If the Real-Time Clocks and Interrupts Module (RCIM) is installed, it provides four addi-
tional real-time clocks. When multiple SBCs are connected via an RCIM chain, up to four
real-time clocks may be designated to be distributed, i.e. its interrupts are sent to all con-
nected systems. A distributed real-time clock may be located on any SBC within the
RCIM chain.

More information can be found in the rtc(7) manual page.

On Power Hawk Series 600/700/900 systems, the device special files for the real-time
clocks are as follows (where n specifies the clock number):

On PowerMAX OS systems, the real–time clock controller is integral to the system. Each
CPU board has one real–time clock controller. On Model 6200 and 6800 systems, five
real–time clocks are provided on the first CPU board (board 0). Three real–time clocks are
provided on each additional CPU board. The HVME real–time clock controller is not sup-
ported. On PowerMAXION systems, five real-time clocks are provided on each of the
four CPU boards.

/dev/rrtc/0cn rtc (character) special files - tick timer

/dev/rrtc/1cn rtc (character) special files - Z8536 (Power Hawk Series
600 Systems only.)

/dev/rrtc/2cn rtc (character) special files - RCIM
13-2

Peripherals
On PowerMAX OS systems, device special files for real–time clocks have names of the
form /dev/rrtc/mcn, where m specifies a controller number that ranges from zero to
three and corresponds to the CPU board on which the clock resides; c stands for clock,
and n specifies a real–time clock number that ranges from zero to four on the first CPU
board and zero to two on additional CPU boards. The names of the device special files on
the first board must be as follows:

/dev/rrtc/0c0

/dev/rrtc/0c1

/dev/rrtc/0c2

/dev/rrtc/0c3

/dev/rrtc/0c4

The names of the device special files on the second board must be as follows:

/dev/rrtc/1c0

/dev/rrtc/1c1

/dev/rrtc/1c2

The names of the device special files on the third board must be as follows:

/dev/rrtc/2c0

/dev/rrtc/2c1

/dev/rrtc/2c2

The names of the device special files on the fourth board must be as follows:

/dev/rrtc/3c0

/dev/rrtc/3c1

/dev/rrtc/3c2

On PowerMAXION systems, device special files for real–time clocks have names of the
form /dev/rrtc/mcn, where m specifies a controller number that ranges from zero to
three and corresponds to the CPU board on which the clock resides; c stands for clock,
and n specifies a real–time clock number that ranges from zero to four on each CPU board.
The names of the device special files on the first board must be as follows:

/dev/rrtc/0c0

/dev/rrtc/0c1

/dev/rrtc/0c2

/dev/rrtc/0c3

/dev/rrtc/0c4

The names of the device special files on the second board must be as follows:
13-3

PowerMAX OS Real-Time Guide
/dev/rrtc/1c0

/dev/rrtc/1c1

/dev/rrtc/1c2

/dev/rrtc/1c3

/dev/rrtc/1c4

The names of the device special files on the third board must be as follows:

/dev/rrtc/2c0

/dev/rrtc/2c1

/dev/rrtc/2c2

/dev/rrtc/2c3

/dev/rrtc/2c4

The names of the device special files on the fourth board must be as follows:

/dev/rrtc/3c0

/dev/rrtc/3c1

/dev/rrtc/3c2

/dev/rrtc/3c3

/dev/rrtc/3c4

On PowerMAX OS systems, each real–time clock is connected to a particular pin on the
interrupt terminator board. The hardware controls the interrupt priority associated with
each pin. The real-time clock interrupts are handled on the CPU board on which they
reside. They cannot be routed to other CPU boards.

NOTE

To use a real–time clock on a PowerMAX OS system on which
the Enhanced Security Utilities are installed, device special files
must be created in the /dev/rrtc directory. Refer to the
“Trusted Facility Management” chapter of System Administration
Volume 1 for an explanation of the procedures for using device
files when the Enhanced Security Utilities are installed.

A real–time clock operates in one of two modes: default mode or direct mode. If the clock
is in default mode, you can control the following:

• Whether the clock counts up or down

• What the value of the clock count is
13-4

Peripherals
• What the resolution per clock count is

• Whether the clock automatically starts counting again when the clock
count reaches its terminal count (zero or 65,535)

If the clock is in direct mode, you can directly program the hardware registers. Doing so
requires information on the system timing chip and its registers. The information needed
can be obtained by special request. Directly programming the hardware registers also
requires information that is provided in the system manual page rtc(7).

You can use a real-time clock for triggering events in the high-resolution callout queue.
The hrtconfig(1M) command is provided for this purpose. When you configure a
real-time clock for use with the high-resolution callout queue, you cannot use it for any
other purpose. Refer to Chapter 3 for additional information on the high-resolution callout
queue and use of the hrtconfig command. Note that using a real-time clock with the
high-resolution callout queue does not affect the resolution of other clocks on the same
controller.

Understanding the User Interface 13

The real–time clock can be directly controlled by using the standard PowerMAX OS sys-
tem calls: open(2), close(2), and ioctl(2).

NOTE

This device does not support the read(2) and write(2)
system calls.

A set of ioctl commands enables you to perform a variety of operations that are specific
to the device. These commands are summarized as follows:

RTCIOCSET set the mode and the count and resolution values for a real–
time clock

RTCIOCGET obtain the mode and the count and resolution values for a
real–time clock

RTCIOCINFO obtain information about the specified real-time clock.

RTCIOCSETCNT set the count value for a real–time clock

RTCIOCMODCNT stop the counting of a real–time clock, modify the count
value for the clock, and start the counting of the clock

RTCIOCGETCNT obtain the current count value for a real–time clock

RTCIOCRES obtain the current resolution value for a real–time clock

RTCIOCSTART start the counting of a real–time clock

RTCIOCSTOP stop the counting of a real–time clock
13-5

PowerMAX OS Real-Time Guide
RTCIOCWAIT wait for the count value for a real–time clock to reach zero

RTCIOCFBS set the mode for a real–time clock to frequency–based
scheduling

IOCTLVECNUM obtain the interrupt vector number of a real–time clock

Detailed descriptions of these commands and the specifications required for using them
are presented in the system manual page rtc(7).

Watch-Dog Timer Function 13

The fifth RTC on the first board can be used as watch-dog timer or as an interrupting real
time clock. When used as an interrupting clock the output of the RTC that indicates a time
out continues to be connected to the interrupt control logic. However, when the RTC is
being used as a watch-dog timer, its interrupt is disabled via software issuing a disarm
interrupt command to the RTC’s interrupt level. The RTC’s time-out output is also
connected to the logic Processor Control and Status Register (PCSR).

The RTC used in the watch-dog timer function is programmed by the application using the
facilities provided under PowerMAX OS. For more information on software control
capability of the RTC, refer to the manual pages section -rtc.

It is recommended that the RTC watch-dog timer be used in the default mode and
programmed to have a clock resolution of 1 millisecond. This time gives a time out range
of from 1 millisecond to 65.535 seconds. In the event of a time-out, the hardware
generates the SRESET signal to the PPC604 processor. This signal causes the processor to
save the machine state in its Save and Restore Registers (SRR) and start execution of a
soft reset exception. This execution’s execution starts at physical location 0x00000100.
The exception handler then tests the MODULE_NO_GO register flag to find out if the
cause of the soft reset is the watch-dog timer time-out. If it is, processing of the soft reset
continues by resetting of the MODULE_NO_GO bit followed by a reset of the SRESET
register bit in the PCSR. Control is now passed to a user defined exception handler.

Using the watch-dog function, the application can monitor the health of its processes. To
accomplish this the application must program for the watch-dog interrupt in the following
manner:

1. The fifth real time clock's interrupt must be disabled on the processor's
interrupt controller. The application does this by mapping the interrupt
controller's enable register using the shared memory mechanism.The
physical addresses for the interrupt enable registers on the PowerMAXION
are:

0x96200020 local processor
0x9D000020 processor 0
0x9D100020 processor 1
0x9D200020 processor 2
0x9D300020 processor 3

The fifth real time clock interrupt is disabled by resetting bit 17 in the 32-
bit enable register.
13-6

Peripherals
The application must take care to not change other bits in the interrupt
controller's enable register. This can be achieved by reading the enable
register, masking out only bit 17, and re-writing the contents back to the
enable register.

The application has the responsibility of re-enabling this interrupt once use
of the watch-dog timer is complete. This is achieved by setting bit 17 in the
enable register. Failure to do so will preclude the fifth real time clock on
processor board one from being used as a timer.

2. The interrupt signal from the fifth real-time clock must be routed to the
PPC604 processor. The application does this by mapping the processor's 16
bit control and status register (PCSR) using the shared memory
mechanism. The physical addresses for the PCSR's are as follows:

0xB2000000 processor 0
0xB2000008 processor 1
0xB6000000 processor 2
0xB6000008 processor 3

Routing of the fifth real-time clock interrupt is achieved by setting bit 11 in
the PCSR for the respective processor board. The application must take
care to not change other bits in the PCSR. This can be achieved by reading
the register, setting bit 11, and re-writing the contents back to the register.

The application has the responsibility of restoring bit 11 of the PCSR to 0
once use of the watch-dog timer function is complete. Failure to do so will
preclude the fifth real time clock on processor board one from being used as
a timer.

3. The application must connect and enable the user level interrupt routine.
This is achieved using the iconnect(3C) and ienable(3C) routines.
The application must also lock all memory resources used by the user level
interrupt routine. These resources include shared memory regions, library
text and data, process text and data. See chapter 7 in this manual for a
description of user level interrupts.

4. The fifth real time clock must be programmed by the application with the
correct count and frequency. PowerMAX OS supplies a user interface to
the real-time clocks.

Using an Edge–Triggered Interrupt Device 13

This section contains the information needed to use an edge–triggered interrupt. An over-
view of the edge–triggered interrupt device, eti, is presented in “Understanding the Edge–
Triggered Interrupt Device.” A description of the user–interface to the device is provided
in “Understanding the User Interface.”
13-7

PowerMAX OS Real-Time Guide
Understanding the Edge–Triggered Interrupt Device 13

The edge–triggered interrupt device, eti, provides a means for the computer system to
detect an external interrupt coming into the system from any user device that generates a
signal pulse.

On PowerMAX OS systems, edge–triggered interrupts are integral to the system. Four
edge–triggered interrupts are provided for each CPU board. One to four CPU boards may
be configured; as a result, the number of edge–triggered interrupts per system ranges from
four to 16.

The edge-triggered interrupts, by default, are automatically configured according to the
number of CPU boards configured. If you do not wish the edge-triggered interrupts to be
configured in your system, you can edit the /etc/conf/sdevice.d/eti file and
change the value in the conf field to N.

On PowerMAX OS systems, device special files for the integral edge–triggered interrupts
have names of the form /dev/reti/etin, where n specifies an edge–triggered inter-
rupt number ranging from zero to 15. The numbers 0–3 are the edge–triggered interrupts
on CPU board 0; 4–7 are the edge–triggered interrupts on CPU board 1; 8–11 are the
edge–triggered interrupts on CPU board 2; and 12–15 are the edge–triggered interrupts on
CPU board 3. If a CPU board in a specified slot is marked down or is not present, the num-
bering scheme is not affected. If a system contains a CPU board in slot 0 and a CPU board
in slot 3, for example, the edge–triggered interrupts on the first board are numbered 0–3,
and the edge–triggered interrupts on the second board are numbered 12–15

On PowerMAX OS systems, each edge–triggered interrupt is connected to a particular pin
on the terminator board. Edge-triggered interrupts are handled on the CPU board on which
they reside. They cannot be routed to other CPU boards.

For detailed information on the edge–triggered interrupt hardware and the conditions that
are required for using it, refer to the system manual page eti(7), the HN6200
Architecture Manual, the HN6800 Architecture Manual, the PowerMAXION Architecture
Manual and the TurboHawk Architecture Manual.

On Power Hawk Series 600/700/900 systems, edge-triggered interrupts are provided by
the Real-Time Clocks and Interrupts Module (RCIM), if installed. There are four
edge-triggered interrupts available to each SBC (single-board computer) that has an
RCIM. When multiple SBCs are connected via an RCIM chain, up to four ETIs may be
designated to be distributed, i.e. its interrupts are sent to all connected systems. A distrib-
uted ETI may be located on any SBC within the RCIM chain.

The kernel tunable RCIM_DISTRIB_ETIS specifies which ETIs are distributed.

On Power Hawk Series 600/700/900 systems, ETI device special files are only available
if an RCIM module is installed. They have the following format:

For more information, refer to the system manual page eti(7).

/dev/reti/eti0n eti (character) special files
13-8

Peripherals
Understanding the User Interface 13

The edge–triggered interrupt device can be directly controlled by using the following
standard PowerMAX OS system calls: open(2), close(2), and ioctl(2).

NOTE

This device does not support the read(2) and write(2)
system calls.

A set of ioctl commands enables you to perform a variety of operations that are specific
to the device. These commands are summarized as follows:

ETI_ARM arm the edge–triggered interrupt

ETI_DISARM disarm the edge–triggered interrupt.

ETI_ENABLE enable the edge–triggered interrupt.

ETI_DISABLE disable the edge–triggered interrupt.

ETI_INFO obtain information about the specified
edge-triggered interrupt.

ETI_REQUEST generate a software–requested interrupt
along the edge–triggered interrupt. Note that
the edge–triggered interrupt must previously
have been armed and enabled.

ETI_ATTACH_SIGNAL attach the specified signal number to the
edge–triggered interrupt. The signal will be
generated on every interrupt.

ETI_VECTOR place the edge–triggered interrupt vector
number in the specified location. Note that
any device that is being attached to a
frequency–based scheduler must support this
command.

Detailed descriptions of these commands and the specifications required for using them
are presented in the system manual page eti(7).

Using a Distributed Interrupt Device 13

This section contains information needed to use distributed interrupts. An overview is pre-
sented in "Understanding Distributed Interrupts". A description of the user interface is
provided in "Understanding the User Interface".
13-9

PowerMAX OS Real-Time Guide
Understanding Distributed Interrupts 13

The Real-Time Clocks and Interrupts Module (RCIM) provides eight distributed inter-
rupts. These are interrupts that are sent to all SBCs connected via a RCIM chain.

The source of the device that generates a distributed interrupt may be on any SBC within
the RCIM chain. Sources of distributed interrupts are the real-time clocks, edge-triggered
interrupts or priority interrupt generators located on an RCIM. For more information,
refer to the distrib_intr(7)manual page.

Distributed interrupts are similar to edge-triggered interrupts. The ‘eti’ driver must be
enabled to access edge-triggered interrupts.

There are several system tunables that are used to configure distributed interrupts.

The tunables RCIM_DISTRIB_ETIS, RCIM_DISTRIB_RTCS and
RCIM_DISTRIB_PIGS specify the set of ETIs, RTCs and PIGs from
the local system only; that will have its interrupts distributed to all
systems.

Generally, only one SBC within the RCIM chain should distribute
the same device (in other words, no more than one SBC should
distribute eti0, no more than one SBC should distribute eti1,
etc.)

The tunable RCIM_DISTRIB_INTR[N] specify the source for each
distributed interrupt.

Generally, these tunable values should be the same on all systems
within a RCIM chain.

The device files for distributed interrupts are:

 /dev/distrib_intrN (where N=0..7)

Note: Both the rcim and eti kernel modules must be enabled to use distributed
interrupts.

Understanding the User Interface 13

Distributed interrupts can be directly controlled using the following standard PowerMAX
OS system calls: open(2), close(2) and ioctl(2).

Note: This device does not support read(2) and write(2) system calls.

A set of ioctl commands enables you to perform a variety of operations that are
specific to distributed interrupts. These commands are summarized below:

 DISTRIB_INTR_ARM arm the distributed interrupt.

DISTRIB_INTR_DISARM disarm the distributed interrupt.

DISTRIB_INTR_ENABLE enable the distributed interrupt.
13-10

Peripherals
DISTRIB_INTR_DISABLE disable the distributed interrupt.

DISTRIB_INTR_INFO obtain information about the specified distributed interrupt,
including its source.

DISTRIB_INTR_ATTACH_SIGNAL attach the specified signal number to the
distributed interrupt. The signal will be
generated on every interrupt.

DISTRIB_INTR_VECTOR obtain distributed interrupt vector number.

More information can be found in the distrib_intr(7)system manual page.

Using the High–Speed Data Enhanced Device (HSDE) 13

If your PowerMAX OS system is linked to a 32–bit external device that uses the Encore
High Speed Data (HSD) Interface Model 9132 protocol, you may wish to take advantage
of the features of the high–speed data enhanced device driver that are designed to improve
the performance of real–time applications. The high–speed data enhanced device performs
DMA transfers directly to and from the user’s virtual address space; it provides you with
the ability to perform command chaining and data chaining.

An overview of the high–speed data enhanced device, hsde, is presented in “Using the
High–Speed Data Enhanced Device (HSDE).” A description of the user interface to the
device is provided in “Understanding the HSDE User Interface.” A protocol for
coordinating communication and exchange of data between programs is presented in
“Using a Master–Slave Transfer Protocol.” Procedures for using the command chaining
mode are described in “Using the HSDE Command Chaining Mode.” Procedures for
using the data chaining mode are described in “Using the HSDE Data Chaining Mode.” In
order to use the high–speed data device, you must ensure that the user’s I/O buffer is
bound to a contiguous section of physical memory. An explanation of the procedures for
complying with memory mapping requirements is presented in “Memory Mapping for
HSDE and DR11W.”

Understanding the High–Speed Data Enhanced (HSDE) Device 13

The high–speed data enhanced device, hsde, is an enhanced channel interface which
provides a bidirectional DMA link for transferring control, status, and data between a
PowerMAX OS system and any 32–bit external device that uses the Encore High Speed
Data (HSD) Interface Model 9132 protocol. The hsde is “enhanced” by the fact that it
contains a dedicated Motorola 68020 microprocessor coupled with on–board firmware to
perform the HSD protocol handshaking and a VIC068 VME Interface Controller (VIC) to
control DMA operations to/from the PowerMAX OS system host. These enhancements
give the hsde its high-end performance. The hsde does not support the Encore InterBus
Link (IBL) protocol.

HSDE device channels are supported on the (H)VME bus. The hsde can be connected to
any device that is compatible with the Encore HSD Interface Model 9132, including
another hsde. Eight (H)VME address ranges are reserved for use by the hsde. The
13-11

PowerMAX OS Real-Time Guide
addresses associated with the hsde devices configured into your system may be found in
the /etc/conf/sadapters.d/kernel file.

Device special files for hsde devices have names of the form /dev/hsde#, where #
represents a minor device number ranging from zero to the number of hsde devices on
your system.

You can control operation of a hsde device by setting any of fourteen modes. Of the four-
teen configuration modes, four are generally accessed. These four modes are described
below:

Master/slave mode enables you to indicate whether the high–
speed data enhanced device is to serve as the
master or the slave device

Transfer size mode enables you to specify whether data are to be
transferred one byte, one word, or one long-
word at a time

Command chaining mode enables you to indicate whether or not
multiple operations can be performed on a
single read or write system call

Extended I/O Control

Block mode enables you to specify whether the extended
version of the HSD protocol’s I/O Control
Blocks (IOCBs) should be utilized during
transfer operations. More information on
IOCBs will be provided in the following
sections.

You can set these modes as well as the additional ten modes to different values by making
an HSDE_SET_MODE ioctl call. The values that can be specified for each mode and the
specifications required for this call are presented in the system manual page hsde(7).

Table 13-1. Mode Default Values

Mode Default Value

Transfer size HSDE_LONG

Master/Slave HSDE_MASTER

Command chaining Value Zero (Disabled)

Extended IOCB Value Zero (Disabled)
13-12

Peripherals
Understanding the HSDE User Interface 13

The hsde device is controlled by using the following standard PowerMAX OS system
calls: open(2), close(2), ioctl(2), read(2), write(2), readv(2), and
writev(2).

On the open call in HSDE_MASTER mode, the hsde device may be opened by multiple
processes. It is the responsibility of the cooperating processes to synchronize access to the
hsde. On the open call in HSDE_SLAVE mode, the hsde device is opened exclusively and
cannot be opened by another process.

On the close call, the hsde device is automatically reset. Therefore, all configuration
values are set to their default values as specified in the hsde(7) manual page.

A set of ioctl commands enables you to perform a variety of operations that are specific
to the device. These commands are summarized as follows:

HSDE_GET_MODE query the hsde device configuration modes

HSDE_SET_MODE set the hsde device configuration modes

HSDE_COMMAND send a high–speed data device command

HSDE_GET_CMD receive a high–speed data command

HSDE_STATUS send a high–speed data device status request
command

HSDE_PULSE_SIG send an IOR or TDV signal via the hsde

HSDE_VECTOR obtain the base interrupt vector of the hsde

HSDE_DUMP query all readable hsde on–board registers

HSDE_RESET reset the hsde device and send IOR to
external device

HSDE_LOCAL_STAT query the hsde device for local status
information

HSDE_ABORT_OP abort the current operation executing on the
hsde

HSDE_DIAG run internal diagnostics on the hsde

HSDE_CYCLE_CHAIN reexecute the previously executed command
chain

HSDE_LOAD_UPROG download a user–developed MC68020 data
conversion program

HSDE_ENABLE_UPROG enable/disable a downloaded MC68020 data
conversion program

Detailed descriptions of these commands and the specifications required for using them
are presented in the system manual page hsde(7).
13-13

PowerMAX OS Real-Time Guide
If you elect to use command chaining mode, you must use special forms of the read and
write system calls. Command chaining mode and the specifications required for these
calls are explained in detail in “Using the HSDE Command Chaining Mode.”

Using a Master–Slave Transfer Protocol 13

If you are using the hsde device to communicate with another high–speed data device, one
of the devices must be placed in slave mode, and one must be placed in master mode.
Because the default mode for the hsde device is HSDE_MASTER, master/slave mode for the
slave device must be set to its appropriate slave mode.

The role of the master device is to issue requests for status, issue commands, and send and
receive data. The role of the slave is to update status, get commands, and receive and send
data. Commands may be of two types: device commands and read or write commands.
Communication and exchange of data between programs must be governed by a protocol.
The minimal protocol that must be followed is presented in Table 13-2.

Each action is performed by making a related ioctl(2), read(2), write(2),
readv(2), or writev(2) system call. The specific calls that are involved in perform-
ing each action are described as follows.

Enable Slave Mode (1)

Master/slave mode is set to HSDE_SLAVE on the slave device by using the
HSDE_SET_MODE ioctl command.

Table 13-2. Master/Slave Protocol

Device Action

Slave HSD 1. Enable slave mode

 2. Get the next command

Master HSD 3. Issue a device status request

 4. Send a device command
 or
 Read
 or
 Write

Slave HSD 5. Process a device command
 or
 Write
 or
 Read

Master HSD 6. Go to Step 3 or Step 4

Slave HSD 7. Go to Step 2
13-14

Peripherals
Get the next command (2)

The process that controls the slave HSDE receives a command by using the
HSDE_GET_CMD ioctl command. This command enables the slave HSDE’s
external function command interrupt and thereby allows the process that controls
the master HSDE to send a command.

Issue a Device Status Request (3)

The process that controls the master HSDE synchronizes operation with the process
that controls the slave HSDE and queries the state of that process by using the
HSDE_STATUS ioctl command to read the slave HSDE’s device status register.

Send a Device Command or Read or Write (4)

The process that controls the master HSDE sends a device command by using the
HSDE_COMMAND ioctl command. It sends a read command by using a read or
readv system call and a write command by using a write or writev system call.

Process a Device Command or Write or Read (5)

When the process that controls the master HSDE sends a read command, the process
that controls the slave HSDE makes a write or a writev system call. Alterna-
tively, when it sends a write command, the slave HSDE makes a read or a readv
system call. Device commands are specific to the application.

Detailed explanations of each of these actions and the corresponding system calls
are provided in the system manual page hsde(7). Example programs that demon-
strate use of the protocol to transfer a file from a master HSDE to a slave HSDE are
included in Appendix E.

Using the HSDE Command Chaining Mode 13

Command chaining mode enables a master high–speed data device to initiate device
commands, I/O transfer commands, or a combination of the two with a single read or
write system call. Device commands are specific to the external device. I/O transfer
commands instruct the high–speed data device to initiate a DMA transfer to or from an
external device. The number of commands that you can initiate cannot exceed the value of
HSDE_MAX_IOCL, which is set in the tunable parameters configuration file,
/etc/conf/mtune.d/hsde.

NOTE

When you enable command chaining mode, you must also set
master/slave mode to HSDE_MASTER.

When you select command chaining mode, you must use special forms of the read(2)
and write(2) system calls. The read and write system calls must be specified as
follows:
13-15

PowerMAX OS Real-Time Guide
#include <sys/hsde.h>

read(fildes, iocl, niocb)

write(fildes, iocl, niocb)

int fildes;
hsde_iocb_t iocl[];
int niocb;

Arguments are defined as follows:

fildes the file descriptor for the file to or from which data are being transferred

iocl[] a pointer to a high–speed data device I/O command list (hereinafter
referred to as an IOCL), which is an array of high–speed data device I/O
command block (hereinafter referred to as IOCB) structures

niocb the number of high–speed data device commands in the specified IOCL

The hsde device I/O command block structure, hsde_iocb, is defined in the header file
<sys/h3300_channel.h> as presented in the lines that follow.

/*
** Hsde I/o Command Block Structure:
*/
typedef unsigned char ui8;
typedef unsigned long ui32;

typedef struct hsde_iocb {
 /* IOCB Word 0 */
 union {
 ui32 I_iocb0; /* iocb word 0 */
 struct {
 ui8 I_opcode; /* hsd opcode */
 ui8 I_info; /* device dependent info. */
 ui8 I_tc; /* transfer count */
 } Iocb0_s ;
 } Iocb0_u ;
 /* IOCB Word 1 */
 union {
 ui32 I_iocb1; /* iocb word 1 */
 /* I/o Transfer Command Format */
 ui32 I_ta; /* transfer address */
 /* Device Command Format */
 ui32 I_command; /* device dependent command */
 } Iocb1_u ;
 /* IOCB Word 2 */
 union {
 ui32 I_iocb2; /* iocb word 2 */
 ui32 I_la; /* link address */
 } Iocb2_u ;
 /* IOCB Word 3: Used with extended IOCB. */
 union {
 ui32 I_iocb3; /* iocb word 3 */
 struct {
 ui8 I_xfer_opcode; /* xfer op code */
 ui8 I_user_param; /* user prog param */
13-16

Peripherals
 ui8 I_xfer_addr_modifier; /* vme xfer addr mod */
 ui8 I_link_addr_modifier; /* vme link addr mod */
 } Iocb3_s ;
 } Iocb3_u ;
} h3300_channel_t ;

/* IOCB Word 0 Defines: */
#define i_iocb0 Iocb0_u.I_iocb0
#define i_opcode Iocb0_u.Iocb0_s.I_opcode
#define i_info Iocb0_u.Iocb0_s.I_info
#define i_tc Iocb0_u.Iocb0_s.I_tc

/* IOCB Word 1 Defines: */
#define i_iocb1 Iocb1_u.I_iocb1
#define i_ta Iocb1_u.I_ta
#define i_command Iocb1_u.I_command

/* IOCB Word 2 Defines: */
#define i_iocb2 Iocb2_u.I_iocb2
#define i_la Iocb2_u.I_la

/* IOCB Word 3 Defines: */
#define i_iocb3 Iocb3_u.I_iocb3
#define i_xfer_opcode Iocb3_u.Iocb3_s.I_xfer_opcode
#define i_user_param Iocb3_u.Iocb3_s.I_user_param
#define i_xfer_addr_modifer Iocb3_u.Iocb3_s.I_xfer_addr_modifier
#define i_link_addr_modifer Iocb3_u.Iocb3_s.I_link_addr_modifier

In the definition of IOCB Word 1, the hsd_iocb structure definition shows that there are
two formats for IOCBs: one for device commands and one for I/O transfer commands.
The format of an IOCB is determined by the value of i_opcode, which is defined in
IOCB Wo rd 0 . Fo r dev ice comm ands , t he va lue o f i_opcode m us t be
HSDE_OP_COMMAND. For I/O transfer commands, the value of i_opcode must be either
HSDE_OP_READ or HSDE_OP_WRITE.

NOTE

The i_opcode field of all but the last IOCB in the command chain
must have the command chain bit (HSDE_OP_CCHAIN) set—for
example:

iocl[0].i_opcode = HSDE_OP_READ | HSDE_OP_CCHAIN;

The fields that are included in the IOCB format for device commands are described as
follows:

i_opcode contains the high–speed data device opcode
HSDE_OP_COMMAND

i_info may contain device dependent information. This field is not
interpreted by the hsde or the hsde device driver.

i_tc not used
13-17

PowerMAX OS Real-Time Guide
i_command contains the device–dependent command. This command is
meaningful only to the external hsd device. This field is not
interpreted by the hsde or the hsde device driver.

i_iocb2 is an unused longword in the IOCB. It should be set to zero.

The fields that are included in the IOCB format for I/O transfer commands are described
as follows:

i_opcode contains the hsde device opcode HSDE_OP_READ or
HSDE_OP_WRITE

i_info may contain device dependent information. This field is not
interpreted by the hsde or the hsde device driver.

i_tc contains the desired I/O transfer count––that is, the number
of bytes, words, or longwords to be transferred. The transfer
count must be related to the transfer size mode that has been
selected. If, for example, transfer size mode has been set to
HSDE_LONG, this field must contain the longword count. It
is important to note that the transfer count cannot exceed
65,535 bytes, words, or longwords.

i_ta contains the transfer address––that is, the virtual base
address of the desired I/O transfer

i_iocb2 is an unused longword in the IOCB. It should be set to zero.

If the extended IOCB option is enabled in the hsde configuration, the fourth longword of
the IOCB structure will be recognized by the hsde interface. The main reason for desiring
this option is to utilize user–developed MC68020 assembly language data conversion
programs. These data conversion programs can be downloaded onto the hsde via the
HSDE_LOAD_UPROG ioctl. Such programs can be used to convert data either being sent
from or received on the hsde. These conversion programs must be assembled MC68020
binaries. For more information on the usage of MC68020 conversion programs refer to the
hsde(7) manual page. The fields that are included in the IOCB format for I/O transfer
commands are described as follows:

i_xfer_opcode contains a flag (IUC defined in <sys/hsde.h>) indicat-
ing whether a user–developed data conversion routine pre-
viously loaded should be activated.

i_user_param contains a parameter which may be sent to the user–devel-
oped data conversion routine. Such a parameter may be
used to select a specific path of action in the conversion rou-
tine. If no parameter is needed, then it should be set to zero.

i_xfer_addr_modifer specifies the (H)VME address modifier code to use for data
transfers. This value should usually be left as the default
value specified in the hsde configuration (refer to the con-
figuration information in the hsde(7) manual page).
13-18

Peripherals
i_link_addr_modifer specifies the (H)VME address modifier code to use for
accessing an IOCB. This value should usually be left as the
default value specified in the hsde configuration (refer to
the configuration information in the hsde(7) manual
page).

It is not necessary to directly access the fields of the fourth longword of an IOCB when
dealing with user–developed data conversion routines. The HSDE_ENABLE_UPROG ioctl
command provides a simple interface for modifying the data conversion routine–specific
fields.

Example programs that demonstrate use of command chaining to transfer simple data
from a slave HSDE to a master HSDE are included in Appendix E.

Using the HSDE Data Chaining Mode 13

The hsde data chaining mode allows the user to initiate up to HSDE_MAX_IOCL I/O trans-
fer commands with a single readv(2) or writev(2) system call. Depending on the
system call, all IOCBs in the data chain will be of that type (i.e., all read or all write). With
data chaining, the hsde can perform scatter–gather I/O operations or perform a single
data transfer operation on a block of data whose size is greater than the maximum allow-
able HSD single transfer size limit of 64K–1 bytes, 64K–1 words, or 64K–1 longwords.

The standard forms of the readv(2) and writev(2) system calls are as follows:

#include <sys/uio.h>

readv(int fildes, struct iovec *iov, int iov_cnt)
writev(int fildes, struct iovec *iov, int iov_cnt)

Arguments are defined as follows:

fildes the file descriptor for the file to or from which data are being transferred

iov an array of iovec structures each containing a base (virtual) address of
a user data buffer and the size in bytes of that data buffer. The byte size
must be a multiple of the data type width (i.e., byte(1), word(2), long-
word(4)).

iov_cnt the number of iovec structures in the array. This value must not exceed
HSDE_MAX_LOCK.

For scatter–gather I/O operations, each iovec structure will contain information concern-
ing the base address of a buffer and its size. The size of each buffer must be less than or
equal to the HSD protocol–specified maximum single transfer size (64K–1 bytes, 64K–1
words, or 64K–1 longwords). For transfer sizes greater than the maximum single HSD
transfer size, the suggested method is to overlay the region containing the transfer data
with buffers equivalent to the maximum transfer size. If a portion of the data cannot fill an
entire maximum transfer size buffer, it can be overlaid by a buffer of exact size. Thus the
data region will be broken down into a series of “chunks.” The size of each “chunk” will
be the maximum single transfer size depending on the data path width. The iov array will
then contain a series of pointers to these data region “chunks”.
13-19

PowerMAX OS Real-Time Guide
Only one side in a high–speed data interface to high–speed data interface connection can
utilize a data chain for a transfer operation. The HSD protocol requires that the normal I/O
External Function (EF) handshake signaling across the interface cable take place only
once at the start of a data chain operation and not at the start of each individual I/O opera-
tion within the data chain. In this fashion, the master HSD device will signal once of an
impending I/O operation, and then proceed to send individual I/O requests for various
sizes of data until the end of its request chain is reached. Because of the single EF hand-
shake signal, a data chain operation has the appearance of a single I/O operation to the
remote HSD device. As such, the remote device can only utilize a single block transfer
operation in response to the single EF handshake signal initiated by the data chain opera-
tion. For example, a master HSD(E) can utilize the readv(2) call to read data sent by a
slave HSD(E) into a series of data buffers chained together. The slave HSD(E) must uti-
lize a single write(2) call to transfer an entire block of data whose size is equivalent to
the sum of the sizes of the data buffers utilized by the HSD(E) master. The HSD(E) master
will initiate the first I/O operation in the chain by sending a request for enough data to fill
its first associated buffer. The slave HSD(E) will respond by carrying out that request by
sending the exact amount of data from its total transfer buffer. The master HSD(E) will
then issue the next I/O request in its data chain and the slave will respond in kind. This
operation will continue until the master’s requests have been completed.

The hsde emulates only the “Function 1” type data chaining described in the Encore HSD
protocol specification. With this type of data chaining, the next block of data represented
by an IOCB is not processed until an on–board data buffer (known as the First In First Out
buffer or FIFO) has emptied after a preceding I/O operation. In this way, the PowerMAX
OS system is synchronized with the hsde device interface on a data block by data block
basis.

Example programs that demonstrate use of data chaining to transfer simple data from a
slave HSDE to a master HSDE are included in Appendix E.

CAUTION

Although the hsde device supports data chaining, not all HSD–
specific devices to which it may be connected may support data
chaining. Consult available documentation provided with the
other HSD device to determine if it does support data chaining.

Using a DR11W Emulator 13

An external device that uses the Digital Equipment Corporation DR11W interface can be
connected to a PowerMAX OS system via the DR11W emulator. This emulator and its
associated driver are designed to provide improved performance for related real–time
applications. The DR11W emulator performs DMA transfers directly to and from the
user’s virtual address space, provides three attention interrupt notification mechanisms,
and supports asynchronous I/O operations.

Use of the DR11W emulator is supported by the DR11W user–level device driver. The
DR11W user–level device driver enables you to access a DR11W emulator directly from
user space. It consists of a library of routines that allow you to perform a variety of opera-
13-20

Peripherals
tions and a configuration program that performs the initialization of the DR11W device
necessary for the user’s application.

An overview of the DR11W emulator, dr11w, is presented in “Understanding the DR11W
Emulator.” An overview of the DR11W user–level device driver is provided in “Under-
standing the DR11W User-Level Device Driver.” Configuration requirements are
described in “Configuration and Installation Requirements.” An introduction to the user
interface is presented in “Understanding the User Interface.” Procedures for using the
driver routines are explained in “Using the Driver Routines.”

In order to use the DR11W emulator and its associated user–level device driver, you must
ensure that the user’s I/O buffer is bound to a contiguous section of physical memory. An
explanation of the procedures for complying with memory mapping requirements is pre-
sented in “Memory Mapping for HSDE and DR11W.”

Understanding the DR11W Emulator 13

The DR11W emulator, dr11w, is a high–speed 16–bit parallel DMA interface between a
PowerMAX OS system and a device that uses the Digital Equipment Corporation DR11W
interface, including another DR11W emulator.

On all PowerMAX OS systems, the DR11W emulator is located on an optional board that
plugs into an (H)VME bus. Up to eight DR11W emulators are allowed on each system.
They may be located on one or both of the (H)VME buses.

Device spec ia l f i le s f o r th e DR 11W em ula tors have names of t he fo rm
/dev/ud/dr11wn, where n specifies a particular dr11w and ranges from zero to seven.
Each emulator supports only one device; consequently, the value of n is also the minor
number of the dr11w device.

All DR11W emulators are associated with the same interrupt level. If more than one is
present, they are processed in first–come, first–served order (fifo).

The dr11w supports three DMA transfer modes. These modes are described as follows:

External device mode instructs the dr11w to wait for the attached
device’s DMA cycle request signal before
initiating the data transfer

Interprocessor link mode instructs the dr11w to initiate a data transfer
only during a write operation.Setting this
mode prevents the loss or corruption of data
when the dr11w is connected to another
DR11W emulator.

DMA mode instructs the dr11w to initiate the data
transfer for both read and write operations.
This mode may be used for loop–back DMA
testing.
13-21

PowerMAX OS Real-Time Guide
Understanding the DR11W User-Level Device Driver 13

The DR11W user–level device driver has several features that are designed to increase the
real–time effectiveness of a DR11W emulator. Features of the DR11W emulator that are
supported by the user–level driver are the capability to perform DMA transfers directly to
and from the user’s virtual address space, provision for two I/O completion and attention
interrupt notification mechanisms, and support for asynchronous I/O operations. The size
of a DMA transfer can range from a minimum of 2 bytes to a maximum of 32 megabytes.
The DR11W user–level driver provides a means of performing device I/O operations
without having to enter and exit the kernel, and it provides support for performing basic
device and driver control operations.

Because of restrictions imposed by the hardware, the DR11W user–level device driver
does not support the following DR11W emulator I/O modes:

• Control over incrementing the bus address and range counters

• Byte DMA transfers

• Change of transfer direction within a DMA block

• DMA transfers that are not aligned on a word boundary or are not
physically contiguous

A user–level process’s use of the DR11W user–level driver is bound by the following
restrictions:

• To use a DR11W emulator, the user’s I/O buffer must be bound to a
contiguous section of physical memory. An explanation of the procedures
for complying with memory mapping requirements is presented in “Mem-
ory Mapping for HSDE and DR11W.”

• To use the DR11W user–level device driver, you must have the P_PLOCK,
P_SHMBIND, and P_USERINT privileges (for additional information on privi-
leges, refer to the PowerMAX OS Programming Guide and the intro(2)
system manual page).

• The DR11W user–level driver ensures that only one process has access to a
particular DR11W emulator at a time.

• If a user process makes a fork(2) system call after opening a DR11W
emulator that is controlled by the user–level driver, the child process
should not attempt to access the DR11W user–level device driver.

• An application program that uses the DR11W user–level device driver is
permitted to initiate only one asynchronous I/O request at a time.

Configuration and Installation Requirements 13

Use of the DR11W user-level device driver requires that the user-level interrupt module
(ui) be configured into the kernel. You can ensure that this module is configured into your
kernel by using the config(1M) utility. Note that after configuring a module, you must
rebuild the kernel and then reboot your system. For an explanation of the procedures for
13-22

Peripherals
using config(1M), refer to the “Configuring and Building the Kernel” chapter of Sys-
tem Administration Volume 2.

Before using a DR11W emulator, you must ensure that the dr11w package is installed on
your system. For an explanation of the procedures for installing software packages, refer
to the PowerMAX OS Version 2.2 Release Notes and the pkgadd(1M) man page.

When the dr11w package is installed, you will be prompted to enter the number of
DR11W emulators to be configured in the primary and secondary (H)VME buses, respec-
tively. A dr11w script that is based on your responses is built and placed in the
/etc/dinit.d directory. This script contains calls to the DR11W user-level driver
configuration program, dr11wconfig(1M). When your system is rebooted,
dr11wconfig will automatically be invoked from this script for each configured
DR11W emulator.

The driver configuration program has a set of standard options. The functions associated
with each option are described as follows:

-c create the shared memory segments required by the driver and initialize
the device.

–i create the user–level interrupt process

–r reset the device

–d display debug and status information

–x remove the association of the user–level driver to the device, and restore
the device to its initial state

The -c and the -i options are specified in the script. You may specify the -r, -d, and -x
options by invoking dr11wconfig from the command line.

The DR11W user–level device driver uses the operating system’s support for user–level
interrupt routines (the user–level interrupt routine facility is fully described in Chapter 8
of this guide). Specifying the –i option creates a user–level interrupt process that
connects an interrupt handling routine to an interrupt vector that corresponds to the inter-
rupt generated by a DR11W emulator. The user–level interrupt process is responsible for
servicing device interrupts for the DR11W user–level device driver routines.

The user–level interrupt process will continue to block and service interrupts until it is dis-
connected from the interrupt vector. You can disconnect it by invoking the uistat(1)
command from the shell and specifying the –d option (see Chapter 8 for an explanation of
the procedures for using this command). In order to determine the interrupt vector to dis-
connect, use the dr11wconfig program with the –d option to display the DR11W user–
level device driver information; this information will include the interrupt vector of the
device in one of the fields. The user–level interrupt process is automatically disconnected
when you use the dr11wconfig program and specify the –x option to remove the
association of the DR11W device to a DR11W user–level device driver. You should not
attempt to kill the user–level interrupt process. When the user–level interrupt process is
disconnected from the interrupt vector, the DR11W user–level driver will not be able to
clean up its internal state information if the SIGKILL signal is pending.
13-23

PowerMAX OS Real-Time Guide
Refer to the system manual pages dr11wconfig(1M) and uistat(1) for further
description of these commands.

Understanding the User Interface 13

The DR11W emulator is controlled by using the routines contained in the DR11W user–
level driver library, /usr/lib/libdr11w.a. These routines enable you to open and
close a device, perform asynchronous I/O operations, and perform a variety of control
operations that are specific to the device. Each routine in the library is explained in detail
in “Using the Driver Routines.” Application requirements are described in “Application
Requirements.” Compiling and linking procedures are explained in “Compiling and Link-
ing Procedures.”

Application Requirements 13

To use the DR11W user–level device driver, you must have the P_PLOCK, P_SHMBIND, and
P_USERINT privileges. To use the structure definitions for the DR11W user–level driver,
you must include <ud/dr11w.h> in your application program.

To use the DR11W user-level device driver with your application, you must invoke the
udbufalloc(3X) library routine to obtain a description of the physical memory
associated with the user I/O buffer. This routine invokes the userdma(2) system call.
As a result, to use this routine you must have the P_PLOCK privilege. Although the user
buffer is locked in memory upon return from udbufalloc, this locking is not necessary
because you are required to have previously reserved a contiguous section of physical
memory and bound the I/O buffer to it. Procedures for using udbufalloc are explained
in Device Driver Programming.

Compiling and Linking Procedures 13

To use the DR11W user–level device driver, you must statically link the following librar-
ies to the application:

/usr/lib/libdr11w.a

/usr/lib/libud.a

To compile and statically link a C program, the command line instruction is as follows:

cc source_file.c -Zlink=static –ldr11w –lud

For additional information, refer to the system manual pages ld(1) and cc(1)and the
“Link Editor and Linking” chapter in Compilation Systems Volume 1 (Tools). Refer to the
appropriate language reference manual for the procedures for calling C routines from pro-
grams written in other languages.
13-24

Peripherals
Using the Driver Routines 13

The DR11W user–level driver routines provide access to a DR11W emulator. They enable
you to perform such basic operations as the following: (1) open and close a DR11W emu-
lator; (2) perform asynchronous read and write operations; (3) poll or wait for completion
of an I/O request; (4) poll or wait for occurrence of an attention interrupt; (5) enable and
disable interrupts; and (6) perform a variety of control operations that are specific to the
device.

In the sections that follow, all of the driver routines contained in the libdr11w library
are presented in alphabetical order. Figure 13-1 illustrates the approximate order in which
you might invoke some of the basic routines from an application program.

dr11w_acheck 13

The dr11w_acheck routine allows a user process to obtain the status of an
asynchronous I/O operation. It is called if the user process wishes to poll rather than wait
for completion of an I/O request.

Specification

int dr11w_acheck(dr11w, req_id, count)

int dr11w;
int req_id;
int *count;
13-25

PowerMAX OS Real-Time Guide
Figure 13-1. Library Call Sequence for Driver Routines

Parameters

dr11w the identifier for the DR11W emulator to or from which the asynchronous I/O
operation is being performed. This identifier is allocated on a call to the
dr11w_open routine (see “dr11w_open” for an explanation of this routine).

req_id the request identifier of the asynchronous I/O operation for which the status is
being requested. This identifier is allocated by the driver if a pointer is

START

ALLOCATE/INITIALIZE
BUFFER DESCRIPTORS

udbufalloc

dr11w_open

END

dr11w_get_modes

dr11w_set_modes

dr11w_awrite

dr11w_await

dr11w_close

SET DMA MODE

WRITE
ADDITIONAL

DATA?

YES

NO

157250
13-26

Peripherals
supplied on a call to the dr11w_aread or dr11w_awrite routine (see
“dr11w_aread” and “dr11w_awrite” for explanations of these routines).

count a pointer to the location to which the number of bytes transferred by the
specified I/O operation is returned

Return Value

The dr11w_acheck routine returns the following error codes:

EUD_NOERROR The specified asynchronous I/O operation has been completed.

EUD_INPROGRESS The operation has not been completed.

EUD_INVAL An I/O operation has not been initiated.

EUD_INTR A reset occurred to the board.

dr11w_aread 13

The dr11w_aread routine allows a user process to perform an asynchronous read of
data from a particular DR11W emulator.

Specification

int dr11w_aread(dr11w, udbuf, count, req_id)

int dr11w;
udbuf_t *udbuf;
int count;
int *req_id;

Parameters

dr11w the identifier for the DR11W emulator from which data are to be read. This
identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

udbuf a pointer to the user I/O buffer that describes the physical locations into which
data are to be read

count the number of bytes to be read

req_id a pointer to the location to which the request identifier of the asynchronous
read operation is returned.

The user process can use req_id to obtain the status of the operation. If req_id contains
NULL, information about the status of the request is not maintained, and you may not use
dr11w_acheck or dr11w_await to obtain the completion status. If req_id contains a
pointer, you must perform a dr11w_acheck or dr11w_await using the req_id identi-
fier (see “dr11w_attn_check” and “dr11w_await” for explanations of these routines). If
interrupts are not enabled, you must provide a req_id pointer, and you must call the
dr11w_acheck routine.
13-27

PowerMAX OS Real-Time Guide
Return Value

The dr11w_aread routine returns the following error codes:

EUD_NOERROR The DMA request has been successfully initiated.

EUD_INVAL Completion status has not been requested when interrupts have
been disabled, or a transfer of less than one word (two bytes) has
been requested. Not requesting a completion status is a valid
option.

EUD_IOREQ The number of DMA requests has exceeded the limits imposed by
the driver. The driver is limited to one outstanding DMA request
at a time.

EUD_BUFFER The transfer buffer is not contiguous; the transfer count is greater
than the buffer; or an invalid buffer address has been specified by
the user buffer descriptor.

dr11w_attn_check 13

The dr11w_attn_check routine allows a user process to check for an occurrence of an
attention interrupt since the last call to dr11w_attn_check or dr11w_attn_wait
(see “dr11w_await” for an explanation of the dr11w_attn_wait routine).

Specification

int dr11w_attn_check(dr11w, intr_occurred)

int dr11w;
int *intr_occurred

Parameters

dr11w the identifier for the DR11W emulator you wish to check for the
occurrence of an attention interrupt. This identifier is allocated on
a call to the dr11w_open routine (see “dr11w_open” for an
explanation of this routine).

intr_occurred a pointer to a flag that indicates whether or not an attention inter-
rupt has occurred. The flag is set to TRUE if an attention interrupt
has occurred since the last call to either dr11w_attn_check or
dr11w_attn_wait (see “dr11w_attn_wait” for an explanation
of the dr11w_attn_wait routine).

Return Value

The dr11w_attn_check routine returns EUD_NOERROR. It also returns TRUE or FALSE

to the location referenced by the intr_occurred parameter.
13-28

Peripherals
dr11w_attn_wait 13

The dr11w_attn_wait routine allows a user process to wait for an attention interrupt.
This routine blocks the calling process until the attention interrupt occurs, or it returns
immedia te ly i f an a t tent ion in terrupt has occurred s ince the l as t ca l l to
dr11w_attn_check or dr11w_attn_wait.

A process waiting for the occurrence of an attention interrupt will not be wakened if a
DMA completion interrupt occurs. The DMA completion status will be saved for a future
call to the dr11w_acheck or dr11w_await routine (see “Specification” and
“dr11w_await” for explanations of these routines).

Specification

int dr11w_attn_wait(dr11w, intr_occurred)

int dr11w;
int *intr_occurred;

Parameters

dr11w the identifier for the DR11W emulator whose attention interrupt
you wish to await. This identifier is allocated on a call to the
dr11w_open routine (see “dr11w_open” for an explanation of
this routine).

intr_occurred a pointer to a flag that indicates whether or not an attention inter-
rupt has occurred. The flag is set to TRUE if an attention interrupt
has occurred since the last call to either dr11w_attn_check or
dr11w_attn_wait (see “dr11w_attn_check” for an explana-
tion of the dr11w_attn_check routine).

Return Value

The dr11w_attn_wait routine returns the following error codes:

EUD_NOERROR An attention interrupt has been detected.

EUD_INVAL Interrupts have been disabled.

EUD_INTR The process was interrupted by an external event such as the
removal of the interrupt routine or removal of the association of
the user–level driver to the device.

This routine also returns TRUE or FALSE to the location referenced by the intr_occurred
parameter.

dr11w_await 13

The dr11w_await routine allows a user process to wait for a pending asynchronous I/O
operation to be completed.
13-29

PowerMAX OS Real-Time Guide
Specification

int dr11w_await(dr11w, req_id, count)

int dr11w;
int req_id;
int *count;

Parameters

dr11w the identifier for the DR11W emulator to or from which the asynchronous I/O
operation is being performed. This identifier is allocated on a call to the
dr11w_open routine (see “dr11w_open” for an explanation of this routine).

req_id the request identifier of the asynchronous I/O operation for which the process
is waiting. This identifier is allocated by the driver if a pointer is supplied on a
call to the driver’s dr11w_aread or dr11w_awrite routine (see
“dr11w_aread” and “dr11w_awrite” for explanations of these routines).

count a pointer to the location to which the number of bytes transferred by the spec-
ified I/O operation is returned

Return Value

The dr11w_await routine returns the following error codes:

EUD_NOERROR The specified asynchronous I/O operation has been completed.

EUD_INVAL An I/O operation has not been initiated.

EUD_INTR The process was interrupted by an external event such as the
removal of the interrupt routine or removal of the association of
the user–level driver to the device.

EUD_NOINTR The user–level interrupt process is not available.

EUD_INPROGRESS A DMA is still in progress

dr11w_awrite 13

The dr11w_awrite routine allows a user process to perform an asynchronous write of
data to a particular DR11W emulator.

Specification

int dr11w_awrite(dr11w, udbuf, count, req_id)

int dr11w;
udbuf_t *udbuf;
int count;
int *req_id;
13-30

Peripherals
Parameters

dr11w the identifier for the DR11W to which data are to be written. This identifier is
allocated on a call to the dr11w_open routine (see “dr11w_open” for an
explanation of this routine).

udbuf a pointer to the user I/O buffer that describes the physical locations from
which data are to be written

count the number of bytes to be written

req_id a pointer to the location to which the request identifier of the asynchronous
write operation is returned.

The user process can use req_id to obtain the status of the operation. If req_id contains
NULL, information about the status of the request is not maintained, and you may not use
dr11w_acheck or dr11w_await to get the completion status. If req_id contains a
pointer, you must perform a dr11w_acheck or dr11w_await using the req_id identi-
fier (see “Specification” and “dr11w_await” for explanations of these routines). If inter-
rupts are not enabled, you must provide a req_id pointer, and you must call the
dr11w_acheck routine.

Return Value

The dr11w_awrite routine returns the following error codes:

EUD_NOERROR The DMA request has been successfully initiated.

EUD_INVAL Completion status has not been requested when interrupts have
been disabled, or a transfer of less than one word (two bytes) has
been requested. Not requesting a completion status is a valid
option.

EUD_IOREQ The number of DMA requests has exceeded the limits imposed by
the driver. The driver is limited to one outstanding DMA request
at a time.

EUD_BUFFER The transfer buffer is not contiguous; the transfer count is greater
than the buffer; or an invalid buffer address has been specified by
the user buffer descriptor.

EUD_INPROGRESS A DMA is still in progress

dr11w_close 13

The dr11w_close routine allows a user process to close a DR11W emulator that has
been opened in preparation for I/O or control operations. The close routine does not
return until pending I/O operations have been completed.

The identifier for a particular DR11W emulator allocated by the driver should not be used
after the dr11w_close routine has been invoked. A user–level device driver has no way
to prevent access to the device after the dr11w_close call; unauthorized access to the
device can produce unexpected results.
13-31

PowerMAX OS Real-Time Guide
Specification

int dr11w_close(dr11w)

int dr11w;

Parameter

dr11w the identifier for the DR11W emulator for which the close operation is being
performed

Return Value

The dr11w_close routine returns the following error codes:

EUD_NOERROR The close operation has been successfully completed.

EUD_BADD An invalid device identifier has been provided.

EUD_INPROGRESS A DMA is still in progress.

dr11w_disable_interrupts 13

The dr11w_disable_interrupts routine allows a user process to disable interrupts
on a particular DR11W emulator. Interrupts will not be disabled while a DMA operation is
in progress or a process is blocked waiting for an interrupt to occur.

Specification

int dr11w_disable_interrupts(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator whose interrupts are to be disabled.
This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

Return Value

The dr11w_disable_interrupts routine returns the following error codes:

EUD_NOERROR Interrupts have been successfully disabled.

EUD_INPROGRESS A DMA operation is in progress. (Interrupts cannot be disabled
while a DMA operation is in progress.)

dr11w_dump 13

The dr11w_dump routine allows a user process to obtain the current values of the regis-
ters associated with a particular DR11W emulator.
13-32

Peripherals
Specification

int dr11w_dump(dr11w, dumpptr)

int dr11w;
dr11w_dump_t *dumpptr;

Parameters

dr11w the identifier for the DR11W emulator whose registers are to be dumped. This
identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

dumpptr A pointer to a structure to which the current values of the registers associated
with the specified device are returned.

The fields defined in the dr11w_dump data structure are as follows:

unsigned short d_sr;/* status register (SR) */
unsigned short d_data;/* DMA data register (input/output) */
unsigned char d_modifier;/* VME address modifier register */
unsigned char d_vector;/* interrupt vector register */
unsigned short d_dma_addr_lo;/* low word of DMA addr */
unsigned short d_dma_addr_hi;/* high word of DMA addr */
unsigned short d_dma_range_lo;/* low word of DMA range (xfer) count */
unsigned short d_dma_range_hi;/* high byte of DMA range (xfer) count */

Return Value

The dr11w_dump routine does not return an error code.

dr11w_enable_interrupts 13

The dr11w_enable interrupts routine allows you to enable interrupts on a particu-
lar DR11W emulator. Note that you must have previously initialized the user–level inter-
rupt process by executing the dr11wconfig program and specifying the –i option (see
“Configuration and Installation Requirements” for an explanation of this option). Inter-
rupts cannot be enabled while a DMA operation is in progress.

Specification

int dr11w_enable_interrupts(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator whose interrupts are to be enabled.
This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

Return Value

The dr11w_enable_interrupts routine returns the following error codes:

EUD_NOERROR Interrupts have been successfully enabled.
13-33

PowerMAX OS Real-Time Guide
EUD_NOINTR The user–level interrupt process is not available.

EUD_INPROGRESS A DMA operation is in progress. (Interrupts cannot be enabled
while a DMA operation is in progress.)

dr11w_get_modes 13

The dr11w_get_modes routine allows you to obtain the value of the DMA transfer
mode associated with a particular DR11W emulator.

Specification

int dr11w_get_modes(dr11w, mode)

int dr11w;
dr11w_modes_t *mode;

Parameters

dr11w the identifier for the DR11W emulator for which the current DMA transfer
mode is to be returned. This identifier is allocated on a call to the
dr11w_open routine (see “dr11w_open” for an explanation of this routine).

mode a pointer to a structure to which the value of the DMA transfer mode currently
associated with the specified device is returned.

Return Value

The dr11w_get_modes routine returns EUD_NOERROR. The DMA transfer mode infor-
mation is returned to the locat ion referenced by the mode parameter (see
“dr11w_set_modes” for a description of the different modes).

dr11w_get_status 13

The dr11w_get_status routine allows you to obtain the current values of the status
bits associated with a particular DR11W emulator.

Specification

int dr11w_get_status(dr11w, statusptr)

int dr11w;
dr11w_status_t *statusptr;

Parameters

dr11w the identifier for the DR11W emulator for which the values of the status bits
are to be returned. This identifier is allocated on a call to the dr11w_open
routine (see “dr11w_open” for an explanation of this routine).

statusptr a pointer to a structure to which the current values of the status bits associated
with the specified device are returned.

The dr11w_status data structure is defined as follows:
13-34

Peripherals
union dr11w_status {
struct {

unsigned statusA : 1;
unsigned statusB : 1;
unsigned statusC : 1;
unsigned attentionH : 1;

} s_status;

struct {
unsigned function1 : 1;
unsigned function2 : 1;
unsigned function3 : 1;

} f_status;
}

The status fields should be accessed only after using the dr11w_get_status rou-
tine; they represent the DR11W’s status bits as set by the attached device. Conversely, the
function bits should be initialized prior to using dr11w_set_status; they repre-
sent the values sent to the attached device’s status lines/bits. Using these fields in any
other manner may cause unpredictable behavior.

Return Value

The dr11w_get_status routine returns EUD_NOERROR. The values of the status bits
are returned to the location referenced by the statusptr parameter.

dr11w_ienabled 13

The dr11w_ienabled routine allows a user process to determine whether or not inter-
rupts are enabled on a particular DR11W emulator.

Specification

int dr11w_ienabled(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator. This identifier is allocated
on a call to the dr11w_open routine (see “dr11w_open” for an
explanation of this routine).

Return Value

The dr11w_ienabled routine returns TRUE if interrupts are enabled; it returns FALSE if
interrupts are not enabled.

dr11w_open 13

The dr11w_open routine allows a user process to open a DR11W emulator in prepara-
tion for I/O or control operations.
13-35

PowerMAX OS Real-Time Guide
Specification

int dr11w_open(dr11w_ptr, path, oflags)

int *dr11w_ptr;
char *path;
int oflags;

Parameters

dr11w_ptr a pointer to the location to which an identifier for the opened DR11W
emulator is returned. This identifier is allocated by the user–level device
driver.

path a pointer to the path name of the device special file associated with the
DR11W emulator to be opened.

oflags driver status flag. The following flag may be specified:

UD_DEBUG Indicates that the specified device is to be opened for
debugging purposes. In this mode of operation, the
DR11W user–level device driver prints any messages
regarding errors in the library routines as they occur.

Return Value

The dr11w_open routine returns the following error codes:

EUD_NOERROR The device has been successfully opened.

EUD_NODEV An invalid path name has been provided.

EUD_RESOURCE The maximum number (currently 8) of open DR11W devices in
the process has been reached; additional devices cannot be
opened.

EUD_SHMID A shared memory identifier is not available for the specified path
name because the dev ice has not been crea ted by the
dr11wconfig program.

EUD_BUSY The device is busy (that is, another process has opened it); access
is denied. If the device is hung and another process does not have
it open, the dr11wconfig program should be used to reset the
device.

EUD_SHMAT Attachment of the shared memory segment has failed, possibly
because the user may not have permission to access the shared
memory segments.

EUD_INIT Initialization of the driver by the dr11wconfig program has
failed, and the driver is not initialized properly. Run the
dr11wconfig program with the –x option, and then run it again
with the –c option.

EUD_SPLMAP The process is unable to map the SPL register.
13-36

Peripherals
EUD_MEMLOCK Unable to lock pages of the DR11W user–level device driver
library into memory.

EUD_SHMLOCK Unable to lock the shared memory segments.

EUD_CREAT The shared memory segment for the DR11W status buffer already
exists.

EUD_SHMBIND Shared memory bind to board registers failed.

EUD_IO The DR11W emulator did not respond to a probe.

dr11w_pio_read 13

The dr11w_pio_read routine allows a user process to read the value in a DR11W emu-
lator’s date input register.

Specification

int dr11w_pio_read(dr11w, data)

int dr11w;
unsigned short *data

Parameters

dr11w the identifier for the DR11W emulator whose data input register is to be read.
This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

data a pointer to the location to which the value of the specified device’s data input
register is returned.

Return Value

The dr11w_pio_read routine returns the following error codes:

EUD_NOERROR The read is successful.

EUD_IO A DMA operation is in progress.
13-37

PowerMAX OS Real-Time Guide
dr11w_pio_write 13

The dr11w_pio_write routine allows you to write a value to a DR11W emulator’s
data output register.

Specification

int dr11w_pio_write(dr11w, data)

int dr11w;
unsigned short *data;

Parameters

dr11w the identifier for the DR11W emulator whose data output register is to be writ-
ten. This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

data a pointer to the location that contains the value to be written to the specified
device’s data output register.

Return Value

The dr11w_pio_write routine returns the following error codes:

EUD_NOERROR The write is successful.

EUD_IO A DMA operation is in progress, and a write to the data output
register will disrupt the DMA operation.

dr11w_reset 13

The dr11w_reset routine allows a user process to reset the DR11W hardware. It per-
forms a master clear of the device and verifies that the interrupt vector and VME modifi-
ers are set correctly. This routine also clears up any pending DMA completion status and
halts any DMA operation in progress. It sends an INIT H signal to the external device. If the
user–level interrupt process is available, interrupts are enabled. This routine also initial-
izes all of the data structures that are maintained by the driver.

Specification

int dr11w_reset(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator that is to be reset. This identifier is
allocated on a call to the dr11w_open routine (see “dr11w_open” for an
explanation of this routine).
13-38

Peripherals
Return Value

This dr11w_reset routine returns EUD_NOERROR.

dr11w_sendgo 13

The dr11w_sendgo routine allows a user process to send a GO signal to the attached
external device and to enable DMA transfers.

Specification

int dr11w_sendgo(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator from which a GO signal is to be sent.
This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

Return Value

The dr11w_sendgo rout ine re turns E U D _N O E R R O R . The rout ine re turns
EUD_WOULDBLOCK if a DMA operation is in progress.

dr11w_sendintr 13

The dr11w_sendintr routine allows a user process to send an attention interrupt to the
attached external device.

Specification

int dr11w_sendintr(dr11w)

int dr11w;

Parameters

dr11w the identifier for the DR11W emulator from which an attention interrupt is to
be sent. This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

Return Value

The dr11w_sendintr routine returns EUD_NOERROR . The routine returns
EUD_WOULDBLOCK if a DMA operation is in progress.
13-39

PowerMAX OS Real-Time Guide
dr11w_set_modes 13

The dr11w_set_modes routine allows a user process to set the DMA transfer modes
for a particular DR11W emulator. The three valid modes for the DR11W user–level
device driver are as follows:

DR11W_LINKMODE instructs the dr11w to initiate a data transfer only during a
write operation. Setting this mode prevents the loss or cor-
ruption of data when the dr11w is connected to another
DR11W emulator.

DR11W_EXTDEVMODE instructs the dr11w to wait for the attached device’s DMA
cycle request signal before initiating the data transfer

DR11W_STARTDMAMODE instructs the dr11w to initiate the data transfer for both
read and write operations. This mode may be used for
loop–back DMA testing.

Specification

int dr11w_set_modes(dr11w, mode)

int dr11w;
dr11w_modes_t *mode;

Parameters

dr11w the identifier for the DR11W emulator for which the DMA transfer mode is to
be set. This identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

mode a pointer to a structure that contains the value to which the DMA transfer
mode for the specified device is to be set.

Return Value

The dr11w_set_modes routine returns EUD_NOERROR . The routine returns
EUD_TRANSMODE if a bad mode value is specified.
13-40

Peripherals
dr11w_setsdir 13

The dr11w_setsdir routine allows a user process to set the value of the transfer direc-
tion control bit associated with a particular DR11W emulator.

Specification

int dr11w_setsdir(dr11w, sdirptr)

int dr11w;
dr11w_sdir_t *sdirptr

Parameters

dr11w the identifier for the DR11W emulator for which the transfer direction control
bit is to be set. This identifier is allocated on a call to the dr11w_open rou-
tine (see “dr11w_open” for an explanation of this routine).

sdirptr a pointer to a structure that contains the value to which the transfer direction
control bit for the specified device is to be set.

The dr11w_sdir data structure is defined as follows:

struct dr11w_sdir {
unsigned sw_xferdir : 1;

};

The valid values for the sw_xferdir field are as follows:

#define DR11W_READ 0x01
#define DR11W_WRITE 0x00

This command is typically used only when the incoming C1 CNTL control signal from the
attached device is not stable and the function 1 bit (see dr11w_get_status in
“dr11w_get_status”) is being used for another purpose.

Return Value

The dr11w_setsdir routine returns EU D_NOER ROR . The routine returns
EUD_WOULDBLOCK if a DMA operation is in progress.

dr11w_set_status 13

The dr11w_set_status routine allows a user process to set the values of the function
bits associated with a particular DR11W emulator.

Specification

int dr11w_set_status(dr11w, statusptr)

int dr11w;
dr11w_status_t *statusptr
13-41

PowerMAX OS Real-Time Guide
Parameters

dr11w the identifier for the DR11W emulator whose function bits are to be set. This
identifier is allocated on a call to the dr11w_open routine (see
“dr11w_open” for an explanation of this routine).

statusptr a pointer to a structure that contains the values to which the function bits asso-
ciated with the specified device are to be set.

Refer to “dr11w_get_status” for the definition of the dr11w_status data structure.

Return Value

The dr11w_set_status routine returns EUD_NOERROR. The routine returns
EUD_WOULDBLOCK if a DMA operation is in progress.

Using the 1553 Advanced Bus Interface 13

This section contains information needed to use the 1553 Advanced Bus Interface (ABI).
The 1553 Advanced Bus Interface (ABI) is a single-card, real-time MIL-STD-1553 inter-
face between a PowerMAX OS system and a MIL-STD-1553 bus.

An overview of the 1553 ABI, abi, is presented in “Understanding the 1553 Advanced
Bus Interface.” A description of the user interface to the 1553 ABI is provided in “Under-
standing the User Interface.” Procedures for using the 1553 ABI user–level device driver
are provided in “Using the 1553 ABI User-Level Device Driver.” Procedures for using the
user-level driver routines are explained in “Using the 1553 ABI User-Level Driver Rou-
tines.”

Understanding the 1553 Advanced Bus Interface 13

The 1553 ABI, abi, is a real-time interface between a PowerMAX OS system and a
MIL-STD-1553 bus. The 1553 ABI provides the host system with advanced 1553 inter-
face capabilities. These capabilities include independent and simultaneous bus controller
simulation, remote terminal simulation, and 1553 bus monitoring. The 1553 ABI can sim-
ulate as many as 31 remote terminals, and it can perform two modes of bus monitoring:
sequential monitoring and map monitoring. With sequential monitoring, raw 1553 traffic
is stored in double buffers for real-time data recording and analysis. With map monitoring,
linked-list data buffers are set up and polled for 1553 data. The 1553 ABI also has a wide
range of event interrupt capabilities that are related to bus controller simulation, remote
terminal simulation, monitoring, and system functions.

The 1553 ABI board uses a bit-slice microcomputer that has 8Kx40 bit microcode instruc-
tions containing programs customized for real-time 1553 applications. When installed in a
host computer, the 1553 ABI appears as a contiguous block of virtual or physical 64Kx16
bit memory. This pseudo dual-port memory resides on the 1553 ABI and is mapped or
connected to the host system for access by application programs.
13-42

Peripherals
On all PowerMAX OS systems, the 1553 ABI is located on an optional board that plugs
into an (H)VME bus or a standard 6U VME backplane without the optional 9U carrier. Up
to eight 1553 ABI boards are allowed on each system. They may be located on either of
the (H)VME buses.

Device special files for the 1553 ABI have names of the form /dev/ud/abin, where n
specifies a particular abi device and ranges from zero to seven.

All of the 1553 ABI boards are associated with the same interrupt level. The interrupt
level is established by jumper settings on the board.

The 1553 ABI supports 16-bit word-aligned transfers only; it does not have the capability
of performing odd-byte addressing.

A detailed overview of the 1553 ABI architecture and operations is provided in the 1553
ABI Reference Manual that is shipped with the 1553 ABI board. Included are descriptions
of the ABI memory organization; control registers; and functions and data structures asso-
ciated with bus controller and remote terminal simulation and bus monitoring. Also
included are the procedures for handling ABI interrupts. It is recommended that you care-
fully review this manual prior to using the 1553 ABI.

For on-line information about the 1553 ABI, refer to the system manual page
1553abi(7),

Understanding the User Interface 13

Use of the 1553 ABI is supported by the 1553 ABI user–level device driver and the 1553
ABI library.

The 1553 ABI user–level device driver enables you to access a 1553 ABI directly from
user space. It consists of a library of routines that allow you to perform a variety of opera-
tions and a configuration program that performs the initialization of the 1553 ABI device
necessary for the user ’s appl icat ion. These rout ines are conta ined in the
library/usr/lib/lib1553drv.a. Procedures for using the 1553 ABI user-level
device driver are explained in “Using the 1553 ABI User-Level Device Driver.” Each rou-
tine in the lib1553drv library is described in detail in “Using the 1553 ABI User-Level
Driver Routines.”

The 1553 ABI library is a set of C library routines that is supplied by the board manufac-
turer. This library has been ported to the PowerMAX OS by Concurrent. The following
types of routines are included in this library: device management routines, remote terminal
routines, bus controller routines, bus monitor routines, interrupt management routines,
BIT (Built-in Test) management routines, and low-level routines. These routines are con-
tained in the library /usr/lib/libabi.a. They are documented in the 1553 Interface
Libraries manual that is shipped with the 1553 ABI board.

Note that if you wish to use the 1553 ABI library, you must use it in conjunction with the
1553 user-level device driver.
13-43

PowerMAX OS Real-Time Guide
Using the 1553 ABI User-Level Device Driver 13

Features of the 1553 ABI that are supported by the user-level device driver are the capabil-
ity to perform basic device and driver-control operations; to read from and write to the
1553 ABI control registers and data structure area directly from the user’s virtual address
space; and to handle 1553 ABI event interrupts in two ways: by fielding the interrupt or by
disabling interrupts on the 1553 ABI hardware and using software polling. When 1553
ABI interrupts are enabled, the user-level driver also provides the ability to wait for the
occurrence of an event interrupt.

A user–level process’s use of the 1553 ABI user–level driver is bound by the following
restrictions:

• To use the 1553 ABI user–level device driver, you must have the P_PLOCK,
P_SHMBIND, and P_USERINT privileges (for additional information on privi-
leges, refer to the PowerMAX OS Programming Guide and the intro(2)
system manual page).

• The 1553 ABI user–level driver attempts to ensure that only one process
has access to a particular 1553 ABI device at a time. The driver will not
operate correctly when commands are issued simultaneously from more
than one source.

• If a user process makes a fork(2) system call after opening a 1553 ABI
that is controlled by the user–level driver, the child process should not
attempt to access the 1553 ABI user–level device driver. A multithreaded
process should ensure that only one thread issues commands to the 1553
ABI at any time.

Configuration and installation requirements are presented in “Configuration and Installa-
tion Requirements.” Application requirements are described in “Application Require-
ments” (p. 13-45). Compiling and linking procedures are explained in “Compiling and
Linking Procedures” (p. 13-46). The driver routines contained in the lib1553drv
library are presented in “Using the 1553 ABI User-Level Driver Routines” (p. 13-46).

Configuration and Installation Requirements 13

Use of the 1553 ABI user-level device driver requires that the user-level interrupt module
(ui) be configured into the kernel. You can ensure that this module is configured into your
kernel by using the config(1M) utility. Note that after configuring a module, you must
rebuild the kernel and then reboot your system. For an explanation of the procedures for
using config(1M), refer to the “Configuring and Building the Kernel” chapter of Sys-
tem Administration Volume 2.

Before using a 1553 ABI, you must ensure that the 1553drv package is installed on your
system. For an explanation of the procedures for installing software packages, refer to the
PowerMAX OS Version 2.2 Release Notes and the pkgadd(1M) man page.

When the 1553drv package is installed, you will be prompted to enter the number of 1553
ABIs to be configured in the primary and secondary (H)VME buses, respectively. A 1553
ABI script that is based on your responses is built and placed in the /etc/dinit.d
directory. This script contains calls to the 1553 ABI user-level driver configuration pro-
13-44

Peripherals
gram, abiconfig(1M). When your system is rebooted, abiconfig will automati-
cally be invoked from this script for each configured 1553 ABI.

The driver configuration program has a set of standard options. The functions associated
with each option are described as follows:

-c create the shared memory segments required by the driver and initialize
the device.

–i create the user–level interrupt process

–r reset the 1553 ABI

–d display debug and status information

–x remove the association of the user–level driver to the device, and restore
the 1553 ABI to its initial state

The -c and the -i options are specified in the script. You may specify the -r, -d, and -x
options by invoking abiconfig from the command line.

The 1553 ABI user–level device driver uses the operating system’s support for user–level
interrupt routines (the user–level interrupt routine facility is fully described in Chapter 8
of this guide). Specifying the –i option creates a user–level interrupt process that con-
nects an interrupt handling routine to an interrupt vector that corresponds to the interrupt
generated by a 1553 ABI. The user–level interrupt process is responsible for servicing
event interrupts for the 1553 ABI user–level device driver routines.

The user–level interrupt process will continue to block and service interrupts until it is dis-
connected from the interrupt vector. You can disconnect it by invoking the uistat(1)
command from the shell and specifying the –d option (see the “Viewing User-Level Inter-
rupt Connections” section of Chapter 8 for an explanation of the procedures for using this
command). In order to determine the interrupt vector to disconnect, use the abiconfig
program with the –d option to display the 1553 ABI user–level device driver information;
this information will include the interrupt vector of the device in one of the fields. The
user–level interrupt process is automatically disconnected when you use the abiconfig
program and specify the –x option to remove the association of the 1553 ABI to a 1553
ABI user–level device driver. You should not attempt to kill the user–level interrupt
process. When the user–level interrupt process is disconnected from the interrupt vector,
the 1553 ABI user–level driver will not be able to clean up its internal state information if
the SIGKILL signal is pending.

Refer to the system manual pages abiconfig(1M) and uistat(1) for further
description of these commands.

Application Requirements 13

To use the 1553 ABI user–level device driver, you must have the P_PLOCK, P_SHMBIND,

and P_USERINT privileges. To use the structure definitions for the 1553 ABI user–level
driver, you must include <abi.h> in your application program.

The 1553 ABI supports one type of interrupt: the event interrupt that notifies the processor
of bus controller, remote terminal, bus monitoring, and system events that have occurred
on the 1553 bus. The 1553 ABI manages interrupts by using double-buffered queues and
13-45

PowerMAX OS Real-Time Guide
interrupt control registers. You may determine that an interrupt has occurred by using the
user-level device driver’s abi_pio_read () routine (see p. 13-52) to poll the interrupt
control registers with the hardware interrupts disabled or by using the user-level device
driver’s interrupt service routine. In either case, to handle the interrupt, you must use the
interrupt management routines contained in the 1553 ABI library (see p. 13-43) or write
an interrupt-handling routine that is designed to meet the needs of your application.

Compiling and Linking Procedures 13

To use the 1553 ABI user–level device driver, you must statically link the following
libraries to the application:

/usr/lib/lib1553drv.a

/usr/lib/libud.a

To compile and statically link a C program, the command line instruction is as follows:

cc source_file.c -Zlink=static –l1553drv –lud

Note that if you wish to use the 1553 ABI library with the user-level device driver, you
must also statically link the /usr/lib/libabi.a library to your application.

For additional information, refer to the system manual pages ld(1) and cc(1)and the
“Link Editor and Linking” chapter in Compilation Systems Volume 1 (Tools). Refer to the
appropriate language reference manual for the procedures for calling C routines from pro-
grams written in other languages.

Using the 1553 ABI User-Level Driver Routines 13

The 1553 ABI user-level driver routines provide access to a 1553 ABI. They enable you to
perform such basic operations as the following: (1) open and close a 1553 ABI; (2) poll or
wait for occurrence of an event interrupt; (3) enable and disable interrupts; and (4) per-
form a variety of control operations that are specific to the device.

In the sections that follow, all of the driver routines contained in the lib1553drv library
are presented in alphabetical order.
13-46

Peripherals
abi_attn_check 13

The abi_attn_check routine allows a user process to check for an occurrence of an
event interrupt since the last call to abi_attn_check or abi_attn_wait (see
“abi_attn_wait” for an explanation of the abi_attn_wait routine).

Specification

int abi_attn_check(abi, intr_occurred)

int abi;
int *intr_occurred

Parameters

abi the identifier for the 1553 ABI you wish to check for the occur-
rence of an event interrupt. This identifier is allocated on a call to
the abi_open routine (see “abi_open” for an explanation of this
routine).

intr_occurred a pointer to a flag that indicates whether or not an event interrupt
has occurred. The flag is set to TRUE if an event interrupt has
occurred since the last call to either abi_attn_check or
abi_attn_wait (see “abi_attn_wait” for an explanation of the
abi_attn_wait routine).

Return Value

The abi_attn_check routine returns EUD_NOERROR. It also returns TRUE or FALSE to
the location referenced by the intr_occurred parameter.

abi_attn_wait 13

The abi_attn_wait routine allows a user process to wait for an event interrupt. This
routine blocks the calling process until the event interrupt occurs, or it returns immediately
if an event interrupt has occurred since the last call to abi_attn_check or
abi_attn_wait.

Specification

int abi_attn_wait(abi, intr_occurred)

int abi;
int *intr_occurred;

Parameters

abi the identifier for the 1553 ABI whose event interrupt you wish to
await. This identifier is allocated on a call to the abi_open rou-
tine (see “abi_open” for an explanation of this routine).
13-47

PowerMAX OS Real-Time Guide
intr_occurred a pointer to a flag that indicates whether or not an event interrupt
has occurred. The flag is set to TRUE if an event interrupt has
occurred since the last call to either abi_attn_check or
abi_attn_wait (see “abi_attn_check” for an explanation of
the abi_attn_check routine).

Return Value

The abi_attn_wait routine returns the following error codes:

EUD_NOERROR An event interrupt has been detected.

EUD_INVAL Interrupts have been disabled.

EUD_INTR The process was interrupted by an external event such as the
removal of the interrupt routine or removal of the association of
the user–level driver to the device.

This routine also returns TRUE or FALSE to the location referenced by the intr_occurred
parameter.

abi_close 13

The abi_close routine allows a user process to close a 1553 ABI that has been opened
in preparation for I/O or control operations. The close routine does not return until pend-
ing I/O operations have been completed.

The identifier for a particular 1553 ABI allocated by the driver should not be used after the
abi_close routine has been invoked. A user–level device driver has no way to prevent
access to the device after the abi_close call; unauthorized access to the device can pro-
duce unexpected results.

Specification

int abi_close(abi)

int abi;

Parameter

abi the identifier for the 1553 ABI for which the close operation is being per-
formed

Return Value

The abi_close routine returns the following error codes:

EUD_NOERROR The close operation has been successfully completed.

EUD_BADD An invalid device identifier has been provided.

EUD_INPROGRESS An operation is in progress.
13-48

Peripherals
abi_disable_interrupts 13

The abi_disable_interrupts routine allows a user process to disable interrupts on
a particular 1553 ABI. Interrupts will not be disabled while a 1553 ABI operation is in
progress or a process is blocked waiting for an interrupt to occur.

Specification

int abi_disable_interrupts(abi)

int abi;

Parameters

abi the identifier for the 1553 ABI whose interrupts are to be disabled. This iden-
tifier is allocated on a call to the abi_open routine (see “abi_open” for an
explanation of this routine).

Return Value

The abi_disable_interrupts routine returns the following error codes:

EUD_NOERROR Interrupts have been successfully disabled.

EUD_INPROGRESS An operation is in progress. (Interrupts cannot be disabled while
an operation is in progress.)

abi_dump 13

The abi_dump routine allows a user process to obtain the current values of the registers
associated with a particular 1553 ABI.

Specification

int abi_dump(abi, dumpptr)

int abi;
abi_dump_t *dumpptr;

Parameters

abi the identifier for the 1553 ABI whose registers are to be dumped. This identi-
fier is allocated on a call to the abi_open routine (see “abi_open” for an
explanation of this routine).

dumpptr A pointer to a structure to which the current values of the registers associated
with the specified device are returned.

The fields defined in the abi_dump data structure are as follows:

unsigned int d_csr; /* control/status register (CSR) */
unsigned int d_resp; /* response to command register */
unsigned int d_iqcnt1; /* interrupt queue count register 1 */
unsigned int d_m2ptr; /* sequential monitor buffer 2 */
unsigned int d_bccptr; /* current BC program block pointer */
unsigned int d_bclptr; /* last BC program block pointer */
13-49

PowerMAX OS Real-Time Guide
unsigned int d_bcervl; /* last BC error table entry */
unsigned int d_brtcnt; /* number retries for error */
unsigned int d_brtbus; /* defines bus A or bus B */
unsigned int d_brtcmd; /* last command retried */
unsigned int d_brtrtc; /* actual number of retried messages */
unsigned int d_iqptr1; /* offset to interrupt queue 1 */
unsigned int d_iqptr2; /* offset to interrupt queue 2 */
unsigned int d_swtptr; /* status response table pointer */
unsigned int d_atptr; /* address table pointer */
unsigned int d_ftptr; /* filter table pointer */

Return Value

The abi_dump routine does not return an error code.

abi_enable_interrupts 13

The abi_enable_interrupts routine allows you to enable interrupts on a particular
1553 ABI. Note that you must have previously initialized the user–level interrupt process
by executing the abiconfig program and specifying the –i option (see “Configuration
and Installation Requirements” for an explanation of this option). Interrupts cannot be
enabled while a 1553 ABI operation is in progress.

Specification

int abi_enable_interrupts(abi)

int abi;

Parameters

abi the identifier for the 1553 ABI whose interrupts are to be enabled. This identi-
fier is allocated on a call to the abi_open routine (see “abi_open” for an
explanation of this routine).

Return Value

The abi_enable_interrupts routine returns the following error codes:

EUD_NOERROR Interrupts have been successfully enabled.

EUD_NOINTR The user–level interrupt process is not available.

EUD_INPROGRESS An operation is in progress. (Interrupts cannot be enabled while
an operation is in progress.)
13-50

Peripherals
abi_ienabled 13

The abi_ienabled routine allows a user process to determine whether or not interrupts
are enabled on a particular 1553 ABI.

Specification

int abi_ienabled(abi)

int abi;

Parameters

abi the identifier for the 1553 ABI. This identifier is allocated on a
call to the abi_open routine (see “abi_open” for an explanation
of this routine).

Return Value

The abi_ienabled routine returns TRUE if interrupts are enabled; it returns FALSE if
interrupts are not enabled.

abi_open 13

The abi_open routine allows a user process to open a 1553 ABI in preparation for I/O or
control operations.

Specification

int abi_open(abi_ptr, path, oflags)

int *abi_ptr;
char *path;
int oflags;

Parameters

abi_ptr a pointer to the location to which an identifier for the opened 1553 ABI
is returned. This identifier is allocated by the user–level device driver.

path a pointer to the path name of the device special file associated with the
1553 ABI to be opened.

oflags driver status flag. The following flag may be specified:

UD_DEBUG Indicates that the specified device is to be opened for
debugging purposes. In this mode of operation, the
1553 ABI user–level device driver prints any mes-
sages regarding errors in the library routines as they
occur.

Return Value

The abi_open routine returns the following error codes:
13-51

PowerMAX OS Real-Time Guide
EUD_NOERROR The device has been successfully opened.

EUD_NODEV An invalid path name has been provided.

EUD_RESOURCE The maximum number (currently 8) of open 1553 ABIs in the
process has been reached; additional devices cannot be opened.

EUD_SHMID A shared memory identifier is not available for the specified path
name because the device has not been created by the abiconfig
program.

EUD_BUSY The device is busy (that is, another process has opened it); access
is denied. If the device is hung and another process does not have
it open, the abiconfig program should be used to reset the
device.

EUD_SHMAT Attachment of the shared memory segment has failed, possibly
because the user may not have permission to access the shared
memory segments.

EUD_INIT Initialization of the driver by the abiconfig program has failed,
and the driver is not initialized properly. Run the abiconfig
program with the –x option, and then run it again with the –c
option.

EUD_SPLMAP The process is unable to map the IPL register.

EUD_MEMLOCK Unable to lock pages of the 1553 ABI user–level device driver
library into memory.

EUD_SHMLOCK Unable to lock the shared memory segments.

EUD_CREAT The shared memory segment for the 1553 ABI status buffer
already exists.

EUD_SHMBIND The shared memory bind to board registers failed.

EUD_IO The 1553 ABI did not respond to a probe.

abi_pio_read 13

The abi_pio_read routine allows a user process to read the value in a control register
or data structure area on the 1553 ABI.

Specification

int abi_pio_read(abi, offset, data)

int abi;
unsigned long offset;
unsigned short *data;
13-52

Peripherals
Parameters

abi the identifier for the 1553 ABI whose control register or data structure area is
to be read. This identifier is allocated on a call to the abi_open routine (see
“abi_open” for an explanation of this routine).

offset an offset from the board’s base address to the location of the desired control
register or data structure area on the 1553 ABI

data a pointer to the location to which the value of the specified device’s control
register or data structure area is returned.

Return Value

The abi_pio_read routine returns the following error codes:

EUD_NOERROR The read is successful.

EUD_IO An operation is in progress.

abi_pio_write 13

The abi_pio_write routine allows you to write a value to a control register or data
structure area on the 1553 ABI.

Specification

int abi_pio_write(abi, offset, data)

int abi;
unsigned long offset;
unsigned short *data;

Parameters

abi the identifier for the 1553 ABI whose control register or data structure area is
to be written. This identifier is allocated on a call to the abi_open routine
(see “abi_open” for an explanation of this routine).

offset an offset from the board’s base address to the location of the desired control
register or data structure area on the 1553 ABI

data a pointer to the location that contains the value to be written to the specified
device’s control register or data structure area.

Return Value

The abi_pio_write routine returns the following error codes:

EUD_NOERROR The write is successful.

EUD_IO An operation is in progress, and a write to a register will disrupt
the current operation.
13-53

PowerMAX OS Real-Time Guide
abi_reset 13

The abi_reset routine allows a user process to reset the 1553 ABI hardware. It per-
forms a master clear of the device and verifies that the interrupt vector and VME modifi-
ers are set correctly. This routine also clears up any pending event completion status and
halts any 1553 ABI operation in progress. If the user–level interrupt process is available,
interrupts are enabled. This routine also initializes all of the data structures that are main-
tained by the driver.

Specification

int abi_reset(abi)

int abi;

Parameters

abi the identifier for the 1553 ABI that is to be reset. This identifier is allocated on
a call to the abi_open routine (see “abi_open” for an explanation of this rou-
tine).

Return Value

This abi_reset routine returns EUD_NOERROR.

Using Real–Time Serial Communications 13

All serial controllers have a standard STREAMS-based TTY driver. Certain serial control-
lers have the capability of being used with a special real-time device driver. This allows
both standard TTY activities and real–time communications to occur on the same port at
different times. In addition, different ports on the same controller can be used by the stan-
dard TTY driver and the real-time driver simultaneously. Currently, the only controller
that has this capability is the SYSTECH High Performance Serial (HPS) controller.

This section contains the information needed to use a real-time TTY device on the HPS
controller. An overview of the HPS is presented in “Understanding the HPS Controller.”
Configuration and installation requirements are described in “Configuration and Installa-
tion Requirements.” A description of the user interface to the HPS is provided in “Under-
standing the User Interface.” Recommendations for optimizing performance are presented
in “Optimizing the Performance of Real-Time TTY Devices.”

Understanding the HPS Controller 13

The HPS controller is a VMEbus interface card that provides up to 16 serial ports. On the
serial ports, it supports baud rates as high as 38,400. The HPS controller contains two
Octal UARTs (Universal Asynchronous Receiver–Transmitter), 256K of local RAM (Ran-
dom Access Memory), 64K of local EPROM (Erasable Programmable Read–Only Mem-
ory), 16K of dual–ported RAM, and a 68020 microprocessor. The dual–ported RAM is
memory on the HPS board that can be read from or written to by both the on–board firm-
13-54

Peripherals
ware and the host driver. The HPS controller is capable of performing microprocessor–
controlled DMA (Direct Memory Access) to host memory using 8–, 16–, or 32–bit trans-
fers. The HPS board fits in a standard (H)VME–bus slot and is connected to the physical
port cabling via Concurrent–designed spreader cables.

The HPS on–board processor allows the host to off-load a large portion of the character
handling to the board. The download code works in combination with a kernel driver that
has been optimized to reduce overhead and minimize time at interrupt level. The net result
is reduced system overhead for the standard TTY devices and an especially optimized
path for the real–time TTY devices.

Device special files for the standard TTY ports on the HPS controllers have names of the
form /dev/ttyc_nn, where c specifies an HPS controller number ranging from 0 to 7
and nn specifies a port number ranging from 00 to 15. Device special files for the real-time
TTY ports on the HPS controllers have names of the form /dev/rttyc_nn, where c
specifies an HPS controller number ranging from 0 to 7 and nn specifies a port number
ranging from 00 to 15.

Configuration and Installation Requirements 13

Before using an HPS controller, you must ensure that the hps package is installed on your
system. For an explanation of the procedures for installing software packages, refer to the
the appropriate PowerMAX OS Release Notes and the pkgadd(1M) man page.

Use of the HPS real-time driver requires that the following modules be configured into the
kernel: (1) hpsrt, the real-time serial device-dependent driver module for the HPS con-
troller, and (2) rtserial, the real-time serial device-independent driver module. You
can ensure that these modules are configured into your kernel by using the config(1M)
utility. Note that after configuring a module, you must rebuild the kernel and then reboot
your system. For an explanation of the procedures for using config(1M), refer to the
“Configuring and Building the Kernel” chapter of System Administration Volume 2.

To use the real-time driver, you must also ensure that the lines that correspond to the
real-time TTY devices in the /etc/conf/node.d/hpsrt file are uncommented.

Note that after changing any of these files, you must rebuild the kernel using
idbuild(1M) and reboot the system. It is recommended that you see your system
administrator for assistance.

Understanding the User Interface 13

The HPS drivers support the following standard PowerMAX OS system calls on both the
standard and the real-time TTY devices: open(2), close(2), ioctl(2), read(2),
and write(2).

The ioctl, read, and write system calls operate differently on the real-time TTY
devices. Use of the ioctl system call is explained in “Using the Ioctl System Call.” Use
of the read and write system calls is explained in “Using Read and Write System
Calls.”
13-55

PowerMAX OS Real-Time Guide
Using the Ioctl System Call 13

A set of ioctl commands allows you to perform a variety of operations that are specific
to asynchronous serial devices. Ioctl commands for controlling terminal operations are
defined by the System V general terminal interface. They are described in the
termio(7) system manual page. The capabilities provided by these commands are also
available through the function call interfaces that are described in the termios(2)
system manual page. The function call interfaces are the preferred user interface.

On standard TTY devices, the HPS driver supports all of the ioctl commands defined
by the general terminal interface. On real–time TTY devices, it does not support the fol-
lowing ioctl commands: TIOCGPGRP, TIOCSPGRP, TIOCGSID, TIOCGWINSZ, and
TIOCSWINSZ.

The ioctl commands that are supported by the HPS drivers on both standard and
real-time TTY devices are summarized as follows:

TCGETS Get the termios parameters associated
with the specified port

TCSETS Set the termios parameters associated with
the specified port

TCSETSW Wait for the output to drain, and set the
termios parameters associated with the
specified port

TCSETSF Wait for the output to drain, flush the input
queue, and set the termios parameters
associated with the specified port

TCGETA Get the termio parameters associated with
the specified port

TCSETA Set the termio parameters associated with
the specified port

TCSETAW Wait for the output to drain, and set the
termio parameters associated with the
specified port

TCSETAF Wait for the output to drain, flush the input
queue, and set the termio parameters asso-
ciated with the specified port

TCSBRK Wait for the output to drain, and send a break

TCXONC Start and stop control

TCFLSH Flush input and output queues

TIOCMBIS Set selected modem control signals

TIOCMBIC Clear selected modem control signals

TIOCMGET Get current modem control signals

TIOCMSET Set modem control signals
13-56

Peripherals
The following PowerMAX OS ioctl commands, which are not defined by System V,
are also supported by the HPS driver on real–time TTY devices.

TCGETRAWQ Get the raw queue character limit associated
with the specified port

TCSETRAWQ Set the raw queue character limit associated
with the specified port

TCGETMAXRAWQ Get the system–wide maximum raw queue
character limit

TCGETOBUFS Get the current output buffers

TCSETOBUFS Reconfigure output buffers

You must supply a termios structure on TCGETS, TCSETS, TCSETSW, and TCSETSF ioctl
calls. This structure is defined in <sys/termios.h> as follows:

/*
 * Ioctl control packet
*/

struct termios
tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* line discipline modes */
cc_t c_cc[NCCS]; /* control chars */

};

On real–time TTY devices, only certain fields in the termios structure are used. The
other fields are ignored on TCSETA, TCSETS,TCSETSW, TCSETSF, TCSETAW, and TCSETAF

ioctl calls; their contents are not defined on TC_GETA ioctl calls. The termios fields
that are used on real–time TTY devices are described in the paragraphs that follow. It is
recommended that you review the termio(7) system manual page for detailed informa-
tion on use of the ioctl commands and these fields.

Control characters that are defined by the c_cc array and used on real–time TTY devices
are described as follows:

VEOF Terminate a read if ICANON is set in the c_lflag field

Note that if ICANON is not set, this element of the array con-
tains the value of MIN (the minimum number of characters used
to satisfy a read request).

VEOL Terminate a read if ICANON is set in the c_lflag field

Note that if ICANON is not set, this element of the array con-
tains the value of TIME (the timeout value used to satisfy a read
request).

VSTART Resume output

VSTOP Suspend output
13-57

PowerMAX OS Real-Time Guide
The input control flags that are defined by the c_iflag values and used on real–time
TTY devices are described as follows:

IGNBRK Ignore break condition

IGNPAR Ignore parity errors

PARMRK Mark parity errors

INPCK Enable input parity check

ISTRIP Strip character

IXON Enable start and stop output control

IXANY Enable any character to restart output

IXOFF Enable start and stop input control

None of the output control flags that are defined by the c_oflag values are used on real–
time TTY devices. All user settings are ignored.

All of the hardware terminal control flags that are defined by the c_cflag values are
used on real–time TTY devices. These include baud rates, character sizes, parity types,
and so on.

The line discipline control flag that is defined by the c_lflag value and used on real–
time TTY devices is described as follows:

ICANON Enable use of EOF (end of file) and EOL (end of line) as line
delimiters on read operations

Note that this is the only use of this flag on real–time TTY
devices.

On real–time TTY devices, the ICANON flag has limited functionality. If ICANON is set,
receipt of the EOL or EOF character terminates a read operation; characters up to and
including the EOL or EOF are passed to the user buffer. Subsequent input is saved for the
next read(2) call. Other types of canonical processing are not performed; for example,
the NL (newline) character has no effect, and erase and kill edit functions are not per-
formed. The 256–character line length is no longer in effect.

If ICANON is not set on real–time TTY devices, read requests are satisfied when at least
MIN characters have been received or when the timeout value TIME expires. Refer to the
termio(7) system manual page for additional information on the operation of these two
parameters.

Using Read and Write System Calls 13

On real–time TTY devices, the read(2) and write(2) system calls do not operate in
the same way that they do in the standard TTY mode. The differences are outlined in the
paragraphs that follow.
13-58

Peripherals
The read(2) system call transfers data from the specified HPS port to the user buffer
and returns the number of characters placed in the buffer. The return value is determined
as follows:

• If the file associated with the port has been opened with the O_NDELAY or
O_NONBLOCK flag set, then any data that are available at the time of the
read(2) call are placed in the user buffer, and control is returned imme-
diately to the user process. If data are not available at the time of the call,
the return value is zero.

• If the ICANON flag has been set on an ioctl(2) call and an EOL or EOF

character is encountered, all data up to and including that character are
placed in the user buffer. Subsequent input, even if it is available at the time
of the read(2) call, is saved for the next read(2) call.

• If sufficient data are available to fill the user buffer with the number of
bytes specified on the read(2) call, then those data are transferred. The
return value is the specified byte count.

• If the ICANON flag has not been set on an ioctl(2) call, then the read
operation terminates in accordance with the setting of the MIN and TIME

control parameters (refer to the termio(7) system manual page for an
explanation of the use of these parameters); for example, control may be
returned to the user process when at least MIN characters have been
received. The return value is the number of characters placed in the user
buffer.

The write(2) system call transmits the specified number of bytes to a particular HPS
port. If the amount of available buffer space is not sufficient to accept all of the data at the
time of the write(2) call, the user process blocks unless the file associated with the port
has been opened with the O_NDELAY or the O_NONBLOCK flag set. In either of these cases,
control is returned immediately to the user process. The return value is zero if the
O_NDELAY flag has been set; it is –1 if the O_NONBLOCK flag has been set, and errno is
set to EAGAIN.

Optimizing the Performance of Real-Time TTY Devices 13

You can maximize the I/O throughput of the HPS real-time TTY devices by turning off
certain input control flags and the line discipline control flag. These flags are defined by
the c_iflag and the c_lflag fields in the termios structure; their use is explained in
“Using the Ioctl System Call.” It is recommended that you turn off the following flags:

• BRKINT

• ISTRIP

• INPCK and PARMRK

• ICANON

If you turn off this flag, you should also set MIN as high as possible (the
highest permitted value is 254) or set a large timeout.
13-59

PowerMAX OS Real-Time Guide
Memory Mapping for HSDE and DR11W 13

In order to use the high–speed data enhanced device (HSDE) or the DR11W emulator, you
must ensure that the user’s I/O buffer is bound to a contiguous section of physical
memory. You can do so by performing the following steps:

1. Define a reserved section of physical memory.

2. Create a shared memory segment, and bind it to the reserved section of
physical memory.

3. Obtain the shared memory identifier associated with the segment.

4. Attach the segment of shared memory to the user’s virtual address space.

Reserving Physical Memory 13

To use the HSDE or the DR11W emulator, a section of main memory can be reserved by
p la c i n g a n e n t ry in th e res_sects[] a r r ay i n t h e
/etc/conf/pack.d/mm/space.c file.

Your entry will describe the starting address and the desired length of the reserved section
of memory. Initially the res_sects[] array appears as follows:

struct res_sect res_sects[] = {
/* r_start, r_len, r_flags */

{ 0, 0, 0 } /* This must be the last line, DO NOT change it.*/
};

For each section of physical memory that you wish to reserve, place an entry in the
res_sects[] array. The r_start field specifies the starting physical address, and the
r_len field specifies the length in bytes. The r_flags field must always be zero.

It is recommended that you specify as the r_start address one of the higher addresses
from the range of addresses that comprise main memory. The value of r_len is bound by
the size of the largest single data transfer that can be made using either the high–speed
data device or the DR11W emulator. If you are using the high–speed data device, this size
is dependent upon the transfer mode that you have specified––that is, HSDE_BYTE,
HSDE_WORD, or HSDE_LONG; the maximum transfer size is 65,535 (64K–1) bytes, words,
or longwords. The amount of reserved memory (r_len) should be based on the largest
single transfer that the application will make.

After changing the space.c file, you must rebuild the kernel using idbuild(1M) and
reboot your system.
13-60

Peripherals
Binding a Shared Memory Segment to Physical Memory 13

To use the HSDE or the DR11W emulator, you can create a segment of shared memory
and bind it to the reserved section of physical memory by adding a line to the shmcon-
fig script in the /etc/init.d directory. The format that you should use to add a line is
as follows:

/usr/sbin/shmconfig –ppaddr –ssize [–uuser] [–ggroup] [–mmode] key

The shared memory segment will be created in global memory by default. The –p option
enables you to specify the starting address (represented by paddr) of the section of physi-
cal memory that you have reserved, and the –s option enables you to specify the size in
bytes of that section. It is recommended that you specify the –u, –g, and –m options to
identify the user and group associated with the segment and to set the permissions control-
ling access to it. A suggested value for the key argument is the file name for the device:
/dev/hsden for the high–speed data device or /dev/dr11wn for the DR11W emula-
tor, where n represents the hsd controller number or the dr11w emulator number.

For additional information on use of the shmconfig command, refer to the system man-
ual page shmconfig(1M) and to the PowerMAX OS Programming Guide.

Obtaining an Identifier for a Shared Memory Segment 13

If you use the shmconfig command to create a shared memory segment and bind it to a
section of physical memory, you must use the shmget(2) system call to obtain an iden-
tifier for the shared memory segment. This identifier is required by other system calls for
manipulating shared memory segments. The format for the shmget call is as follows:

shmget(key, size, shmflg)

Note that the value of key is determined by the value of the key argument specified with
the shmconfig command (see “Binding a Shared Memory Segment to Physical Mem-
ory”). If the value of the key argument was an integer, that integer must be specified as key
on the call to shmget. If the value of the key argument was a path name, you must first
call the ftok subroutine to obtain an integer value that is based on the path name to spec-
ify as key on the call to shmget. Examples of the format that must be used to invoke
ftok for the high–speed data devices, the DR11W emulator, and HVME reflective mem-
ory, respectively, are provided by the following:

ftok(”/dev/hsd0”, 0)
ftok(”/dev/hsde0”,0)
ftok(”/dev/dr11w0”, 0)

The value of size must be equal to the number of bytes specified by the –ssize argument to
the shmconfig command (see “Binding a Shared Memory Segment to Physical Mem-
ory”). Because the shared memory segment has already been created by using the shm-
config command, the value of shmflg should be zero.

For additional information on use of the shmget(2) system call, refer to the correspond-
ing system manual page and to the PowerMAX OS Programming Guide. For assistance in
using ftok, see the system manual page for stdipc(3C).
13-61

PowerMAX OS Real-Time Guide
NOTE

If you wish to access shared memory from a FORTRAN program,
you must use the shmdefine(1) utility to perform the shmget
function. For additional information, refer to the corresponding
system manual page and to the PowerMAX OS Programming
Guide.

Attaching a Shared Memory Segment 13

You can attach the newly created shared memory segment to your virtual address space
with the shmat system call. The format of this call is as follows:

shmat(shmid, shmaddr, shmflg)

The value of shmid is the identifier for the shared memory segment that has been returned
by the shmget(2) system call.

Shmat will return the virtual address at which the kernel has attached the shared memory
segment. For additional information on use of the shmat system call, refer to the system
manual page shmop(2) and to the PowerMAX OS Programming Guide.

NOTE

If you wish to access shared memory from a FORTRAN program,
you must use the shmdefine(1) utility to perform the shmat
function. For additional information, refer to the corresponding
system manual page and to the PowerMAX OS Programming
Guide.
13-62

14
STREAMS Network Buffers

Overview . 14-1
System Call . 14-1

Understanding the Network Buffer Information Structure. 14-2
Understanding the Network Buffer Commands . 14-3
Understanding Network Buffer Types . 14-5
Example of a System Call . 14-6
Example of Double-Buffering . 14-6

Kernel Tunables. 14-8

PowerMAX OS Real-Time Guide

14
Chapter 14STREAMS Network Buffers

14
14
14

Overview 14

This chapter describes the PowerMAX OS commands to create and work with STREAMS
network buffers, and provides examples of their use.

STREAMS network buffers save CPU power by:

• Minimizing copying of data during output to a STREAMS network device.
When a process asks to send network data, the OS copies data between user
and kernel address space at the stream head. Such copying uses a lot of
CPU power during bulk data transfers, especially when using large data
units. Using a STREAMS network buffer for output minimizes copying of
data and use of CPU power. It does so by sharing data buffers in the kernel
between the application and STREAMS.

• Avoiding the overhead of repeatedly allocating and freeing network buffer
pages with the kmem_alloc() and kmem_free() calls during output
requests, because the operating system maintains a pool of network buffers
rather than allocating buffer space at the time of the output request.

System Call 14

STREAMS network buffers extend the streamio(7) interface with the additional
ioctl function I_NBUFF. Network buffers map into the virtual address spaces of both
the application program and the operating system. Sharing this data space between the
application code and operating system minimizes the memory copying that normally
occurs when outputting to a STREAMS device.

ioctl (fd, I_NBUFF, arg,,,)

where:

ioctl is the function that contains I_NBUFF

fd is the file descriptor opened for network output

I_NBUFF is the ioctl command

arg is a pointer to a str_netbuff_info structure.
14-1

PowerMAX OS Real-Time Guide
Understanding the Network Buffer Information Structure 14

The I_NBUFF ioctl function allocates and controls the use of STREAMS network
buffers. arg points to the following str_netbuff_info structure:

struct str_netbuff_info {
netbuff_req_t req_type;
netbuff_t buff_type;
int length_requested; /*bytes requested by the user*/
int length_given; /*length allocated*/
vaddr_t address; /*start address of network buffer*/
int ref_count; /*for fixed translation buffers*/

};

The following components comprise str_netuff_info:

netbuff_req_t req_type;

Specifies a network buffer action with one of the following commands:

• NBUFF_ALLOC

• NBUFF_FREE

• NBUFF_REF_COUNT

• NBUFF_WAIT

netbuff_t buff_type;

Specifies one of the following network buffer re-use types:

• BUFF_FIXED_GLOBAL

• BUFF_RELOAD_GLOBAL

• BUFF_FIXED_LOCAL_CACHED

• BUFF_FIXED_LOCAL_NOCACHE

int length_requested;

Specifies in bytes the desired buffer to allocate. If this length is not an integral mul-
tiple of the page size, then PowerMAX OS rounds it up to the next higher value.

int length_given;

Returns the actual length assigned by PowerMAX OS in response to a buffer alloca-
tion request. length_requested <= length_given

vaddr_t address;

Specifies the starting address of the network buffer.

int ref_count;

The number of references returned from calling NBUFF_REF_COUNT.
14-2

STREAMS Network Buffers
Understanding the Network Buffer Commands 14

The I_NBUFF ioctl function commands use the address parameter to identify buffers
(by their starting address):

NBUFF_FREE
Frees a network buffer, un-maps its address space, and returns its memory to
either the kernel heap or the network buffer free pool.

NBUFF_ALLOC
Allocates a network buffer. The user specifies the size of the buffer in the
length_requested field, and the page reuse type in the buff_type field. The page
reuse type controls how the operating system maps the address space. It also
controls whether global or local memory (see memory(7)) is used for the
buffers, and in the case of local memory buffers, the page reuse type also
specifies the cache mode (see cache(7)) to be used. The page reuse types
are:

• BUFF_RELOAD_GLOBAL
Provides a new virtual mapping to the network buffer on each
output operation using the network buffer. Such page swapping
re-maps the address space for each output request to a new
physical address. This frees the process from having to confirm
the buffer is free. See the following section on “Understanding
Network Buffer Types” for more information. This page reuse
type will use cache enabled translations to global memory
pages for the network buffers.

• BUFF_FIXED_GLOBAL
Provides a constant virtual to physical mapping of the network
buffer. Such a fixed address translations only maps the address
space once. To avoid overwriting a network buffer, the process
mus t e i t h e r ca l l NBUFF_WAIT o r i n c l u d e
NBUFF_REF_COUNT in a routine to check if the buffer is free.
See the following section on “Understanding Network Buffer
Types” for more information. This page reuse type will use
cache enabled translations to global memory pages for the net-
work buffers.

• BUFF_FIXED_LOCAL_CACHED
This page reuse type provides the same functionality as the
BUFF_FIXED_GLOBAL type, except that cache enabled trans-
lations to local memory pages will be used for the network
buffers. The same care must be taken to ensure that these buff-
ers are not overwritten. This reuse type is valid only for Night-
Hawk platforms configured with local memory.

When this page reuse type is used, the calling LWP must have
already set its CPU bias to a value that contains CPUs that are
located on only one CPU board (see cpu_bias(2) and
mpadvise(3C)). The local memory pool that is located on
the CPU board where the LWP is executing at the time of this
ioctl(2) call will be used for the buffer allocation.
14-3

PowerMAX OS Real-Time Guide
Due to the fact that cached remote local memory CPU accesses
are not kept cache coherent in the kernel, data corruption may
result if this reuse type is specified. Therefore, general use of
this buffer reuse type is highly discouraged. Currently, this
reuse type is only officially supported with Data Link Layer
Provider (DLPI) STREAMS stacks. See the STREAMS Mod-
ules and Drivers manual for example code and a discussion on
the restrictions regarding this reuse type.

PowerMAX OS also supports a configurable kernel feature
that enables use of a per-STREAM CPU bias mask for control-
ling the set of CPUs that may execute each STREAM’s service
procedures. This support may be useful in controlling the set
of CPUs that execute service procedures of a STREAM that is
making use of local memory networking buffers; thus reducing
the risk of remote local memory CPU accesses occurring
within the STREAM’s service procedure memory references.
For more information about this feature, see Chapter 2:
Improving Response Time, in the section called "Controlling
STREAMS Scheduling".

• BUFF_FIXED_LOCAL_NOCACHE
This page reuse type provides the same functionality as the
BUFF_FIXED_LOCAL_CACHED type, except that cache
inhibited translations to local memory pages are used. Care
must be taken to ensure that these buffers are not overwritten.
This reuse type is valid only for NightHawk platforms config-
ured with local memory.

Unlike the BUFF_FIXED_LOCAL_CACHED type, there are no
CPU bias restrictions placed on the calling LWP. While data
cache incoherences will not result from using this buffer reuse
type, higher performance will usually be observed when the
application references the network buffer from CPUs that are
non-remote to the local memory page(s).

Possible application or system-wide performance improve-
ments due to the use of the BUFF_FIXED_LOCAL_NOCACHE
buffer reuse type instead of the BUFF_FIXED_GLOBAL reuse
type will depend upon the application mix, system configura-
tion, and upon the STREAMS stack(s) being used.

NOTE

Once the user application references local memory Streams Net-
working Buffers, these pages will be locked down in memory.
This action will prevent cross-CPU board migrations (see
memadvise(3C)) of that process or any of its LWPs until that
stream is closed, or until the local memory buffers are removed
with a I_NBUFF NBUFF_FREE ioctl(2) call. Therefore, it is
recommended that process migrations be performed by the appli-
cation prior to the setup of local memory Networking Streams
Buffers.
14-4

STREAMS Network Buffers
NBUFF_REF_COUNT
Lets the application poll to check if the operating system has released the
fixed network buffer specified in the call. The number of references to a net-
work buffer is the number of outstanding I/O operations on that buffer. When
the number reaches zero, the network buffer is free.

NBUFF_WAIT
Lets the calling application sleep until the operating system releases the fixed
network buffer specified in the call.

Understanding Network Buffer Types 14

PowerMAX OS supports two types of network buffers:

• Reload

• Fixed.

When the operating system first allocates a reload network buffer, it assigns a permanent
virtual address and then maps the virtual address to a physical address space. Each subse-
quent I/O request to the buffer virtual address re-maps it to a new physical address space.
This simplifies the programming model because applications need not check if the operat-
ing system released the buffer. Data within a network buffer is no longer available to the
application once a new I/O request uses the buffer, since the virtual address space gets re-
mapped to a new physical address space. Compared to fixed network buffers, reload buff-
ers impose a minor penalty in throughput for two reasons:

• The operating system must remap virtual to physical memory for each
request to a reload network buffer.

• The pages of a reload network buffer tend to become discontiguous in ker-
nel virtual address space over time.

When the operating system first allocates a fixed network buffer, it assigns a permanent
virtual address and then maps the virtual address to a physical address space. Unlike
reload buffers, in fixed buffers the mapping persists as long as the buffer exists.

Since some network protocols return control to the application before the I/O transfer
completes, a network buffer might still be in use when control returns to the application.
To issue another I/O request using the same network buffer, the application must either
poll the operating system to see when I/O operations on a given buffer complete or wait
for all operations to complete. An application can issue multiple I/O requests to the same
fixed network buffer by using different address ranges within the network buffer. To seg-
ment a fixed buffer and interact with its parts, a process must use its own logic and track
how much to offset each request from the starting address. This is because the network
buffer commands only recognize buffers in their entirety.

Much less system overhead is incurred doing I/O with either variety of network buffers
than with doing I/O in the standard way. This is because data copying from user space to
kernel space at the STREAMS head is eliminated.
14-5

PowerMAX OS Real-Time Guide
Note

Some STREAMS protocol stacks and drivers force synchronous
completion of I/O request.

Example of a System Call 14

System call to allocate a network buffer on an open stream with file descriptor fd:

{struct str_netbuff_info str_netbuff_info;

fd = open(“/dev/udp”, O_RDWR);
str_netbuff_info.buff_type = BUFF_FIXED_GLOBAL;
str_netbuff_info.length_requested = 8192;
str_netbuff_info.req_type = NBUFF_ALLOC;
error = ioctl(fd, I_NBUFF, &str_netbuff_info);

if (error == -1)
{

perror(“NBUFF_ALLOC failed”);
exit(1);

}
}

After a successful call, str_netbuff_info.address contains the user virtual
address of the network buffer and str_netbuff_info.length_given contains the
length allocated by STREAMS (sometimes larger than requested as STREAMS rounds up
the size to a page boundary.)

Example of Double-Buffering 14

The following program demonstrates how NBUFF_WAIT can be used with network buff-
ers to do double buffering. NBUFF_REF_COUNT can be used in the same way, except it
returns immediately with the number of references to the network buffer. An application
can do other work while waiting for the buffer to become free by periodically checking
NBUFF_REF_COUNT.

/*
 * example program - double buffering with network buffers using NBUFF_WAIT
 */

#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <sys/stropts.h>

struct network_buffer {
14-6

STREAMS Network Buffers
struct str_netbuff_info str_netbuff_info;
vaddr_t vaddr; /* start address of network buffer */
int *header; /* for use with writev() */

};

main(argc, argv)
int argc;
char *argv[];

{
struct network_buffer network_buffer[2];
int buff_no, block_size;
int fdu, loopcount, i, buffer_length;
struct iovec iov[2];
vaddr_t block_addr, end_address;

if ((fdu = open(argv[1],O_RDWR)) < 0)
{

perror(" Failed to open user stream");
exit(1);

}

buffer_length = 32768;
/* allocate two fixed network buffers */
for (buff_no = 0; buff_no < 2; buff_no++)
{

network_buffer[buff_no].str_netbuff_info.buff_type =
BUFF_FIXED_GLOBAL;

network_buffer[buff_no].str_netbuff_info.req_type = NBUFF_ALLOC;
network_buffer[buff_no].str_netbuff_info.length_requested =

buffer_length;
ioctl(fdu, I_NBUFF, &network_buffer[buff_no].str_netbuff_info);
network_buffer[buff_no].vaddr = network_buffer[buff_no].

str_netbuff_info.address;
network_buffer[buff_no].header = (int *)malloc(128);

}

printf("enter: loopcount block_size \n");
/* send <loopcount> blocks of size block_size down the stream */
while (scanf("%d %d", &loopcount, &block_size) > 0)
{

/* start with buffer number 0 */
buff_no = 0;
iov[0].iov_base = (void *)network_buffer[buff_no].header;
iov[0].iov_len = 128;
block_addr = (vaddr_t)network_buffer[buff_no].vaddr;
end_address = (vaddr_t)network_buffer[buff_no].vaddr +

buffer_length;

for (i = 0; i < loopcount; i++)
{

iov[1].iov_base = (void *)block_addr;
iov[1].iov_len = block_size;
/* write to network buffer */
*(int *)block_addr = 12345678;
writev(fdu, iov, 2);
block_addr += block_size;
if ((block_addr + block_size) >= end_address)
{ /* buffer full - start using the other one */

buff_no = (buff_no == 0) ? 1 : 0;
/* wait for buffer to become free */
network_buffer[buff_no].str_netbuff_info.req_type =
14-7

PowerMAX OS Real-Time Guide
NBUFF_WAIT;
ioctl(fdu, I_NBUFF,

&network_buffer[buff_no].str_netbuff_info);
block_addr = (vaddr_t)network_buffer[buff_no].vaddr;
end_address = (vaddr_t)network_buffer[buff_no].vaddr +

buffer_length;

}

}
printf("enter: loopcount block_size \n");

 }
}

Kernel Tunables 14

Additional kernel tunables can further optimize the OS for STREAMS buffered network
output. Refer to config(1) for more information on kernel tunables.

Table 14-1. Kernel Tunables

Kernel Tunable Description

STR_MAX_NBUFF Maximum number of pages per network buffer. Limits the
size of a network buffer allocated by a NBUFF_ALLOC
call.

STR_NPAGES_FPMAX Maximum number of pages per memory pool in the net-
work buffer free pool. If set to 0, allocates all new pages
from the kernel heap.

STR_NPAGES_TMAX Maximum number of network pages allocated at any one
time, including pages:
- Available in network buffer free pools
- In use by PowerMAX OS for network buffers
- In use by applications.

STR_NBUFF_COPYSIZE Minimum size in bytes of I/O transfers allowed to use
STREAMS network buffering. Below this threshold, the
operating system copies data from user space into kernel
space (as before) rather than using the network buffer as a
shared resource.
14-8

15
Controlling Periodic Kernel Daemons

Understanding Kernel Daemons . 15-1
Enabling and Disabling Periodic Kernel Daemons . 15-1
Daemoncntl . 15-2
Description of Periodic Kernel Daemons . 15-2

PowerMAX OS Real-Time Guide

15
Chapter 15Controlling Periodic Kernel Daemons

15
15
15

Understanding Kernel Daemons 15

There are three types of kernel daemons that PowerMAX OS will execute:

1. periodic daemons - these run at a fixed frequency regardless of the state of
the system. In some cases, tunables are provided that can regulate the fre-
quency.

2. reactive daemons - these run only in response to a specific event.

3. interrupt daemons - run only in response to a specific device interrupt.

All of the daemons can be controlled to some degree via tunables. These tunables are used
to specify a CPU mask, scheduling class and scheduling priority for each daemon.

To a lesser degree, a system developer does have some control over when the reactive dae-
mons and interrupt daemons actually run. Generally, the events that trigger these daemons
can be regulated.

In some real-time environments, especially those that do not have shielded processors,
controlling the execution of periodic daemons is crucial to providing a deterministic pro-
gram execution environment.

Enabling and Disabling Periodic Kernel Daemons 15

The periodic kernel daemons generally provide important functionality during specific
important system states. At other times, this functionality may be much less critical. For
this reason, the periodic kernel daemons may be disabled in real-time environments if the
loss of functionality would not impact system integrity and performance.

However, disabling the periodic kernel daemons should not be done without a certain
amount of consideration of the impact.

Furthermore, over time, the probability increases that a disabled kernel daemon becomes a
deterrent to full system operation. For this reason, it is highly recommended that kernel
daemons not be disabled permanently. Instead, at appropriate times, these daemons should
be enabled, or perhaps run just once (this functionality is provided).
15-1

PowerMAX OS Real-Time Guide
Daemoncntl 15

Daemoncntl(1m) is a command that can be used to control the periodic kernel dae-
mons. There are four functions that this command provides:

• query the periodic kernel daemons to determine which are enabled or dis-
abled.

• disable a selected list of the periodic kernel daemons.

• enable a selected list of the periodic kernel daemons.

• run a selected list of the periodic kernel daemons once. Refer to “Enabling
and Disabling Periodic Kernel Daemons” on page 15-1.

Refer to the daemoncntl(1m) man page for a description of how to run this command.

Refer to the daemon_cntl(2) man page for a description of the system service that is
used by daemoncntl(1m) and which can be directly called by a user’s application.

Description of Periodic Kernel Daemons 15

The following describes each of the periodic kernel daemons plus the possible impact
when the daemon is disabled.

- fsflush: this daemon is responsible for periodically writing modified file
system buffers and pages to disk. The frequency of this daemon is con-
trolled by the tunable FDFLUSHR. The default is to run every second.

The impact of disabling this daemon is that it increases the chance that data
written to disk will be lost if the system crashes. In environments where
few file system operations are done, it would be safe to disable this dae-
mon. The risk increases as the number of operations increases.

- kma_giveback: this daemon returns kernel memory blocks from per-
CPU “local” pools to system-wide “global” pools. There is one daemon per
CPU and the daemons generally run every 30 seconds when memory is
sufficient.

There is no risk associated with disabling this daemon, as the “local” pools
would no longer be used. However, there could be a slight performance
penalty.

It should be noted that this daemon can be disabled permanently by use of
the KMA_GBACK_DISABLE tunables.

- wallclock_ager: searches for processes that need to have their address
space aged. Address space aging is the process whereby pages, which have
not been referenced, are marked as likely candidates for swap out from
memory to swap space on disk. Runs once per second.
15-2

Controlling Periodic Kernel Daemons
On a system with sufficient memory, there is minimal impact from dis-
abling this daemon. However, in memory critical conditions, the memory
manager may make poor decisions regarding page/process swapouts.

- poolrefresh: this daemon scans several “private” pools of memory and
grows or shrinks the pools as needed. Private memory pools are preallo-
cated data structures used by various kernel subsystems to speed the alloca-
tion of these structures. Runs once per second.

On a system with sufficient memory, there is minimal impact from dis-
abling this daemon. However, in memory critical conditions, this daemon
can help alleviate the problem by making more memory available. This
daemon is most important when the amount of kernel activity fluctuates
during the execution of an application.

- autounload: this daemon locates and unloads inactive dynamic loadable
modules (DLMs). Runs every 60 seconds.

On most systems, there is little risk associated with disabling this daemon,
as generally, few if any DLMs would need to be unloaded. If there were
any and memory was critical, then this daemon may be able to alleviate the
condition.

- timepct_daemon: this daemon computes the percentage of time that
each lwp uses a CPU. Runs every 5 seconds.

Very little risk associated with disabling this daemon. The CPU utilization
numbers presented by top(1m) would be the only effect of disabling this
daemon.

- sleeper_search: this daemon locates long term sleeper lwps that can
be swapped or aged. Generally runs between 2 and 4 seconds with 2 sec-
onds being the default.

On a system with sufficient memory, there is minimal impact from dis-
abling this daemon. However, in memory critical conditions, the memory
manager may make poor decisions regarding page/process swapouts.
15-3

PowerMAX OS Real-Time Guide
15-4

A
Appendix AExample Program - Message Queues

1
1

This appendix contains an example program that illustrates use of the POSIX message
queue facilities. The program is written in C. In this program, a parent process spawns a
child process to offload some of its work. The parent process also creates a message
queue and attaches a notification request to the message queue. When the child process
completes its work, it sends the results to the parent process via the message queue. At
this point, the parent process receives a signal and a value indicating that the child has sent
a message.

#include <stdio.h>
#include <sys/ucontext.h>
#include <sys/siginfo.h>
#include <signal.h>
#include <errno.h>
#include <mqueue.h>

 #define MAXMSGS 5
#define MSGSIZE 40

 void sighandler();

 volatile int done = 0;

 void
main()
{
 mqd_t mqdescr;
 int retval;
 int cpid;
 char msg_ptr[MSGSIZE];
 struct sigevent notif;
 struct mq_attr attr;
 sigset_t set;
 struct sigaction sa;

 char *mqname = ”test–mq”;

 attr.mq_maxmsg = MAXMSGS;
 attr.mq_msgsize = MSGSIZE;

 /* open the message queue */
 mqdescr = mq_open(mqname, O_CREAT | O_RDWR, 0700, &attr);
 if(mqdescr == (mqd_t)–1) {
 perror(”mq_open”);
 exit(–1);
 }

 cpid = fork();

 if(cpid < 0) {
 perror(”fork”);
 mq_close(mqdescr);
 mq_unlink(mqname);
 exit(–1);
 }
A-1

PowerMAX OS Real-Time Guide
 if(cpid == 0) {
 /* child */

 /* perform some work for parent */
 sleep(1);

 /* ... */

 strcpy(msg_ptr, ”Results of work”);

 /* Send results to the parent via the inherited message queue.*/
 retval = mq_send(mqdescr, msg_ptr, strlen(msg_ptr) + 1, 20);

 if(retval) {
 perror(”mq_send (child)”);
 mq_close(mqdescr);
 exit(–1);
 }

 mq_close(mqdescr);
 exit(0);

 } else {

 /* parent */
 /*
 * Define the actions the parent process should take when
 * SIGRT1 is received. It is not necessary to block other
 * signals, but it is necessary for the signal information
 * block to be delivered with SIGRT1. The SA_SIGINFO flag
 * causes signals to be queued and a value to be sent with
 * the signal.
 */

 sigemptyset(&set);
 sa.sa_handler = sighandler;
 sa.sa_flags = SA_SIGINFO;
 sa.sa_mask = set;
 sigaction(SIGRT1, &sa, NULL);

 /*
 * Attach a notification request to the message queue
 * so a SIGRT1 informs the parent process that a message
 * has arrived from the child process.
 */

 notif.sigev_notify = SIGEV_SIGNAL;
 notif.sigev_signo = SIGRT1;
 notif.sigev_value.sival_int = (int)mqdescr;
 retval = mq_notify(mqdescr, ¬if);
 if(retval < 0) {
 perror(”mq_notify”);
 exit(–1);
 }

 /* Do not attempt to receive a message from the child
 * process until it arrives. Perform parent workload
 * while waiting for results.
 */

 while(!done) {

 /* ... */

 }
A-2

Example Program - Message Queues
 mq_close (mqdescr);
 mq_unlink (mqname);
 exit(0);
 }
}

 /*
 * This routine reacts to a SIGRT1 user–selected notification
 * signal by receiving the child process’s message.
 */

 void
sighandler(sig, sip, ucp)
int sig;
siginfo_t *sip;
ucontext_t *ucp;
{
 mqd_t mqdescr;
 char msg_ptr[MSGSIZE];
 unsigned int msg_prio;
 int retval;

 mqdescr = (mqd_t)sip–>si_value;

 /* read the message that was received */
 retval = mq_receive(mqdescr, msg_ptr, MSGSIZE, &msg_prio);
 if(retval == –1)
 perror(”mq_receive (parent)”);
 else
 printf(”msg received: %s ; at priority %d\n”, msg_ptr, msg_prio);

 /* do processing for received message */

 done++;
}
A-3

PowerMAX OS Real-Time Guide
A-4

B
Appendix BExample Program - Synchronization Tools

1
2
2

This appendix contains an example program that illustrates use of the interprocess syn-
chronization tools. The program is written in C and shows how producer and consumer
tasks can exchange data through use of a mailbox in a shared memory segment. To sim-
plify the mailbox functions, queues are not used. For purposes of illustration, sleepy-wait
mutual exclusion is used to serialize access to the mailbox; because the mailbox critical
sections are very short, busy-wait mutual exclusion is preferable.

 /*
 * Name
 * pc –– Producer/Consumer Example
 *
 * Purpose
 * Illustrate use of process synchronization tools.
 *
 * Procedure
 * A single producer task and a single consumer task communicate
 * through a mailbox in shared memory. The producer task sends
 * random data, and the consumer task checks the received data
 * against an independently running but identical random number
 * generator. The program runs until it is terminated by typing
 * ^C. The synchronization tools introduced in Chapter 5 of
 * this guide are used to control access to the mailbox.
 */

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/signal.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/lwp_synch.h>

#include <stdio.h>
#include <assert.h>
/*************** Spin Locks **/

 #definespin_acquire(_m,_r) \
{ \

resched_lock(_r); \
while (! spin_trylock(_m)) { \

resched_unlock(_r); \
while (spin_islock(_m)); \
resched_lock(_r); \

} \
}

 #definespin_release(_m,_r) \
{ \

spin_unlock(_m); \
resched_unlock(_r); \

}

 /*************** Sleep Locks ***/

 struct resched_var rv;/* Rescheduling variable. */
B-1

PowerMAX OS Real-Time Guide
 struct sleep_mutex {
struct spin_mutex mx;/* Serializes access to lock. */
global_lwpid_t owner;/* Identifies the owner. */
int waiters; /* True iff there are waiters. */

};

 /*
 * Initialize a sleep lock.
 */
void
sleep_init (s)

struct sleep_mutex *s;
{

spin_init (&s–>mx);
s–>owner = 0;
s–>waiters = 0;

}
/*
 * Acquire a sleep lock.
 */
void
sleep_lock (s)

struct sleep_mutex *s;
{

spin_acquire (&s–>mx, &rv);
while (s–>owner) {

s–>waiters = 1;
client_block (s–>owner, (int)s, 0, &s–>mx, &rv, 0);
spin_acquire (&s–>mx, &rv);

}
s–>owner = rv.rv_glwpid;
spin_release (&s–>mx, &rv);

}

 /*
 * Release a sleep lock.
 */
void
sleep_unlock (s)

struct sleep_mutex *s;
{

int were_waiters;

 spin_acquire (&s–>mx, &rv);
s–>owner = 0;
were_waiters = s–>waiters;
s–>waiters = 0;
spin_unlock (&s–>mx);

 if (were_waiters)
client_wakechan (0, (int)s, &rv);

else
resched_unlock (&rv);

}
/*************** Mailboxes ***/

 struct mailbox {
struct sleep_mutex smx;/* Serializes access to mailbox. */
unsigned int data;/* Contents of the mailbox. */
int full; /* Mailbox full/empty flag. */
global_lwpid_t producer;/* Identifies waiting producer. */
global_lwpid_t consumer;/* Identifies waiting consumer. */

};
B-2

Example Program - Synchronization Tools
 /*
 * Initialize a mailbox.
 */
void
mailbox_init (mb)

struct mailbox *mb;
{

sleep_init (&mb–>smx);
mb–>data = 0;
mb–>full = 0;
mb–>producer = 0;
mb–>consumer = 0;

}

 /*
 * Put data into a mailbox. Wait for the mailbox to empty, put the
 * new data into the mailbox, and awaken any waiting consumer.
 */
void
mailbox_put (mb, data)

struct mailbox *mb;
unsigned int data;

{
global_lwpid_t consumer;

 sleep_lock (&mb–>smx);

 while (mb–>full) {
mb–>producer = rv.rv_glwpid;
sleep_unlock (&mb–>smx);
server_block (0, 0, 0);
sleep_lock (&mb–>smx);

}

 mb–>data = data;
mb–>full = 1;

 consumer = mb–>consumer;
mb–>consumer = 0;

 sleep_unlock (&mb–>smx);

 if (consumer)
server_wake1 (consumer, 0);

}

 /*
 * Get data from a mailbox. Wait for the mailbox to fill, get the
 * data from the mailbox, and awaken any waiting producer.
 */
void
mailbox_get (mb, data)

struct mailbox *mb;
unsigned int *data;

{
global_lwpid_t producer;

 sleep_lock (&mb–>smx);

 while (! mb–>full) {
mb–>consumer = rv.rv_glwpid;
sleep_unlock (&mb–>smx);
server_block (0, 0, 0);
sleep_lock (&mb–>smx);
B-3

PowerMAX OS Real-Time Guide
}

 *data = mb–>data;
mb–>full = 0;

 producer = mb–>producer;
mb–>producer = 0;

 sleep_unlock (&mb–>smx);

 if (producer)
server_wake1 (producer, 0);

}
/*************** Producer/Consumer Tasks **********************************/

 struct mailbox *mb;/* Points to a mailbox in shared memory. */

 /*
 * The producer task puts data obtained from a random number generator
 * into the mailbox.
 */
void
producer ()
{

unsigned int data;

 srand48 (1);
if (resched_cntl (RESCHED_SET_VARIABLE, (char *)&rv)) [

perror("resched_cnt");
exit(1);

}

 while (1) {
data = (unsigned int) lrand48();
mailbox_put (mb, data);

}
}

 /*
 * The consumer task compares the data obtained from the mailbox
 * with an independently running but identical random number
 * generator.
 */
void
consumer ()
{

unsigned int i, data;

 srand48 (1);
if (resched_cntl (RESCHED_SET_VARIABLE, (char *)&rv)) [

perror("resched_cnt");
exit(1);

}

 for (i=1; 1; i++) {
mailbox_get (mb, &data);
if (data != (unsigned int) lrand48())

printf (”%u: data comparison failed\n”, i);
else if ((i % 250) == 0)

printf (”%u: received %u\n”, i, data);
}

}
/*************** Main ***/

void
B-4

Example Program - Synchronization Tools
main ()
{

int i;
pid_t pid;

 /*
 * Create a shared memory segment for the mailbox. The
 * segment will disappear when the last process using it
 * exits.
 */

 i = shmget (IPC_PRIVATE, sizeof (*mb), 0600);
if (i == –1) {

perror (”shmget”);
exit (1);

}

 mb = (struct mailbox *) shmat (i, 0, 0);
if (mb == (struct mailbox *) –1) {

perror (”shmat”);
exit (1);

}

 shmctl (i, IPC_RMID, 0);

 /*
 * Initialize the mailbox.
 */

 mailbox_init(mb);

 /*
 * Create the producer process.
 */

 if ((pid = fork ()) < 0) {
perror (”fork”);
exit (1);

}

 if (pid == 0) {
producer ();
_exit (0);

}

 /*
 * Run the consumer process.
 */

 consumer ();
exit (0);

}
B-5

PowerMAX OS Real-Time Guide
B-6

C
Appendix CExample 1 - User-Level Interrupt Routines

2
3
3

This appendix contains an example C program that demonstrates use of the user-level
interrupt routine facility by a user program that executes a user-level interrupt process and
interrupt-handling routine. It is intended as an example of a typical single-threaded pro-
cess that uses a shared memory region to communicate with other processes—in this case,
a parent and child.

/*
 * - uses one rtc interrupt
 * - uses fork() to create one child
 * - child connects to rtc interrupt
 * - parent starts the rtc repetively counting
 * - a shared memory segment is used for communication
 * between the parent and child
 * - uses the server_block() and sever_wake1() services
 */
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/lwp.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/thread_synch.h>
#include <sys/ioctl.h>
#include <sys/rtc.h>
#include <sys/iconnect.h>

/*
 * Error messages
 */
extern char *sys_errlist[];

/*
 * Error messages
 */
char *badshmget = "shmget() call failed";
char *badshmat = "shmat() call failed";
char *badshmctl = "shmctl() call failed";
char *baddevopen = "dev open() call failed";
char *badioctl = "IOCTLVECNUM ioctl() call failed";
char *badicon = "iconnect() call failed";
char *badienable = "ienable() call failed";
C-1

PowerMAX OS Real-Time Guide
char *badlock = "child's mlockall() call failed";
char *badfork = "fork() failed";
char *badrtcstart = "RTCIOCSTART ioctl() failed";
char *badrtcset = "RTCIOCSET ioctl() failed";
char *badserverblk = "server_block() failed";

/*
 * Flag for err_rtn()
 */
#define ERR_DISC0x1/* disconnect the child process */

/*
 * shmget()
 */
#define DEF_PERM 0644
#define SHMFLG DEF_PERM

/*
 * Shared memory segment layout.
 */
struct dcom {

volatile int enabled;
volatile int int_count;
volatile int status;
volatile int vec_num;
volatile global_lwpid_t lid;/* lwp id of parent JUDYJUDYJUDY */

};
struct dcom *dcom_p; /* for sharing data */
void *shmaddr;/* virtual address of dcom shared memory segment */

/*
 * Values for status field of dcom struct.
 */
#define BAD_VALUE 1 /* bad value was passed to routine */
#define WAIT_FOR_ME 2 /* wait till ienabled */
#define BAD_SETUP 3 /* child didn't succesfully ienable() */

/*
 * User-level interrupt routine values and variables.
 */
#define VALUE 0x12345678 /* Passed as arg to interrupt routine */
#define NUM_REQUESTS 100 /* number of interrupts to force */
#define STACK_SIZE 4096 /* Stack size, in bytes. */

int done = 0; /* set to 1 when NUM_REQUESTS reached */
char interr_stack[STACK_SIZE];/* interrupt stack. */

/*
 * rtc device file.
 * Arbitrarily use the fourth clock on the first CPU board.
 */
char *dev_string = "/dev/rrtc/0c3"; /* device file name */

int file_dev = -1;/* -1 for cleanup code to skip close() */
C-2

Example 1 - User-Level Interrupt Routines
main()
{

int shm_id;
pid_t child;
struct icon_conn ic;
struct rtc rtc;
extern int shmget();
extern void rtcintr();

/*
 * Create a private shared memory segment to shared
 * data between interrupt routine and program level process.
 */
shm_id = shmget(IPC_PRIVATE, sizeof(struct dcom), SHMFLG|IPC_CREAT);
if (shm_id == -1)

err_rtn(badshmget, 0);

 /*
 * Attach to the shared memory segment.
 */
if ((shmaddr = shmat(shm_id, 0, 0)) == (void *)-1)

err_rtn(badshmat, 0);

/*
 * Remove shmid when detached.
 */
if ((shmctl(shm_id, IPC_RMID, 0)) == -1)

err_rtn(badshmctl, 0);

/*
 * Initialize shared memory segment.
 */
dcom_p = (struct dcom *)shmaddr;
dcom_p->enabled = 0;
dcom_p->int_count = 0;
dcom_p->vec_num = 0;
dcom_p->status = WAIT_FOR_ME;

 /*
 * Fork off a child process to receive the rtc interrupts.
 */
if ((child = fork()) == -1)

err_rtn(badfork, 0);
C-3

PowerMAX OS Real-Time Guide
 if (!child) {
 /*

 * The child process. Open the rtc device file.
 */
if ((file_dev = open(dev_string, O_RDWR)) == -1) {

dcom_p->status = BAD_SETUP;
err_rtn(baddevopen, 0);

}

/*
 * Get the interrupt vector number for rtc.
 */
if (ioctl(file_dev, IOCTLVECNUM, &dcom_p->vec_num) == -1) {

dcom_p->status = BAD_SETUP;
err_rtn(badioctl, 0);

}

/*
 * Setup the connection structure.
 */
ic.ic_version = IC_VERSION1;
ic.ic_flags = 0;
ic.ic_vector = dcom_p->vec_num;
ic.ic_routine = rtcintr;
ic.ic_stack = (int)(&interr_stack[STACK_SIZE]);
ic.ic_value = VALUE;

 /*
 * Create an interrupt connection definition.
 */
if (iconnect(ICON_CONN, &ic) == -1) {

dcom_p->status = BAD_SETUP;
err_rtn(badicon, 0);

}

/*
 * Close the rtc device file.
 */
close(file_dev);
file_dev = -1;

 /*
 * Lock the program down.
 */
if (mlockall(MCL_CURRENT) == -1) {

dcom_p->status = BAD_SETUP;
err_rtn(badlock, ERR_DISC);

}

 /*
 * Indicate to parent that child is
 * ready to receive interrupts.
 */
dcom_p->status = 0;
C-4

Example 1 - User-Level Interrupt Routines
 /*
 * Enable the interrupt connection.
 */
if (ienable(dcom_p->vec_num) == -1) {

dcom_p->status = BAD_SETUP;
err_rtn(badienable, ERR_DISC);

}

 /*
 * Detach from shared memory segment, and exit.
 */
shmdt(shmaddr);
printf("Interrupt routine child process exiting\n");

exit(0);
}

/*
 * Parent process. Get my lwp id for the server_wake1() call.
 */
dcom_p->lid = _lwp_global_self();

 /*
 * Wait for the user interrupt process to get ienabled.
 */
sleep(1);/* let the child run */
while (dcom_p->status == WAIT_FOR_ME)

sleep(1);

if (dcom_p->status == BAD_SETUP) {
/*
 * Child didn't make it into ienable().
 */
shmdt(shmaddr);
exit(1);

}

/*
 * Open up the rtc device file.
 */
if ((file_dev = open(dev_string, O_RDWR)) == -1)

err_rtn(baddevopen, 2);

/*
 * Set the real time clock to fire
 * repetitively once every 100 milliseconds.
 */
rtc.r_modes = RTC_DEFAULT | RTC_REPEAT;
rtc.r_res = MSEC;
rtc.r_clkcnt = 100;

if (ioctl(file_dev, RTCIOCSET, &rtc) == -1)
err_rtn(badrtcset, 2);
C-5

PowerMAX OS Real-Time Guide
/*
 * Start the clock counting.
 */
if (ioctl(file_dev, RTCIOCSTART, 0) == -1)

err_rtn(badrtcstart, 2);

/*
 * Block until the user interrupt routine wakes us up.
 */
if (server_block(0, 0, 0) == -1)

err_rtn(badserverblk, 2);

/*
 * Interrupt routine woke us up.
 */
if (dcom_p->status == BAD_VALUE) {

/*
 * Interrupt routine received a bad arg parameter.
 */
printf("Bad interrupt handler routine argument value.");

}
else if (NUM_REQUESTS != dcom_p->int_count) {

/*
 * Check that the interrupt routine updated the count.
 */
printf("Count mismatch failure: count = %d, expected %d\n",

dcom_p->int_count, NUM_REQUESTS);
}
else

printf("Completed test successfully\n");

 /*
 * Disconnect the child from the eti.
 */
iconnect(ICON_DISC, dcom_p->vec_num);

/*
 * Stop the rtc clock and close the file.
 * Detach the shared memory segment.
 */
ioctl(file_dev, RTCIOCSTOP, 0);
close(file_dev);
shmdt(shmaddr);

 exit(0);
}

C-6

Example 1 - User-Level Interrupt Routines
/*
 * Routine to output passed error message, and the errno meaning.
 */
err_rtn(mesg, flag)
char *mesg;
int flag;
{

fprintf(stderr, "example1: %s\n", mesg);
fprintf(stderr, " %s\n", sys_errlist[errno]);

if (flag == ERR_DISC)
iconnect(ICON_DISC, dcom_p->vec_num);

if (shmaddr)
shmdt(shmaddr);

if (file_dev != -1)
close(file_dev);

exit(1);
}

/*
 * User interrupt routine.
 */
void
rtcintr(value)
int value;
{

extern int rtcincr();

 /*
 * Check the value parameter.
 */
if (value != VALUE) {

/*
 * Something is wrong. Wake up parent to shut down test.

 */
dcom_p->status = BAD_VALUE;
server_wake1(dcom_p->lid, 0);
return;

}

C-7

PowerMAX OS Real-Time Guide
/*
 * Increment the count.
 */
if (!done && (rtcincr())) {

/*
 * Count has reached the end. Wakeup parent.
 */
dcom_p->status = 0;
server_wake1(dcom_p->lid, 0);

}
}

int
rtcincr()
{

dcom_p->int_count++;

if (dcom_p->int_count == NUM_REQUESTS) {
done = 1;
return(1);

}
else

return(0);
}

C-8

D
Appendix DExample 2 - User-Level Interrupt Routines

3
4
4

This appendix contains an example C program that demonstrates use of the user-level
interrupt routine facility by a multithreaded program that creates two interrupt connections
to two separate real-time clocks. For example purposes, the spl_request(3X) rou-
tines are used, along with the threads library _spin(3synch) lock mechanism, to coor-
dinate accesses to a shared data counter that is located within the address space of the pro-
cess.

This program should be built with both the thread and ud libraries:

$ cc -D_REENTRANT [options] file -lthread -lud

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <synch.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ipl.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <sys/rtc.h>
#include <sys/iconnect.h>

/*
 * One thread connection structure for each interrupt connection.
 */
struct thrconn {

int vector; /* interrupt vector number */
int stack; /* thread's interrupt stack location */
int fd; /* file descriptor */
u_int flags; /* state flags */
char *filename; /* device file name */
int count; /* interrupt counter */

};

/*
 * flags field
 */
#define READY 0x1 /* thread is ready - ienable()ed */
#define DONE 0x2 /* number of interrupts has been reached */

#define INT_COUNT 100 /* receive 100 interrupts before quitting */
D-1

PowerMAX OS Real-Time Guide
/*
 * Interrupt stacks.
 */
#define STACK_SIZE 4096

char istack1[STACK_SIZE];
char istack2[STACK_SIZE];

/*
 * rtc device files
 * Arbitrarily use the fourth and fifth clocks on the first CPU board.
 */
char dev_string1[] = "/dev/rrtc/0c3";
char dev_string2[] = "/dev/rrtc/0c4";

#define NUM_INTS 2 /* connecting to two interrupts */

struct thrconn thrconnects[] = {
0, (int)&istack1[STACK_SIZE], 0, 0, (char *)&dev_string1, 0,
0, (int)&istack2[STACK_SIZE], 0, 0, (char *)&dev_string2, 0 };

/*
 * Shared data that is modified by both interrupt routine threads.
 * Protected with a _spin(3synch) spin lock.
 */
spin_t spinlock;

/*
 * Address of spl register mapping.
 * Used for raising ipl with spl_request_macro().
 */
caddr_t spl_addr;

/*
 * At the end of the test, this count should equal the
 * sum of all the interrupts: INT_COUNT * NUM_INTS.
 */
int total_int_count;

main()
{

int i, done, status;
struct rtc rtc;
struct thrconn *tcnp;
struct timespec ts;
thread_t threadid;
extern void run_test(void *);
D-2

Example 2 - User-Level Interrupt Routines
 /*
 * Map the spl register into our address space. We don't care
 * where the virtual address for the spl register is bound.
 */
spl_addr = spl_map(0);
if (spl_addr == (caddr_t)-1) {

printf("spl_map() failure, errno = %d\n", errno);
exit(1);

}

/*
 * Initialize the spin lock.
 * The second parameter is reserved for future use.
 */
if ((status = _spin_init(&spinlock, (void *)NULL)) != 0) {

printf("_spin_init() failure, returned %d\n", status);
exit(1);

}

/*
 * Setup each interrupt connection structure.
 */
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

/*
 * Open the rtc device file.
 */
if ((tcnp->fd = open(tcnp->filename, O_RDWR)) == -1) {

printf("rtc open() failure, errno = %d\n", errno);
exit(1);

}

/*
 * Get the interrupt vector number for this rtc.
 */
if (ioctl(tcnp->fd, IOCTLVECNUM, &tcnp->vector) == -1) {

printf("rtc ioctl() IOCTLVECNUM failure, errno = %d\n",
errno);

exit(1);
}

}

D-3

PowerMAX OS Real-Time Guide
/*
 * Create a bound thread for each interrupt connection.
 * Each thread will connect to the specified interrupt.
 */
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

status = thr_create(
(void *)0, /* stack address - use default */
(size_t)0,/* stack size - use default */
(void *(*) (void *))run_test,

/* routine address */
(void *)tcnp, /* arg to pass to routine */
THR_BOUND, /* flags - create a bound thread */
(thread_t *)&threadid);

/* returns thread id */

if (status != 0) {
printf("thr_create() failure, returned %d\n", status);
exit(1);

}
}

/*
 * Wait for each thread to get connected to the interrupt.
 */
done = 0;
while (!done) {

done = 1;
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

if ((tcnp->flags & READY) == 0) {
sleep(1);
done = 0;
break;

}
}

}

 /*
 * Now lock the entire program down.
 */
if (mlockall(MCL_CURRENT) == -1) {

printf("mlockall() failure, errno = %d\n", errno);
exit(1);

}

D-4

Example 2 - User-Level Interrupt Routines
/*
 * Loop for each rtc clock interrupt.
 */
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

/*
 * Set the real time clock to fire
 * repetitively once every 100 milliseconds.
 */
rtc.r_modes = RTC_DEFAULT | RTC_REPEAT;
rtc.r_res = MSEC;
rtc.r_clkcnt = 100;

if (ioctl(tcnp->fd, RTCIOCSET, &rtc) == -1) {
printf("rtc ioctl() RTCIOCSET failure, errno = %d\n", errno);
exit(1);

}

/*
 * Start the clock counting.
 */
if (ioctl(tcnp->fd, RTCIOCSTART, 0) == -1) {

printf("rtc ioctl() RTCIOCSTART failure, errno = %d\n", errno);
exit(1);

}
}

/*
 * Wait for each thread to get the required number of interrupts.
 */
ts.tv_sec = 0;
ts.tv_nsec = 250000000;/* 1/4th a second wait */

done = 0;

while (!done) {
done = 1;
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

if ((tcnp->flags & DONE) == 0) {
(void) nanosleep(&ts, (struct timespec *)0);
done = 0;
break;

}
}

}

D-5

PowerMAX OS Real-Time Guide
/*
 * Shut things down.
 */
for (i = 0, tcnp = thrconnects; i < NUM_INTS; i++, tcnp++) {

/*
 * Stop the rtc clock and close the file.
 */
(void) ioctl(tcnp->fd, RTCIOCSTOP, 0);
close(tcnp->fd);

 /*
 * Disconnect the child from the rtc.
 */
(void) iconnect(ICON_DISC, tcnp->vector);

}

 /*
 * Remove the spl register binding from our address space.
 */
if (spl_unmap(spl_addr) == -1) {

printf("spl_unmap() failure, errno = %d\n");
exit(1);

}

/*
 * Check that the total count is correct.
 */
if (total_int_count != (NUM_INTS * INT_COUNT)) {

printf("total_int_count = %d, expected %d\n",
total_int_count, NUM_INTS * INT_COUNT);

exit(1);
}

/*
 * Successful test.
 */
exit(0);

}

D-6

Example 2 - User-Level Interrupt Routines
/*
 * Each created thread starts execution here.
 * The thrconn structure for the interrupt is passed in.
 */
void
run_test(void *thrconnp)
{

int status;
struct thrconn *tcnp;
struct icon_conn ic;
void extern rtcintr(struct thrconn *);

/*
 * Setup the connection structure.
 * Pass thrconn structure to the interrupt routine.
 */
tcnp = (struct thrconn *)thrconnp;
ic.ic_version = IC_VERSION1;
ic.ic_flags = 0;
ic.ic_vector = tcnp->vector;
ic.ic_routine = rtcintr;
ic.ic_stack = (int)tcnp->stack;
ic.ic_value = (int)tcnp;

 /*
 * Create an interrupt connection definition.
 */
if (iconnect(ICON_CONN, &ic) == -1) {

printf("ICON_CONN failure, vector = %d, errno = %d\n",
tcnp->vector, errno);

exit(1);
}

/*
 * Indicate to program level thread that
 * this thread is ready to receive interrupts.
 */
tcnp->flags = READY;

 /*
 * Enable the interrupt connection.
 */
if (ienable(tcnp->vector) == -1) {

printf("ienable() failure, vector = %d, errno = %d\n",
tcnp->vector, errno);

exit(1);
}

printf("Interrupt vector %d thread exiting\n", tcnp->vector);

status = 0;
thr_exit((void *)&status);

}
D-7

PowerMAX OS Real-Time Guide
/*
 * User-level interrupt routine.
 * All rtc interrupts come here when they become active.
 */
void
rtcintr(struct thrconn *tcnp)
{

pl_t old_pl, junk_pl;

if (tcnp->count < INT_COUNT) {
tcnp->count++;/* private increment */

/*
 * Raise ipl to prevent other rtc interrupts
 * from comming in on this CPU.

 */
spl_request_macro(PL8, spl_addr, old_pl);

/*
 * Acquire the spin lock to serialize with other CPUs.

 */
_spin_lock(&spinlock);

/*
 * Increment shared counter.
 */
total_int_count++;

/*
 * Let go of the spin lock.
 */
_spin_unlock(&spinlock);

/*
 * Drop ipl to the previous level.

 */
spl_request_macro(old_pl, spl_addr, junk_pl);

/*
 * Let program level thread know that we're done.
 */
if (tcnp->count == INT_COUNT)

tcnp->flags |= DONE;
}

}
D-8

E
Appendix EHSDE Example Programs

4
5
5

This appendix contains example programs that have been developed to illustrate use of the
high–speed data device, HSDE. The programs are written in C and demonstrate use of the
master–slave protocol described in "Using a Master–Slave Transfer Protocol" in
Chapter 12 to transfer files from a master high–speed data device to a slave high–speed
data device.

"HSDE Device Command and Status Definitions" contains a listing of the device com-
mand and status definitions. "HSDE Attach Routine" contains a listing of a routine that is
used by all example programs to attach virtual address space to a physically contiguous
high–speed data device (HSDE) I/O buffer. "Master HSDE Control Program" contains a
listing of the program that controls the master HSDE. Section "Slave HSDE Control Pro-
gram" contains a listing of the program that controls the slave HSDE.

"Master HSDE Data Chain Program" contains a listing of a simple program that demon-
strates the techniques for data chain operations with a master mode HSDE. "Slave HSDE
Data Chain Program" contains a listing of a simple program that demonstrates the tech-
niques for data chain operations with a slave mode HSDE.

"Master HSDE Command Chain Program" contains a listing of a simple program that
demonstrates the techniques for command chain operations with a master mode HSDE.
"Slave HSDE Command Chain Program" contains a listing of a simple program that dem-
onstrates the techniques for command chain operations with a slave mode HSDE.

HSDE Device Command and Status Definitions 5

/*

 * HSDE device command definitions:

 */

#define HSDE_PUT 1 /* Put a file from master to slave */

#define HSDE_EOF 2 /* End of file, transfer complete */

/* macro to roundup 'val' to next multiple of 'x',

 * where 'x' is a power of two (2).

 */

#define ROUNDUP(val, x) (((val)+((x)-1))&~((x)-1)) /* x is a power of 2! */
E-1

PowerMAX OS Real-Time Guide
HSDE Attach Routine 5

/*

 * hsde_attach -- attach to a physically contiguous hsde i/o buffer.

 *

 * Note: this routine assumes that a physically contiguous shared memory

 * segment has already been created with the following attributes:

 *

 * key = ftok(hsde)

 * size >= 'buf_size' bytes

 */

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

extern int errno;

char *

hsde_attach(char *hsde_name, int buf_size)

{

 int shm_key;

 int shm_id;

 char *shm_vaddr;

 /* Map the hsde file name into a unique IPC key */

 shm_key = ftok(hsde_name, 0);

 /* Get a shared mememoy identifier associated with shm_key */

 shm_id = shmget(shm_key, buf_size, SHM_R|SHM_W);

 if (shm_id < 0) {

 printf("hsde_attach: shmget() failed, errno = %d\n", errno);

 exit(1);

 }

 /* attach to the physically contiguous hsde i/o buffer */

 shm_vaddr = (char *)shmat(shm_id, 0, SHM_R | SHM_W);

 if ((int)shm_vaddr == -1) {

 printf("hsde_attach: shmat() failed, errno = %d\n", errno);

 exit(1);

 }

 /* return hsde i/o buffer address */

 return(shm_vaddr);

}

E-2

HSDE Example Programs
Master HSDE Control Program 5

/*

 * hsde_master_put -- Put a file across an hsde to hsde link.

 * NOTE: This program assumes that a longword transfer

 * is to be undertaken. Therefore, both the file

 * name and the file size must be multiples of the

 * size of a longword.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include "hsdeput_ex.h"

int hsde_fd; /* hsde file descriptor */

char *hsde_buf; /* pointer to hsde i/o buffer */

char *hsde_name = "/dev/hsde0"; /* hsde special file name */

extern int errno;

main()

{

 int file_fd; /* local file file descriptor */

 int hsde_bc; /* read/write byte count */

 int args; /* number of input arguments */

 int bc; /* byte count */

 configuration_block_t hsde_modes; /* hsde mode structure */

 hsde_iocb_t hsde_iocb; /* hsde i/o command block structure */

 char line[81]; /* line input buffer */

 char local_name[81]; /* local file name */

 u_long hsde_status; /* slave hsde status */

 /* Open the hsde */

 hsde_fd = open(hsde_name, O_RDWR);

 if (hsde_fd == -1) {

 perror("hsde open");

 exit(1);

 }

 /* Get and set the hsde configuration */

 if (ioctl(hsde_fd, HSDE_GET_MODE, &hsde_modes) == -1) {

 perror("ioctl HSDE_GET_MODE");

 exit(1);

 }

 hsde_modes.hsde_operation_mode = HSDE_MASTER;

 hsde_modes.hsde_data_path_width = HSDE_LONG;

 if (ioctl(hsde_fd, HSDE_SET_MODE, &hsde_modes) == -1) {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }
E-3

PowerMAX OS Real-Time Guide
 /* Attach to the hsde shared memory segment.

 * Use the HSDE common hsde_attach() routine.

 * This also assumes that the /etc/rc hsde shmconfig

 * entries have been established.

 */

 hsde_buf = (char *) hsde_attach(hsde_name, 0x40000);

main_loop:

 /* Prompt for local/remote filenames */

 printf("Local filename [Remote filename] ? ");

 if (gets(line) == NULL)

 exit(0);

 /* Scan in local and remote file names */

 args = sscanf(line, "%s %s", local_name, hsde_buf);

 if (args == 1)

 strcpy(hsde_buf, local_name);

 /* Open local file */

 file_fd = open(local_name, O_RDWR);

 if (file_fd == -1) {

 printf("hsde master: can not open %s.\n", local_name);

 goto main_loop;

 }

 /* Make sure slave hsde is connected */

 if (ioctl(hsde_fd, HSDE_STATUS, &hsde_status) == -1)

 {

 perror("ioctl HSDE_STATUS");

 exit(1);

 }

 hsde_iocb.i_opcode = HSDE_OP_COMMAND;

 hsde_iocb.i_info = 0;

 hsde_iocb.i_command = HSDE_PUT;

 if (ioctl(hsde_fd, HSDE_COMMAND, &hsde_iocb) == -1)

 {

 perror("ioctl HSDE_COMMAND");

 exit(1);

 }

 /*

 * Recall it is assumed a longword transfer is taking place; therefore,

 * strlen(hsde_buf)+1 (+1 for the string-termination character, '\0')

 * must be a multiple of a longword size

 */

 hsde_bc = ROUNDUP((strlen(hsde_buf)+1), HSDE_LONG);

 /* Send the file name to the slave hsde */

 if (write(hsde_fd, hsde_buf, hsde_bc) == -1)

 {

 fprintf(stderr, "write %d bytes failed (errno %d)\n", hsde_bc);

 perror("hsde file name write");
E-4

HSDE Example Programs
 exit(1);

 }

 /* Send file data */

 while ((bc = read(file_fd, hsde_buf, HSDE_MAXBC(&hsde_modes))) > 0) {

 /* Recall it is assumed a longword transfer is taking place;

 * therefore, the writes must be a multiple of a longword.

 * For this example, if the local file is not a multiple of

 * four (4) bytes, the remote file size will be rounded to

 * the a multiple of 4 bytes

 */

 hsde_bc = ROUNDUP(bc, HSDE_LONG);

 printf("read %d bytes, write %d bytes\n", bc, hsde_bc);

 fflush(stdout);

 if (write(hsde_fd, hsde_buf, hsde_bc) == -1)

 {

 fprintf(stderr,

 "write %d bytes failed (errno %d)\n",

 hsde_bc, errno);

 perror("hsde file write");

 exit(1);

 }

 }

 /* File transfer complete -- sync up with slave hsde and send */

 /* HSDE_EOF command */

 if (ioctl(hsde_fd, HSDE_STATUS, &hsde_status) == -1)

 {

 perror("ioctl HSDE_STATUS");

 exit(1);

 }

 hsde_iocb.i_opcode = HSDE_OP_COMMAND;

 hsde_iocb.i_info = 0;

 hsde_iocb.i_command = HSDE_EOF;

 if (ioctl(hsde_fd, HSDE_COMMAND, &hsde_iocb) == -1)

 {

 perror("ioctl HSDE_COMMAND");

 exit(1);

 }

 /* See if user wants to send another file */

 goto main_loop;

}

E-5

PowerMAX OS Real-Time Guide
Slave HSDE Control Program 5

/*

 * hsdeslaved -- hsde daemon process.

 *

 * Put hsde in slave mode and listen for HSDE_PUT requests.

 * NOTE: This program assumes that all operations will use

 * longword transfers.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include "hsdeput_ex.h"

int hsde_fd; /* hsde file descriptor */

char *hsde_buf; /* pointer to hsde i/o buffer */

char *hsde_name = "/dev/hsde1"; /* hsde special file name */

extern int errno;

main()

{

 int hsde_bc; /* read/write byte count */

 configuration_block_t hsde_modes; /* hsde mode structure */

 hsde_iocb_t hsde_iocb; /* hsde i/o command block structure */

 u_long hsde_status; /* hsde device status register value */

 /* Open the hsde */

 hsde_fd = open(hsde_name, O_RDWR);

 if (hsde_fd == -1)

 {

 printf("hsdeslaved: can not open %s.\n", hsde_name);

 exit(1);

 }

 /* Enable slave mode and set the transfer size to HSDE_LONG */

 if (ioctl(hsde_fd, HSDE_GET_MODE, &hsde_modes) < 0)

 {

 perror("ioctl HSDE_GET_MODE");

 exit(1);

 }

 hsde_modes.hsde_operation_mode = HSDE_SLAVE;

 hsde_modes.hsde_data_path_width = HSDE_LONG;

 if (ioctl(hsde_fd, HSDE_SET_MODE, &hsde_modes) < 0)

 {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }

 /* Attach to a physically contiguous hsde i/o buffer
E-6

HSDE Example Programs
 * using the HSDE common routine hsde_attach().

 * This also assumes that the /etc/rc hsde shmconfig

 * entries have been established.

 */

 hsde_buf = (char *)hsde_attach(hsde_name, 0x40000);

 /* loop forever, as daemons like to do */

 while (1) {

 /* Get the next command */

 if (ioctl(hsde_fd, HSDE_GET_CMD, &hsde_iocb) == -1)

 {

 perror("ioctl HSDE_GET_CMD");

 exit(1);

 }

 /* Process the command */

 switch(hsde_iocb.i_opcode) {

 case HSDE_OP_COMMAND:

 /* Process application specific command */

 if (hsde_iocb.i_command == HSDE_PUT) {

 hsde_put();

 break;

 }

 else

 /* fall through */

 default:

 printf("hsdeslaved: invalid command received.\n");

 break;

 }

 }

}

/*

 * hsde_put -- receive a file.

 */

hsde_put()

{

 hsde_iocb_t hsde_iocb;

 int bc;

 int file_fd;

 int eof;

 /* Get next command, should be a write command */

 if (ioctl(hsde_fd, HSDE_GET_CMD, &hsde_iocb) == -1)

 {

 perror("hsde_put: ioctl HSDE_GET_CMD");

 exit(1);

 }

 if (hsde_iocb.i_opcode != HSDE_OP_WRITE) {

 printf("hsde_put: write command expected.\n");

 return;
E-7

PowerMAX OS Real-Time Guide
 }

 /* Read target file name which has been placed into the hsde

 * reserved memory segment.

 * NOTE: Transfer count (i_tc) must be converted

 * to bytes for read() by multiplying

 * it by the transfer path width (i.e.,

 * in this case, longword).

 */

 if (read(hsde_fd, hsde_buf, (hsde_iocb.i_tc*HSDE_LONG)) < 0)

 {

 perror("hsde_put: read error");

 exit(1);

 }

 printf("hsde_put: create %s\n", hsde_buf);

 fflush(stdout);

 /* Create target file */

 file_fd = creat(hsde_buf, 0777);

 if (file_fd < 0)

 {

 perror("hsde_put: create");

 exit(1);

 }

 /* Receive file data */

 eof = 0;

 while (! eof) {

 /* Get next command, should be a write, or

 * HSDE_EOF device command

 */

 if (ioctl(hsde_fd, HSDE_GET_CMD, &hsde_iocb) == -1)

 {

 perror("hsde_put: ioctl HSDE_GET_CMD");

 exit(1);

 }

 switch (hsde_iocb.i_opcode) {

 case HSDE_OP_WRITE:

 /* read file data, and write it to target file */

 /* NOTE: Transfer count (i_tc) must be converted

 * to bytes for read/write by multiplying

 * it by the transfer path width (i.e.,

 * in this case, longword).

 */

 if (read(hsde_fd, hsde_buf,

 (hsde_iocb.i_tc * HSDE_LONG)) == -1)

 {

 perror("hsde_put: read");

 exit(1);

 }

 if (write(file_fd, hsde_buf,

 (hsde_iocb.i_tc*HSDE_LONG)) == -1)
E-8

HSDE Example Programs
 {

 perror("hsde_put: write");

 exit(1);

 }

 break;

 case HSDE_OP_COMMAND:

 if (hsde_iocb.i_command == HSDE_EOF) {

 /* end of file */

 printf("hsde_put: EOF\n");

 fflush(stdout);

 eof = 1;

 break;

 }

 else

 /* fall through */

 default:

 /* invalid command received, abort transfer */

 printf("hsde_put: put protocol violation.\n");

 eof = 1;

 }

 }

 /* close target file */

 close(file_fd);

}

Master HSDE Data Chain Program 5

/*

 * mdc - Master HSDE data chain test program.

 * Simple test program in which the master HSDE requests a block of

 * data from a slave HSD device. The slave will send the data as

 * a data chain of 3 buffers of 16 bytes each. Each buffer will

 * be filled with the letter 'A', 'B', and 'C' respectively.

 * This program operates in conjunction with the slave HSDE data

 * chain program "sdc.c".

 *

 * Execute: "mdc /dev/hsdeX" where X is the HSDE minor device number.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int hsde_fd;
E-9

PowerMAX OS Real-Time Guide
char *hsde_buf;

char *hsde_attach();

main(int argc, char **argv)

{

 configuration_block_t hsde_modes; /* HSDE configuration struct. */

 /* Open the HSDE device. */

 hsde_fd = open(argv[1], O_RDWR);

 if (hsde_fd == -1) {

 perror("open");

 exit(1);

 }

 /* Get and set the HSDE configuration. */

 if (ioctl(hsde_fd, HSDE_GET_MODE, &hsde_modes) < 0) {

 perror("ioctl HSDE_GET_MODE");

 exit(1);

 }

 hsde_modes.hsde_operation_mode = HSDE_MASTER;

 hsde_modes.hsde_data_path_width = HSDE_LONG;

 if (ioctl(hsde_fd, HSDE_SET_MODE, &hsde_modes) < 0) {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }

 /* Attach to the HSDE shared memory segment using the

 * HSDE common hsde_attach() routine. This also assumes

 * that the /etc/rc.d/hsde shmconfig entries have been

 * established.

 */

 hsde_buf = (char *) hsde_attach(argv[1], 0x40000);

 /* Clear out the shared memory segment. */

 bzero(hsde_buf, 64);

 /* Read from the slave HSD device. */

 if (read(hsde_fd, hsde_buf, 48) < 0) {

 perror("read");

 exit(1);

 }

 /* Display the data. */

 printf("Contents of hsde_buf:\n");

 printf("%s\n", hsde_buf);

 /* Close the HSDE device. */

 close(hsde_fd);

}

E-10

HSDE Example Programs
Slave HSDE Data Chain Program 5

/*

 * sdc - Slave HSDE data chain test program.

 * Slave will write a data chain to the remote HSDE master device.

 * This simple test program builds and initializes three buffers

 * in the slave HSDE's reserved shared memory segment. The buffers

 * are then pointed to by iovec structures within an array. This

 * array of iovec structures is then written to the HSDE slave.

 *

 * Execute: "sdc /dev/hsdeX" where X is the HSDE minor device number.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/uio.h>

char *hsde_attach();

int hsde_fd; /* HSDE file descriptor. */

char *hsde_buf; /* Pointer to the HSDE shared memory segment. (Also

 pointer to the first buffer in the segment.) */

char *hsde_buf2; /* Pointer to second buffer in shared memory segment.*\

/

char *hsde_buf3; /* Pointer to third buffer in shared memory segment. *\

/

/* Iovec array which constitutes the HSDE data chain. */

#define IOVEC_CNT 3

struct iovec iov[IOVEC_CNT];

main(int argc, char **argv)

{

 configuration_block_t hsde_config; /* HSDE configuration struct. */

 int err; /* System call return value. */

 int i; /* For loop counter variable. */

 char *bufptr; /* Pointer to data buffers. */

 /* Open the HSDE device. */

 hsde_fd = open(argv[1], O_RDWR);

 if (hsde_fd == -1) {

 perror("open");

 exit(1);

 }

 /* Get and set the HSDE configuration. */

 err = ioctl(hsde_fd, HSDE_GET_MODE, &hsde_config);

 if (err == -1)

 {

 perror("ioctl HSDE_GET_MODE");
E-11

PowerMAX OS Real-Time Guide
 exit(1);

 }

 hsde_config.hsde_operation_mode = HSDE_SLAVE;

 hsde_config.hsde_data_path_width = HSDE_LONG;

 err = ioctl(hsde_fd, HSDE_SET_MODE, &hsde_config);

 if (err == -1)

 {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }

 /* Attach to HSDE shared memory segment using the

 * HSDE common hsde_attach() routine.

 * This also assumes that the /etc/rc hsde shmconfig

 * entries have been established.

 */

 hsde_buf = (char *) hsde_attach(argv[1], 0x40000);

 /* Allocate data buffers in the shared memory segment. */

 hsde_buf2 = hsde_buf + 16;

 hsde_buf3 = hsde_buf2 + 16;

 /* Zero out a portion of the shared memory segment. */

 bzero(hsde_buf, 64);

 /* Initialize data buffers in the shared memory segment. */

 for (i = 0, bufptr = hsde_buf; i < 16; i++, bufptr++)

 *bufptr = 'A';

 for (i = 0, bufptr = hsde_buf2; i < 16; i++, bufptr++)

 *bufptr = 'B';

 for (i = 0, bufptr = hsde_buf3; i < 16; i++, bufptr++)

 *bufptr = 'C';

 /* Initialize the data chain. */

 iov[0].iov_base = (caddr_t)hsde_buf;

 iov[0].iov_len = 16;

 iov[1].iov_base = (caddr_t)hsde_buf2;

 iov[1].iov_len = 16;

 iov[2].iov_base = (caddr_t)hsde_buf3;

 iov[2].iov_len = 16;

 /* Send the data chain to the master. */

 hsde_send();

}

/*

 * hsde_send - Send the data chain to the master upon request.

 */

hsde_send()

{

 hsde_iocb_t hsde_iocb; /* IOCB received from master. */

 int err = 0; /* System call return value. */
E-12

HSDE Example Programs
 /* Await request from the master HSDE device. */

 err = ioctl(hsde_fd, HSDE_GET_CMD, &hsde_iocb);

 if (err == -1)

 {

 perror("ioctl HSDE_GET_CMD");

 exit(1);

 }

 /* Inspect IOCB received. Make sure it is a READ operation. */

 if ((hsde_iocb.i_opcode & HSDE_OP_MASK) != HSDE_OP_READ)

 {

 printf("slave: Received invalid request: %x\n",

 hsde_iocb.i_opcode);

 exit(1);

 }

 /* Send the iovec array containing the data chain. */

 err = writev(hsde_fd, iov, IOVEC_CNT);

 if (err < 0)

 {

 perror("writev");

 exit(1);

 }

}

Master HSDE Command Chain Program 5

/*

 * mcc.c - HSDE master mode command chain test.

 * This is a very simple command chain test. A command

 * chain is built in which an 8-byte file name is transferred to

 * the slave device. Within the chain, device status and commands

 * are added. A reserved shared memory segment is utilized by

 * the HSDE in which to place and transfer data. After one

 * execution of the command chain, the chain is reexecuted or

 * repeated 6 times. NOTE: This transfer utilizes a data

 * path width of LONG.

 *

 * Execute: "mcc /dev/hsdeX" where X is the HSDE minor device number.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include "hsdeput_ex.h"
E-13

PowerMAX OS Real-Time Guide
#define COUNT 6 /* Number of times to repeat command chain.

 * NOTE: See hsde(7) man page concerning the

 * repetition of command chains.

 */

int hsde_fd;

char *hsde_buf;

char *hsde_attach();

main(int argc, char **argv)

{

 configuration_block_t hsde_modes; /* HSDE configuration struct. */

 hsde_iocb_t hsde_iocb[5]; /* Command chain */

 int xfer_count = 0; /* # times chain is executed */

 int i; /* For loop counter variable */

 /* Open the HSDE device. */

 hsde_fd = open(argv[1], O_RDWR);

 if (hsde_fd < 0) {

 perror("open");

 exit(1);

 }

 /* Get and set the HSDE configuration. */

 if (ioctl(hsde_fd, HSDE_GET_MODE, &hsde_modes) < 0)

 {

 perror("ioctl HSDE_GET_MODE");

 exit(1);

 }

 hsde_modes.hsde_operation_mode = HSDE_MASTER;

 hsde_modes.hsde_data_path_width = HSDE_LONG;

 hsde_modes.enable_cmd_chain_mode = 1;

 if (ioctl(hsde_fd, HSDE_SET_MODE, &hsde_modes) < 0)

 {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }

 /* Attach to the reserved shared memory segment.

 * This also assumes that the /etc/rc hsde shmconfig

 * entries have been established.

 */

 hsde_buf = (char *) hsde_attach(argv[1], 0x40000);

 /* Place the file name in the shared memory segment. */

 strcpy(hsde_buf, "testfile");

 /* Initialize the command chain.

 * Note the HSDE_OP_CCHAIN usage.

 */

 hsde_iocb[0].i_opcode = HSDE_OP_STATUS | HSDE_OP_CCHAIN;

 hsde_iocb[0].i_info = 0;

 hsde_iocb[0].i_command = 0L;
E-14

HSDE Example Programs
 hsde_iocb[0].i_la = 0L;

 hsde_iocb[1].i_opcode = HSDE_OP_COMMAND | HSDE_OP_CCHAIN;

 hsde_iocb[1].i_info = 0;

 hsde_iocb[1].i_tc = 0;

 hsde_iocb[1].i_command = HSDE_PUT;

 hsde_iocb[1].i_la = 0L;

 hsde_iocb[2].i_opcode = HSDE_OP_WRITE | HSDE_OP_CCHAIN;

 hsde_iocb[2].i_info = 0;

 hsde_iocb[2].i_tc = 2;

 hsde_iocb[2].i_ta = (int)hsde_buf;

 hsde_iocb[2].i_la = 0L;

 hsde_iocb[3].i_opcode = HSDE_OP_STATUS | HSDE_OP_CCHAIN;

 hsde_iocb[3].i_info = 0;

 hsde_iocb[3].i_tc = 0;

 hsde_iocb[3].i_command = 0L;

 /* Note last IOCB in chain does not contain HSDE_OP_CCHAIN bit. */

 hsde_iocb[4].i_opcode = HSDE_OP_COMMAND;

 hsde_iocb[4].i_info = 0;

 hsde_iocb[4].i_tc = 0;

 hsde_iocb[4].i_command = HSDE_EOF;

 hsde_iocb[4].i_la = 0L;

loop:

 /* Write the chain to the HSDE device. */

 if ((xfer_count = write(hsde_fd, hsde_iocb, 5)) < 0) {

 perror("write");

 exit(1);

 } else

 printf("hsde performed %d commands in the chain.\n",

 xfer_count);

 /* Cycle or reexecute the chain COUNT times. */

 for(i = 0; i < COUNT; i++) {

 if (ioctl(hsde_fd, HSDE_CYCLE_CHAIN, 0) < 0) {

 perror("ioctl HSDE_CYCLE_CHAIN:\0");

 exit(1);

 } else

 printf("hsde performed cmd chain cycling.\n");

 }

 /* Continuously cycle the command chain. */

 printf("loop ? ");

 if ((i = getchar()) == 'y')

 goto loop;

}

E-15

PowerMAX OS Real-Time Guide
Slave HSDE Command Chain Program 5

/*

 * scc.c - Slave HSDE command chain test program.

 *

 * Execute: "scc /dev/hsdeX" where X is the HSDE minor device number.

 * This program runs in conjunction with the "mcc" or master

 * mode command chain program.

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/hsde.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include "hsdeput_ex.h"

char *hsde_attach();

int hsde_fd; /* File descriptor for HSDE device. */

char *hsde_buf; /* Pointer to physically contiguous shared memory segment. */

main(int argc, char **argv)

{

 configuration_block_t hsde_config; /* HSDE configuration struct. */

 hsde_iocb_t hsde_iocb; /* IOCB received from master. */

 int err; /* Ioctl return value. */

 /* Open the HSDE device. */

 hsde_fd = open(argv[1], O_RDWR);

 if (hsde_fd == -1) {

 perror("open");

 exit(1);

 }

 /* Get and set the HSDE configuration. */

 err = ioctl(hsde_fd, HSDE_GET_MODE, &hsde_config);

 if (err == -1)

 {

 perror("ioctl HSDE_GET_MODE");

 exit(1);

 }

 hsde_config.hsde_operation_mode = HSDE_SLAVE;

 hsde_config.hsde_data_path_width = HSDE_LONG;

 err = ioctl(hsde_fd, HSDE_SET_MODE, &hsde_config);

 if (err == -1)

 {

 perror("ioctl HSDE_SET_MODE");

 exit(1);

 }

 /* attach to shared memory.
E-16

HSDE Example Programs
 * This also assumes that the /etc/rc hsde shmconfig

 * entries have been established.

 */

 hsde_buf = (char *) hsde_attach(argv[1], 0x40000);

 while(1)

 {

 err = ioctl(hsde_fd, HSDE_GET_CMD, &hsde_iocb);

 if (err == -1)

 {

 perror("ioctl HSDE_GET_CMD");

 exit(1);

 }

 /* Remember to mask out the command chain bit when

 * reading the IOCB opcode.

 */

 switch(hsde_iocb.i_opcode & ~HSDE_OP_CCHAIN)

 {

 case HSDE_OP_COMMAND:

 if (hsde_iocb.i_command == HSDE_PUT)

 printf("HSDE_PUT command received.\n");

 else if (hsde_iocb.i_command == HSDE_EOF)

 printf(" HSDE_EOF command received.\n");

 else

 printf("Invalid command received: %x\n",

 hsde_iocb.i_command);

 break;

 case HSDE_OP_STATUS:

 printf("Status request received.\n");

 break;

 case HSDE_OP_WRITE:

 printf(" Write command received.\n");

 hsdeput(&hsde_iocb);

 break;

 default:

 printf("Invalid IOCB opcode received: %x\n",

 hsde_iocb.i_opcode);

 break;

 }

 }

}

/*

 * hsdeput - Receive a file name from the master HSDE.

 * Argument is an IOCB received from the master HSDE.

 */

hsdeput(hsde_iocb_t *iocbp)

{

 int err = 0; /* System call return value. */

 int i; /* For loop counter variable. */
E-17

PowerMAX OS Real-Time Guide
 int hsde_cnt; /* Byte count to be transferred. */

 char * hsde_buf_pt; /* Pointer to the HSDE shared

 memory. */

 /* Calculate byte count to be transferred from the master. */

 hsde_cnt = (iocbp->i_tc * HSDE_LONG);

 /* Zero out the HSDE shared memory buffer. (Optional) */

 bzero(hsde_buf, 1024);

 /* Initiate read operation with master side to receive data

 * into the shared memory buffer.

 */

 err = read(hsde_fd, hsde_buf, hsde_cnt);

 if (err < 0)

 {

 perror("read");

 exit(1);

 }

 /* Display name placed into shared memory buffer. */

 printf("hsde slave: File name received:\n");

 hsde_buf_pt = hsde_buf;

 for (i=0; i < hsde_cnt; i++)

 {

 printf("%c", *hsde_buf_pt);

 hsde_buf_pt++;

 }

 printf("\n");

}

E-18

Index
Numerics

1553 ABI user-level device driver
abi_attn_check 13-47
abi_attn_wait 13-47, 13-48
abi_close 13-48
abi_disable_interrupts 13-49
abi_dump 13-49
abi_enable_interrupts 13-50
abi_ienabled 13-51
abi_open 13-51
abi_pio_read 13-52
abi_pio_write 13-53
abi_reset 13-54
abiconfig 13-45
Configuration requirements 13-45
Library requirements 13-45

A

adjtime 7-3
aio_cancel 12-2, 12-16-12-17
aio_error 12-2, 12-16
aio_fsync 12-2-12-10, 12-19-12-20
aio_read 12-2, 12-11, 12-12
aio_return 12-2, 12-16
aio_suspend 12-2, 12-18, 12-19
aio_write 12-2, 12-13
Allocating an interrupt vector 8-7-8-12
Assigning daemons to CPUs 2-17
Assigning interrupts to CPUs 2-8
Assigning processes to CPUs 2-8
Asynchronous I/O 1-5, 12-1-12-25, 13-11, 13-20, 13-60

control block 12-2
Asynchronous Network I/O 14-1
Asynchronous notification

queued signals 9-1
signals 9-1

async-safe 5-10, 5-12

B

Bit mask 2-7
Blocked message-queue routine 5-2, 5-10-5-14
Busy-wait mutual exclusion 6-25-6-29
Busy-wait mutual exclusion macros 6-25-6-29

C

Changing a process’s priority 3-7
client_block system call 6-30-6-32
client_wake1 system call 6-30-6-32
client_wakechan system call 6-30, 6-32
Client-server coordination 6-29-6-38
Clock

ktrace 4-3
clock_getres 7-7
clock_gettime 7-5, 7-6
CLOCK_REALTIME 7-1, 7-3
clock_settime 7-3, 7-5
CLOCK_UNIX 7-1, 7-4
Clocks 7-1-7-8

querying 7-6, 7-7
setting 7-3

Condition synchronization tools 6-36-6-38
Configuring a Kernel for kernel tracing 4-1
Connecting to an interrupt vector 8-4
Contiguous files 11-3
Counting semaphores 1-4, 6-1-6-14
CPU bias 2-7
Creating Contiguous Files 11-3

D

date 7-3
Debugging an interrupt-handling routine 8-20-8-21
Defining an interrupt vector connection 8-7-8-10
Deleting a Virtual Interrupt Channel 9-6
Determinism 3-1, 3-5
Disabling rescheduling 6-22-6-24
Index-1

PowerMAX OS Real-Time Guide
Disabling servicing of the 60 Hz clock interrupt 2-14,
2-15

Disconnecting a user-level interrupt process 8-7-8-10,
8-16-8-17

Disk striping 11-5
Distributed Interrupt Device, Using 13-9
Distributed Interrupt Support Routines, Using 8-30
Distributed Interrupts, Understanding 13-10
DR11W emulator 1-5, 13-20, 13-60-13-62

Asynchronous I/O 13-60
Attaching a shared memory region 13-62
Binding a shared memory region to physical

memory 13-61
Creating a shared memory region 13-61
DMA mode 13-21
External device mode 13-21
Interprocessor link mode 13-21
Memory mapping 13-60-13-62
Obtaining identifier for a shared memory region

13-61
Reserving physical memory 13-60

DR11W user-level device driver 13-22-13-41
Application requirements 13-24
Compiling procedure 13-24
Configuration requirements 13-24
DR11W emulator 13-22
dr11w_acheck 13-25
dr11w_aread 13-27
dr11w_attn_check 13-28
dr11w_attn_wait 13-29
dr11w_await 13-29, 13-30
dr11w_awrite 13-30-13-31
dr11w_close 13-31, 13-32
dr11w_disable_interrupts 13-32
dr11w_dump 13-32, 13-33
dr11w_enable_interrupts 13-33
dr11w_get_modes 13-34
dr11w_get_status 13-34-13-35
dr11w_ienabled 13-35
dr11w_open 13-35, 13-36
dr11w_pio_read 13-37
dr11w_pio_write 13-38
dr11w_reset 13-38
dr11w_sendgo 13-39
dr11w_sendintr 13-39
dr11w_set_modes 13-40
dr11w_set_sdir 13-41
dr11w_set_status 13-41
dr11wconfig 13-24
Library requirements 13-24
Library routines 13-24-13-41
Linking procedure 13-24
Restrictions 13-22
udbufalloc 13-24

E

Edge-triggered interrupt device 13-8-13-9
User interface 13-9

Enabling an interrupt vector connection 8-15
Establishing a Source Connection 9-6
eti support routines 8-28-8-29
eti_map routine 8-28
eti_request macro 8-28-8-29
eti_request routine 8-28-8-29
eti_unmap routine 8-28
Event monitoring 9-3
Event word 9-3
Example

Using strmuxbias(1M) 2-22

F

fadvise(3) 11-4
fdatasync 11-6-11-8
Freeing an interrupt vector 8-7-8-10, 8-12, 8-16-8-17
Frequency-based scheduler 1-1
fsync 11-6-11-8

G

gettid system call 6-18
gettimeofday 7-3

H

hardclock 10-4-10-6
Hardclock interrupt 7-1
Hardclock interrupt handling 10-1-10-8

60 Hz clock interrupts 10-1-10-6
Affected commands 10-8
Affected system calls and routines 10-7, 10-8
mpadvise 10-4
run 10-5

hardclock routine 10-1
High performance serial controller 13-1, 13-54-13-59

ioctl commands 13-56-13-58
read system call 13-58
Real-time driver 13-54, 13-55
Real-time TTY ports 13-55
Standard TTY ports 13-55
write system call 13-58
Index-2

Index
High-resolution timeout facilities 1-2, 3-8
High-resolution timing facility 7-1, 7-4, 7-17-7-19
HIGHRESTIMING tunable parameter 7-17
High-speed data device 1-5
High-speed data enhanced device 13-11, 13-60, 13-61,

13-62
Attaching a shared memory region 13-62
Binding a shared memory region to physical

memory 13-61
Command chaining mode 13-11
Creating a shared memory region 13-61
Memory mapping 13-60, 13-61, 13-62
Obtaining identifier for a shared memory region

13-61
Reserving physical memory 13-60

hirestmode library routine 7-17-7-19
hrtconfig command 3-8

I

I_NBUFF 14-1-14-5
iconnect system call 8-7-8-12, 8-16, 8-17
ienable system call 8-15, 8-16, 8-17
Improving process dispatch latency 2-6, 2-7, 2-15, 2-17,

2-24
Increasing determinism 3-5, 3-6, 3-7, 3-8

Locking pages in memory 3-5
Setting the program priority 3-7
Using high-resolution timeout facilities 3-8
Using high-resolution timeout requests 3-9
Using local and global memory 3-6, 3-7

Input mapping 9-2
intconfig(1M) utility 2-10
Interprocess communications 5-1-5-19
Interprocess synchronization 6-1, 6-13, 6-16-6-38

Problems 6-1, 6-13, 6-16-6-17
Tools 6-1-6-38

Interrupt
hardclock 7-1

Interrupt-handling routine 8-1, 8-4
Constraints 8-19, 8-20
Debugging procedures 8-20, 8-21

Intertask notification
mechanisms 9-1

Interval timer 7-1, 7-2, 7-3, 7-4
intsrc lines 2-8
ioctl system call 13-56-13-58
IOCTLVECNUM ioctl system call 8-5, 8-6
IPC mechanisms 5-1
IPL (Interrupt Priority Level) 8-21, 8-23, 8-24, 8-25,

8-26, 8-27
itimerspec structure 7-2

K

Kernel Tracing
how to configure kernel 4-1

ktrace option
-clock (clock) 4-3

ktrace utility 4-1, 4-3, 4-4

L

lio_listio 12-2, 12-13, 12-14, 12-16
Locking pages in memory 3-5

M

Map index 9-2
Memory resident processes 1-3
Message priority 5-3, 5-11, 5-13
Message queues 5-1, A-1
Message-queue notification 5-6, 5-10, 5-13, 5-15, 5-17,

A-1
Modifying the interrupt vector table 8-7
mpadvise 10-4
mq_close 5-6, 5-16, A-1
mq_getattr 5-6, 5-16
mq_notify 5-6, 5-13, 5-15, A-1
mq_open 5-6, 5-9, 5-10, A-1
mq_receive 5-6, 5-12, 5-13, A-1
mq_send 5-6, 5-10, 5-11, A-1
mq_setattr 5-6, 5-15, 5-16
mq_unlink 5-6, 5-17, A-1
multithreading 12-7

N

nanosleep 3-8, 7-16, 7-17

O

Obtaining a thread identifier 6-18
Obtaining an interrupt vector 8-5, 8-6, 8-7, 8-10, 8-12
Obtaining the status of an interrupt vector 8-7, 8-8, 8-12,

8-13, 8-15
One-shot timer 7-1
Index-3

PowerMAX OS Real-Time Guide
P

P_RTIME privilege 7-18
P_SYSOPS privilege 7-3
PCSR 13-6, 13-7
Periodic timer 7-1
per-STREAM CPU Bias Mask

how to change 2-20
initialization of 2-19

Per-STREAM CPU Biasing 2-19
POSIX facilities

Asynchronous I/O 1-5, 12-10-12-20
Clocks and timers 7-1-7-17
Counting semaphores 1-4, 6-1-6-13
Memory locking 1-3
Message queues 5-1-5-19
Real-time signals 1-6
Synchronized I/O 11-6-11-8

POSIX routines
aio_cancel 12-2, 12-16, 12-17
aio_error 12-2, 12-16
aio_fsync 12-2-12-10, 12-19-12-20
aio_read 12-2, 12-11, 12-12
aio_return 12-2, 12-16
aio_suspend 12-2, 12-18, 12-19
aio_write 12-2, 12-12
clock_getres 7-7
clock_gettime 7-5, 7-6
clock_settime 7-3, 7-5
fdatasync 11-6-11-8
fsync 11-6-11-8
lio_listio 12-2, 12-13, 12-14, 12-16
mlock 1-3, 3-5
mlockall 1-3, 3-5
mq_close 5-6, 5-16
mq_getattr 5-6, 5-16
mq_notify 5-6, 5-13, 5-15
mq_open 5-6, 5-9, 5-10
mq_receive 5-6, 5-12, 5-13
mq_send 5-6, 5-10, 5-11
mq_setattr 5-6, 5-15, 5-16
mq_unlink 5-6, 5-17
munlock 1-3, 3-5
munlockall 1-3, 3-5
nanosleep 3-8, 7-16, 7-17
sem_close 6-5, 6-10
sem_destroy 6-5, 6-6, 6-7
sem_getvalue 6-5, 6-13
sem_init 6-2, 6-3, 6-5, 6-6
sem_open 6-5, 6-7
sem_post 6-2, 6-5, 6-13
sem_trywait 6-2, 6-5, 6-12, 6-13
sem_unlink 6-3, 6-5, 6-7, 6-10

sem_wait 6-2, 6-5, 6-12
sigqueue 1-6
sigtimedwait 1-6
sigwaitrt 1-6
timer_create 7-8, 7-12
timer_delete 7-12
timer_getoverrun 7-15
timer_gettime 7-14
timer_settime 7-13, 7-14

Priority
Message 5-3, 5-11, 5-13
Scheduling 5-3, 5-10, 5-12

Priority inheritance 6-17, 6-29, 6-32
Priority inversion 6-17
Privilege

P_RTIME 7-18
P_SYSOPS 7-3

Process dispatch latency 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7,
2-15, 2-17, 2-24, 3-1

Effect of interrupts 2-4, 2-5
Effect of IPL 2-2, 2-3, 2-4
Effect of user-level interrupts 2-24

Processor Control and Status Register 13-6
Processors interrupt priority level (IPL) 8-21, 8-23,

8-24, 8-25, 8-26, 8-27

R

RCIM 13-2
RCIM chain 13-2
read system call 13-58
Real-time clock 3-8, 13-2, 13-5
Real-Time Clocks and Interrupts Module 13-2
Real-time process synchronization tools 1-4
Real-time signals 1-2, 1-6
Re-enabling rescheduling 6-22, 6-23, 6-24
Remote Semaphore Queue 6-15
Remote Semaphores 6-3
remote_debug 6-7
Removing a Sense Connection 9-11
Removing a Source Channel 9-8
resched_cntl system call 6-19, 6-22, 6-23, 6-24
resched_lock macro 6-22, 6-23, 6-24
resched_nlocks macro 6-22, 6-23, 6-24
resched_unlock macro 6-22, 6-23, 6-24
Rescheduling control 6-18, 6-19, 6-22, 6-23, 6-24
Rescheduling control macros 6-22, 6-23, 6-24, 6-29
Rescheduling variable 6-18, 6-19
Resolution 7-7
rtc(7) 13-2
run 10-5
Index-4

Index
S

Scheduling priority 5-3, 5-10, 5-12
Selecting CPUs 2-17
Selecting Local Daemons 2-17
sem_close 6-5, 6-10
sem_destroy 6-5, 6-6, 6-7
sem_getvalue 6-5, 6-13
sem_init 6-2, 6-3, 6-5, 6-6
sem_open 6-5, 6-7
sem_post 6-2, 6-5, 6-13
sem_remote_timeout 6-5
sem_trywait 6-2, 6-5, 6-12, 6-13
sem_unlink 6-3, 6-5, 6-7, 6-10
sem_wait 6-2, 6-5, 6-12
Sense and Source Connections 9-2
Sense connection

types 9-2
Sense membership list 9-2
Sensing interrupts 9-2
server_block system call 6-33, 6-34, 6-35, 6-36, 6-37,

6-38
server_wake1 system call 6-33, 6-34, 6-35, 6-37, 6-38
server_wakevec system call 6-34, 6-35, 6-36
settimeofday 7-3
Setting Kernel Tunables 2-20
Shielded processor model 2-5, 2-6, 2-7, 2-15, 2-17
shmat 13-62
shmconfig 13-61
shmget 13-61
Signals 5-3, 5-14, 5-19, A-1
single threading and multithreading 12-7
Sleep

nanosleep 7-16
Sleepy-wait mutual exclusion tools 6-32, 6-33, 6-34,

6-35, 6-36, 6-37, 6-38
Source membership list 9-2
Sourcing interrupts 9-2
Spin lock 6-25, 6-27, 6-28, 6-29
Spin locks 5-3
spin_init macro 6-27
spin_islock macro 6-27, 6-28, 6-29
spin_trylock macro 6-27, 6-29
spin_unlock macro 6-27, 6-28, 6-29
spl support routines 8-23-8-27
spl_map routine 8-23, 8-24, 8-25, 8-26, 8-27
spl_request macro 8-23, 8-24, 8-26
spl_request routine 8-23, 8-24, 8-26
spl_unmap routine 8-23, 8-24, 8-25, 8-26, 8-27
stime 7-3
Striped virtual partition 11-5
Synchronized I/O 11-6, 11-7, 11-8
Synchronized I/O completion 11-6, 11-7, 12-10, 12-19-

12-20
Data integrity completion 11-6, 11-7
data integrity completion 12-10, 12-19-12-20
File integrity completion 11-6, 11-7
file integrity completion 12-10, 12-19-12-20

Synchronized I/O data integrity completion 11-6, 11-7,
12-10, 12-19-12-20

Synchronized I/O file integrity completion 11-6, 11-7,
12-10, 12-19-12-20

Synchronizing asynchronous I/O operations 12-20
Polling 12-20, 12-21, 12-24
Signal notification 12-20, 12-22, 12-23, 12-24,

12-25
syscx(2) 2-12
System calls

client_block 3-8
nice 3-7
plock 3-5
server_block 3-8
setpriority 3-7
shmctl 1-3, 3-5
userdma 1-3, 3-5

System timer channel 9-3

T

The action_t Structure 9-8
Threads 6-18
time 7-3
Timer channels 9-3
timer_create 7-8, 7-12
timer_delete 7-12
timer_getoverrun 7-15
timer_gettime 7-14
timer_settime 7-13, 7-14
Timers 7-1-7-17

creation 7-8
deletion 7-12
interval 7-1, 7-3
one-shot 7-1, 7-2
periodic 7-1, 7-2
querying 7-14, 7-15
resolution 7-7
setting 7-13

timespec structure 7-2

U

uistat utility 8-16, 8-17
Understanding the message queue attribute structure 5-5
Index-5

PowerMAX OS Real-Time Guide
User-level device drivers 2-24
User-level interrupt process 8-1, 8-4
User-level interrupt routines 2-24, 8-1-8-31

Using local memory 8-18
Using high-resolution timeout facilities 3-8
Using local and global memory 3-6, 3-7
Using the ktrace utility 4-1, 4-3, 4-4
Using the message queue library routines 5-6
Using user-level device drivers 2-24
Using user-level interrupt routines 2-24

V

Viewing user-level interrupt connections 8-16, 8-17
Virtual interrupt channel 9-2
Virtual Interrupt System 9-1
Virtual partition 11-5-11-6

Advantages 11-5
Disadvantages 11-6

VIS 9-1
command-level administration 9-1
interface 9-1
kernel/driver interface 9-3
user interface 9-3

vme_address routine 8-31

W

Watch-dog timer 8-1
Watch-Dog Timer Function 1-7, 13-6
write system call 13-58, 13-59
Index-6

Spine for 1” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
o

w
erM

A
X

 O
S

Real-Time
Guide

0890466

Progr

	Preface
	Contents
	Introduction
	Focus of Guide
	Real-Time Features of PowerMAX OS
	POSIX Real-Time Extension
	Shielded Processors
	Exclusive Binding
	Static Priority Scheduling
	Memory Resident Processes
	Memory Mapping and Data Sharing
	Real-Time Process Synchronization
	Message Queues
	Asynchronous Input/Output
	Direct Asynchronous I/O to Disk Partitions
	Synchronized I/O
	User-Level Interrupt Routines
	User-Level Device Drivers
	High-Resolution Timeout Facilities
	Real-Time Signal Behavior
	Watch-Dog Timer Function

	Improving Response Time
	Process Dispatch Latency
	Effect of IPL
	Effect of Interrupts

	The Shielded Processor Model
	Improving Process Dispatch Latency
	Assigning Processes to CPUs
	Assigning Process to CPUs Via Exclusive Binding
	Assigning Interrupts to CPUs
	Statically Configuring Interrupt Assignments
	Dynamically Modifying Interrupt Assignments
	Querying the Interrupt Configuration

	Hardclock Interrupt Handling
	Using Interrupt Daemons
	Assigning Daemons to CPUs
	Controlling STREAMS Scheduling
	Selecting CPUs and Local Daemons
	Per-STREAM CPU Biasing of Service Procedures

	User-Level Interrupt Routines
	User-Level Device Drivers
	Threads and Response Time

	Real-Time System Configuration Using Config

	Increasing Determinism
	Overview of Determinism
	Architectural Issues
	Reducing Contention for the System Bus

	Interprocessor Interrupts

	Procedures for Increasing Determinism
	Locking Pages in Memory
	Using Local and Global Memory
	Setting the Program Priority
	Using High-Resolution Timeout Facilities
	Waking Another Process

	Using the ktrace Utility
	Overview of ktrace
	Configuring a Kernel for Kernel Tracing
	Procedures for Using ktrace

	Real-Time Interprocess Communication
	Understanding Message Queue Concepts
	Understanding Basic Concepts
	Understanding Advanced Concepts
	Performance Issue
	Remote Message Queues

	Understanding Message Queue Library Routines
	Understanding the Message Queue Attribute Structure
	Using the Library Routines
	Using the mq_open Routine
	Using the mq_send Routine
	Using the mq_receive Routine
	Using the mq_notify Routine
	Using the mq_setattr Routine
	Using the mq_getattr Routine
	Using the mq_close Routine
	Using the mq_unlink Routine
	Using the mq_remote_timeout Routine

	Remote Message Queue Debugging

	Interprocess Synchronization
	Understanding POSIX Counting Semaphores
	Implementation Issue
	Performance Issue
	Remote Semaphores
	Interfaces
	Using the sem_init Routine
	Using the sem_destroy Routine
	Using the sem_open Routine
	Using the sem_close Routine
	Using the sem_unlink Routine
	Using the sem_wait Routine
	Using the sem_trywait Routine
	Using the sem_post Routine
	Using the sem_getvalue Routine
	Using the sem_remote_timeout Routine

	Remote Semaphore Debugging

	Understanding Synchronization Problems
	Using Interprocess Synchronization Tools
	Rescheduling Control
	Understanding Rescheduling Variables
	Using the resched_cntl System Call
	Using the Rescheduling Control Macros
	Applying Rescheduling Control Tools
	Rescheduling Variables and Ada
	Rescheduling Variables and Processor Migration

	Busy-Wait Mutual Exclusion
	Understanding the Busy-Wait Mutual Exclusion Variable
	Using the Busy-Wait Mutual Exclusion Macros
	Applying Busy-Wait Mutual Exclusion Tools

	Client-Server Coordination
	Using the Client System Calls
	Constructing Sleepy-Wait Mutual Exclusion Tools
	Using the Server System Calls
	Applying Condition Synchronization Tools

	Timing Facilities
	Understanding POSIX Clocks and Timers
	Understanding the Time Structures
	Using the Clock Routines
	Using the clock_settime Routine
	Using the clock_gettime Routine
	Using the clock_getres Routine

	Using the Timer Routines
	Using the timer_create Routine
	Using the timer_delete Routine
	Using the timer_settime Routine
	Using the timer_gettime Routine
	Using the timer_getoverrun Routine

	Using the nanosleep Routine

	Using the High-Resolution Timing Facility
	Overview of the High-Resolution Timing Facility
	Using the hirestmode Library Routine

	User-Level Interrupt Routines
	Overview of User-Level Interrupt Routines
	Configuration Requirements
	Operating System Support

	Connecting to an Interrupt Vector
	Obtaining an Interrupt Vector
	Using the IOCTLVECNUM ioctl System Call
	Modifying the Interrupt Vector Table

	Using the iconnect Library Routine
	Defining an Interrupt Vector Connection
	Disconnecting a Process from an Interrupt Vector
	Allocating Interrupt Vectors
	Obtaining the Status of Interrupt Vectors

	Locking Library Memory Pages
	Using the ienable Library Routine

	Viewing User-Level Interrupt Connections
	Using Local Memory
	Interrupt-Handling Routine Constraints
	Debugging the Interrupt-Handling Routine
	Understanding the Processor IPL
	Using the spl Support Routines
	Using the spl_map Routine
	Using the spl_request Routine
	Using the spl_request_macro
	Using the spl_unmap Routine

	Using the eti Support Routines
	Using the eti_map Routine
	Using the eti_request Routine
	Using the eti_unmap Routine

	Using the Distributed Interrupt Support Routines
	Using the vme_address Routine

	Virtual Interrupt System
	Introduction
	Understanding VIS Signals and Queued Signals

	VIS Overview
	The Channel
	Sense and Source Connections

	System Timer Channel
	Connecting to a Timer Channel with vi_sense(2)

	VIS Calls and Routines
	VIS Interface-Procedural Overview
	Creating a Virtual Interrupt Channel
	Deleting a Virtual Interrupt Channel
	Establishing a Source Connection
	Sourcing an Interrupt
	Removing a Source Channel
	The action_t Structure
	Allocating and Initializing an action_t Structure
	Establishing a Sense Connection
	Removing a Sense Connection
	VIS Control Operations

	Command-Level VIS Administration

	Hardclock Interrupt Handling
	Understanding Hardclock
	Controlling Clock Interrupt Handling
	Controlling System-Wide Timing Functions
	Controlling Local Timing Functions
	Using the mpadvise Library Routine
	Using the hardclock Command

	Understanding Functional Changes
	The Process Scheduler
	The Processor File System
	System Calls, Routines, Commands, and Utilities

	Disk I/O
	Direct Disk I/O
	Contiguous Files
	Creating Contiguous Files
	I/O With Contiguous Files

	File Advisories
	fadvise(3X)

	Virtual Partition
	Understanding POSIX Synchronized I/O
	Configuring POSIX Synchronized I/O
	Using POSIX Synchronized I/O
	Using open and fcntl
	Using fdatasync
	Using fsync

	Real-Time Disk Scheduling
	Miscellaneous Disk I/O Tunables

	Real-Time I/O
	Overview of Asynchronous I/O
	Using Asynchronous I/O
	The Asynchronous I/O Control Block
	Threads-Based Asynchronous I/O
	Asynchronous I/O to Raw Disk Partitions
	The aio_alignment Routine
	The aio_memlock Routine

	Using the POSIX Asynchronous I/O Interfaces
	The aio_read Routine
	The aio_write Routine
	The lio_listio Routine
	The aio_error and aio_return Routines
	The aio_cancel Routine
	The aio_suspend Routine
	The aio_fsync Routine

	Using Notification Mechanisms
	Polling
	Call-Back Notification
	Signal Notification

	Using a Real-Time Clock
	Understanding the Real-Time Clock Device
	Understanding the User Interface
	Watch-Dog Timer Function

	Using an Edge-Triggered Interrupt Device
	Understanding the Edge-Triggered Interrupt Device
	Understanding the User Interface

	Using a Distributed Interrupt Device
	Understanding Distributed Interrupts
	Understanding the User Interface

	Using the High-Speed Data Enhanced Device (HSDE)
	Understanding the High-Speed Data Enhanced (HSDE) Device
	Understanding the HSDE User Interface
	Using a Master-Slave Transfer Protocol
	Using the HSDE Command Chaining Mode
	Using the HSDE Data Chaining Mode

	Using a DR11W Emulator
	Understanding the DR11W Emulator
	Understanding the DR11W User-Level Device Driver
	Configuration and Installation Requirements
	Understanding the User Interface
	Application Requirements
	Compiling and Linking Procedures

	Using the Driver Routines
	dr11w_acheck
	dr11w_aread
	dr11w_attn_check
	dr11w_attn_wait
	dr11w_await
	dr11w_awrite
	dr11w_close
	dr11w_disable_interrupts
	dr11w_dump
	dr11w_enable_interrupts
	dr11w_get_modes
	dr11w_get_status
	dr11w_ienabled
	dr11w_open
	dr11w_pio_read
	dr11w_pio_write
	dr11w_reset
	dr11w_sendgo
	dr11w_sendintr
	dr11w_set_modes
	dr11w_setsdir
	dr11w_set_status

	Using the 1553 Advanced Bus Interface
	Understanding the 1553 Advanced Bus Interface
	Understanding the User Interface
	Using the 1553 ABI User-Level Device Driver
	Configuration and Installation Requirements
	Application Requirements
	Compiling and Linking Procedures

	Using the 1553 ABI User-Level Driver Routines
	abi_attn_check
	abi_attn_wait
	abi_close
	abi_disable_interrupts
	abi_dump
	abi_enable_interrupts
	abi_ienabled
	abi_open
	abi_pio_read
	abi_pio_write
	abi_reset

	Using Real-Time Serial Communications
	Understanding the HPS Controller
	Configuration and Installation Requirements
	Understanding the User Interface
	Using the Ioctl System Call
	Using Read and Write System Calls

	Optimizing the Performance of Real-Time TTY Devices

	Memory Mapping for HSDE and DR11W
	Reserving Physical Memory
	Binding a Shared Memory Segment to Physical Memory
	Obtaining an Identifier for a Shared Memory Segment
	Attaching a Shared Memory Segment

	STREAMS Network Buffers
	Overview
	System Call
	Understanding the Network Buffer Information Structure
	Understanding the Network Buffer Commands
	Understanding Network Buffer Types
	Example of a System Call
	Example of Double-Buffering

	Kernel Tunables

	Controlling Periodic Kernel Daemons
	Understanding Kernel Daemons
	Enabling and Disabling Periodic Kernel Daemons
	Daemoncntl
	Description of Periodic Kernel Daemons

	Example Program - Message Queues
	Example Program - Synchronization Tools
	Example 1 - User-Level Interrupt Routines
	Example 2 - User-Level Interrupt Routines
	HSDE Example Programs
	HSDE Device Command and Status Definitions
	HSDE Attach Routine
	Master HSDE Control Program
	Slave HSDE Control Program
	Master HSDE Data Chain Program
	Slave HSDE Data Chain Program
	Master HSDE Command Chain Program
	Slave HSDE Command Chain Program

	Index

