
PowerMAX OS Guide to Real-Time Services

0890479-110

   November 2004



Copyright 2004 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be repro-
duced in any form without the written permission of the publisher. 

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document. 

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069. Mark the envelope “Attention: Publications Department.” This
publication may not be reproduced for any other reason in any form without written permission of the publisher.

UNIX is a registered trademark of the Open Group.
Night Hawk is a registered trademarks of Concurrent Computer Corporation.
MAXAda, PowerMAX OS, Power Hawk, TurboHawk and PowerMAXION are trademarks 
 of Concurrent Computer Corporation. 
NightSim is a trademark of Concurrent Computer Corporation. 
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. 

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- November 1995 000 PowerUX Release 2.1.1

Previous  Release-- August 2001 090 PowerMAX OS Release 5.1

Previous  Release-- August 2003 100 PowerMAX OS Release 6.0/6.1

Current  Release -- November 2004 110 PowerMAX OS Release 6.2



Preface

Scope of Manual

This manual provides an overview of the real-time services provided by the frequency-
based scheduler and the performance monitor.  It explains how to use the associated real-
time command processor and library routines.  It also describes the data monitoring ser-
vices.    

Structure of Manual

This manual consists of eight chapters, four appendixes, a glossary, and an index.  A brief
description of the chapters and appendixes is presented as follows:

• Chapter 1 provides an introduction to this guide and an overview of the
real-time services.

• Chapter 2 provides an overview of the frequency–based scheduler. 

• Chapter 3 explains how to use a real-time clock, an edge-triggered inter-
rupt, and a user-supplied real-time device as the timing source for a fre-
quency-based scheduler.  

• Chapter 4 provides an overview of the performance monitor.  

• Chapter 5 explains the procedures for using the real–time command pro-
cessor, rtcp, and provides reference information for each of its com-
mands.  

• Chapter 6 describes the subprograms included in the RT_Interface
package.  

• Chapter 7 describes the routines included in the real–time library for C,
/usr/lib/librt.a.  

• Chapter 8 describes the subroutines included in the real–time library for
FORTRAN, /usr/lib/libF77rt.a.  

• Appendix A contains an example rtcp script.  

• Appendix B provides explanations of the errors that may be reported by
rtcp.

• Appendix C contains an example program that shows how to use the C
library interface to the frequency–based scheduler and the performance
monitor. 

The glossary contains definitions of technical terms that are important to understanding
the concepts presented in this book.
iii



PowerMAX OS Guide to Real-Time Services
The index contains an alphabetical reference to key terms and concepts and numbers of
pages where they occur in the text.

Syntax Notation

The following notation is used throughout this manual: 

italic Books, reference cards, and items that the user must specify
appear in italic type.  Special terms may also appear in italics.

list bold User input appears in list bold type and must be entered
exactly as shown.  Names of directories, files, commands, options
and system manual page references also appear in list bold
type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appear in list type.

[  ] Brackets enclose command options and arguments that are
optional.  You do not type the brackets if you choose to specify
such options or arguments

Referenced Publications

The following publications are referenced in this document:

0890429 System Administration Manual Volume 1

0890430 System Administration Manual Volume 2

0890466 PowerMAX OS Real-Time Guide

0890423 PowerMAX OS Programming Guide

0890428 User’s Guide

0890497 C/C++ Reference Manual

0890516 MAXAda Reference Manual

0890240 hf77 Fortran Reference Manual
iv



Chapter 0

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1   Introduction

Focus of Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Frequency-Based Scheduler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Performance Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Chapter 2   Overview of the FBS

What Is the Frequency–Based Scheduler?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
How Is Scheduler Frequency Defined? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
How Are Processes Scheduled? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Tolerating Frame Overruns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Installation and Configuration Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Coupled FBS Timing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

User Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Rtcp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
NightSim  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Debugging FBS–Scheduled Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Integrity of the Coupled FBS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Chapter 3     Timing Sources for an FBS

Using a Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Understanding the Real–Time Clock Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Watch-Dog Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
General Procedures for Using a Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . 3-6

Using an Edge-Triggered Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Understanding the Edge–Triggered Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Using a User–Supplied Real–Time Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Specifying the Ioctl Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Using a Coupled FBS Timing Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Device Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Understanding Coupled FBS Timing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
The Remote Device File System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Scheduler Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Using RCIM Edge-Triggered Interrupts and Real-Time Clocks . . . . . . . . . . . . 3-15

As a Local Timing Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
As a Coupled FBS Timing Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Configurations with Limited RCIM Hardware . . . . . . . . . . . . . . . . . . . . . . 3-17
v



PowerMAX OS Guide to Real-Time Services
As a Distributed Interrupt Device Without Coupled FBS Support . . . . . . . 3-18
The FBS Daemon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Coupled FBS Timing Device Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Failed Registrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Existing Device Registration Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Unregistration of a Coupled FBS Timing Device. . . . . . . . . . . . . . . . . . . . . . . . 3-20

Chapter 4   Overview of the Performance Monitor

What Is the Performance Monitor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
What Values Are Monitored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Monitoring Idle and Spare Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

How Is Idle Time Monitored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
How Is Spare Time Monitored?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Optimizing the Performance of a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Monitoring Unscheduled Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Installation and Configuration Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Rtcp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
NightSim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Chapter 5   Using Rtcp

What Is the Real–Time Command Processor?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
What Are the Modes of Execution?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Using Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Using Interactive Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Getting Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Using Rtcp Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Ats – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Chs – Change Permissions for an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Cs – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Dts – Detach Timing Source from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Rms – Remove an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Svs – Save Scheduler Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Vc – View Minor Cycle/Major Frame Count . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Vs – View Scheduler Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Rc – Start Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Sc – Stop Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Stc – Set Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Gtc – Display Real–Time Clock Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
Start – Start Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Resume – Resume Scheduling on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Stop – Stop Scheduling on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Rmp – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Rsp – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
Sp – Schedule a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Vp – View Processes on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34
Cpm – Clear Performance Monitor Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Pm – Start/Stop Performance Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
Vcm – View/Modify Performance Monitor Timing Mode. . . . . . . . . . . . . . . . . 5-40
vi



Vpm – View Performance Monitor Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
Ex – Exit Real–Time Command Processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
He – Display Help Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Rd - Register a Coupled FBS Timing Device  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47
Urd - Unregister a Coupled FBS timing device . . . . . . . . . . . . . . . . . . . . . . . . . 5-48
Vr - View a Rdevfs File Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49
Reg –  Register a Closely-Coupled Timing Device . . . . . . . . . . . . . . . . . . . . . . 5-51
Unreg – Unregister Closely-Coupled Timing Device  . . . . . . . . . . . . . . . . . . . . 5-51

Chapter 6   The Ada Interfaces to RT Services

The RT_Interface Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
The FBS Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

FBS_Access – Change Permissions for an FBS . . . . . . . . . . . . . . . . . . . . . 6-2
FBS_Attach – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . 6-5
FBS_Configure – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
FBS_Cycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . 6-10
FBS_Detach – Detach Timing Source from an FBS. . . . . . . . . . . . . . . . . . 6-12
FBS_Getrtc – Obtain Current Values for Real–Time Clock . . . . . . . . . . . . 6-12
FBS_Id – Return the FBS Identifier for a Key . . . . . . . . . . . . . . . . . . . . . . 6-14
FBS_Info – Return Information for an FBS . . . . . . . . . . . . . . . . . . . . . . . . 6-15
FBS_Intrpt – Start/Stop/Resume Scheduling on an FBS . . . . . . . . . . . . . . 6-17
FBS_Query – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
FBS_Remove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
FBS_Resume - Resume Scheduling on an FBS . . . . . . . . . . . . . . . . . . . . . 6-23
FBS_Runrtc – Start/Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . 6-25
FBS_Sched_Self - Schedule an Ada Task on an FBS  . . . . . . . . . . . . . . . . 6-26
FBS_Setrtc – Set Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
FBS_Wait – Wait on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31
PGM_Query – Query a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . 6-32
PGM_Remove – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . 6-35
PGM_Reschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . 6-38
PGM_Schedule – Schedule a Process on an FBS  . . . . . . . . . . . . . . . . . . . 6-42
PGM_Stat – Query State of FBS–Scheduled Process. . . . . . . . . . . . . . . . . 6-46
PGM_Trigger – Trigger Process Waiting on FBS. . . . . . . . . . . . . . . . . . . . 6-48
RT_Param – Return Initiation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49
Sched_FBS_Query   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49
Sched_PGM_Add   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-52
Sched_PGM_Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56
Sched_PGM_Reschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-59

Name_To_Pid – Obtain Process Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-64
The Performance Monitor Subprograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-65

PM_Clrpgm – Clear Values for a Process. . . . . . . . . . . . . . . . . . . . . . . . . . 6-66
PM_Clrtable – Clear Values for Processor(s) . . . . . . . . . . . . . . . . . . . . . . . 6-69
PM_Monitor – Start/Stop Performance Monitoring on Processor(s) . . . . . 6-70
PM_Program – Start/Stop Performance Monitoring on a Process . . . . . . . 6-71
PM_Query_cpu – Query Values for Selected Processor(s). . . . . . . . . . . . . 6-74
PM_Query_list – Query Values for a List of Processes  . . . . . . . . . . . . . . . 6-77
PM_Query_pgm – Query Values for a Selected Process  . . . . . . . . . . . . . . 6-80
PM_Querytimer – Query Performance Monitor Mode. . . . . . . . . . . . . . . . 6-83
PM_Select – Select Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . 6-83

Compiling and Linking Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-84
vii



PowerMAX OS Guide to Real-Time Services
Chapter 7   The C Library Interface

The FBS Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fbsaccess – Change Permissions for an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Fbsattach – Attach Timing Source to an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Fbsconfigure – Configure an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Fbscycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . . . . . . . 7-9
Fbsdetach – Detach Timing Source from an FBS  . . . . . . . . . . . . . . . . . . . . . . . 7-10
Fbsgetrtc – Obtain Current Values for Real–Time Clock . . . . . . . . . . . . . . . . . . 7-11
Fbsid – Return the FBS Identifier for a Key. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Fbsinfo – Return Information for an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Fbsinfo_rdev - Return rdevfs timing device information . . . . . . . . . . . . . . . . . . 7-15
Fbsinfo_cluster - Return cluster information for an FBS . . . . . . . . . . . . . . . . . . 7-17
Fbsintrpt – Start/Stop/Resume Scheduling on an FBS . . . . . . . . . . . . . . . . . . . . 7-19
Fbsquery – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Fbsremove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Fbsresume – Resume Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
Fbsrunrtc – Start/Stop Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Fbsschedself – Schedule an LWP on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Fbssetrtc – Set Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Fbswait – Wait on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30
Fbs_register_rdev - Register Coupled FBS Timing Device . . . . . . . . . . . . . . . . 7-31
Fbs_unregister_rdev - Unregister a Coupled FBS Timing Device . . . . . . . . . . . 7-33
Fbs_register_cluster_device - Register Cluster Timing Source . . . . . . . . . . . . . 7-33
Fbs_unregister_cluster_device - Unregister Cluster Timing Source  . . . . . . . . . 7-35
Pgmquery – Query a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-36
Pgmremove – Remove a Process from an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 7-39
Pgmreschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Pgmschedule – Schedule a Process on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . 7-45
Pgmtrigger – Trigger Process Waiting on FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 7-49
Sched_fbsqry – Query Processes on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-49
Sched_pgmadd – Schedule a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . 7-52
Sched_pgm_set_soft_overrun_limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56
Sched_pgm_soft_overrun_query  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Sched_pgmqry – Query a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Sched_pgmresched – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-60

The Performance Monitor Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-65
Pmclrpgm – Clear Values for a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-66
Pmclrtable – Clear Values for Processor(s)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-67
Pmmonitor – Start/Stop Performance Monitoring on Processor(s)  . . . . . . . . . . 7-69
Pmprogram – Start/Stop Performance Monitoring on a Process  . . . . . . . . . . . . 7-70
Pmqrycpu – Query Values for Selected Processor(s) . . . . . . . . . . . . . . . . . . . . . 7-72
Pmqrylist – Query Values for a List of Processes. . . . . . . . . . . . . . . . . . . . . . . . 7-75
Pmqrypgm – Query Values for a Selected Process. . . . . . . . . . . . . . . . . . . . . . . 7-78
Pmqrytimer – Query Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . 7-81
Pmselect – Select Performance Monitor Mode  . . . . . . . . . . . . . . . . . . . . . . . . . 7-82

Compiling and Linking Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-83

Chapter 8   The FORTRAN Library Interface

The FBS Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Fbsaccess – Change Permissions for an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Fbsattach – Attach Timing Source to an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Fbsconfigure – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
viii



Fbscycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . . . . . . . 8-9
Fbsdetach – Detach Timing Source from an FBS  . . . . . . . . . . . . . . . . . . . . . . . 8-10
Fbsgetrtc – Obtain Current Values for Real–Time Clock. . . . . . . . . . . . . . . . . . 8-10
Fbsid – Return the FBS Identifier for a Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12
Fbsinfo – Return Information for an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13
Fbsinfo_rdev - Return Coupled FBS timing device information . . . . . . . . . . . . 8-14
Fbsinfo_cluster - Return cluster information for an FBS. . . . . . . . . . . . . . . . . . 8-17
Fbsintrpt – Start/Stop/Resume Scheduling on an FBS. . . . . . . . . . . . . . . . . . . . 8-18
Fbsquery – Query Processes on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
Fbsremove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22
Fbsresume – Resume Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24
Fbsrunrtc – Start/Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26
Fbsschedself – Schedule an LWP on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-27
Fbssetrtc – Set Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30
Fbswait – Wait on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31
Fbs_register_rdev - Register Coupled FBS Timing Device. . . . . . . . . . . . . . . . 8-31
Fbs_unregister_rdev - Unregister a Coupled FBS timing device. . . . . . . . . . . . 8-33
Fbs_register_cluster_device - Register cluster timing device . . . . . . . . . . . . . . 8-34
Fbs_unregister_cluster_device - Unregister cluster timing device  . . . . . . . . . . 8-35
Pgmquery – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Pgmquery – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Pgmremove – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . 8-39
Pgmreschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-41
Pgmschedule – Schedule a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 8-45
Pgmstat – Query State of FBS–Scheduled Process . . . . . . . . . . . . . . . . . . . . . . 8-48
Pgmtrigger – Trigger Process Waiting on FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 8-51
Rtparm – Return Initiation Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-52
Sched_pgm_set_soft_overrun_limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-52
Sched_pgm_soft_overrun_query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-53
Schedfbsqry – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-54
Schedpgmadd – Schedule a Process on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . 8-57
Schedpgmqry – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-60
Schedpgmresched – Reschedule a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-63

The Performance Monitor Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-67
Pmclrpgm – Clear Values for a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-69
Pmclrtable – Clear Values for Processor(s)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-71
Pmmonitor – Start/Stop Performance Monitoring on Processor(s) . . . . . . . . . . 8-72
Pmprogram – Start/Stop Performance Monitoring on a Process . . . . . . . . . . . . 8-74
Pmqrycpu – Query Values for Selected Processor(s) . . . . . . . . . . . . . . . . . . . . . 8-76
Pmqrylist – Query Values for a List of Processes  . . . . . . . . . . . . . . . . . . . . . . . 8-78
Pmqrypgm – Query Values for a Selected Process  . . . . . . . . . . . . . . . . . . . . . . 8-81
Pmquerytimer – Query Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . . 8-84
Pmselect – Select Performance Monitor Mode  . . . . . . . . . . . . . . . . . . . . . . . . . 8-85

Compiling and Linking Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-86

Appendix A   Example Rtcp Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

Appendix B   Rtcp Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

Appendix C   Example:  C Interface to the FBS and PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glossary-1

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index-1
ix



PowerMAX OS Guide to Real-Time Services
List of Screens

Screen 5-1. Displaying Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Screen 5-2. Displaying the First Screen of Arguments . . . . . . . . . . . . . . . . . . . . . . . 5-6
Screen 5-3. Displaying the Second Screen of Arguments  . . . . . . . . . . . . . . . . . . . . 5-7
Screen 5-4. Output from the he Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46
Screen 5-5. Output from the he option Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47

List of Illustrations

Figure 5-1.  FBS Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Figure 5-2.  Performance Monitor Command Sequence . . . . . . . . . . . . . . . . . . . . . . 5-9
Figure 6-1.  Ada Subprogram Call Sequence:  FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Figure 6-2.  Ada Subprogram Call Sequence:  Performance Monitor. . . . . . . . . . . . 6-66
Figure 7-1.  C Library Call Sequence:  FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Figure 7-2.  C Library Call Sequence:  Performance Monitor. . . . . . . . . . . . . . . . . . 7-65
Figure 8-1.  FORTRAN Library Call Sequence:  FBS  . . . . . . . . . . . . . . . . . . . . . . . 8-2
Figure 8-2.  FORTRAN Library Call Sequence:  Performance Monitor. . . . . . . . . . 8-68

List of Tables

Table 2-1.  Process Scheduling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Table 2-2.  Scheduler Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Table 2-3.  Scheduling Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 2-4.  Obsolete Interfaces    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Table 3-1.  Tasks, Commands, and Routines Related to Steps  . . . . . . . . . . . . . . . . . 3-7
Table 5-1.  Real–Time Processor Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Table 6-1.  Reset Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Table 6-2.  Contents of buf Record Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Table 6-3.  Intrpt_flag Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
Table 6-4.  CPU Options:  FBS_Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
Table 6-5.  Contents of buffer Record Components for a Process. . . . . . . . . . . . . . . 6-21
Table 6-6.  Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Table 6-7.  Contents of buffer Record Components for a Process . . . . . . . . . . . . . . 6-28
Table 6-8.  Istat Values: FBS_Wait  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Table 6-9.  CPU Options:  PGM_Query  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34
Table 6-10.  CPU Options:  PGM_Remove. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37
Table 6-11.  CPU Options: PGM_Reschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40
Table 6-12.  CPU Options:  PGM_Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-45
Table 6-13.  CPU Options:  PGM_Stat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47
Table 6-15.  Contents of buffer Record Components for a Process . . . . . . . . . . . . . 6-51
Table 6-14.  CPU Options:  Sched_FBS_Query  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-51
Table 6-16.  CPU Options: Sched_PGM_Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55
Table 6-17.  CPU Options:  Sched_PGM_Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-58
Table 6-18.  CPU Options:  Sched_PGM_Reschedule  . . . . . . . . . . . . . . . . . . . . . . . 6-62
Table 6-19.  CPU Options:  Name_To_Pid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-65
Table 6-20.  CPU Options:  PM_Clrpgm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-68
Table 6-21.  CPU Options:  PM_Clrtable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69
Table 6-22.  CPU Options:  PM_Monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-71
Table 6-23.  CPU Options:  PM_Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-73
Table 6-24.  CPU Options:  PM_Query_cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-75
Table 6-25.  Contents of buffer Record Components: PM_Query_cpu. . . . . . . . . . . 6-76
Table 6-26.  Contents of buffer Record Components: PM_Query_list . . . . . . . . . . . 6-78
x



Table 6-27.  CPU Options:  PM_Query_pgm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-81
Table 6-28.  Contents of buffer Record Components: PM_Query_pgm . . . . . . . . . . 6-82
Table 7-1.  FBS Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Table 7-2.  Contents of Structure Components: fbsconfigure  . . . . . . . . . . . . . . . . . 7-7
Table 7-3.  Contents of Structure Components: fbsconfigure   . . . . . . . . . . . . . . . . 7-9
Table 7-4.  Contents of Structure Components:  fbsinfo . . . . . . . . . . . . . . . . . . . . . . 7-14
Table 7-5.  Contents of Structure Components:  fbsinfo_rdev_ds. . . . . . . . . . . . . . . 7-16
Table 7-6.  Contents of Structure Components: fbsinfo_rdev_host_ds . . . . . . . . . . . 7-17
Table 7-7.  Contents of Structure Components:  fbsinfo_cluster. . . . . . . . . . . . . . . . 7-18
Table 7-8.  Intrflag Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Table 7-10.  Contents of Structure Components: fbsquery . . . . . . . . . . . . . . . . . . . . 7-22
Table 7-9.  CPU Options:  fbsquery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
Table 7-11.  Ab Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
Table 7-12.  Contents of Structure Components: fbsschedself . . . . . . . . . . . . . . . . . 7-28
Table 7-13.  Contents of Structure Components: pgmquery . . . . . . . . . . . . . . . . . . . 7-38
Table 7-14.  CPU Options:  pgmremove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Table 7-15.  Contents of Structure Components: pgmreschedule . . . . . . . . . . . . . . . 7-43
Table 7-16.  Contents of Structure Components: pgmschedule. . . . . . . . . . . . . . . . . 7-47
Table 7-17.  CPU Options:  sched_fbsqry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-51
Table 7-18.  Contents of Structure Components: sched_fbsqry  . . . . . . . . . . . . . . . . 7-51
Table 7-19.  Contents of Structure Components: sched_pgmadd . . . . . . . . . . . . . . . 7-54
Table 7-20.  Contents of Structure Components: sched_pgmqry  . . . . . . . . . . . . . . . 7-59
Table 7-21.  Contents of Structure Components: sched_pgmresched . . . . . . . . . . . . 7-62
Table 7-22.  CPU Options:  pmclrpgm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-67
Table 7-23.  CPU Options:  pmclrtable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-68
Table 7-24.  CPU Options:  pmmonitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-70
Table 7-25.  CPU Options:  pmprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-71
Table 7-26.  CPU Options:  pmqrycpu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-73
Table 7-27.  Contents of Structure Components: pmqrycpu . . . . . . . . . . . . . . . . . . 7-74
Table 7-28.  Contents of Structure Components: pmqrylist  . . . . . . . . . . . . . . . . . . . 7-76
Table 7-29.  CPU Options:  pmqrypgm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-79
Table 7-30.  Contents of Structure Components: pmqrypgm  . . . . . . . . . . . . . . . . . . 7-80
Table 8-1.  FBS Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Table 8-2.  Reset Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
Table 8-3.  Contents of Array Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14
Table 8-4.  Contents of Array Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18
Table 8-5.  Intrflag Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
Table 8-7.  Contents of Array Elements for a Process. . . . . . . . . . . . . . . . . . . . . . . . 8-21
Table 8-6.  CPU Options:  fbsquery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21
Table 8-8.  Ab Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24
Table 8-9.  Contents of Array Elements   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29
Table 8-10.  Istat Values:  fbswait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31
Table 8-11.  CPU Options:  pgmquery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-38
Table 8-12.  CPU Options: pgmremove  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-40
Table 8-13.  CPU Options:  pgmreschedule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-43
Table 8-14.  CPU Options:  pgmschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-47
Table 8-15.  CPU Options:  pgmstat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-49
Table 8-16.  CPU Options:  schedfbsqry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-55
Table 8-17.  Contents of Array Elements for a Process. . . . . . . . . . . . . . . . . . . . . . . 8-56
Table 8-18.  CPU Options:  schedpgmadd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-60
Table 8-19.  CPU Options:  schedpgmqry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-62
Table 8-20.  CPU Options:  schedpgmresched  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-65
Table 8-21.  CPU Options:  pmclrpgm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-70
Table 8-22.  CPU Options:  pmclrtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-72
xi



PowerMAX OS Guide to Real-Time Services
Table 8-23.  CPU Options:  pmmonitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-73
Table 8-24.  CPU Options:  pmprogram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-75
Table 8-25.  CPU Options:  pmqrycpu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-76
Table 8-26.  Contents of Array Elements: pmqrycpu  . . . . . . . . . . . . . . . . . . . . . . . . 8-77
Table 8-27.  Contents of Array Elements:  pmqrylist  . . . . . . . . . . . . . . . . . . . . . . . . 8-79
Table 8-28.  CPU Options:  pmqrypgm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-82
Table B-1.  System Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Table B-2.  rtcp Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
xii



1
Introduction

Focus of Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Frequency-Based Scheduler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Performance Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1





1
Chapter 1Introduction

1
1
1

This chapter describes the focus of this guide and provides an overview of the real-time
services provided by the frequency-based scheduler and the performance monitor.  It also
provides an overview of the data monitoring services.  

Focus of Guide 1

This manual provides an overview of the frequency-based scheduler and performance
monitor services and the related utilities and libraries.  It describes the peripherals that can
be used as timing sources for the frequency-based scheduler.  It also describes the inter-
faces to the data monitoring services.  

Frequency-Based Scheduler 1

A frequency-based scheduler (hereinafter also referred to as FBS) is a task synchroniza-
tion mechanism that enables you to run processes at frequencies that you specify. Frequen-
cies can be based on high-resolution clocks, an external interrupt source, or completion of
a cycle. The frequency-based scheduler provides a mechanism for initiating processes at
the specified frequency. The processes are then scheduled via the standard PowerMAX
OS priority-based scheduler. You can easily configure a frequency-based scheduler to
meet the needs of specific applications. A detailed description of the frequency-based
scheduler is provided in Chapter 2. 

Convenient access to the major functions associated with frequency-based scheduling is
provided by the real-time command processor rtcp and the real-time tool NightSim.TM

Use of rtcp to perform operations associated with the frequency-based scheduler is
explained in Chapter 5. Use of NightSim is explained in the NightSim Quick Reference. 

Access is also provided through libraries of routines that can be called from application
programs written in Ada, C and FORTRAN 77. Use of the library interfaces to the
frequency-based scheduler is explained in Chapters 6, 7, and 8. 

Performance Monitor 1

The performance monitor is a mechanism that enables you to monitor use of the CPU by
processes that are scheduled on a frequency-based scheduler. Values obtained can help
you to determine whether you need to redistribute processes among processors for
1-1



PowerMAX OS Guide to Real-Time Services
improved load balancing and processing efficiency. A detailed description of the perfor-
mance monitor and its capabilities is provided in Chapter 4. 

Convenient access to the major functions associated with the performance monitor is pro-
vided by the real-time command processor rtcp and the real-time tool NightSim. Use of
rtcp to perform operations associated with the performance monitor is explained in
Chapter 5. Use of NightSim is explained in the NightSim Quick Reference. 

Access is also provided through libraries of routines that can be called from application
programs written in Ada, C, and FORTRAN 77. Use of the library interfaces to the perfor-
mance monitor is explained in Chapters 6, 7, and 8. 
1-2



2
Overview of the FBS

What Is the Frequency–Based Scheduler?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
How Is Scheduler Frequency Defined? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
How Are Processes Scheduled? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Tolerating Frame Overruns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Installation and Configuration Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Coupled FBS Timing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

User Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Rtcp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
NightSim  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Debugging FBS–Scheduled Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Integrity of the Coupled FBS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10





2
Chapter 2Overview of the FBS

2
2
2

This section provides an overview of the frequency–based scheduler. It contains a descrip-
tion of the scheduler and the capabilities it provides, an explanation of configuration
parameters, and a description of the user interface. 

What Is the Frequency–Based Scheduler? 2

The frequency–based scheduler is a task synchronization mechanism that enables you to
run processes at frequencies that you specify. Frequencies can be based on high-resolution
clocks, an external interrupt source, or completion of a cycle. The frequency-based sched-
uler provides a mechanism for initiating processes at the specified frequency. The pro-
cesses are then scheduled via the standard PowerMAX OS priority-based scheduler. 

The frequency–based scheduler provides you with the ability to: 

• Define FBS frequency in terms of the duration of a minor cycle and the
number of minor cycles per major frame 

• Specify the scheduling parameters with which processes are scheduled 

• Control all scheduling features from one processor (that is, schedule and
query a process on any processor) 

• Detect frame overruns for all FBS–scheduled processes 

• Obtain the status of a single FBS–scheduled process, all FBS–scheduled
processes on a single processor, or all FBS–scheduled processes on all pro-
cessors 

• Remove one or all FBS–scheduled processes from a scheduler 

• Reschedule an FBS–scheduled process 

• Start, stop, and resume scheduling on a frequency–based scheduler 

• Connect a timing source to and disconnect it from a frequency–based
scheduler 

• Control use of the real–time clock device as the timing source for a fre-
quency–based scheduler 

• Configure up to 100 frequency–based schedulers system–wide in a single
processor or multiprocessor environment 

• Use both frequency–based scheduling and static priority scheduling simul-
taneously 

• Set the soft overrun limit for an FBS-scheduled process
2-1



PowerMAX OS Guide to Real-Time Services
• Query the soft overrun limit and the total number of soft overruns incurred
by an FBS-scheduled process

How Is Scheduler Frequency Defined? 2

You configure a frequency–based scheduler, in part, by defining the number of minor
cycles that compose a major frame. Minor cycles and major frames have associated with
them a duration of time that you can define by using a timing source for the scheduler. The
timing source can be the end of a minor cycle, a real–time clock, an edge–triggered inter-
rupt, or a user–supplied device. Procedures for using each of the devices as a timing
source are explained in detail in Chapter 3. 

If you use end–of–cycle scheduling, scheduling is triggered when the last process that is
scheduled during the current minor cycle of the current major frame completes its process-
ing. 

If you use a real–time clock as the timing source, you define the duration of a minor cycle
by specifying the number of clock counts per minor cycle and the number of microsec-
onds per clock count.  You determine the duration of a major frame by multiplying the
duration of a minor cycle by the number of minor cycles per major frame.  If, for example,
you configure a scheduler with 100 minor cycles per major frame and you use as the
timing source a real–time clock with a clock count of 10,000 and a clock count duration of
one microsecond, each minor cycle has a duration of 10,000 microseconds, or 0.01
second, and each frame a duration of one second. 

How Are Processes Scheduled? 2

You schedule processes to run at a certain frequency by specifying the first minor cycle in
which the process is to be wakened in each major frame (called the starting base cycle)
and the frequency with which it is to be wakened (called the period). If, for example, you
schedule “Process 1” with a starting base cycle of zero and a period of two, the process
will be wakened once every two minor cycles, starting with the first minor cycle in the
frame. If you schedule “Process 2” with a starting base cycle of one and a period of four,
that process will be wakened once every four minor cycles, starting with the second minor
cycle in the frame. If you then schedule “Process 3” with a starting base cycle of two and a
period of two, that process will be wakened once every two minor cycles, starting with the
third minor cycle in the frame. On a frequency–based scheduler configured with 100
minor cycles per major frame, these processes will be wakened as illustrated in Table 2-1. 

Table 2-1.  Process Scheduling

Minor Cycle Processes Wakened

0  Process 1   

1  Process 2   

2  Process 1, Process 3   

3    
2-2



Overview of the FBS
The maximum frequency with which you can schedule a process is once per minor cycle
(a period of one); the minimum frequency is once per major frame (in the case of the
example, a period of 100). 

A process runs until it calls an FBS library routine that causes it to sleep until the fre-
quency–based scheduler wakes it again. The frequency–based scheduler wakes those
sleeping processes that are scheduled to be wakened in the current minor cycle of the
current major frame and repeats the process for each minor cycle in the current frame. It
continues to repeat the entire process on every major frame until the scheduler is disabled.
A scheduler configured with 100 minor cycles per major frame, a minor cycle duration of
10,000 microseconds (0.01 second), and a major frame duration of one second wakes
processes as illustrated in Table 2-2. 

4  Process 1, Process 3   

5  Process 2   

...    

97  Process 2   

98  Process 1, Process 3   

99    

Table 2-2.  Scheduler Operation

Major Frame Time Minor Cycle Processes Wakened

(sec.)

0  0  0  Process 1   

   0.01  1  Process 2   

   0.02  2  Process 1, Process 3   

   ...      

   0.97  97  Process 2   

   0.98  98  Process 1, Process 3   

   0.99  99    

1  1.00  0  Process 1   

   1.01  1  Process 2   

   1.02  2  Process 1, Process 3   

   ...      

   1.97  97  Process 2   

   1.98  98  Process 1, Process 3   

Table 2-1.  Process Scheduling (Cont.)

Minor Cycle Processes Wakened
2-3



PowerMAX OS Guide to Real-Time Services
As illustrated in Table 2-2, when the current major frame is zero and the current minor
cycle is zero, the scheduler wakes “Process 1.” After 0.01 second, it wakes “Process 2”;
after 0.02 second, it wakes “Process 1” and “Process 3”; and so on. At one second, when
the current major frame becomes one, the current minor cycle becomes zero again, and the
scheduler wakes “Process 1.” After 0.01 second, it wakes “Process 2”; after 0.02 second, it
wakes “Process 1” and “Process 3”; and so on. The scheduler continues repeating this pro-
cess for as long as it is enabled. 

Tolerating Frame Overruns 2

A process might not always run at the frequency that you have specified. A frame overrun
occurs when a scheduled process does not finish its processing before it is scheduled to
run again. Frame overruns can be classified into two categories: 

• Hard overruns

• Soft overruns.

Hard overruns are catastrophic failures of the scheduled process. Soft overruns are cata-
strophic failures only if the process reached its limit on the number of soft overruns toler-
ated. Each scheduled process has a soft overrun limit, defaulting to 0.

Letting a process survive a reasonable number of soft overruns makes the system more
flexible and efficient. Some soft overruns result from random, unpredictable, or external
events unlikely to recur. Other soft overruns result from only minor frame overruns. Soft
overruns give the scheduled process a chance to recover from a frame overrun and return
to synchronization.

The OS counts both soft and hard overruns for each scheduled process, but only hard over-
runs for each scheduler. Other processes can get these counts by querying the scheduled
process or scheduler.

   1.99  99    

   ...       

n  n.00  0  Process 1   

   n.01  1  Process 2   

   n.02  2  Process 1, Process 3   

   ...      

   n.97  97  Process 2   

   n.98  98  Process 1, Process 3   

   n.99  99    

Table 2-2.  Scheduler Operation (Cont.)

Major Frame Time Minor Cycle Processes Wakened

(sec.)
2-4



Overview of the FBS
When scheduling a process, you can specify that the scheduler be stopped by the kernel
when that process running under it causes a hard overrun.  If you do not specify that the
scheduler should stop when this process causes a hard overrun, then the scheduler will
continue to run, regardless of how many hard overruns this process accumulates.

When scheduling a process, you can also specify a consecutive soft overrun limit count
that this process will tolerate and have processed as soft overruns by the kernel.  Note that
the default value for this consecutive soft overrun limit is zero.  With the consecutive soft
overrun limit set to zero, ALL overruns incurred by this process will be treated as hard
overruns (see below).

In addition to the per-process consecutive soft overrun limit value, there is also a system-
wide consecutive overrun limit value.  This system-wide limit has a default value of 2, and
is configured via the FBSMAXMISSEDFBSWAITS kernel tunable.  The value for this
tunable should be set to a value that when exceeded, indicates a serious problem with a
scheduled process, a simulation or the system. 

When a scheduled process overruns a frame and is not blocked in fbswait(2) when a
frame interrupt occurs, the kernel then makes a decision whether to treat this overrun as a
soft or hard overrun.  The following steps are taken:

• The process’s own consecutive soft overrun counter is incremented.

• If the process’s own consecutive soft overrun counter reaches or exceeds
either the per-process soft overrun counter or the system-wide consecutive
overrun limit value, then this overrun will be treated as a hard overrun.
Both the process’s and the scheduler’s hard overrun counters will be incre-
mented.

• Otherwise, this overrun will be treated as a soft overrun, as long as this pro-
cess makes a fbswait(2) call before its own consecutive soft overrun
counter does not exceed the per-process soft overrun counter or the system-
wide overrun limit value.

When the overrun is treated as a soft overrun, then that process will not block the next
time that it calls fbswait(2).  In this case, it will return immediately from the
fbswait(2) call with a status value of 2.

When the overrun is treated as a hard overrun, then that process will block the next time it
calls fbswait(2).  When the next normally scheduled FBS wakeup for that process
occurs, then this process will return out of the fbswait(2) call, returning a status value
of 0.  Note that a status of 2 is NOT returned in the hard overrun case. 

Installation and Configuration Requirements 2

Before using the frequency-based scheduler, you must ensure that the fbs package is
installed on your system. This package provides kernel support for the frequency-based
scheduler, the performance monitor, and rtcp(1). For an explanation of the procedures
for installing software packages, refer to the applicable platform PowerMAX OS Release
Notes and the pkgadd(1M) system manual page.
2-5



PowerMAX OS Guide to Real-Time Services
You must also ensure that the frequency-based scheduler module (fbs) is configured into
the kernel. By default, the fbs module is not configured. You can use the config(1M)
utility to (1) determine whether or not the fbs module is enabled in your kernel, (2)
enable the fbs module, and (3) rebuild the kernel. Note that you must be the root user to
enable or disable a module and rebuild the kernel. After rebuilding the kernel, you must
then reboot your system. For an explanation of the procedures for using config(1M),
refer to the “Configuring and Building the Kernel” chapter of System Administration Vol-
ume 2.

The frequency-based scheduler has associated with it the following system tunable param-
eters: 

FBSMNI The maximum number of frequency–based schedulers that
can be configured at one time system–wide.  The default
value for this quantity is 10.  You cannot specify a value
greater than 100. 

FBSUNSCHEDMAX The maximum number of unscheduled processes that is per-
mitted on a frequency-based scheduler. The default value
for this quantity is -1, which indicates that the maximum
number of unscheduled processes permitted per scheduler is
equal to the maximum number of scheduled processes per-
mitted on the scheduler. This number is specified when the
scheduler is configured. 

A value other than -1 may be specified. This new value will
be the maximum number of unscheduled processes permit-
ted for all schedulers.

FBSMAXMISSEDFBSWAITS
The maximum number of consecutive major frames an
FBS-scheduled process is  al lowed to miss cal ling
fbswait() before a catastrophic failure is assumed. The
default value is 2.

You can use the config utility to (1) determine whether the values of these parameters
have been modified for your system, (2) change the value of either of these parameters,
and (3) rebuild the kernel. Note that you must be the root user to change the value of a tun-
able parameter and rebuild the kernel. After rebuilding the kernel, you must then reboot
your system.

Coupled FBS Timing Devices 2

Systems that wish to take advantage of Coupled FBS timing devices must also ensure that
the remote device file system kernel module (rdevfs) is configured into the kernel along
with the fbs module.  By default, the rdevfs module is not configured.

If an integral real-time clock is to be used as a Coupled FBS timing device, then the real-
time clock kernel module (rtc) should be configured into the kernel.

If a RCIM device is to be used as a Coupled FBS timing device, then the rcim, rtc and eti
kernel modules should also be configured into the kernel.  For standalone systems and for
the host SBC in a Closely-Coupled cluster, the config utility’s “RT Features” item
2-6



Overview of the FBS
under the “Realtime Configure Menu” provides an easy way to enable all of these
kernel modules.

Client SBCs in a Closely-Coupled cluster can be configured for supporting either Closely-
Coupled or RCIM Coupled timing devices by using a vmebootconfig subsystem
option.  For more information on how to configure client SBCs with Coupled FBS sup-
port, see the “Configuring Coupled FBS Support” section in the Closely-Coupled Pro-
gramming Guide.

For a discussion about RCIM Coupled and Closely-Coupled FBS timing devices, see the
section “Using a Coupled FBS Timing Device” in Chapter 3 of this manual.

User Interface 2

Use of the frequency-based scheduler is accommodated by the following: (1) rtcp, the
real–time command processor; (2) NightSim, a real-time tool that provides a graphical
user interface to the frequency-based scheduler and the performance monitor; and (3) a set
of library routines that can be called from application programs written in Ada, C, or
FORTRAN 77. Each interface is introduced in the sections that follow.

Rtcp 2

The real-time command processor Rtcp lets you to do key operations associated with the
frequency-based scheduler by entering commands from the keyboard or invoking a script.
These operations include configuring a scheduler, scheduling programs, saving a sched-
uler configuration, setting up a timing source, running a simulation, and querying status. 

NightSim 2

NightSim provides the same capabilities as the real-time command processor rtcp(1).
It allows you to perform the entire range of functions associated with the frequency-based
scheduler. You can perform the major functions of configuring a scheduler, setting up a
timing source, scheduling programs, saving and restoring a scheduler configuration, run-
ning a simulation and viewing scheduling data. Complete information on NightSim is pro-
vided in the NightSim Quick Reference.

Libraries 2

The RT_Interface package and the C librt and FORTRAN libF77rt libraries con-
tain subroutines that enable you to perform the entire range of functions associated with
the scheduler. You can perform the key functions of configuring a scheduler, setting up a
timing source, scheduling programs, running a simulation, and retrieving scheduling data.
You can also obtain information about the scheduler itself (for example, the minor cycle
2-7



PowerMAX OS Guide to Real-Time Services
and major frame counts, the number of frame overruns, the active CPUs). Other functions
include those that 1) enable a process that you have scheduled on a frequency–based
scheduler to put itself to sleep and 2) enable any process to wake a process that is in the
frequency–based scheduler sleep state. All of the subroutines that are contained in the
RT_Interface package and the C and FORTRAN libraries are described in detail in
Chapters 6, 7 and 8. 

It is important to note that in PowerMAX OS, some of the scheduling and querying inter-
faces in the RT_Interface package and the C and FORTRAN libraries are obsolete. The
reasons are explained as follows. In PowerMAX OS, scheduling priorities are specific to a
System V scheduler class or associated POSIX scheduling policy. Some of the scheduling
interfaces that are being maintained for compatibility with the CX/UX operating system
do not provide the means for specifying a scheduler class or policy. These interfaces are as
follows: 

 

If you schedule or reschedule a process on a frequency-based scheduler by using one of
these interfaces, the process is scheduled under the POSIX SCHED_RR scheduling policy
(fixed-priority class). The priority that you specify must lie within the range of priorities
associated with this policy. With these interfaces, you cannot schedule a process under the
POSIX SCHED_OTHER scheduling policy (time-sharing class). (Scheduler classes, POSIX
scheduling policies, and priorities are fully explained in the “Process Scheduling and
Management” chapter of the PowerMAX OS Programming Guide.) 

Some of the querying interfaces that return a process’s scheduling priority and are being
maintained for compatibility with CX/UX do not provide the means for returning the
scheduler class or policy with which the priority is associated. These interfaces are as fol-
lows: 

If you have an existing application that uses the obsolete interfaces listed here, it is recom-
mended that you change your application to use (1) the scheduling interfaces that allow
you to specify a scheduling policy and priority and (2) the querying interfaces that return

Table 2-3.  Scheduling Interfaces

Ada C FORTRAN

PGM_Schedule pgmschedule pgmschedule

PGM_Reschedule pgmreschedule pgmreschedule

Ada:  C:  FORTRAN:  

FBS_Query fbsquery fbsquery

PGM_Query pgmquery pgmquery
2-8



Overview of the FBS
both the policy and priority. The obsolete interfaces and the interfaces with which you
should replace them are presented in Table 2-4.   

Procedures for using all of the interfaces presented in Table 2-4 are explained in detail in
Chapters 6, 7, and 8. 

Privileges 2

PowerMAX OS supports a privilege mechanism through which processes are allowed to
perform sensitive operations or override system restrictions. Some of the operations asso-
ciated with the frequency-based scheduler require special privileges. These operations
include configuring and removing a scheduler, changing the permissions assigned to a
scheduler, and scheduling and rescheduling programs. Attaching a timing source to a
scheduler also requires special privilege if the Enhanced Security Utilities are installed
and running.   Specific information related to these privilege requirements is presented in
the appropriate sections of this manual. For additional information on privileges, refer to
the PowerMAX OS Programming Guide and the intro(2) system manual page.

Debugging FBS–Scheduled Processes 2

You can debug processes that have been scheduled on a frequency–based scheduler by
using NightView,TM a general-purpose, source-level debugger. 

To be able to debug an Ada, a C, or a FORTRAN executable program, you must compile
the source program by specifying the –g option. For information on use of the Ada com-
piler, refer to the MAXAda Reference Manual. For information on use of the Concurrent C
compiler, refer to the Concurrent C Reference Manual. For information on use of the
FORTRAN 77 compiler, refer to the hf77 Fortran Reference Manual.   

Table 2-4.  Obsolete Interfaces   

Function  Obsolete Interfaces  Replacement Interfaces

Schedule a process on an FBS  pgmschedule(3rt)  
pgmschedule(3F77rt)
PGM_Schedule  

sched_pgmadd(3rt) 
schedpgmadd(3F77rt) 
Sched_PGM_Add 

Reschedule a process  pgmreschedule(3rt)
pgmreschedule(3F77rt) 
PGM_Reschedule 

sched_pgmresched(3rt) 
schedpgmresched(3F77rt) 
Sched_PGM_Reschedule 

Query processes on an FBS fbsquery(3rt)
fbsquery(3F77rt) 
FBS_Query 

sched_fbsqry(3rt) 
schedfbsqry(3F77rt) 
Sched_FBS_Query 

Query a process on an FBS pgmquery(3rt)    
pgmquery(3F77rt) 
PGM_Query 

sched_pgmqry(3rt) 
schedpgmqry(3F77rt) 
Sched_PGM_Query 
2-9



PowerMAX OS Guide to Real-Time Services
The NightView commands that you can use to debug FBS-scheduled processes are briefly
described as follows:  

attach attach to a running process.  This command allows you to debug a
process that is already running

detach detach from an attached process.  This command allows you to release
an attached process from the control of the debugger.  

To use NightView to debug an FBS–scheduled process, you must supply the process ID
(PID). You can easily obtain the PID for an FBS–scheduled process by using the ps(1)
command. You can obtain the PID for a selected process name by using the C library rou-
tine nametopid(3rt) or the FORTRAN library routine nametopid(3F77rt). Use
of each of these routines is explained in the corresponding system manual pages. If you
are using the RT_Interface package, you can obtain the PID for the current process by
invoking the POSIX_1003_1.getpid subprogram. 

For NightView to attach to a running process, the debugger’s effective user and group ID
must match the effective user and group ID of the process controlled by the debugger. 

When a debugger attaches to an FBS–scheduled process or when an attached FBS-
scheduled process hits a breakpoint, the associated FBS and all processes scheduled under
it are stopped.

For additional information on the procedures for using the NightView attach and
detach commands, refer to the NightView User’s Guide.  

Integrity of the Coupled FBS Support 2

There are a few situations in which the integrity of the Coupled FBS  support cannot be
guaranteed.  While the Coupled FBS support does attempt to recover from various events,
such as a single host crashing or inter-host messaging errors, there may be situations when
the Coupled FBS support may not be able to recover properly.  When such situations
occur, the operating system will log error messages to the console and to the system log
file.  In addition, rtcp and the real-time libraries will report problems.  If the system is giv-
ing indications that there is a problem with the Coupled FBS support, it may be necessary
to reboot all of the hosts that are registered with the same set of Coupled FBS timing
devices.
2-10



3
  Timing Sources for an FBS

Using a Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Understanding the Real–Time Clock Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Watch-Dog Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
General Procedures for Using a Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . 3-6

Using an Edge-Triggered Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Understanding the Edge–Triggered Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Using a User–Supplied Real–Time Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Specifying the Ioctl Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Using a Coupled FBS Timing Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Device Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Understanding Coupled FBS Timing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
The Remote Device File System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Understanding the User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Scheduler Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Using RCIM Edge-Triggered Interrupts and Real-Time Clocks . . . . . . . . . . . . 3-15

As a Local Timing Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
As a Coupled FBS Timing Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Configurations with Limited RCIM Hardware . . . . . . . . . . . . . . . . . . . . . . 3-17
As a Distributed Interrupt Device Without Coupled FBS Support . . . . . . . 3-18

The FBS Daemon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Coupled FBS Timing Device Error Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Failed Registrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Existing Device Registration Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Unregistration of a Coupled FBS Timing Device  . . . . . . . . . . . . . . . . . . . . . . . 3-20





3
Chapter 3  Timing Sources for an FBS

3
3
3

The frequency–based scheduler provides the capability of using a real–time clock, an
edge–triggered interrupt, or a user–supplied device as the timing source for a scheduler.
This chapter contains the procedures for using all these types of devices. Use of a real–
time clock is explained in “Using a Real–Time Clock”; use of an edge–triggered interrupt
is explained in “Using an Edge-Triggered Interrupt”; and use of a user–supplied real–time
device is explained in “Using a User–Supplied Real–Time Device.” 

Using a Real–Time Clock 3

In this section, three types of information are provided to ease use of a real–time clock as
the timing source for a frequency–based scheduler. An overview of the real–time clock
device, rtc, is presented in “Understanding the Real–Time Clock Device.” A description
of the user–interface to the device is provided in “Understanding the User Interface.” An
outline of the general procedures for using the device is presented in “General Procedures
for Using a Real–Time Clock.”

Understanding the Real–Time Clock Device 3

The real–time clock device, rtc, is designed to be used for a variety of timing and fre-
quency control functions. It provides a range of clock count values and a set of resolutions
that taken together produce many different timing intervals––a feature that makes it par-
ticularly appropriate for frequency–based scheduling. 

On Series 6000 and PowerMAXION systems, the real–time clock controller is integral to
the system. Each CPU board has one real–time clock controller. On Model 6200 and 6800
systems, five real–time clocks are provided on the first CPU board (board 0). Three real–
time clocks are provided on each additional CPU board. The HVME real–time clock con-
troller is not supported. On PowerMAXION systems, five real-time clocks are provided
on each of the four CPU boards.

On Series 6000 systems, device special files for real–time clocks have names of the form
/dev/rrtc/mcn, where m specifies a controller number that ranges from zero to three
and corresponds to the CPU board on which the clock resides; c stands for clock, and n
specifies a real–time clock number that ranges from zero to four on the first CPU board
and zero to two on additional CPU boards.  The names of the device special files on the
first board must be as follows: 

/dev/rrtc/0c0

/dev/rrtc/0c1
3-1



PowerMAX OS Guide to Real-Time Services
/dev/rrtc/0c2

/dev/rrtc/0c3

/dev/rrtc/0c4

The names of the device special files on the second board must be as follows: 

/dev/rrtc/1c0  

/dev/rrtc/1c1

/dev/rrtc/1c2

The names of the device special files on the third board must be as follows: 

/dev/rrtc/2c0

/dev/rrtc/2c1

/dev/rrtc/2c2

The names of the device special files on the fourth board must be as follows: 

/dev/rrtc/3c0

/dev/rrtc/3c1

/dev/rrtc/3c2

On PowerMAXION systems, device special files for real–time clocks have names of the
form /dev/rrtc/mcn, where m specifies a controller number that ranges from zero to
three and corresponds to the CPU board on which the clock resides; c stands for clock,
and n specifies a real–time clock number that ranges from zero to four on each CPU board.
The names of the device special files on the first board must be as follows: 

/dev/rrtc/0c0 

/dev/rrtc/0c1 

/dev/rrtc/0c2 

/dev/rrtc/0c3 

/dev/rrtc/0c4 

The names of the device special files on the second board must be as follows: 

/dev/rrtc/1c0 

/dev/rrtc/1c1 

/dev/rrtc/1c2 

/dev/rrtc/1c3 

/dev/rrtc/1c4 
3-2



Timing Sources for an FBS
The names of the device special files on the third board must be as follows: 

/dev/rrtc/2c0 

/dev/rrtc/2c1 

/dev/rrtc/2c2 

/dev/rrtc/2c3 

/dev/rrtc/2c4 

The names of the device special files on the fourth board must be as follows: 

/dev/rrtc/3c0 

/dev/rrtc/3c1 

/dev/rrtc/3c2 

/dev/rrtc/3c3 

/dev/rrtc/3c4 

On Series 6000 and PowerMAXION systems, each real–time clock is connected to a par-
ticular pin on the interrupt terminator board. The hardware controls the interrupt priority
associated with each pin. The real-time clock interrupts are handled on the CPU board on
which they reside. They cannot be routed to other CPU boards.

On Power Hawk Series 600/700/900 systems, there are integral real-time clocks located
on the CPU board and additional clocks available through the Real-Time Clocks and Inter-
rupts Module (RCIM), if installed.

On Power Hawk Series 600 systems, the integral clocks consist of tick timers and Zilog
Z8536 timers.  On Power Hawk Series 700/900 systems, the integral clocks consist of
only tick timers. The number of each available varies based on system type.  Only the tick
timers can be used as the timing source for a frequency-based scheduler.  For complete
information on both types of timers refer to the rtc(7) system manual page and also to
the system header file /usr/include/sys/rtc.h.

If a Real-Time Clocks and Interrupts Module (RCIM) is installed, it provides additional
real-time clocks.  There are four real-time clocks available to each SBC (single-board
computer) that has an RCIM.  When multiple SBCs are connected via an RCIM chain, up
to four RTCs may be designated to be distributed, i.e. its interrupts are sent to all con-
nected systems.  A distributed RTC may be located on any SBC within the RCIM chain.

The kernel tunable RCIM_DISTRIB_RTCS specifies which RTCs are distributed.

On Power Hawk Series 600/700/900 systems, the device special files for the real-time
clocks are as follows (where n specifies the clock number):

/dev/rrtc/0cn rtc (character) special files - tick timer

/dev/rrtc/1cn rtc (character) special files - Z8536 (Power Hawk
Series 600 systems only)

/dev/rrtc/2cn rtc (character) special files - RCIM 
3-3



PowerMAX OS Guide to Real-Time Services
NOTE

To use a real–time clock on a PowerMAX OS system on which
the Enhanced Security Utilities are installed, device special files
must be created in the /dev/rrtc directory. Refer to the
“Trusted Facility Management” chapter of System Administration
Volume 1 for an explanation of the procedures for using device
files when the Enhanced Security Utilities are installed.

A real–time clock operates in one of two modes: default mode or direct mode.  If the clock
is in default mode, you can control the following: 

• Whether the clock counts up or down 

• What the value of the clock count is 

• What the resolution per clock count is 

• Whether the clock automatically starts counting again when the clock
count reaches its terminal count (zero or 65,535) 

If the clock is in direct mode, you can directly program the hardware registers.  Doing so
requires information on the system timing chip and its registers.  The information needed
can be obtained by special request.  Directly programming the hardware registers also
requires information that is provided in the system manual page rtc(7).  Note that on
Power Hawk systems, direct mode is not supported on the tick timers.  

You can use a real–time clock for triggering events in the high–resolution callout queue.
By default, a real-time clock is configured into the system for this purpose it is
/dev/rrtc/0c0). When you configure a real-time clock for use with the high-resolu-
tion callout queue, you cannot use it for any other purpose. Additional information on the
high-resolution callout queue is presented in the PowerMAX OS Real-Time Guide. Note
that using a real-time clock with the high-resolution callout queue does not affect the reso-
lution of other clocks on the same controller.     

Understanding the User Interface 3

Use of a real–time clock with a frequency–based scheduler is accommodated by the real–
time utility rtcp; by the FBS FORTRAN and C library routines; and by the
RT_Interface package. It is also accommodated by NightSim, the real-time tool that pro-
vides a graphical user interface to the frequency based scheduler and performance monitor
service (use of NightSim is fully explained in the NightSim Quick Reference).

The rtcp commands needed to attach a timing source to and detach it from a scheduler
and to set, start, and stop a real–time clock are ats, dts, stc, rc, and sc. These
commands are explained in Chapter 5. These commands are used in conjunction with the
commands to start and stop a simulation, start and stop, which are also explained in
Chapter 5.

The FORTRAN and C library routines that relate to use of a real–time clock for fre-
quency–based scheduling are fbsattach, fbssetrtc, fbsrunrtc, fbsintrpt,
and fbsdetach. The corresponding routines contained in the Ada package are
3-4



Timing Sources for an FBS
FBS_Attach, FBS_Setrtc, FBS_Runrtc, FBS_Intrpt, and FBS_Detach. These routines
are explained in Chapter 6, Chapter 7, and Chapter 8. 

A set of system calls can be used directly to control a real–time clock and to use it for fre-
quency–based scheduling and other purposes.  The calls are explained in detail in the
system manual page rtc(7). 

It is recommended that you use rtcp or the routines contained in the FORTRAN library,
the C library, or the RT_Interface package as your interface to the real–time clock.   The
rtcp command is the easiest to use because it isolates you from most of the initialization
tasks.

Watch-Dog Timer Function 3

The fifth RTC on the first board can be used as watch-dog timer or as an interrupting real
time clock. When used as an interrupting clock the output of the RTC that indicates a time
out continues to be connected to the interrupt control logic. However, when the RTC is
being used as a watch-dog timer, its interrupt is disabled via software issuing a disarm
interrupt command to the RTC’s interrupt level. The RTC’s time-out output is also
connected to the logic Processor Control and Status Register (PCSR).

The RTC used in the watch-dog timer function is programmed by the application using the
facilities provided under PowerMAX OS. For more information on software control
capability of the RTC, refer to the manual pages section -rtc. 

It is recommended that the RTC watch-dog timer be used in the default mode and
programmed to have a clock resolution of 1 millisecond. This time gives a time out range
of from 1 millisecond to 65.535 seconds. In the event of a time-out, the hardware
generates the SRESET signal to the PPC604 processor. This signal causes the processor to
save the machine state in its Save and Restore Registers (SRR) and start execution of a
soft reset exception. This execution’s execution starts at physical location 0x00000100.
The exception handler then tests the MODULE_NO_GO register flag to find out if the
cause of the soft reset is the watch-dog timer time-out. If it is, processing of the soft reset
continues by resetting of the MODULE_NO_GO bit followed by a reset of the SRESET
register bit in the PCSR. Control is now passed to a user defined exception handler.

Using the watch-dog function, the application can monitor the health of its processes. To
accomplish this the application must program for the watch-dog interrupt in the following
manner:

1. The fifth real time clock's interrupt must be disabled on the processor's
interrupt controller. The application does this by mapping the interrupt
controller's enable register using the shared memory mechanism.The
physical addresses for the interrupt enable registers on the PowerMAXION
are:

0x96200020 local processor
0x9D000020 processor 0
0x9D100020 processor 1
0x9D200020 processor 2
0x9D300020 processor 3
3-5



PowerMAX OS Guide to Real-Time Services
The fifth real time clock interrupt is disabled by resetting bit 17 in the 32-
bit enable register.

The application must take care to not change other bits in the interrupt
controller’s enable register. This can be achieved by reading the enable
register, masking out only bit 17, and re-writing the contents back to the
enable register.

The application has the responsibility of re-enabling this interrupt once use
of the watch-dog timer is complete. This is achieved by setting bit 17 in the
enable register. Failure to do so will preclude the fifth real time clock on
processor board one from being used as a timer.

2. The interrupt signal from the fifth real-time clock must be routed to the
PPC604 processor. The application does this by mapping the processor’s 16
bit control and status register (PCSR) using the shared memory
mechanism. The physical addresses for the PCSR’s are as follows:

0xB2000000 processor 0
0xB2000008 processor 1
0xB6000000 processor 2
0xB6000008 processor 3

Routing of the fifth real-time clock interrupt is achieved by setting bit 11 in
the PCSR for the respective processor board. The application must take
care to not change other bits in the PCSR. This can be achieved by reading
the register, setting bit 11, and re-writing the contents back to the register.

The application has the responsibility of restoring bit 11 of the PCSR to 0
once use of the watch-dog timer function is complete. Failure to do so will
preclude the fifth real time clock on processor board one from being used as
a timer.

3. The application must connect and enable the user level interrupt routine.
This is achieved using the iconnect(3C) and ienable(3C) routines.
The application must also lock all memory resources used by the user level
interrupt routine. These resources include shared memory regions, library
text and data, process text and data. See the PowerMAX OS Real-Time
Guide (publication number 0890466) for a description of user level
interrupts.

The fifth real time clock must be programmed by the application with the correct count
and frequency. PowerMAX OS supplies a user interface to the real-time clocks.

General Procedures for Using a Real–Time Clock 3

Whether you elect to use rtcp or the routines contained in the FORTRAN library, the C
library, or the Ada package as your interface to the real–time clock, the general procedures
for using a real–time clock for frequency–based scheduling are the same.  The following
steps are required: 

STEP 1: Attach a real–time clock to a frequency–based scheduler 
3-6



Timing Sources for an FBS
STEP 2: Establish the duration of a minor cycle by specifying the clock count
value and the resolution per clock count 

STEP 3: Start the real–time clock counting 

STEP 4: Start the simulation 

STEP 5: Stop the simulation 

STEP 6: Stop the real–time clock counting 

STEP 7: Detach the real–time clock 

The rtcp commands and the FORTRAN, Ada, and C routines that correspond to each
step are presented in Table 3-1.

 

Refer to Chapter 5 for descriptions of the rtcp commands and to Chapter 6, Chapter 7,
and Chapter 8 for explanations of the routines included in the Ada package and the C and
FORTRAN libraries. 

NOTE

To use a real–time clock as the timing source for a frequency–
based scheduler on a PowerMAX OS system on which the
Enhanced Security Utilities are installed, you must have enough
privilege to open the device. Refer to the “Trusted Facility Man-
agement” chapter of System Administration Volume 1 for an
explanation of the procedures for using devices when the
Enhanced Security Utilities are installed.

Table 3-1.  Tasks, Commands, and Routines Related to Steps 

Step Command FORTRAN Routine Ada Routine C Routine

1  ats  fbsattach  FBS_Attach  fbsattach  

2  stc  fbssetrtc  FBS_Setrtc  fbssetrtc  

3  rc  fbsrunrtc  FBS_Runrtc  fbsrunrtc  

4  start  fbsintrpt  FBS_Intrpt  fbsintrpt  

5  stop  fbsintrpt  FBS_Intrpt  fbsintrpt  

6  sc  fbsrunrtc  FBS_Runrtc  fbsrunrtc  

7  dts  fbsdetach  FBS_Detach  fbsdetach  
3-7



PowerMAX OS Guide to Real-Time Services
Using an Edge-Triggered Interrupt 3

This section contains the information needed to use an edge–triggered interrupt as the
timing source for a frequency–based scheduler. An overview of the edge–triggered inter-
rupt, eti, is presented in “Using an Edge-Triggered Interrupt.” A description of the user–
interface to the device is provided in “Understanding the User Interface.” 

Understanding the Edge–Triggered Interrupt 3

The edge–triggered interrupt device, eti, provides a means for the computer system to
detect an external interrupt coming into the system from any user device that generates a
signal pulse.  It can be used as the timing source for a frequency–based scheduler. 

On 6000 and PowerMAXION systems, edge–triggered interrupts are integral to the sys-
tem. Four edge–triggered interrupts are provided for each CPU board. One to four CPU
boards may be configured; as a result, the number of edge–triggered interrupts per system
ranges from four to 16. 

All the edge-triggered interrupts, by default, are automatically configured despite the
number of CPU boards installed on a system.  However, at least one CPU board must be
installed in the system.  If you do not wish the edge-triggered interrupts to be configured
in your system, you can edit the /etc/conf/sdevice.d/eti file and change the
value in the conf field to N.  

On Series 6000 PowerMAXION systems, device special files for the integral edge–trig-
gered interrupts have names of the form /dev/reti/etin, where n specifies an edge–
triggered interrupt number ranging from zero to 15. The numbers 0–3 are the edge–trig-
gered interrupts on CPU board 0; 4–7 are the edge–triggered interrupts on CPU board 1;
8–11 are the edge–triggered interrupts on CPU board 2; and 12–15 are the edge–triggered
interrupts on CPU board 3. If a CPU board in a specified slot is marked down or is not
present, the numbering scheme is not affected. If a system contains a CPU board in slot 0
and a CPU board in slot 3, for example, the edge–triggered interrupts on the first board are
numbered 0–3, and the edge–triggered interrupts on the second board are numbered 12–15 

On Series 6000 PowerMAXION systems, each edge–triggered interrupt is connected to a
particular pin on the terminator board. Edge-triggered interrupts are handled on the CPU
board on which they reside. They cannot be routed to other CPU boards.

For detailed information on the edge–triggered interrupt hardware and the conditions that
are required for using it, refer to the system manual page eti(7), the HN6200 Architec-
ture Manual, the HN6800 Architecture Manual, or the PowerMAXION Architecture Man-
ual.

On Power Hawk Series 600/700/900 systems, edge-triggered interrupts are provided by
the Real-Time Clocks and Interrupts Module (RCIM), if installed.  There are four edge-
triggered interrupts available to each SBC (single-board computer) that has an RCIM.
When multiple SBCs are connected via an RCIM chain, up to four ETIs may be desig-
nated to be distributed, i.e. its interrupts are sent to all connected systems.  A distributed
ETI may be located on any SBC within the RCIM chain.  

The kernel tunable RCIM_DISTRIB_ETIS specifies which ETIs are distributed.
3-8



Timing Sources for an FBS
On Power Hawk Series 600/700/900 systems,  ETI device special files are only available
if an RCIM module is installed.  They have the following format: 

For more information, refer to the system manual page eti(7).

Understanding the User Interface 3

Use of an edge–triggered interrupt as the timing source for a frequency–based scheduler is
accommodated by the real–time services utility rtcp; by the FBS FORTRAN and C
library routines; and by the RT_Interface package. It is also accommodated by NightSim,
the real-time tool that provides a graphical user interface to the frequency based scheduler
and performance monitor service (use of NightSim is fully explained in the NightSim
Quick Reference).

To use an edge–triggered interrupt as the timing source for a scheduler, you must attach it
to the desired scheduler and ensure that it is already generating interrupts when you start
the simulation. The rtcp commands needed to attach and detach a timing source are ats
and dts. Use of these commands is explained in Chapter 5. The corresponding FOR-
TRAN and C library routines are fbsattach and fbsdetach. The FORTRAN rou-
tines are explained in Chapter 8, and the C routines are explained in Chapter 7. The corre-
sponding routines contained in the Ada package are FBS_Attach and FBS_Detach.
These routines are explained in Chapter 6 

The edge–triggered interrupt can be directly controlled by using the following standard
PowerMAX OS system calls: open(2), close(2), and ioctl(2). 

NOTE

This device does not support the read(2) and write(2) sys-
tem calls. 

A set of ioctl commands enables you to perform a variety of operations that are specific
to the device.  These commands are summarized as follows: 

ETI_ARM arm the edge–triggered interrupt 

ETI_DISARM disarm the edge–triggered interrupt 

ETI_ENABLE enable the edge–triggered interrupt 

ETI_DISABLE disable the edge–triggered interrupt 

ETI_INFO obtain information about the specified edge-triggered
interrupt.

ETI_REQUEST generate a software–requested interrupt along the
edge–triggered interrupt.  Note that the edge–trig-

/dev/reti/eti0n eti (character) special files
3-9



PowerMAX OS Guide to Real-Time Services
gered interrupt must previously have been armed and
enabled.  Not available with distributed slave device.

ETI_ATTACH_SIGNAL attach the specified signal number to the edge–trig-
gered interrupt.  The signal is generated on every
interrupt. 

ETI_VECTOR place the edge–triggered interrupt vector number in
the specified location.  Note that any device that is
being attached to a frequency–based scheduler must
support this command. 

Detailed descriptions of these commands and the specifications required for using them
are presented in the system manual page eti(7). 

Using a User–Supplied Real–Time Device 3

You may wish to use your own device as the timing source for a frequency–based sched-
uler under one of the following conditions: 

• You desire a minor cycle duration that is greater than 655 seconds. 

• You wish scheduling to be triggered by asynchronous events.   

(Note that in this case, you must provide the hardware and the software to service
the event.)

To use your own device, you must ensure the following: 

• That your device driver supports the IOCTLVECNUM ioctl call (IOCTLVEC-

NUM is defined in <sys/ioctl.h>) 

• That your device generates a series of interrupts 

NOTE

When a user–supplied timing source is attached to a frequency–
based scheduler, its interrupt service routine will no longer be
executed.  You must specify a timing source that does not require
re-enabling of interrupts within the interrupt service routine; oth-
erwise, the device will not be able to generate a series of interrupts
as required by the scheduler.  When the timing source is detached
from the scheduler, its interrupt service routine will handle subse-
quent interrupts. 

Use of the ioctl call is explained in “Specifying the Ioctl Call.” 
3-10



Timing Sources for an FBS
Specifying the Ioctl Call 3

The IOCTLVECNUM ioctl call is made to obtain the interrupt vector number of the
device.  It requires the following specifications: 

#include <sys/types.h> 
#include <sys/ioctl.h> 

ioctl(fildes, IOCTLVECNUM, arg) 
int fildes; 
int *arg; 

Arguments are defined as follows: 

fildes the file descriptor for the device 

IOCTLVECNUM the command to place the interrupt vector number of the device in
the location pointed to by arg 

arg a pointer to the location to which the interrupt vector number of
the device will be returned.

The IOCTLVECNUM ioctl call returns the interrupt vector number of the device if the
operation is successful; it returns –1 if this ioctl call is not supported. 

Note that when a user–supplied timing source is detached from a frequency–based sched-
uler, no corresponding ioctl call is made.  Resetting the timing source to its default state
is the responsibility of the user. 

Using a Coupled FBS Timing Device 3

This section contains information about using Coupled FBS timing devices.  There are a
variety of system configurations where Coupled FBS timing devices may be used.  A Cou-
pled timing device may be used to couple together FBS schedulers that are located on
more than one computer system (host).  All schedulers that are attached to the same Cou-
pled FBS timing device will start, stop and resume their executions together on the same
frame and cycle, using the Coupled FBS timing device as the interrupt source.

Device Registration 3

Using a Coupled FBS timing device is not that much different from using any other non-
Coupled timing device.  However, to use a device as a Coupled FBS timing device, it must
first be registered on the host where the device actually resides.  After registration, you
may proceed as you would with any other non-Coupled FBS timing device.

To register a device using rtcp, use the rd (register device) command.  Once this has
been done, the device is then available for use on all registered hosts and it can then be
used with other rtcp commands.
3-11



PowerMAX OS Guide to Real-Time Services
To register a device using the C or  FORTRAN real-t ime l ibraries,  use the
fbs_register_rdev function.  Once this has been done, the device is available for use on all
registered hosts, and it can then be used with other C or FORTRAN real-time library func-
tions.

One FBS scheduler per-host may be attached to a Coupled FBS timing device.  Note that
the appropriate /dev/rdev entry should be used as the attach path name, even on the
host where the timing device actually resides (where the device interrupts originate).

Understanding Coupled FBS Timing Devices 3

There are two basic components to Coupled timing devices:

- the propagation of the timing device interrupt to all attached schedulers

- the sending and receiving of communication messages between attached
schedulers and the Coupled FBS timing device support code

One example of a communication message would be for requesting that the timing
device start sending interrupts to all the attached schedulers.  This start type of mes-
sage would be sent from an attached scheduler to the host where the timing device
interrupt originates.  Another example would be the communication messages that
are sent between hosts during the timing device registration and un-registration
operations.

The mechanism used for propagating the timing device interrupt and the mechanism used
for sending and receiving communication messages depends upon the type of Coupled
FBS timing device that has been registered.

There are two types of Coupled FBS timing devices:

RCIM Coupled timing device

For this type of timing device, the device must be a RCIM real-time clock or
edge-triggered interrupt, and the device must be configured to distribute its
interrupts through the RCIM cable.

Additionally, all remote hosts where this device is registered must be config-
ured to receive this device’s distributed interrupt through the RCIM cable.

A RCIM Coupled timing device propagates the timing device interrupt
through the RCIM cable, with this interrupt signal directly interrupting each
attached scheduler’s host system.

The associated communication messages that are sent between hosts are
always sent with networking messages.

In order to use a RCIM Coupled timing device, all of the hosts where this
device is registered must be accessible via standard TCP/IP networking, and
each host must be attached to the same RCIM cable.  Any combination of
standalone, Closely-coupled or Loosely-coupled hosts/SBCs may be used, as
long as these two requirements are met.
3-12



Timing Sources for an FBS
Closely-Coupled timing device

Closely-Coupled timing devices may only be used by hosts (SBCs) within the
same Closely-coupled cluster.

For these timing devices, the SBC messaging support is always used to send
communication messages between hosts.

Closely-Coupled FBS timing devices may be either RCIM or non-RCIM
devices.  The Closely-Coupled timing device interrupts that are propagated to
all the attach schedulers are sent in one of two ways: by SBC messages or by a
distributed RCIM interrupt through the RCIM cable.

The timing device interrupt will be propagated with SBC messages for all
non-RCIM devices, such as integral real-time clocks.  SBC messages will also
be used to propagate the timing device interrupts for RCIM devices that are
not configured to distribute their interrupts through the RCIM cable.

However, RCIM devices that are configured to have their interrupts distrib-
uted through the RCIM cable will have their timing device interrupts sent
directly through the RCIM cable to the attached schedulers in the cluster.  As
is the case for RCIM Coupled FBS timing devices, when the RCIM device is
configured as a distributed interrupt, all remote SBCs where the device is reg-
istered must have an RCIM that is attached to the same RCIM cable, and each
remote SBC must have its RCIM configured to receive this timing device’s
interrupt through the cable.

Note that it is usually more efficient to use a distributed interrupting RCIM
device as the timing source, since this avoids the system overhead of sending
an SBC message for each Coupled FBS timing device interrupt.

The Remote Device File System 3

When a timing device is registered, a corresponding device file entry  will be added to the
remote device file system (rdevfs) on every host where the device has been registered.

The rdevfs file system provides local access to timing devices that are registered as
Coupled FBS timing devices and that may actually reside on a remote host.  Coupled FBS
timing device files are located in /dev/rdev subdirectories, where the subdirectory
name indicates the name of the host where the device actually resides.

For devices that are registered with the rtcp rd command, or the fbs_register_rdev
function, the subdirectory name will be the name of the local host that was specified in the
list of registration hostnames.  For example, if the list of registration hostnames was
rudi, cosmo and endor and the device actually resides on endor, then the
/dev/rdev/<hostname> subdirectory for that device will be ‘/dev/rdev/endor’.

A given subdirectory /dev/rdev/<hostname> contains device file entries, each of
which represents a device that was registered as a Coupled FBS timing device.  A device
file entry is of the form ‘device<n>’, where <n> is the numeric indication of the
device’s ordinal number, for example 1 for the device registered, 2 for the second device
registered, and so on.
3-13



PowerMAX OS Guide to Real-Time Services
Thus, the Coupled FBS timing device file name is of the form ‘/dev/rdev/<host-
name>/device<n>’.  This is the file name that should be used when attaching a timing
source to a FBS scheduler.

When a Coupled FBS timing device is unregistered, the corresponding rdevfs device
file entry will be removed on all hosts where the device was previously registered.

NOTE

When timing devices are registered with either the obsolete
fbs_register_cluster_device function, or with the obsolete rtcp
reg command, the ‘/dev/rdev’ subdirectory names are of the
form ‘sbc<x>’, where <x> is the SBC board ID of the SBC
where the timing device actually resides.  Thus, the timing device
f i l e  en t r i e s  i n  t h i s  c a s e  w i l l  b e  o f  t h e  fo rm
‘/dev/rdev/sbc<x>/device<n>’.

Understanding the User Interface 3

Use and management of Coupled FBS timing devices is supported by rtcp and the FBS C
and FORTRAN real-time libraries, librt and libF77rt, respectively.

The rtcp commands needed to register and unregister timing devices are rd and urd,
respectively.  The ats rtcp command is used to attach a coupled FBS timing device to
a FBS scheduler.  The gtc, rc, sc, and stc commands may be used to get, start, stop
and set values for a Coupled FBS timing device, if the actual device is a real-time clock.
Other devices that are used as Coupled FBS timing devices must be directly manipulated
(initialized, etc.) with ioctl(2) calls on the host where that device actually resides, using
the real device file name (not the /dev/rdev name) to open(2) the device

When a scheduler is attached to a Coupled FBS timing device, the rtcp vs command
will output additional information about the name of the host where the device actually
resides, the real name of the timing device on that host, a list of hostnames where the
device is registered, and a list of hostnames of the hosts that currently have a FBS sched-
uler attached to that device.  Additionally, if the timing device is a Closely-Coupled timing
device, the vs rtcp command will also output the SBC board ID of the SBC where the
device actually resides, and a SBC board ID mask of the SBCs that currently have a sched-
uler attached to this timing device.  The rtcp vr command or the fbsinfo_rdev function
c a l l  m a y  b e  u s e d  t o  o b ta in  in f o r m a t i o n  a b o u t  a  /dev/rdev/<host-
name>/device<n> timing device without requiring that a scheduler be currently
attached to the device. C and FORTRAN real-time library functions that manage timing
devices are fbs_register_rdev, fbs_unregister_rdev and fbsinfo_rdev.  The  fbsattach
function can be used to attach a Coupled FBS timing device to an FBS scheduler, using
the /dev/rdev/<hostname>/device<n> pathname. The fbsgetrtc, fbsrunrtc and
fbssetrtc functions may be used to get, start, stop or set values for a Coupled FBS timing
device if the actual  device is a real-time clock.

It is strongly recommended that you use the rtcp commands or the C or  FORTRAN
real-time library functions as your interface to the Coupled FBS timing devices.
3-14



Timing Sources for an FBS
NOTE

The fbs_register_cluster_device  and fbs_unregister_cluster_
device functions, and also the rtcp reg and unreg commands
are obsolete.  They are currently being provided only for back-
ward compatibility with previous PowerMAX OS releases.  Users
are highly encouraged to make use of the newer fbs_register_
rdev, fbs_unregister_rdev and fbsinfo_rdev functions, as well
as the rtcp rd, urd and vr commands.

It should also be mentioned that the fbsinfo_rdev function and
the rtcp vr command will not work on Coupled FBS timing
devices that were registered with the fbs_register_cluster_device
function call or the rtcp reg command.

Scheduler Synchronization 3

All frequency based schedulers that are attached to the same Coupled FBS timing device
are stopped, started and resumed together, thus maintaining the same number of
frame/cycle interrupts delivered to each scheduler residing on different hosts.

However, there are two exceptions when all schedulers will not necessarily stop on the
same frame/cycle count:

- when a LWP within a frequency-based scheduler hits a breakpoint that has
been set from within a debugger utility, such as NightView(1),

- when an overrun occurs and the local scheduler must be stopped.

In these cases the local scheduler is stopped immediately, ignoring any  future frame/cycle
interrupt notifications.  Until the kernel is able to send a stop device communication mes-
sage to the host where the Coupled FBS timing device actually resides and the device
interrupts are then set to be ignored, any additional interrupts generated by the Coupled
FBS timing device up to that point will still be propagated to all attached schedulers, thus
making the already stopped scheduler potentially out of sync with the other attached
schedulers, in terms of frame and cycle count values.

Using RCIM Edge-Triggered Interrupts and Real-Time Clocks 3

Power Hawk Series 600/700/900 systems that have a Real-Time Clocks and Interrupts
Module (RCIM) installed may make use of the real-time clocks and edge-triggered inter-
rupts located on this board as timing devices for frequency-based schedulers.

For more information on these topics, see “Understanding the Real–Time Clock
Device“on page 3-1 and “Understanding the Edge–Triggered Interrupt“on page 3-8.
3-15



PowerMAX OS Guide to Real-Time Services
As a Local Timing Device 3

Each real-time clock or edge-triggered interrupt may be used locally as a standard FBS
timing device that is used only by a frequency based scheduler located on that same SBC
board.

In this case, the device path names that should be used by frequency-based scheduler
applications for real-time clocks are:

/dev/rrtc/2c0
/dev/rrtc/2c1
/dev/rrtc/2c2
/dev/rrtc/2c3

And the path names that should be used for edge-triggered interrupts are:

/dev/reti/eti00
/dev/reti/eti01
/dev/reti/eti02
/dev/reti/eti03

When using these devices as standard timing devices, the information contained in the
section “Using a Real–Time Clock” and “Using an Edge-Triggered Interrupt” will also
apply to these devices.

As a Coupled FBS Timing Device 3

As mentioned in the section, "Understanding Coupled FBS Timing Devices", RCIM real-
time clocks and edge-triggered interrupts may be used as Coupled FBS timing devices.

When used as a  RCIM Coupled timing device, the  RCIM device must  be configured to
distribute its interrupts through the RCIM cable on the host where the device resides.
All other remote hosts where a distributed RCIM device is registered must be configured
to receive this device’s interrupts through the RCIM cable.  Any set of hosts that are
connected to the same RCIM cable and that can also communicate among each other with
standard TCP/IP networking can make use of the same RCIM Coupled timing devices.

When a RCIM device is used as a Closely-Coupled timing device, then all hosts that are
registered to make use of the Closely-Coupled timing device must reside within the same
Closely-Coupled cluster system.  This is because the inter-host communication messages
that are used to support the Coupled FBS timing device are passed by using the SBC VME
messaging interface.  The RCIM device does not necessarily have to be configured to dis-
tribute its interrupts through the RCIM cable.  In this case, the device interrupts are propa-
gated by using the SBC messaging support to pass messages to the other SBCs as notifica-
tion of a device interrupt.  However, if the RCIM device is configured to distribute its
interrupts through the RCIM cable, then SBC messages are not needed for passing the
device interrupt notifications.  In this case, the interrupts are sent directly to each regis-
tered host through the RCIM cable, and for this reason, all other remote hosts where the
device is registered must be configured to receive this device’s interrupts through the
RCIM cable.  Since the distributed interrupt capability provides a much faster and lower
overhead method than using SBC messaging for interrupt propagation, it is recommended
that the distributed interrupt feature be used when ever possible.
3-16



Timing Sources for an FBS
Configurations with Limited RCIM Hardware 3

In some situations, it might be desirable to connect multiple Closely-Coupled clusters
together with RCIM boards and a RCIM cable, where within each cluster there might be
just one SBC with a connected RCIM board and cable.  In this type of configuration, the
other SBCs within each cluster that are not configured with a RCIM board would not usu-
ally be able to participate in a Coupled FBS simulation with the other RCIM-configured
SBCs.

In an effort to provide some amount of limited support to all SBCs in this type of mixed
R C I M  a n d  n o n - R C I M  S B C  c o n f i g u r a t io n s ,  a  d e v ic e  r e g i s t r a t io n  o f  a
/dev/distrib_intr[n] device file will be provided solely for this purpose.

The /dev/distrib_intr[n] device files are used for receiving incoming interrupts
from remote or local RCIM devices that are configured to distribute their interrupts
through the RCIM cable.  These device files should not usually be registered as Coupled
timing devices; instead, the actual RCIM device where the interrupts originate from
should usually be registered as a RCIM coupled FBS timing device.

However,  fo r  t h is  t ype  of  s i t ua t ion ,  by  a l lowing  the  regi s t ra t ion  of  the
/dev/distrib_intr[n] device file that receives the incoming interrupts through the
RCIM cable, a Closely-Coupled timing device will be created that is available on all SBCs
within that one cluster.  In this case, the kernel will treat this registered device as a non-
distributed, edge-triggered interrupt (ETI), closely-coupled timing device.  All incoming
interrupts received by this device will be propagated to all participating SBCs/hosts within
that cluster through the use of SBC messages.

Note that FBS schedulers on the SBCs within the cluster should still attach themselves to
the corresponding /dev/rdev/[hostname]/device[n] device file, and not to the
/dev/distrib_intr[n] device file.

In this type of configuration, the start and stop scheduler operations will have the affect of
enabling or disabling the propagation of interrupts received by this registered Closely-
Coupled timing device within that local cluster.

However, note that the actual timing device that is distributing its interrupts through the
RCIM cable is not controlled by the start/stop scheduler operations issued locally within
the each cluster.  Therefore, co-ordination between clusters for the processing of these
incoming RCIM distributed interrupts is entirely up to the user.

Typically, the real RCIM timing device would also be registered as a RCIM Coupled tim-
ing device, and any scheduler attached to this device could be used to start and stop the
real device interrupts.

For example, in order to start all attached schedulers on all clusters together in a synchro-
nized fashion, within each cluster one would first issue a start scheduler operation on a
scheduler that is attached to the registered /dev/distrib_intr[n] Closely-Coupled
timing device.  Then the real RCIM Coupled timing device that is distributing its inter-
rupts through the RCIM cable to each of the clusters could be started by a scheduler that is
attached to the real RCIM Coupled timing device.
3-17



PowerMAX OS Guide to Real-Time Services
As a Distributed Interrupt Device Without Coupled FBS Support 3

The Coupled FBS support provides customers with an easy way to setup and use a distrib-
uted RCIM interrupting device across multiple hosts. However, keeping all attached
schedulers synchronized across the registered hosts does cause additional system over-
head, particularly at scheduler start, resume and stop event points.

For those applications that require the fastest possible scheduler start, stop and resume
operations across all attached schedulers, it is possible  to directly make use of a RCIM
distributed interrupt device without using the Coupled FBS support.  While this approach
causes a loss of functionality and also places all of the cross-host synchronization respon-
sibilities on the customer, it does reduce the amount of  system overhead that is associated
with running in a Coupled FBS  environment.

When directly using the distributed interrupt RCIM device, the user does not register the
device with fbs_register_rdev, but instead the application code on the local host will
o p e n ,  c o n t r o l  a n d  a t t a c h  i t s  sc h e d u l e r  t o  th e  /dev/rrtc/2c<n>  o r
/dev/reti/eti0<n> file, and the remote host application’s FBS scheduler must attach
itself to the corresponding /dev/distrib_intr<n> device file.  (See the rcim(7)
system manual page for details on distrib_intr device files.)

When the Coupled FBS timing device support is not used, then all start, stop, resume,
overrun and breakpoint stops must be coordinated entirely by the user.  For example, since
a stop scheduler fbsintrpt call affects only the local scheduler, the other schedulers
attached to this same distributed interrupt will not also stop as a result of this one sched-
uler’s stop operation.

The recommended method for keeping all attached schedulers synchronized on the same
frame/cycle counts is to directly start and stop the actual distributed RCIM timing device
on the host where the device resides, and to not make use of the usual per-scheduler fbsin-
trpt start, stop and resume functions (or the rtcp start and stop commands).

The following is an example method for starting together all of the  schedulers that attach
themselves to the same distributed RCIM interrupt source:

1. On the host where the RCIM timing device actually resides, open(2) the
appropriate /dev/rrtc/2c<n> or /dev/reti/eti0<n> device file.
Then ensure that this device is not currently generating interrupts by mak-
ing the appropriate ioctl(2) calls.

2. Attach all schedulers to the distributed RCIM interrupt, using  the appropri-
ate /dev/distrib_intr<n> device file.  An ETI_ARM and
ETI_ENABLE ioctl(2) call must be made on this device file in order for
the distributed interrupts to be received.

3. Issue a fbsintrpt start function call (or rtcp start command) for all the
attached schedulers.  This call give each scheduler the ability to receive and
process each incoming Coupled timing device interrupt.

4. On the host where the RCIM timing device actually resides, issue the
appropriate ioctl(2) calls to start the distributed RCIM  device running
(interrupting).
3-18



Timing Sources for an FBS
The FBS Daemon 3

When Coupled FBS support is configured into the kernel, the system will automatically
startup a FBS user-level daemon when the system goes into run level 3.

This FBS user-level daemon is used for the sending and receiving of communication mes-
sages between registered hosts in a Coupled FBS environment.  Many of these received
message requests result in the execution of various system service calls on the local host
on behalf of a remote host.

While this FBS daemon is automatically invoked by the Coupled FBS support within the
/etc/init.d/fbs script, it should be mentioned that there are several FBS daemon
options that the system administrator may wish to alter from their default values, depend-
ing upon system and application requirements.

Specifically, two types of options that the system administrator may wish to modify are
the FBS daemon’s scheduling class and priority, and the enabling of the Coupled FBS tim-
ing device cleanup processing (discussed in the section "Existing Device Registration
Cleanup" on the next page). For more information on the FBS daemon options, see the
system manual page fbsd(1M).

Coupled FBS Timing Device Error Recovery 3

The following subsections discuss several aspects regarding recovering from various
types of errors that can occur when using Coupled FBS timing devices.  Since Coupled
FBS timing devices are used across  multiple hosts, certain events, such as inter-host mes-
sage communication errors or having a host crash, can cause problems with the successful
functioning of these types of timing devices.

Failed Registrations 3

When a fbs_register_rdev or rtcp rd device registration fails in the middle of the reg-
istration process, some hosts may have successfully registered that device locally on their
system, while other hosts may have failed to complete their own local registrations of this
Coupled FBS timing device due to reasons such as inter-host communication errors or
improper device configuration a of distributed RCIM device.  In this case, the Coupled
FBS support will automatically attempt to completely back out any device registration
information from any host that may have already completed its local device registration
processing.

Therefore, upon return from a failed device registration function call or rtcp registration
command, the caller may assume that the local host and all remote hosts have been purged
of any information regarding the device’s registration.
3-19



PowerMAX OS Guide to Real-Time Services
Existing Device Registration Cleanup 3

When there are one or more Coupled FBS timing devices that are registered on a local
host, the set of remotely registered hosts will contain kernel information about that Cou-
pled FBS timing device, as well as inter-host communication connections and possibly a
FBS scheduler that is attached to that timing device.

If the host where the timing device actually resides crashes or is taken down with active
local device registrations, then all the registered remote hosts will no longer be able to
properly use that Coupled FBS timing device.  However, at that point, the rdevfs(4)
device file entry for that remote timing device will still exist on each remote host, and their
local scheduler (if any) will still remain attached to the remote Coupled FBS timing
device.

As a means to aid in removing this defunct remote Coupled FBS timing device from all
the hosts where this device was registered, the Coupled FBS support provides some auto-
matic cleanup of timing devices through the FBS daemon.

When the FBS daemon’s -c option is specified (see the fbsd(1M) system manual page),
then the FBS daemon will attempt at invocation time, to cleanup any left-over local
devices that were still registered as Coupled FBS timing devices the last time that this
local host either crashed or was shutdown.  For each local device that was registered, a
communication message will be sent to each remote host where the Coupled FBS timing
device was registered.

When each remote host’s FBS daemon receives this communication message, it will
attempt to detach any scheduler that is still attached to this no longer valid Coupled FBS
timing device, and then to un-register this Coupled FBS timing device on its local system.
Upon successful un-registration, the associated rdevfs(4) device file will no longer
exist on that remote host.  Note that although any attached scheduler  will be detached
from the device, the scheduler itself will not be automatically removed from the remote
host.  The removal of the previously attached scheduler must be manually done with a
rtcp rms command, or by the customer’s application code with a fbsremove function
call.

By default, this option is specified/enabled in the /etc/init.d/fbs script.  If this
option is not specified at FBS daemon invocation time, then no attempts to cleanup the
remote hosts will be done, and some remote hosts may be left with attached schedulers
and stale rdevfs(4) device files on their systems.

Unregistration of a Coupled FBS Timing Device 3

One requirement for successfully un-registering a local device from being a Coupled FBS
timing device is that no FBS schedulers may be currently attached to that device.  If a
remote host where a FBS scheduler is attached to that device crashes, then the  Coupled
FBS support code on the host where the device resides will still contain information
regarding the remote scheduler’s  attachment to this timing device.

When a user or application on the local host attempts to un-register this timing device, the
un-registration will fail, since there will still be kernel information that indicates that there
is an attached scheduler, even though this scheduler really no longer exists.
3-20



Timing Sources for an FBS
For RCIM Coupled timing devices, support has been added in this area.  When a timing
device un-registration call is made, the kernel Coupled FBS support code will automati-
cally detect when an  attached scheduler belongs to a host that is either no longer  respond-
ing or has been rebooted.  In this case, the kernel un-registration code will remove the
internal information regarding this scheduler’s attachment and then continue on with this
timing device’s un-registration processing.

Unfortunately, this support cannot be provided for Closely-Coupled timing devices.  This
is due to the inability of the Coupled FBS  kernel support code to reliably detect when an
attached scheduler belongs to a remote SBC that has been rebooted.  Therefore, for
Closely-Coupled timing devices, the local host/SBC must be rebooted to remove this
Closely-Coupled timing device registration when this situation occurs.
3-21



PowerMAX OS Guide to Real-Time Services
3-22



4
Overview of the Performance Monitor

What Is the Performance Monitor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
What Values Are Monitored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Monitoring Idle and Spare Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

How Is Idle Time Monitored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
How Is Spare Time Monitored?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Optimizing the Performance of a Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Monitoring Unscheduled Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Installation and Configuration Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
User Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Rtcp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
NightSim  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9





4
Chapter 4Overview of the Performance Monitor

4
4
4

This chapter provides an overview of the performance monitor.  It contains a description
of the performance monitor and the capabilities it provides, and it explains the user
interface. 

What Is the Performance Monitor? 4

The performance monitor is a feature of PowerMAX OS that allows you to monitor use of
the CPU by processes or LWPs that are scheduled on a frequency-based scheduler. The
performance monitor relies on the high-resolution timing facility to obtain its timing
values (complete information on timing facilities is provided in the PowerMAX OS Real-
Time Guide). 

The performance monitor provides you with the ability to: 

• Obtain performance monitor values by process or processor 

• Control all performance monitoring features from one processor (that is,
enable performance monitoring for any processor) 

• Start and stop performance monitoring by process or processor 

• Clear performance monitor values by process or processor 

You also have the ability to set the timing mode under which the performance monitor is
to run.  You can select one of two modes: one that includes time spent servicing interrupts
in performance monitor timing values and one that excludes time spent servicing
interrupts from those values. 

When the performance monitor timing mode is set to include interrupt time, a process’s
user and system times will total the elapsed time that accrues when the process is the cur-
rently running process.  This elapsed time includes time spent servicing interrupts.  Time
spent servicing interrupts is added to the process’s system time.  

When the performance monitor timing mode is set to exclude interrupt time, a process’s
user and system times will total the time that accrues when the process is the currently
running process.  This time excludes time spent servicing interrupts.  

Whether the timing mode is set to include or exclude interrupt time, context switch time is
always included in the new process’s system time.  
4-1



PowerMAX OS Guide to Real-Time Services
What Values Are Monitored? 4

The performance monitor keeps track of the time that a process spends running from the
time that it is wakened by a frequency–based scheduler until it calls fbswait.  Time is
measured in microseconds.  One instance of a process’s being wakened by a scheduler is
referred to as an iteration or a cycle.  Performance monitor values for FBS–scheduled
processes are reported both in terms of cycles, or iterations, and in terms of major frames.
They reflect what has happened since the last time that performance monitor values were
cleared and performance monitoring was enabled. 

When performance monitoring is enabled for a single FBS–scheduled process or for all
FBS–scheduled processes on a processor, the following types of values are maintained for
each process: 

Total iterations, cycles The number of times that the process has been wakened by
the scheduler 

Last time The amount of time that the process has spent running
from the last time that it has been wakened by the sched-
uler until it has called fbswait 

Total time The total amount of time that the process has spent run-
ning in all cycles 

Minimum cycle time The least amount of time that the process has spent run-
ning in a cycle 

Minimum cycle cycle The number of the minor cycle in which the minimum
cycle time has occurred 

Minimum cycle frame The number of the major frame in which the minimum
cycle time has occurred 

Maximum cycle time The greatest amount of time that the process has spent run-
ning in a cycle 

Maximum cycle cycle The number of the minor cycle in which the maximum
cycle time has occurred 

Maximum cycle frame The number of the major frame in which the maximum
cycle time has occurred 

Minimum frame time The least amount of time that the process has spent run-
ning during a major frame

Minimum frame frame The number of the major frame in which the minimum
frame time has occurred 

Maximum frame time The greatest amount of time that the process has spent run-
ning during a major frame

Maximum frame frame The number of the major frame in which the maximum
frame time has occurred
4-2



Overview of the Performance Monitor
Number of overruns The number of times that the process has caused a frame
overrun 

Monitoring Idle and Spare Time 4

The performance monitor provides you with the capability of monitoring a processor’s
idle and spare time.  Idle time refers to the time that the CPU is not busy.  Spare time is
composed of the following: 

• Idle time 

• CPU time of processes that are not scheduled on a frequency–based sched-
uler 

• CPU time of FBS–scheduled processes for which performance monitoring
has not been enabled  

It is important to note that PowerMAX OS allows you to monitor a processor’s spare time
at the same time that you are monitoring its idle time. By monitoring a processor’s idle
time, you can determine the amount of CPU time that is available to be allocated to addi-
tional processes. By subtracting the values obtained for idle time from those obtained for
spare time, you can obtain an estimate of the amount of CPU time that is being allocated to
processes that are not part of a simulation. You may be able to increase the number of
tasks included in a simulation that you are running or run additional simulations.

Procedures for monitoring idle and spare time are described in “How Is Idle Time Moni-
tored?” and “How Is Spare Time Monitored?” 

How Is Idle Time Monitored? 4

You can monitor a particular processor’s idle time if you add the process /idle to a fre-
quency–based scheduler and schedule it on the desired processor.  You can monitor idle
time for a number of different processors by adding /idle to a selected frequency–based
scheduler more than once and scheduling it on a different processor each time.  You can
also add /idle to more than one frequency–based scheduler.  It is important to note,
however, that you can schedule /idle on a particular processor only once. 

To add /idle to a frequency–based scheduler, you can execute the rtcp command sp;
make a call to sched_pgmadd from a C program; make a call to schedpgmadd from a
FORTRAN program; or make a call to Sched_PGM_Add from an Ada program. An
explanation of the sp command is provided in Chapter 5. Explanations of the
Sched_PGM_Add, sched_pgmadd and schedpgmadd routines are provided in
Chapter 6, 7, and 8. You can also use NightSim to add /idle to a frequency-based sched-
uler. For complete information on NightSim, refer to the NightSim Quick Reference.

When you add /idle to a frequency–based scheduler, the only parameter that you must
specify is the CPU.  The default scheduling priority for /idle is zero.  The starting base
cycle is zero, and the period is one. /Idle will be scheduled every minor cycle, starting
with the first minor cycle in each major frame. 
4-3



PowerMAX OS Guide to Real-Time Services
NOTE

I f  y o u  a r e  u s in g  th e  s u b r o u t in e  Sched_PGM_Add ,
sched_pgmadd(3rt), or schedpgmadd(3F77rt) to add
/idle to a scheduler, you can set only one bit in the bit mask that
specifies the processor.  To add /idle to a scheduler and sched-
ule it on more than one processor, you must call the subroutine
repeatedly, specifying a different processor on each call. 

After /idle is scheduled, the unique frequency–based scheduler identifier that is known
as the process’s slot number is returned.  You can subsequently use the slot number to
identify /idle when you are performing tasks related to the frequency–based scheduler
or the performance monitor. 

You can obtain scheduling information for /idle in the same way that you obtain it for
other FBS–scheduled processes––by executing the rtcp command vp; by making a call
to sched_fbsqry or sched_pgmqry from a C program; by making a call to
schedfbsqry or schedpgmqry from a FORTRAN program; or by making a call to
Sched_FBS_Query or Sched_PGM_Query from an Ada program.   An explanation of
the vp command is provided in Chapter 5. Explanations of the Ada, C, and FORTRAN
routines are provided in Chapter 6, 7, and 8. You can also use NightSim to obtain schedul-
ing information for /idle.

If you enable performance monitoring for the processor(s) on which /idle has been
scheduled or for the process, itself, you can obtain all of the performance monitor values
that are described in “What Values Are Monitored?” Procedures for enabling performance
monitoring and retrieving performance monitor values for FBS–scheduled processes are
described in detail in Chapter 6, 7, and 8.

How Is Spare Time Monitored? 4

You can monitor a processor’s spare time by adding the process /spare to a selected
frequency–based scheduler and scheduling it on the desired processor.  As in the case of
/idle, you can monitor spare time for a number of different processors by adding
/spare to a selected frequency–based scheduler more than once and by scheduling it on
a different processor each time.  You can also add /spare to more than one frequency–
based scheduler.  It is important to note, however, that you can schedule /spare on a
particular processor only once. 

When you add /spare to a frequency–based scheduler, the only parameter that you must
specify is the CPU.  The default scheduling priority is zero.  The starting base cycle is
zero, and the period is one. /Spare will be scheduled every minor cycle, starting with the
first minor cycle in each major frame. 
4-4



Overview of the Performance Monitor
NOTE

I f  y o u  a r e  u s in g  th e  s u b r o u t i n e  Sched_PGM_Add ,
sched_pgmadd(3rt), or schedpgmadd(3F77rt) to add
/spare to a scheduler, you can set only one bit in the bit mask
that specifies the processor.  To add /spare to a scheduler and
schedule it on more than one processor, you must call the subrou-
tine repeatedly, specifying a different processor on each call.

After /spare is scheduled, the unique frequency–based scheduler identifier that is
known as the process’s slot number is returned.  You can subsequently use the slot number
to identify /spare when you are performing tasks related to the frequency–based
scheduler or the performance monitor. 

You can obtain scheduling information for /spare in the same way that you obtain it for
other FBS–scheduled processes––by executing the rtcp command vp; by making a call
to sched_fbsqry or sched_pgmqry from a C program; by making a call to
schedfbsqry or schedpgmqry from a FORTRAN program; or by making a call to
Sched_FBS_Query or Sched_PGM_Query from an Ada program.   An explanation of
the vp command is provided in Chapter 5. Explanations of the Ada, C, and FORTRAN
routines are provided in Chapter 6, 7, and 8. You can also use NightSim to obtain schedul-
ing information for /spare.

If you enable performance monitoring for the processor(s) on which /spare has been
scheduled or for the process, itself, you can obtain all of the performance monitor values
that are described in “What Values Are Monitored?” Procedures for enabling performance
monitoring and retrieving performance monitor values for FBS–scheduled processes are
described in Chapter 6, 7, and 8.

Optimizing the Performance of a Simulation 4

One of the benefits of using multiprocessor systems for real–time processing is that you
can optimize the performance of a simulation by distributing processes among several
processors. 

By using the frequency–based scheduler to schedule the programs that make up a simula-
tion, you can use the performance monitor to determine the extent to which the FBS–
scheduled processes are utilizing a CPU and to find out whether or not they are running at
the frequency that you have specified. 

A program is scheduled on a processor when you add it to a frequency–based scheduler.
The processor on which it is scheduled is determined by the CPU bias that you specify
when you add it to the scheduler.  After your programs have been scheduled, you can
enable performance monitoring on one or more processes or processors and run your sim-
ulation.  By examining the performance monitor values that are maintained for each FBS–
scheduled process, you can determine the following: 

• The processors to which the processes have been assigned 

• The amount of time that the processes have spent running 

• The processes that have not run at their assigned frequency  
4-5



PowerMAX OS Guide to Real-Time Services
If you find that a process is not running at its assigned frequency, you should examine its
frequency, the amount of CPU time that is being used by the other processes, and the CPU
biases for all processes.  Note that if a process’s CPU bias identifies more than one proces-
sor, you cannot determine how much time the process has spent on a particular CPU
specified in the bit mask because of dynamic load balancing.  To avoid dynamic load bal-
ancing, specify only one processor in the bit mask.  By using performance monitoring, you
can then tell how much time a process has spent on its assigned CPU.  You can redistrib-
ute processes as necessary.

You can also enable performance monitoring for a processor’s idle and spare time. Proce-
dures for doing so are explained in “Monitoring Idle and Spare Time.” By examining the
amount of idle and spare time on each processor, you will be able to identify the proces-
sors that have the lightest load and calculate the additional amount of CPU time that can
be used for scheduling real–time processes. 

You can determine the processor assignments that are optimal for your simulation by ana-
lyzing the performance monitor values for FBS–scheduled processes and for idle and
spare time on selected processors. As necessary, you can redistribute your FBS–scheduled
processes by changing their CPU biases. It is important to note that in order to do so, you
must first remove the process from the scheduler on which it has been scheduled and then
again add it to a scheduler. For an overview of the frequency–based scheduler and the
interfaces that accommodate its use, refer to Chapter 2. 

Monitoring Unscheduled Processes 4

The performance monitor provides you with the additional capability of monitoring the
performance of unscheduled processes.  Unscheduled processes are those that are not
wakened by the scheduler and do not call fbswait; they are not scheduled to run at a
certain frequency.  To be able to obtain performance monitor values for such processes,
you must first add them to a frequency–based scheduler and specify a starting base cycle
of zero and a period of zero.  The other scheduling parameters that you must specify
include the process’s scheduling priority and the CPU on which it is to be scheduled.  You
can optionally specify an octal value to be passed to a process that is scheduled on a fre-
quency–based scheduler.  The “halt on overrun” flag does not apply to an unscheduled
process. 

You can add unscheduled processes to a frequency–based scheduler by executing the
rtcp command sp; by making a call to sched_pgmadd from a C program; by making a
call  to schedpgmadd f rom a FORTRAN program; or by making a  cal l to
Sched_PGM_Add from an Ada program. An explanation of the sp command is provided
in Chapter 5. Explanations of the Sched_PGM_Add,  sched_pgmadd,  and
schedpgmadd routines are provided in Chapter 6, 7, and 8. You can also use NightSim
to add unscheduled processes to a frequency-based scheduler. For complete information
on NightSim, refer to the NightSim Quick Reference.

After a process is scheduled, the unique frequency–based scheduler identifier that is
known as the process’s slot number is returned.  You can subsequently use the slot number
to identify the process when you are performing tasks related to the frequency–based
scheduler or the performance monitor. 

You can obtain scheduling information for unscheduled processes in the same way that
you obtain it for other FBS–scheduled processes––by executing the rtcp command vp;
4-6



Overview of the Performance Monitor
by making a call to sched_fbsqry or sched_pgmqry from a C program; by making a
call to schedfbsqry or schedpgmqry from a FORTRAN program; or by making a
call to Sched_FBS_Query or Sched_PGM_Query from an Ada program.   An expla-
nation of the vp command is provided in Chapter 5. Explanations of the Ada, C, and
FORTRAN routines are provided in Chapter 6, 7, and 8. You can also use NightSim to
obtain scheduling information for unscheduled processes.

The performance monitor values that are maintained for unscheduled processes include
the following: 

• Last time 

• Total time 

• Minimum frame time and the number of the frame in which it occurred 

• Maximum frame time and the number of the frame in which it occurred 

You can obtain these values if you enable performance monitoring for the processor(s) on
which the processes have been scheduled or if you enable it for the processes, themselves.
Procedures for enabling performance monitoring and retrieving performance monitor
values are described in detail in Chapter 6, 7, and 8. 

Installation and Configuration Requirements 4

Before using the performance monitor, you must ensure that the fbs package is installed
on your system. This package provides kernel support for the frequency-based scheduler,
the performance monitor, and rtcp(1). For an explanation of the procedures for install-
ing software packages, refer to the PowerMAX OS Version 4.1 Release Notes and the
pkgadd(1M) man page.

You must also ensure that the frequency-based scheduler module (fbs) is configured into
the kernel.  By default, the fbs module is not configured.  You can use the config(1M)
utility to (1) determine whether or not the fbs module is enabled in your kernel, (2)
enable the fbs module, and (3) rebuild the kernel.  Note that you must be the root user to
enable a module and rebuild the kernel.  After rebuilding the kernel, you must then reboot
your system.  For an explanation of the procedures for using config(1M), refer to the
“Configuring and Building the Kernel” chapter of System Administration Volume 2.

Use of the performance monitor facility also requires that the high-resolution timing facil-
ity be configured into the kernel. The high-resolution timing facility provides a means of
measuring each process’s or LWP’s execution time. It is fully described in the PowerMAX
OS Real-Time Guide. The performance monitor facility uses the times that are gathered for
each process by the high–resolution timing facility to obtain its timing values. As speci-
fied by the user, these values may include or exclude time spent servicing interrupts. 

By default, the high-resolution timing facility is not configured into the kernel.  To config-
ure the high-resolution timing facility, you must change the value of the HIGHRESTIMING

system tunable parameter from 0 to 1.  You can use the config utility to (1) determine
whether the high-resolution timing facility is configured into you kernel, (2) change the
value of the HIGHRESTIMING tunable parameter, and (3) rebuild the kernel.  Note that you
4-7



PowerMAX OS Guide to Real-Time Services
must be the root user to change the value of a tunable parameter and rebuild the kernel.
After rebuilding the kernel, you must then reboot your system.

User Interface 4

Use of the performance monitor is accommodated by the following:  (1) rtcp, the real–
time command processor; (2) NightSim, a real-time tool that provides a graphical user
interface to the frequency-based scheduler and the performance monitor; and (3) a set of
library routines that can be called from application programs written in Ada, C, and
FORTRAN 77.  Each interface is introduced in the sections that follow.  

Rtcp 4

Rtcp, the real-time command processor, allows you to perform key operations associated
with the performance monitor by entering commands from the keyboard or invoking a
script. These operations include clearing performance monitor values, starting and stop-
ping performance monitoring, setting the timing mode, and querying values. An overview
of the real–time command processor and the procedures for using it is provided in
Chapter 5.

NightSim 4

NightSim provides the same capabilities as the real-time command processor rtcp(1).
It allows you to perform the entire range of functions associated with the performance
monitor. You can perform the major functions of selecting a scheduler, clearing perfor-
mance monitor values, enabling and disabling performance monitoring, setting the timing
mode, and viewing values. Complete information on NightSim is provided in the Night-
Sim Quick Reference.

Libraries 4

The RT_Interface package and the C librt and FORTRAN libF77rt libraries con-
tain subroutines that enable you to perform the entire range of functions associated with
the performance monitor. You can perform the key functions of selecting a scheduler,
clearing existing performance monitor values, enabling and disabling performance moni-
toring, setting the timing mode, and retrieving performance monitor values. You can also
clear performance monitor values for a single process and retrieve performance monitor
values for a single process or a specified list of processes. All of the subroutines that are
contained in the RT_Interface package and the C and FORTRAN libraries are described
in detail in Chapters 6, 7, and 8. 
4-8



Overview of the Performance Monitor
Privileges 4

PowerMAX OS supports a privilege mechanism through which processes are allowed to
perform sensitive system operations or override system restrictions. One of the operations
associated with the performance monitor requires that you have the P_RTIME privilege.
That operation is selecting the timing mode under which the performance monitor is to
run. Specific information related to this privilege requirement is presented in the appropri-
ate sections of this manual. For additional information on privileges, refer to the Power-
MAX OS Programming Guide and the intro(2) system manual page. 
4-9



PowerMAX OS Guide to Real-Time Services
4-10



5
Using Rtcp

What Is the Real–Time Command Processor?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
What Are the Modes of Execution?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Using Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Using Interactive Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Getting Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Using Rtcp Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Ats – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Chs – Change Permissions for an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Cs – Configure an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Dts – Detach Timing Source from an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Rms – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Svs – Save Scheduler Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Vc – View Minor Cycle/Major Frame Count. . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Vs – View Scheduler Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Rc – Start Real–Time Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Sc – Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Stc – Set Real–Time Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Gtc – Display Real–Time Clock Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
Start – Start Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Resume – Resume Scheduling on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Stop – Stop Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Rmp – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Rsp – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
Sp – Schedule a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Vp – View Processes on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34
Cpm – Clear Performance Monitor Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Pm – Start/Stop Performance Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
Vcm – View/Modify Performance Monitor Timing Mode  . . . . . . . . . . . . . . . . 5-40
Vpm – View Performance Monitor Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
Ex – Exit Real–Time Command Processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
He – Display Help Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Rd - Register a Coupled FBS Timing Device  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47
Urd - Unregister a Coupled FBS timing device . . . . . . . . . . . . . . . . . . . . . . . . . 5-48
Vr - View a Rdevfs File Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49
Reg –  Register a Closely-Coupled Timing Device . . . . . . . . . . . . . . . . . . . . . . 5-51
Unreg – Unregister Closely-Coupled Timing Device  . . . . . . . . . . . . . . . . . . . . 5-51





5
Chapter 5Using Rtcp

5
5
5

This chapter provides an overview of the real–time command processor, rtcp.  It con-
tains a description of the command processor and the capabilities it provides, an explana-
tion of the modes for executing its commands, and reference information for each com-
mand. 

What Is the Real–Time Command Processor? 5

The real–time command processor is a program that acts as a command interpreter.  It pro-
vides easy access to the major services associated with the frequency–based scheduler and
the performance monitor.  The real–time command processor allows you to perform key
operations by entering commands from the keyboard or invoking a script from the shell
command line; it reads the commands and interprets them as requests to execute the
related services. 

Real–time command processor commands associated with the frequency–based scheduler
enable you to perform such key operations as the following: configuring a scheduler,
scheduling programs, saving a scheduler configuration, setting up a timing source, run-
ning a simulation, and querying status. An overview of the frequency–based scheduler is
provided in Chapter 2. It is recommended that you read this chapter prior to using the
real–time command processor for the first time. 

Real–time command processor commands associated with the performance monitor
enable you to perform the following operations: clearing performance monitor values,
starting and stopping performance monitoring, and querying values. Overview of the per-
formance monitor is provided in Chapter 4. It is recommended that you also read this
chapter prior to using the real–time command processor for the first time. 

The real–time command processor has two modes of execution: direct mode and interac-
tive mode. These modes are described in detail in “What Are the Modes of Execution?” 

The real–time command processor also has a help facility that makes it possible for you to
obtain on–line information about commands and arguments. Procedures for using the help
facility are explained in “Getting Help.” 

Real–time processor commands are listed and described in Table 5-1. Reference informa-
tion and procedures for executing each command are provided in “Using Rtcp Com-
mands.” 
5-1



PowerMAX OS Guide to Real-Time Services
Table 5-1.  Real–Time Processor Commands

Command Description

ats  Attach timing source to an FBS   

chs  Change permissions for an FBS   

cs  Configure an FBS   

dts  Detach timing source from an FBS   

rms  Remove an FBS   

svs  Save scheduler configuration   

vc  View minor cycle/major frame count   

vr View a rdevfs file configuration

vs  View scheduler configuration   

rc  Start real–time clock   

rd Register a Coupled FBS device

sc  Stop real–time clock   

stc  Set real–time clock values   

gtc  Get real–time clock values   

start  Start scheduling on an FBS 

reg Register a Closely-Coupled FBS timing device

resume  Resume scheduling on an FBS   

stop  Stop scheduling on an FBS   

rmp  Remove a process from an FBS   

rsp  Reschedule a process   

sp  Schedule a process on an FBS   

unreg Unregister a Closely-Coupled FBS timing device

urd Unregister a Coupled FBS device

vp  View processes on an FBS   

pm  Start/stop performance monitoring   

cpm  Clear performance monitor values   

vcm  View or modify performance monitor timing mode   

vpm  View performance monitor values   

ex  Exit real–time command processor   

he  Display help information   
5-2



Using Rtcp
What Are the Modes of Execution? 5

The real–time command processor provides two modes for executing commands: direct
mode and interactive mode. Procedures for using direct mode are explained in “Using
Direct Mode.” Procedures for using interactive mode are explained in “Using Interactive
Mode.” 

Using Direct Mode 5

Direct mode enables you to invoke real–time command processor commands from the
shell command line.  You can do so in three ways: (1) by invoking the real–time command
processor with a command name and its arguments at the system command prompt; (2) by
invoking the real–time command processor at the system command prompt and redirect-
ing the standard input to come from a file instead of the terminal keyboard; and (3) by
invoking a script at the system command prompt. 

The first method requires that you use the following format for specifying commands: 

rtcp command [–option [argument]][–option [argument]] ... 

Note that you are allowed to enter only one command on the command line at a time. If
you need more than one line to enter a command and its arguments, enter a backslash (\) to
cause the line to be continued. 

The second method requires that you create a file that contains the real–time command
processor commands that you wish to execute. You may do so by using a text editor of
your choice or by executing the svs (Save Scheduler Configuration) command. Use of
the svs command is explained in “Svs – Save Scheduler Configuration.” 

If you use a text editor to create the file, you must enter each command on a separate line;
you may use either of the following formats: 

rtcp command [–option [argument]][–option [argument]] ...

or

command [–option [argument]][–option [argument]] ...

If you need more than one line to enter a command and its arguments, enter a backslash (\)
to cause the line to be continued.

After you have created the file, invoke the real–time command processor, and redirect the
standard input to come from the file by entering a line similar to the following:

rtcp < rtcp_input_file 

The third method also requires that you create a file that contains the real–time command
processor commands that you wish to execute.  The first line in the file can contain a com-
mand or the following text: 

#!program_name where program_name specifies the name of the file that contains
the shell to be invoked.  Typically the name of the file specified is /sbin/sh (sig-
5-3



PowerMAX OS Guide to Real-Time Services
nifying the Bourne shell) or /sbin/csh (signifying the C shell).  It is important to
note that the Bourne shell is invoked if the first line of the file contains a command. 

Each command must be entered on a separate line according to the following format: 

rtcp command [–option [argument]][–option [argument]] ...
rtcp command [–option [argument]][–option [argument]] ...
... 
rtcp command [–option [argument]][–option [argument]] ...

If you need more than one line to enter a command and its arguments, enter a backslash (\)
to cause the line to be continued.

After you have created the file, you can use the following method to execute it from the
shell command line: 

Make it an executable file by using the chmod(1) command, and then invoke it from the
command line as you would any other command (for information on use of the
chmod(1) command, refer to the corresponding system manual page).  Examples are
provided by the following:

chmod 755 rtcp_script
rtcp_script 

See Appendix A for an example of a real–time command processor script. For additional
information on developing and executing shell scripts, refer to the User’s Guide.

Using Interactive Mode 5

Interactive mode makes it possible for you to invoke the real–time command processor,
itself, from the shell command line and then to enter the desired commands from within
the command processor.  To invoke the real–time command processor, first type the fol-
lowing at the system command prompt: 

rtcp 

The real–time command processor prompt is then displayed as follows: 

rtcp> 

At the prompt, type real–time processor commands by using the following format: 

rtcp>command [–option [argument]][–option [argument]] ... 

If you need more than one line to enter a command and its arguments, enter a backslash (\)
to cause the line to be continued.

In most instances, if the command is successfully executed, a message is displayed; where
applicable, configuration data, scheduling information, or performance monitor values are
displayed. Messages and data associated with the commands are included in the reference
information that is presented in “Using Rtcp Commands.” If an error occurs, a message
indicating the nature of the error is displayed. Error messages that may be displayed are
listed and described in Appendix B. 
5-4



Using Rtcp
When you wish to exit the command processor and return to the shell, type the following: 

rtcp>ex 

The system command prompt is again displayed.

Getting Help 5

You can access the real–time command processor’s help facility in the direct or the inter-
active mode by using the he command.  The help information that is provided includes the
following: 

• A list and brief description of all real–time command processor commands 

• A description of each command and the format for entering it 

• An explanation of all of the command arguments To display a list of all
commands, enter the he command as follows: 

he 

Commands are displayed as illustrated in Screen 5-1. 

 

Screen 5-1.  Displaying Commands

To display a description of a particular command, enter the he command, and specify the
name of the command as argument.  An example is provided by the following: 

he ats 

% rtcp he 
       rtcp commands 
ats – attach timing source to FBS      chs – modify FBS permissions 
cs  – configure FBS                    dts – detach timing source from FBS 
rms – remove FBS                       svs – save FBS configuration to a file 
vc  – view current frame/cycle count   vs  – view FBS configuration 
 
rc  – run real–time clock              sc  – stop real–time clock 
stc – set real–time clock values       gtc – get real–time clock values 
 
start – start FBS                      resume – resume FBS 
stop  – stop FBS 
 
rmp – remove a process on a FBS        rsp – reschedule a process on a FBS 
sp  – schedule a process on a FBS      vp  – view scheduled process on FBS 
 
cpm – clear performance monitor tables pm  – start/stop performance monitor 
vcm – view/modify PM timing mode       vpm – view performance 
 
he  – help 
ex  – exit rtcp 
 
% 
 
 

5-5



PowerMAX OS Guide to Real-Time Services
Help information for the ats command is displayed as follows: 

Attach timing source to a FBS 

rtcp ats –s scheduler –d device | –e 

To display an explanation of command arguments, enter the he command, and specify the
word option as argument: 

he option 

The first screen of help information for arguments is displayed as illustrated in Screen 5-2. 

 

Screen 5-2.  Displaying the First Screen of Arguments

If you wish to display the second screen of help information for arguments, enter the he
command, and specify op2 as argument: 

he op2 

The second screen of information is displayed as illustrated in Screen 5-3. 

% rtcp he option
      rtcp parameters
 
–a               remove program from FBS and terminate 
–b {F|R|O}       scheduling policy 
–c cpu_bias      CPU bias (* = all CPUs) (default = current CPU) 
–d name          devicename or filename 
–e               EOC flag 
–f frequency     number of minor cycles to next wakeup  (default = 1) 
–i fpid          process fpid number  (default = –1) 
–m start_cycle   1st minor cycle to wakeup  (default = 0) 
–n proc_name     process name 
–o {halt|nohalt} halt FBS on overrun flag (default = nohalt) 
–p priority      process priority 
–s scheduler     FBS scheduler key 
–t {in|ex}       include or exclude interrupt time in pm monitor 
–v parameter     process initiation parameter 
–x {av|mi|ma|al} performance monitor display option (default = average) 
 
Enter ’he op2’ for more parameters 
 
% 
 

5-6



Using Rtcp
 

Screen 5-3.  Displaying the Second Screen of Arguments 

Using Rtcp Commands 5

This section provides reference information for all of the commands that are supported by
the real–time command processor. Commands are presented in the order in which they are
described in the help facility (refer to “Getting Help” for a description of the help facility).
For each command, the following information is provided: 

• A description of the command 

• The format for entering the command 

• Detailed descriptions of each argument 

• An example of the output from the command 

Figure 5-1 illustrates the approximate order in which you might execute the commands
associated with the frequency–based scheduler.

% rtcp he op2 
      rtcp parameters 
 
–C cycles/frame  number of minor cycles per major frame 
–D duration      clock tick duration  (default = 10us) 
–G gid           effective group ID for FBS  (default = current user) 
–I permissions   IPC permissions for FBS in octal  (default = 0600) 
–L soft_limit    soft overrun limit (default=0) 
–M progs/cycle   maximum number of processes per minor cycle 
–N progs/fbs     maximum number of processes per FBS 
–O clock_ticks   number of clock ticks per minor cycle 
–P {ON|OFF}      enable/disable performance monitor (default = OFF) 
–R {–1 | 0 | 1}  reset process flag  (default = 0) 
–U uid           effective user ID for FBS (default = current user) 
 
% 
 

5-7



PowerMAX OS Guide to Real-Time Services
Figure 5-1.  FBS Command Sequence

cs

Schedule
Programs

• sp
• rmp
• rsp
• vp

ats

stc

rc start

vc

stop

sc dts

rmp

rms

END

START
5-8



Using Rtcp
Figure 5-2 illustrates the approximate order in which you might execute the commands
associated with the performance monitor. 

Figure 5-2.  Performance Monitor Command Sequence

Ats – Attach Timing Source to an FBS 5

The ats command enables you to attach a timing source to a frequency–based scheduler
or to specify end–of–cycle scheduling.  In the latter case, scheduling is triggered when the
last process scheduled during the current minor cycle completes its processing. 

cpm

Start Monitoring
pm

vpm

Stop Monitoring
pm

Modify Timing Mode
vcm

START

END
5-9



PowerMAX OS Guide to Real-Time Services
NOTE

To use a real–time clock as the timing source for a frequency–
based scheduler on a PowerMAX OS system on which the
Enhanced Security Utilities are installed, you must have enough
privilege to open the device. Refer to the “Trusted Facility Man-
agement” chapter of System Administration Volume 1 for an
explanation of the procedures for using devices when the
Enhanced Security Utilities are installed.

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

ats  –s scheduler  –d device | –e

Arguments

Arguments are described as follows. 

–s scheduler This argument identifies the frequency–based scheduler for which
the timing source is to be attached or end–of–cycle scheduling
specified.  The scheduler must previously have been configured.
The scheduler argument specifies the numeric key associated with
the desired scheduler; it can be any positive integer value. 

–d device | –e The –d device argument specifies the path name of the real–time
clock, edge–triggered interrupt, or user–supplied device that is
being used as the timing source for the specified scheduler. If you
are using a real–time clock or an edge–triggered interrupt, you
must enter a path name of a certain form. Refer to Chapter 3 for
detailed information on the form associated with each type of
device. If you are using a user–supplied device, the path name
must be a valid UNIX path name. (Refer to Chapter 3 for an
explanation of the procedures for using a user–supplied device). 

The –e option specifies end–of–cycle scheduling. In this case,
execution of the processes in the next minor cycle will occur when
the last process scheduled to run in the current minor cycle fin-
ishes its processing for the cycle. 

If you are using a Coupled FBS timing device, you must enter the
path name of the rdevfs device file.  Refer to Chapter 3 for
detailed information on the rdevfs device files that are associated
with Coupled FBS  timing devices.

Screen Display 

If the specified timing source is successfully attached to the scheduler or if end–of–cycle
scheduling is successfully enabled, the following message is displayed: 

Scheduler attached 
5-10



Using Rtcp
Chs – Change Permissions for an FBS 5

The chs command enables you to change the permissions assigned for a frequency–based
scheduler.  In order to change the permissions associated with a scheduler, you must have
the P_OWNER privilege or have an effective user ID that is equal to that of the cre-
ator/owner of the frequency-based scheduler. 

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow. 

Format

chs –s scheduler  [–I permissions] [–G gid] [–U uid]

Arguments

Arguments are described as follows. 

–s scheduler This argument identifies the frequency–based scheduler for which
the permissions are to be changed.  The scheduler must previously
have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value. 

–I permissions This argument defines the permissions required for operations
related to the specified scheduler (see the system manual page for
intro(2) for information on permissions associated with the
frequency–based scheduler).  The permissions argument specifies
three octal digits––the first indicates permissions granted to the
owner, the second those granted to the group, and the third those
granted to other users.  The octal method for changing permis-
sions associated with a scheduler is the same as that used for spec-
ifying mode with the chmod command (for assistance in using
this method, see the system manual page for chmod(1)).  The
default, 600, grants read and alter (write) permission to the owner
only. 

–G gid This argument specifies the effective group ID of the selected fre-
quency–based scheduler. 

–U uid This argument specifies the effective user ID of the selected fre-
quency–based scheduler. 
5-11



PowerMAX OS Guide to Real-Time Services
Screen Display 

If the permissions assigned to the scheduler are successfully changed, the following mes-
sage is displayed: 

Scheduler permissions changed 

Cs – Configure an FBS 5

The cs command enables you to create a frequency–based scheduler. Note that to execute
this command, the calling process must have the P_RTIME privilege (for additional infor-
mation on privileges, refer to the PowerMAX OS Programming Guide and the intro(2)
system manual page). It is important to note that the number of schedulers that can be con-
figured at one time cannot exceed the value of FBSMNI, which is the maximum number of
schedulers permitted on your system (see Chapter 2 for a description of system tunable
parameters). 

To create a scheduler, you must specify a key, which is a user–chosen numeric identifier
with which the scheduler will be associated.  You must also define the following: 

1. The number of minor cycles that will compose a major frame on the sched-
uler 

2. The maximum number of tasks that can be scheduled during one minor
cycle 

3. The maximum number of tasks that can be scheduled on the scheduler at
one time 

A frequency–based scheduler has associated with it two types of permission that control
users’ ability to perform scheduler operations:  read and alter (write).  Read permission is
required to perform query operations.  Alter permission is required to do the following: 

• Schedule, remove, and reschedule programs 

• Attach a timing source to and detach it from a scheduler 

• Start, stop, and resume scheduling 

Permissions are assigned when you create the scheduler.  They are specified in the same
way in which permissions associated with files are assigned.  Refer to the system manual
page for chmod(1) for assistance in specifying permissions.  Refer to the system manual
page intro(2) for additional information on the permissions associated with a fre-
quency–based scheduler. 

When you execute the cs command, a unique, positive frequency–based scheduler identi-
fier and corresponding data structure will be created for the specified key if both of the
following conditions are met: 

• The key is not already associated with a frequency–based scheduler identi-
fier 

• The number of frequency–based schedulers already configured is less than
the maximum number of schedulers allowed on your system
5-12



Using Rtcp
The newly created frequency–based scheduler identifier will be displayed on your termi-
nal screen. 

When you specify a key that is already associated with a frequency–based scheduler, the
corresponding frequency–based scheduler identifier will be displayed on your terminal
screen if all of the following conditions are met: 

• The number of minor cycles specified by the –C cycles/frame argument
matches the number of minor cycles associated with the existing scheduler 

• The maximum specified by the –M progs/cycle argument is less than or
equal to the maximum number of processes per minor cycle associated
with the existing scheduler 

• The maximum specified by the –N progs/fbs argument is less than or equal
to the maximum number of processes allowed on the existing scheduler at
one time

If these conditions are not met, an error message will be displayed on the screen.

The –R reset argument enables you to control the manner in which FBS–scheduled pro-
cesses are handled when you specify the key for an existing scheduler.  If the value of
reset is the default zero, such processes remain on the scheduler.  If the value is 1, they are
removed from the scheduler but allowed to continue executing.  If the value is –1, they are
removed from the scheduler and terminated. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.  

Format

cs –s scheduler –C cycles/frame –M progs/cycle –N progs/fbs [–I permissions] \
[–R reset]

Arguments

Arguments are described as follows. 

–s scheduler This argument specifies a key for the frequency–based scheduler
that you wish to create. The key is a user–chosen numeric identi-
fier with which the scheduler will be associated. The value of
scheduler can be any positive integer value. Note that the number
of schedulers that can be configured at one time cannot exceed the
value of FBSMNI, which is the maximum number of frequency–
based schedulers permitted on your system (see Chapter 2 for a
description of system tunable parameters). 

–C cycles/frame This argument specifies the number of minor cycles that compose
a frame on the specified frequency–based scheduler.

–M progs/cycle This argument specifies the maximum number of programs that
can be scheduled to execute during one minor cycle.

–N progs/fbs This argument specifies the maximum number of programs that
can be scheduled on the specified scheduler at one time.  This
value must be less than or equal to the product that is obtained by
5-13



PowerMAX OS Guide to Real-Time Services
multiplying the values specified for the cycles/frame and the
progs/cycle arguments.   

–I permissions This argument defines the permissions required for operations
related to the identified scheduler (see the system manual page for
intro(2) for information on permissions associated with the
frequency–based scheduler).  The permissions argument specifies
three octal digits––the first indicates permissions granted to the
owner, the second those granted to the group, and the third those
granted to other users.  The octal method for setting permissions
associated with a scheduler is the same as that used for specifying
mode with the chmod command (for assistance in using this
method, see the system manual page for chmod(1)).  The
default, 600, grants read and alter (write) permission to the owner
only. 

–R reset This argument specifies the manner in which processes currently
scheduled on the specified scheduler are to be handled.  The value
of the reset argument can be 1, –1, or 0.  Specify the default 0 if
you wish to allow these processes to remain on the scheduler.
Specify 1 if you wish to remove these processes from the sched-
uler but allow them to continue executing.  Specify –1 if you wish
to remove these processes from the scheduler and terminate them. 

Screen Display 

If the scheduler is successfully configured, information similar to the following is dis-
played: 

Scheduler 10 has FBS ID of 3 

Descriptions of the fields presented in this display follow.

Scheduler

This field displays the user–specified key for the selected frequency–based sched-
uler.  It is important to note that this value is required by most of the real–time com-
mand processor commands. 

FBS ID 

This field displays the unique, positive integer value representing the identifier for
the selected frequency–based scheduler. 

Dts – Detach Timing Source from an FBS 5

The dts command enables you to detach the timing source from a frequency–based
scheduler or to disable end–of–cycle scheduling.   If the timing source is a real-time clock,
it is recommended that you stop the clock prior to invoking this routine. You can do so by
making a call to sc (see page 5-22 for an explanation of this command). 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.
5-14



Using Rtcp
Format

dts –s scheduler

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
the timing source is to be detached or end–of–cycle scheduling
disabled.  The scheduler must previously have been configured.
The scheduler argument specifies the numeric key associated with
the desired scheduler; it can be any positive integer value. 

Screen Display 

If the timing source is successfully detached from the scheduler or end–of–cycle schedul-
ing is successfully disabled, the following message is displayed: 

Scheduler detached 

Rms – Remove an FBS 5

The rms command enables you to remove a frequency–based scheduler. Prior to execut-
ing this command, you must ensure that the timing source for the scheduler has been
detached or that end–of–cycle scheduling has been disabled (see “Dts – Detach Timing
Source from an FBS” for information on use of the dts command). 

Note that to remove a scheduler, the calling process must have the P_OWNER privilege or
an effective user ID that is equal to that of the owner/creator of the frequency-based sched-
uler.

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privilege. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

rms –s scheduler [–a]
5-15



PowerMAX OS Guide to Real-Time Services
Arguments

Arguments are described as follows. 

–s scheduler This argument specifies the frequency–based scheduler that you
wish to remove.  The scheduler must previously have been config-
ured.  The scheduler argument specifies the numeric key associ-
ated with the desired scheduler; it can be any positive integer
value. 

–a This option specifies that all processes currently scheduled on the
specified scheduler are to be removed from the scheduler and ter-
minated.  If this option is not specified, all processes currently
scheduled on the specified scheduler are removed but continue
executing. 

Screen Display 

If the specified scheduler is successfully removed, the following message is displayed: 

Scheduler removed 

Svs – Save Scheduler Configuration 5

The svs command enables you to store configuration and scheduling data for a selected
frequency–based scheduler in a file.  When you execute this task, the data that you have
specified in executing the real–time processor commands to configure a scheduler (cs),
schedule programs on it (sp), attach a timing source to it (ats), and set the real–time
clock (stc) are written to the file that you specify. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

svs –s scheduler –d output_file_name

Arguments

Arguments are described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to store configuration and scheduling data.  The sched-
uler must previously have been configured.  The scheduler argu-
ment specifies the numeric key associated with the desired sched-
uler; it can be any positive integer value. 

–d output_file_name This argument specifies a standard UNIX path name identifying
the file in which you wish configuration data to be stored.  The
output_file_name argument can be a full or relative path name of
up to 1024 characters. 
5-16



Using Rtcp
Screen Display 

If the scheduler configuration is successfully saved to a file, no message is displayed. 

Vc – View Minor Cycle/Major Frame Count 5

The vc command enables you to view the current minor cycle and major frame count val-
ues for a frequency–based scheduler.  These values help you to determine the progress of
a simulation. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow. 

Format 

vc –s scheduler

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for you
which wish to view the current cycle and frame counts.  The
scheduler must previously have been configured.  The scheduler
argument specifies the numeric key associated with the desired
scheduler; it can be any positive integer value. 

Screen Display 

If the command is successfully executed, information similar to the following is dis-
played: 

Major frame = 65 Minor cycle = 25 

Descriptions of the fields presented in this display follow. 

Major frame 

This field displays the number of the current major frame for the simulation running
on the selected scheduler. 

Minor cycle 

This field displays the number of the current minor cycle for the simulation running
on the selected scheduler. 

Vs – View Scheduler Configuration 5

The vs command enables you to view configuration and status information related to a
selected frequency–based scheduler.  Such information includes the following: 

• The key and FBS identifier associated with the scheduler 
5-17



PowerMAX OS Guide to Real-Time Services
• The number of minor cycles per major frame, the maximum number of
programs per minor cycle, and the maximum number of programs per
scheduler 

• The user and group IDs of the owner and creator of the scheduler 

• The permissions assigned for the scheduler 

• The total number of overruns for all processes on the scheduler 

• An indication of whether the scheduler is in the run or the stop state 

• The CPUs that are active in the system and the CPUs for which perfor-
mance monitoring has been enabled

• The path name of the device that has been attached to the scheduler 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

vs –s scheduler

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to view current information.  The scheduler must previ-
ously have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value. 

Screen Display 

If the command is successfully executed, configuration and status information similar to
the following is displayed: 

Scheduler 99 has FBS ID of 0:    Cycles per frame = 101 
Max programs per cycle = 10:    Max programs per fbs = 110 
owner uid   = 9999:    owner gid   = 101 
creator uid = 9999:    creator gid = 101: 
total overruns = 0:    access mode = 600:    flags word = 1 
active CPU mask = ’––––xxxx’:    active PM CPU mask = ’––––x––x’ 
interrupt device name = /dev/rrtc/0c2 
FBS is currently running

The following additional information will also be provided if the scheduler is attached to a
Closely-Coupled timing device:

Closely-Coupled timing device.
Device interrupt source on host: endor
Real device name = /dev/rrtc/0c2
Registered on hosts: endor rudi cosmo orbity
Attached schedulers on hosts: rudi cosmo
SBC id where device resides: 1
SBC id mask of attached FBSs: 0x6
5-18



Using Rtcp
The following additional information will also be provided if the scheduler is attached to a
RCIM Coupled timing device:

RCIM Coupled timing device.
Device interrupt source on host: endor
Real device name = /dev/rrtc/2c1
Registered on hosts: endor rudi cosmo orbity
Attached schedulers on hosts: rudi cosmo

Descriptions of the fields presented in this display follow. 

Scheduler 

This field contains the user–specified key for the selected frequency–based sched-
uler. 

FBS ID 

This field contains the unique, positive integer value representing the identifier for
the selected frequency–based scheduler. 

Cycles per frame 

This field indicates the number of minor cycles that compose a major frame on the
selected scheduler. 

Max programs per cycle 

This field indicates the maximum number of programs that can be scheduled in a
minor cycle on the selected scheduler. 

Max programs per fbs 

This field contains the maximum number of programs that can be scheduled on the
selected scheduler at one time.

owner uid 

This field contains the user ID of the scheduler’s owner. 

owner gid 

This field contains the group ID of the scheduler’s owner. 

creator uid 

This field contains the user ID of the scheduler’s creator. 

creator gid 

This field contains the group ID of the scheduler’s creator. 

total overruns 

This field indicates the total number of overruns for all processes on the selected
scheduler. 
5-19



PowerMAX OS Guide to Real-Time Services
access mode 

This field contains an octal value indicating the permissions assigned to the selected
scheduler. 

flags word 

If a timing source has been attached to the selected scheduler or if end–of–cycle
scheduling has been enabled, this field displays 1; otherwise, it displays 0. 

active CPU mask 

This field contains a mask of the CPUs that are active in the system.  The rightmost
position corresponds to the first logical CPU.  The letter x signifies that a CPU is
active; the dash (−) signifies that it is not. 

active PM CPU mask 

This field contains a mask of the CPUs for which performance monitoring has been
enabled.  The rightmost position corresponds to the first logical CPU.  The letter x
signifies that performance monitoring has been enabled on a CPU; the dash (−) sig-
nifies that it has not. 

interrupt device name 

If a timing source has been attached to the selected scheduler, this field contains the
full path name of the device. If end–of–cycle scheduling has been enabled, this field
contains the following: EOC triggering. 

SBC id where device resides

If this scheduler is attached to a Closely-Coupled timing device, then this field con-
tains the SBC board ID where the actual timing device resides.

SBC id mask of attached FBSs

If this scheduler is attached to a Closely-Coupled timing device, then this field con-
tains a SBC board ID bitmask of all SBCs that currently have a frequency-based
scheduler attached to this timing device.

real device name

If this scheduler is attached to a Coupled FBS timing device, then this field contains
the actual device filename of the timing device on the host where that device is
located.  If this device is also a RCIM Coupled timing device, then this field will
contain the name of the distributed interrupt device: 

/dev/reti|eti0[n] or  /dev/rrtc/2c[n]

Closely-Coupled timing device

This line will be output if the scheduler is attached to a Closely-Coupled timing
device.
5-20



Using Rtcp
RCIM Coupled timing device

This line will be output if the scheduler is attached to a RCIM Coupled timing
device.

Device interrupt source on host

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains the hostname of the host where the timing device actually resides.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or rtcp reg command.

Registered on hosts

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains a list of hostnames where the timing device is registered for use.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or rtcp reg command.

Attached schedulers on hosts

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains a list of hostnames of the hosts that currently have schedulers attached to this
timing device.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or rtcp reg command.

Rc – Start Real–Time Clock 5

The rc command enables you to start the real–time clock that has been specified as the
timing source for a selected frequency–based scheduler (see “Ats – Attach Timing Source
to an FBS” for an explanation of the command for attaching a timing source to a sched-
uler, ats). Note that you must first have set the count and resolution values for the real–
time clock by executing the stc command (see “Stc – Set Real–Time Clock” for an
explanation of this command). 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

rc –s scheduler

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to start the attached real–time clock.  The scheduler
must previously have been configured.  The scheduler argument
5-21



PowerMAX OS Guide to Real-Time Services
specifies the numeric key associated with the desired scheduler; it
can be any positive integer value. 

Screen Display 

If the real–time clock is successfully started, the following message is displayed: 

Clock started 

Sc – Stop Real–Time Clock 5

The sc command enables you to stop the real–time clock that has been specified as the
timing source for a selected frequency–based scheduler. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

sc –s scheduler  

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to stop the attached real–time clock.  The scheduler must
previously have been configured.  The scheduler argument speci-
fies the numeric key associated with the desired scheduler; it can
be any positive integer value. 

Screen Display 

If the real–time clock is successfully stopped, the following message is displayed: 

Clock stopped 

Stc – Set Real–Time Clock 5

The stc command enables you to establish the duration of a minor cycle by setting the
count and duration values for a real–time clock that has been specified as the timing
source for a selected frequency–based scheduler. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

stc –s scheduler [–D clock_duration] –O clock_count 
5-22



Using Rtcp
Arguments 

Arguments are described as follows. 

–s scheduler This argument specifies the frequency–based scheduler to which
the real–time clock has been attached.  The scheduler must previ-
ously have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value. 

–D clock_duration This argument specifies the duration in microseconds of one clock
count.  The value of clock_duration must be one of the following:
1, 10, 100, 1000, 10000.  The default value is 10. 

–O clock_count This argument specifies the number of clock counts per minor
cycle.  The value of clock_count can range from one to 65535. 

Screen Display 

If the real–time clock is successfully set, the following message is displayed: 

Clock set

Gtc – Display Real–Time Clock Settings 5

The gtc command enables you to view the current count and duration values for a real–
time clock that has been specified as the timing source for a selected frequency–based
scheduler.  The clock must previously have been set by using the stc command. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

gtc –s scheduler 

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler to which
the real–time clock has been attached.  The scheduler must previ-
ously have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value.

Screen Display 

If the real–time clock is currently set, a message similar to the following is displayed: 

Clock count = 50: duration = 1000 
5-23



PowerMAX OS Guide to Real-Time Services
Start – Start Scheduling on an FBS 5

The start command enables you to start scheduling processes on a frequency–based
scheduler.  When you execute this command, the minor cycle, major frame, and overrun
count values are set to zero. 

Prior to executing this command, you must have executed the ats command to attach a
timing source to the scheduler or to specify end–of–cycle scheduling (see “Ats – Attach
Timing Source to an FBS” for an explanation of this command). If you have specified a
real–time clock as the timing source for the scheduler, scheduling will not start until you
have set and started the clock (see “Stc – Set Real–Time Clock” and “Rc – Start Real–
Time Clock,” respectively, for explanations of the stc and rc commands). If you have
specified an edge–triggered interrupt or a user–supplied device as the timing source, it
must already be generating interrupts in order for scheduling to start. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.  

Format

start –s scheduler 

Arguments 

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler on which
you wish to start scheduling. The scheduler must previously have
been configured.  The scheduler argument specifies the numeric
key associated with the desired scheduler; it can be any positive
integer value. 

Screen Display 

If scheduling on the specified scheduler is successfully started, the following message is
displayed: 

FBS started 

Resume – Resume Scheduling on an FBS 5

The resume command enables you to resume scheduling of processes on a selected fre-
quency–based scheduler with the major frame, minor cycle, and overrun count values the
same as they were when you stopped the scheduler. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow. 

Format 

resume –s scheduler  
5-24



Using Rtcp
Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to resume scheduling.  The scheduler must previously
have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value. 

Screen Display 

If scheduling on the specified scheduler is successfully resumed, the following message is
displayed: 

FBS resumed 

Stop – Stop Scheduling on an FBS 5

The stop command enables you to stop scheduling of processes on a selected frequency–
based scheduler. 

The format for entering the command, a description of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.  

Format

stop –s scheduler  

Arguments

This command requires one argument, which is described as follows. 

–s scheduler This argument specifies the frequency–based scheduler for which
you wish to stop scheduling.  The scheduler must previously have
been configured.  The scheduler argument specifies the numeric
key associated with the desired scheduler; it can be any positive
integer value. 

Screen Display 

If scheduling on the specified scheduler is successfully stopped, the following message is
displayed: 

FBS stopped 

Rmp – Remove a Process from an FBS 5

The rmp command enables you to remove a process from a frequency–based scheduler.
You can identify the process that you wish to remove by using one of the following meth-
ods: 
5-25



PowerMAX OS Guide to Real-Time Services
• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier. 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler identifier. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.  

Format

rmp –s scheduler {–n proc_name –i fpid} [–c cpu_bias]  [–a]

Arguments

Arguments are described as follows. 

–s scheduler This argument specifies the frequency–based scheduler on which
the process is scheduled.  The scheduler must previously have
been configured.  The scheduler argument specifies the numeric
key associated with the desired scheduler; it can be any positive
integer value. 

–n proc_name This argument specifies a standard UNIX path name identifying
the process to be removed from the specified scheduler.   The
proc_name argument can be a full or relative path name of up to
1024 characters.  If you do not specify this argument, you must
provide the frequency–based scheduler process identifier by spec-
ifying the –i fpid argument. 

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for the process to be removed. This value is dis-
played when you successfully schedule a program by executing
the sp command (see “Sp – Schedule a Process on an FBS” for an
explanation of this command). If you have not identified the pro-
cess by name, you must specify this argument. The default value
for fpid is –1. If you accept the default value, you must identify
the process by name and CPU. 

–c cpu_bias This argument enables you to specify the processor(s) to be used
in conjunction with the value of the –n proc_name argument to
identify the process to be removed from the specified scheduler.
The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7.  Note that you must use commas to
5-26



Using Rtcp
separate items in the list.  You may specify the entire range of
CPU IDs (0–7) by entering an asterisk (*).  If you do not specify
the –c cpu_bias argument, the default processor is the CPU on
which the real–time command processor is currently executing. 

–a This option specifies that the process is to be removed from the
specified scheduler and terminated.  If this option is not specified,
the process is removed from the scheduler but allowed to continue
executing. 

Screen Display 

If the specified process is successfully removed from the scheduler, the following message
is displayed: 

Process removed 

Rsp – Reschedule a Process 5

The rsp command enables you to change the scheduling parameters for a process that has
been scheduled on a frequency–based scheduler.  You may wish, for example, to change
the process’s scheduling policy or priority.  You may also wish to change the frequency
with which the process is scheduled to run.  You cannot, however, change the CPU on
which it has been scheduled.  

If you wish to (1) change a process’s scheduling policy to the first-in-first-out (FIFO) or
the round-robin scheduling policy or (2) change the priority of a process scheduled under
the FIFO or round-robin policy, the following conditions must be met: 

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the time-sharing policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:
5-27



PowerMAX OS Guide to Real-Time Services
• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

You can reschedule a process without first having executed the rmp command to remove
it from the scheduler (see “Rmp – Remove a Process from an FBS”) or the stop com-
mand to stop scheduling (see “Stop – Stop Scheduling on an FBS”). 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier. 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler identifier. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow. 

Format 

rsp –s scheduler {–n proc_name –i fpid} [–c cpu_bias] [–f frequency] \ 
[–m start_cycle] [–b policy] [–p priority] [–o halt_flag] [–L soft_limit]

Arguments 

Arguments are described as follows. 

–s scheduler This argument specifies the frequency–based scheduler on which
the process is scheduled.  The scheduler must previously have
been configured.  The scheduler argument specifies the numeric
key associated with the desired scheduler; it can be any positive
integer value. 

–n proc_name This argument specifies a standard UNIX path name identifying
the process to be rescheduled.   The proc_name argument can be a
full or relative path name of up to 1024 characters.  If you do not
specify this argument, you must provide the frequency–based
scheduler process identifier by specifying the –i fpid argument. 

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for the process to be rescheduled. This value is
displayed when you execute the sp command (see “Sp – Schedule
5-28



Using Rtcp
a Process on an FBS” for an explanation of this command). If you
have not identified the process by name, you must specify this
argument.

The default value for fpid is –1. If you use the default value, you
must identify the process by name and CPU. 

–c cpu_bias This argument enables you to specify the processor(s) to be used
in conjunction with the value of the –n proc_name argument to
identify the process to be rescheduled.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7.  Note that you must use commas to sep-
arate items in the list.  You may specify the entire range of CPU
IDs (0–7) by entering an asterisk (*).

If you do not specify this argument, the default processor is the
CPU on which the real–time command processor is currently exe-
cuting. 

–f frequency This argument enables you to establish the frequency with which
the specified process is to be wakened in each major frame. A fre-
quency of one indicates that the specified process is to be wak-
ened every minor cycle; a frequency of two indicates that it is to
be wakened once every two minor cycles, a frequency of three
once every three minor cycles, and so on. Specify the number of
minor cycles representing the frequency with which you wish the
process to be wakened. The value of frequency can range from one
to the number of minor cycles that compose a frame on the sched-
uler. (The total number of minor cycles per frame is defined by
executing the cs command, which is explained in “Cs – Configure
an FBS.”) 

–m start_cycle This argument enables you to specify the first minor cycle in
which the specified process is to be wakened in each frame. The
value of start_cycle can range from zero to the total number of
minor cycles per frame minus one. The total number of minor
cycles per frame is defined by executing the cs command, which
is explained in “Cs – Configure an FBS.” 

–b policy This argument enables you to set the POSIX scheduling policy for
the specified program. The value of policy must be F, R, or O.
Specify F to select the first–in–first–out (FIFO) scheduling policy.
Specify R to select the round–robin scheduling policy. Specify O
to select the time-sharing scheduling policy.

If you do not specify the -b policy argument, the default policy is
the time-sharing scheduling policy. (For complete information on
scheduling policies, refer to the “Process Scheduling and Manage-
ment” chapter of the PowerMAX OS Programming Guide.) 
5-29



PowerMAX OS Guide to Real-Time Services
Note: It is recommended that you specify this argument.

–p priority This argument enables you to set the specified process’s schedul-
ing priority. The default value is 0.

The range of priority values that you can enter is governed by the
value of the policy argument. You can determine the allowable
range of priorities associated with each policy (F, R, or O) by
invoking the run(1) command from the shell and not specify-
ing any options or arguments (see the corresponding system man-
ual page for an explanation of this command). Higher numerical
values correspond to more favorable scheduling priorities.

For complete information on scheduling policies and priorities,
refer to the “Process Scheduling and Management” chapter of the
PowerMAX OS Programming Guide.

 –o halt_flag This argument enables you to indicate whether or not the sched-
uler should be stopped in the event that the specified process
causes a frame overrun. The value of halt_flag must be either
halt or nohalt. The default is nohalt. 

–L soft_limit This argument enables you to set the soft overrun limit for the pro-
cess. The default is 0. If you reschedule a process that already has
a non-zero soft overrun limit set and you do not specify a soft
overrun limit, the process’ soft overrun limit will be set to 0.

Screen Display 

If the specified process is successfully rescheduled, scheduling information similar to the
following is displayed: 

Descriptions of the columns presented in this display follow. 

CPU 

This column contains the identifier for the CPU on which the specified process is
scheduled. 

fpid 

This column contains the unique frequency–based scheduler process identifier for
the specified process. This identifier is displayed by the real–time command proces-
sor when you schedule a program on the scheduler (see “Sp – Schedule a Process on
an FBS” for a description of the sp command). 

Priority 

This column indicates the scheduling priority of the specified process. 

CPU fpid Priority Frequency Start HaltOnOR SoftLimit Process Name

1  198  53  4  1  N  2 /usr_1/guest/task03
5-30



Using Rtcp
Frequency 

This column indicates the frequency with which the specified process is scheduled
to be wakened in each major frame. 

Start 

This column indicates the first minor cycle in which the specified process is
scheduled to be wakened in each major frame. 

HaltOnOR 

This column indicates whether or not the “halt on overrun” flag has been set for the
specified process. 

SoftLimit

This column indicates the process’ soft overrun limit

Process Name 

This column contains the full path name of the process that has been scheduled on
the selected frequency–based scheduler. 

Sp – Schedule a Process on an FBS 5

The sp command enables you to create a process and schedule it on a frequency–based
scheduler.  If you execute this command and you wish to (1) change a process’s schedul-
ing policy to the first-in-first-out (FIFO) or the round-robin policy or (2) change the prior-
ity of a process scheduled under the FIFO or the round-robin policy, the following condi-
tions must be met:

• The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the time-sharing policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.
5-31



PowerMAX OS Guide to Real-Time Services
If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this command, the follow-
ing conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias,  the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

When you execute this command, the real–time command processor returns a unique fre-
quency–based scheduler process identifier.  You can subsequently use this identifier to
specify the process when you are executing other commands. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.  

Format

sp –s scheduler –n proc_name [–c cpu_bias] [–f frequency] [–m start_cycle] [–b policy] \ 
[–p priority] [–v parameter] [–o halt_flag] [–L soft_limit]

Arguments

Arguments are described as follows.

–s scheduler This argument specifies the frequency–based scheduler on which
the  process is to be scheduled.  The scheduler must previously
have been configured.  The scheduler argument specifies  the
numeric key associated with the desired scheduler; it can be any
positive integer value.  

–n proc_name This argument specifies a standard UNIX path name  identifying
the program that you wish to schedule.  The  proc_name argument
can be a full or relative path name of up to 1024  characters.  

–c cpu_bias This argument specifies the CPU bias for the specified program.
The CPU bias determines the processor or processors on which
the program can be scheduled.
5-32



Using Rtcp
The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7.  Note that you must use commas to
separate items in the list.  You may specify the entire range of
CPU IDs (0–7) by entering an asterisk (*).

If you do not specify this argument, the default processor is the
CPU on which the real–time command processor is currently exe-
cuting. 

–f frequency This argument enables you to establish the frequency with which
the specified process is to be wakened in each major frame. A fre-
quency of one indicates that the specified process is to be wak-
ened every minor cycle; a frequency of two indicates that it is to
be wakened once every two minor cycles, a frequency of three
once every three minor cycles, and so on. Specify the number of
minor cycles representing the frequency with which you wish the
process to be wakened. The value of frequency can range from one
to the number of minor cycles that compose a frame on the sched-
uler. The default value is one. (The total number of minor cycles
per frame is defined by executing the cs command, which is
explained in “Cs – Configure an FBS.”) 

–m start_cycle This argument enables you to specify the first minor cycle in
which the specified process is scheduled to be wakened in each
frame. The value of start_cycle can range from zero to the total
number of minor cycles per frame minus one. The default value is
zero. (The total number of minor cycles per frame is defined by
executing the cs command, which is explained in “Cs – Configure
an FBS.”) 

–b policy This argument enables you to set the POSIX scheduling policy for
the specified process. The value of policy must be F, R, or O.
Specify F to select the first–in–first–out (FIFO) scheduling policy.
Specify R to select the round–robin scheduling policy. Specify O
to select the time-sharing scheduling policy.

If you do not specify the -b policy argument, the default policy is
the time-sharing scheduling policy. (For complete information on
scheduling policies, refer to the “Process Scheduling and Manage-
ment” chapter of the PowerMAX OS Programming Guide.) 

Note: It is recommended that you specify this argument.

–p priority This argument enables you to set the specified process’s schedul-
ing priority. The default value is 0.

The range of priority values that you can enter is governed by the
value of the policy argument. You can determine the allowable
range of priorities associated with each policy (F, R, or O) by
invoking the run(1) command from the shell and not specify-
5-33



PowerMAX OS Guide to Real-Time Services
ing any options or arguments (see the corresponding system man-
ual page for an explanation of this command). Higher numerical
values correspond to more favorable scheduling priorities.

For complete information on scheduling policies and priorities,
refer to the “Process Scheduling and Management” chapter of the
PowerMAX OS Programming Guide.

–v parameter This argument enables you to pass an integer value  to a process
that is scheduled on a frequency–based scheduler.  The value of
parameter must be a 32–bit  decimal number.  

–o halt_flag This argument enables you to indicate whether or not the sched-
uler should be stopped in the event that the specified program
causes a frame overrun. The value of halt_flag must be either
halt or nohalt. The default is nohalt. 

–L soft_limit This argument enables you to set the soft overrun limit for the pro-
cess. The default is 0.

Screen Display  

If the specified process is successfully scheduled on the frequency–based  scheduler,
information similar to the following is displayed:  

fpid 199 assigned to process task02  

Descriptions of the fields presented in this display follow.  

fpid  

This field displays the unique frequency–based scheduler process identifier
assigned to the specified process.  

process  

This field displays the full path name of the process that has been  scheduled on the
selected frequency–based scheduler.  

Vp – View Processes on an FBS 5

The vp command enables you to display information about  a particular FBS-scheduled
process or all FBS-scheduled processes on one or more processors on a selected fre-
quency-based scheduler.  

You can display information about all FBS–scheduled processes on a specified processor
or all processors by specifying the scheduler and the CPU(s) on which the processes are
scheduled.

If you wish to display information for a particular FBS–scheduled process, you can iden-
tify the process by specifying  the name of the process and the CPU on which it is sched-
uled or by specifying the process’s frequency–based scheduler process identifier.  In the
first case, you can use the default CPU, specify a particular CPU, or specify all CPUs.   
5-34



Using Rtcp
NOTE

The only method that can be used to identify a process that has
been scheduled  multiple times on the same CPU is to specify its
frequency–based scheduler identifier.  

Information displayed for each process includes the following:  

• The CPU on which the process is executing  

• The frequency–based scheduler process identifier  

• The process’s scheduling priority  

• The frequency (the number of minor cycles indicating the frequency with
which  the process is wakened in each major frame)  

• The starting base cycle (the first minor cycle in which the process is  sched-
uled to be wakened in each major frame)  

• The value of the “halt on overrun” flag 

• The process’ soft overrun limit

• The process’s path name  

The format for entering the command, descriptions of the corresponding  arguments, and
the resulting screen display are presented in the  sections that follow.  

Format

vp –s scheduler  [ [–n proc_name] [–i fpid]  [–c cpu_bias] ] | [–c cpu_bias]

Arguments

Arguments are  described as follows.  

–s scheduler This argument specifies the frequency–based scheduler for which
scheduling information is to be displayed.  The scheduler must
previously have  been configured.  The scheduler argument speci-
fies the numeric key associated with the desired scheduler; it can
be any positive integer value.  

–n proc_name This argument specifies a standard UNIX path name identifying a
particular process for which scheduling information is to be dis-
played.  The proc_name argument can be a full or relative path
name of up to 1024 characters.  

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for a particular process for which scheduling
information is to be displayed. This value is displayed when you
successfully schedule a program by executing the sp command
(see “Sp – Schedule a Process on an FBS” for an explanation of
this command). The default value for fpid is –1. 

–c cpu_bias This argument specifies the processor(s) for which scheduling
information is to be displayed. 
5-35



PowerMAX OS Guide to Real-Time Services
The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7.  Note that you must use
commas to separate items in the list.  You may specify the entire
range of CPU IDs (0–7) by entering an asterisk (*). 

The default processor is the CPU on which the real–time
command processor is currently executing.

Screen Display

If the command is successfully executed,  scheduling information similar to the following
is displayed:  

Descriptions of the columns presented in this display follow. 

CPU  

This column contains the identifiers for the CPUs on which the respective processes
are scheduled.  

fpid  

This column contains the unique frequency–based scheduler process identifiers for
the respective processes. This identifier is displayed by the real–time command pro-
cessor when you schedule a program on the scheduler (see “Sp – Schedule a Process
on an FBS” for a description of the sp command). 

Priority  

This column indicates the scheduling priorities of the respective processes.  

Frequency  

This column indicates the frequency with which the respective processes are
scheduled to be wakened in each major frame.  

Start  

This column indicates the first minor cycle in which the respective processes are
scheduled to be wakened in each major frame.  

HaltOnOR  

This column indicates whether or not the “halt on overrun” flag has been set for the
respective processes. 

CPU  fpid  Priority  Frequency  Start  HaltOnOR  SoftLimit Process Name  

1  199  55  1  0  Y  0 /usr_1/guest/task02  

1  198  53  4  1  N  3 /usr_1/guest/task03  

2  197  53  2  0  Y  1 /usr_1/guest/task04  
5-36



Using Rtcp
SoftLimit 

This column indicates the process’ soft overrun limit.

Process Name  

This column contains the full path names of the processes that have been scheduled
on the selected frequency–based scheduler.

Cpm – Clear Performance Monitor Values 5

The cpm command enables you to clear performance monitor values for a particular FBS–
scheduled process or all FBS–scheduled processes on one or more processors on a
selected frequency–based scheduler.  

You can  clear values for all FBS–scheduled processes on a specified  processor or all pro-
cessors by specifying the scheduler  and the CPU(s) on which the processes are scheduled.  

If you wish to clear performance monitor values for a particular FBS–scheduled process,
you can identify the process by specifying the name of the process and the CPU on which
it is scheduled or by specifying the process’s frequency–based scheduler process identi-
fier.  In the first case, you can use the default CPU, specify a particular CPU, or specify all
CPUs.  

The format for entering the command, descriptions of the corresponding  arguments, and
the resulting screen display are presented in the sections that follow.

Format

cpm –s scheduler [ [–n proc_name] [–i fpid] [–c cpu_bias] ] | [–c cpu_bias]  

Arguments

Arguments are  described as follows.  

–s scheduler This argument specifies the frequency–based scheduler on which
the  process or processes are scheduled.  The scheduler must pre-
viously have been configured.  The scheduler argument specifies
the numeric key associated with the desired scheduler; it can be
any positive integer value.  

–n proc_name This argument specifies a standard UNIX path name identifying a
particular  process for which values are to be cleared.  The
proc_name argument can be a full or relative path name of up to
1024 characters.  

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for a particular process for which values are to
be cleared. This value is displayed when you execute the sp
command (see “Sp – Schedule a Process on an FBS” for an expla-
nation of this command). The default value for fpid is –1. 

–c cpu_bias This argument specifies the processor(s) for which performance
monitor values are to be cleared.
5-37



PowerMAX OS Guide to Real-Time Services
The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7.  Note that you must use
commas to separate items in the list.  You may specify the entire
range of CPU IDs (0–7) by entering an asterisk (*). 

The default processor is the CPU on which the real–time
command processor is currently executing.

 Screen Display  

If the performance monitor values are successfully cleared, the following message is dis-
played:  

Performance monitor values cleared  

Note

This command clears the soft overrun count for all processes
specified by the user.

Pm – Start/Stop Performance Monitoring 5

The pm command enables you to start or stop performance monitoring for a particular
FBS–scheduled process or all FBS–scheduled processes on one or more  processors on a
selected frequency–based scheduler.  

You can start or stop performance monitoring for all FBS–scheduled processes on a speci-
fied  processor or all processors by specifying the scheduler and the CPU(s) on which the
processes are scheduled.  

If you wish to start or stop performance monitoring for  a particular FBS–scheduled
process, you can identify the process by specifying  the name of the process and the CPU
on which it is scheduled or by specifying the process’s frequency–based scheduler process
identifier.  In the first case, you can use the default CPU, specify a particular CPU, or
specify all CPUs.  

The format for entering the command, descriptions of the corresponding  arguments, and
the resulting screen display are presented in the sections that follow. 

Format 

pm –s scheduler  [ [–n proc_name] [–i fpid]  [–c cpu_bias] ] | [–c cpu_bias] \  
[–P pm_flag]  
5-38



Using Rtcp
Arguments  

Arguments are described as follows.  

–s scheduler This argument specifies the frequency–based scheduler on which
the process or processes are scheduled.  The scheduler must previ-
ously have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value.  

–n proc_name This argument specifies a standard UNIX path name identifying a
particular process for which performance monitoring is to be
started or stopped.  The proc_name argument can be a full or rela-
tive path name of up to 1024 characters.

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for a particular process for which performance
monitoring is to be started or stopped. This value is displayed
when you execute the sp command (see “Sp – Schedule a Process
on an FBS” for an explanation of this command). The default
value for fpid is –1.

–c cpu_bias This argument specifies the processor(s) for which performance
monitoring is to be started or stopped. 

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7.  Note that you must use
commas to separate items in the list.  You may specify the entire
range of CPU IDs (0–7) by entering an asterisk (*).

The default processor is the CPU on which the real–time
command processor is currently executing.

–P pm_flag This argument enables you to indicate whether performance mon-
itoring is to be started or stopped.  The value of pm_flag must be
either ON or OFF.  The default is OFF.

Screen Display  

If performance monitoring is successfully started, the following message is displayed:

Performance monitoring enabled
5-39



PowerMAX OS Guide to Real-Time Services
If performance monitoring is successfully stopped, the following message is displayed:

Performance monitoring disabled

Vcm – View/Modify Performance Monitor Timing Mode 5

The vcm command enables you to view or modify the performance monitor timing mode.
The timing mode can be set to include or exclude time spent servicing interrupts from the
performance monitor timing values. Note that to set the timing mode, the calling process
must have the P_RTIME privilege (for additional information on privileges, refer to the
intro(2) system manual and the PowerMAX OS Programming Guide).    

CAUTION

The timing mode for the high–resolution timing facility is set sys-
tem–wide.  It affects all processes running on all CPUs.

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen display are presented in the sections that follow.

Format

vcm  [–t pm_tmode]

Arguments

No argument is required to view the performance monitor timing mode.

One argument is required to modify the timing mode; it is described as follows:

–t pm_tmode This argument specifies whether interrupt time is to be included in
or excluded from performance monitor timing values.  The value
of pm_tmode must be either in or ex.

Screen Display

If you successfully execute the vcm command to view the performance monitor timing
mode, one of the following messages is displayed:

PM timing mode includes interrupt times.

or

PM timing mode excludes interrupt times.
5-40



Using Rtcp
Vpm – View Performance Monitor Values 5

The vpm command enables you to display performance monitor values for a particular
FBS–scheduled process or all FBS–scheduled processes on one or more processors on a
selected frequency–based scheduler. 

You can display values for all FBS–scheduled processes on a specified processor or all
processors by specifying the scheduler and the CPU(s) on which the processes are sched-
uled.

If you wish to display performance monitor values for a particular FBS–scheduled
process, you can identify the process by specifying the name of the process and the CPU
on which it is scheduled or by specifying the process’s frequency–based scheduler process
identifier.  In the first case, you can use the default CPU, specify a particular CPU, or
specify all CPUs. 

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen displays are presented in the sections that follow.

Format

vpm –s scheduler  [ [–n proc_name] [–i fpid] [–c cpu_bias] ] | [–c cpu_bias] \
[–x pm_output]

Arguments

Arguments are described as follows.

–s scheduler This argument specifies the frequency–based scheduler on which
the process or processes are scheduled.  The scheduler must previ-
ously have been configured.  The scheduler argument specifies the
numeric key associated with the desired scheduler; it can be any
positive integer value.

–n proc_name This argument specifies a standard UNIX path name identifying a
particular process for which performance monitor values are to be
displayed.  The proc_name argument can be a full or relative path
name of up to 1024 characters.

–i fpid This argument specifies the unique frequency–based scheduler
process identifier for a particular process for which performance
monitor values are to be displayed. This value is displayed when
you execute the sp command (see “Sp – Schedule a Process on an
FBS” for an explanation of this command). The default value for
fpid is –1.

–c cpu_bias This argument specifies the processor(s) for which performance
monitor values are to be displayed.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs.  CPU IDs range from zero to seven, where the number 0 rep-
resents the first logical CPU, 1 represents the second, and so on.
A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7.  Note that you must use
commas to separate items in the list.   You may specify the entire
5-41



PowerMAX OS Guide to Real-Time Services
range of CPU IDs (0–7) by entering an asterisk (*).

The default processor is the CPU on which the real–time
command processor is currently executing.

–x pm_output This argument enables you to indicate the type of values that you
wish to display.  Four types of values may be specified: average,
minimum, maximum, or all. 

If you select average, the following values are displayed: the
number of iterations, or cycles; the last time; the total time; the
average time; and the number of overruns. 

If you select minimum, the following values are displayed:  the
number of iterations; the minimum cycle time and the number of
the minor cycle and the major frame in which it has occurred; and
the minimum frame time and the number of the major frame in
which it has occurred.

If you select maximum, the following values are displayed:  the
number of iterations; the maximum cycle time and the number of
the minor cycle and major frame in which it has occurred; and the
maximum frame time and the number of the major frame in which
it has occurred. 

If you select all, average, minimum, and maximum values are
displayed.

All times are reported in microseconds.  You may specify the
pm_output argument by simply entering the first two letters of the
argument: av for average, mi for minimum, ma for maximum, or
al for all.  The default value is average.Screen Display 

If you select average values and the command is successfully executed, performance
monitor values similar to the following are displayed:

Descriptions of the columns presented in this display follow. 

fpid

This column contains the unique frequency–based scheduler process identifiers for
the respective processes. This identifier is displayed by the real–time command pro-
cessor when you schedule a program on the scheduler (see “Sp – Schedule a Process
on an FBS” for a description of the sp command).

OverRuns

 fpid  Iterations  TimeLast(us)   TotalTime(us)   Average(us) Hard Soft

199 480 1023 499200 1040 0 0

198 120 2013 240960 2008 1 2

197 240 1521 378960 1579 0 3
5-42



Using Rtcp
Iterations

This column contains the number of times that the respective processes have been
wakened by the frequency–based scheduler since the last time that performance
monitor values have been cleared and performance monitoring has been enabled.

TimeLast(us)

This column contains the amount of time that the respective processes have spent
running from the last time that they were wakened by the frequency–based sched-
uler until they called fbswait.

TotalTime(us)

This column contains the cumulative times that the respective processes have spent
running in all cycles, or iterations.

Average(us)

This column contains the average amount of time that the respective processes have
spent running in all cycles, or iterations.  These values are obtained by dividing the
values reported in the Total Time column by the values reported in the Iterations col-
umn.

Overruns

Hard This column contains the number of times that the respective pro-
cesses have caused a catastrophic frame overrun.

Soft This column contains the number of times that the respective pro-
cesses have caused a non-catastrophic frame overrun.

If you select minimum values and the command is successfully executed, performance
monitor values similar to the following are displayed:

Descriptions of the columns presented in this display follow.

fpid

This column contains the unique frequency–based scheduler process identifiers for
the respective processes. This identifier is displayed by the real–time command pro-
cessor when you schedule a program on the scheduler (see “Sp – Schedule a Process
on an FBS” for a description of the sp command). 

         Minimum Cycle     Minimum Frame

fpid  Iterations  time(us)  Frame/Cycle  time(us)  Frame  

199  30  1002  6/7  8013  17  

198  30  1943  2/1  3995  22  

197  30  1312  1/2  5314  11  
5-43



PowerMAX OS Guide to Real-Time Services
Iterations

This column contains the number of times that the respective processes have been
wakened by the frequency–based scheduler since the last time that performance
monitor values have been cleared and performance monitoring has been enabled.

Minimum Cycle
time(us)

This column contains the least amount of time that the respective processes have
spent running in a cycle, or iteration.

Minimum Cycle
Frame/Cycle

These columns contain the number of the major frame and the minor cycle in which
the minimum cycle time has occurred.

Minimum Frame
time(us)

This column contains the least amount of time that the respective processes have
spent running during a major frame.

Minimum Frame
Frame

This column contains the number of the major frame in which the minimum frame
time has occurred.

If you select maximum values and the command is successfully executed, performance
monitor values similar to the following are displayed:

Descriptions of the columns presented in this display follow.

fpid

This column contains the unique frequency–based scheduler process identifiers for
the respective processes. This identifier is displayed by the real–time command pro-
cessor when you schedule a program on the scheduler (see “Sp – Schedule a Process
on an FBS” for a description of the sp command). 

Iterations

This column contains the number of times that the respective processes have been
wakened by the frequency–based scheduler since the last time that performance
monitor values have been cleared and performance monitoring has been enabled.

         Maximum Cycle     Maximum Frame

fpid  Iterations  time(us)  Frame/Cycle  time(us)  Frame  

199  30  1303  2/4  9502  12  

198  30  2201  7/5  4391  17  

197  30  1917  9/6  7431  24  
5-44



Using Rtcp
Maximum Cycle 
time(us)

This column contains the greatest amount of time that the respective processes have
spent running in a cycle, or iteration.

Maximum Cycle
Frame/Cycle

These columns contain the number of the major frame and the minor cycle in which
the maximum cycle time has occurred.

Maximum Frame 
time(us)

This column contains the greatest amount of time that the respective processes have
spent running during a major frame.

Maximum Frame 
Frame

This column contains the number of the major frame in which the maximum frame
time has occurred.

If you select all values and the command is successfully executed, the screen displays
for average, minimum, and maximum values are displayed.

Ex – Exit Real–Time Command Processor 5

The ex command is used only when you are using the real–time command processor in
interactive mode.  It enables you to exit the command processor and return to the shell. 

The command is entered is as follows:

ex

If the command is successfully executed, the system command prompt is displayed.

He – Display Help Information 5

The he command enables you to display help information for the real–time command pro-
cessor.  You may obtain the following types of information:

• A list of all commands

• An explanation of a particular command

• A list of all command options

The format for entering the command, descriptions of the corresponding arguments, and
the resulting screen displays are presented in the sections that follow.
5-45



PowerMAX OS Guide to Real-Time Services
Format

he [command | option | op2]

Arguments

Arguments are described as follows.

command This argument specifies the command for which you wish to
obtain an explanation.

option This argument specifies that the first screen of command options
is to be displayed.

op2 This argument specifies that the second screen of command
options is to be displayed.

Screen Display

If you specify the he command without an argument, Screen 5-4 is displayed (Night
Hawk systen output shown).

 

Screen 5-4.  Output from the he Command

If you specify the he command with the command argument, help information similar to
the following is displayed: 

Change FBS permissions

rtcp chs –s scheduler –I permissions [–G gid] [–U uid]

% rtcp he 
       rtcp commands 
ats – attach timing source to FBS       chs – modify FBS permissions 
cs  – configure FBS                     dts – detach timing source from FBS 
rms – remove FBS                        svs – save FBS configuration to a file 
vc  – view current frame/cycle count    vs  – view FBS configuration 
 
rc  – run real–time clock               sc  – stop real–time clock 
stc – set real–time clock values        gtc – get real–time clock values 
 
start – start FBS                       resume – resume FBS 
stop  – stop FBS 
 
rmp – remove a process on a FBS         rsp – reschedule a process on a FBS 
sp  – schedule a process on a FBS       vp  – view scheduled process on FBS 
 
cpu – clear performance monitor tables  pm  – start/stop performance monitor 
vcm – view/modify PM timing mode        vpm – view performance 
 
he  – help 
ex  – exit rtcp 
 
% 
 
 

5-46



Using Rtcp
If you specify the he command with the option argument, Screen 5-5 is displayed. 

 

Screen 5-5.  Output from the he option Command

If you specify the he command with the op2 argument, the second screen of arguments
will be displayed.

Rd - Register a Coupled FBS Timing Device 5

The rd command enables you to register a device on the calling local host as a Coupled
FBS timing device.  Once registered, the device is then available for use on all hosts where
the device is registered.  In order to register a device, you must have the P_RTIME privi-
lege as well as enough privilege to open the device file.

The format for entering the command and a description of the corresponding arguments
are presented in the sections that follow.

Format

rd -T c | r -d device -H hostname_list

Arguments

Arguments are described as follows:

-T c | r This argument specifies the type of timing device to be registered.
A -T c indicates that a Closely-Coupled timing device is being
registered, and a -T r indicates that a RCIM Coupled timing
device is being registered.

-d device This argument specifies the path name of the device that is being

% rtcp he option 
      rtcp parameters 
 
–a               remove program from FBS and terminate 
–b {F|R|O}       scheduling policy 
–c cpu_bias      CPU bias (* = all CPUs) (default = current CPU) 
–d name          devicename or filename 
–e               EOC flag 
–f frequency     number of minor cycles to next wakeup  (default = 1) 
–i fpid          process fpid number  (default = –1) 
–m start_cycle   1st minor cycle to wakeup  (default = 0) 
–n proc_name     process name 
–o {halt|nohalt} halt FBS on overrun flag (default = nohalt) 
–p priority      process priority 
–s scheduler     FBS scheduler key 
–t {in|ex}       include or exclude interrupt time in pm monitor 
–v parameter     process initiation parameter 
–x {av|mi|ma|al} performance monitor display option (default = average) 
 
Enter ’he op2’ for more parameters 
 
%

5-47



PowerMAX OS Guide to Real-Time Services
registered as a Coupled FBS timing device.  If you are using a
real-time clock or RCIM device, then you must enter the path
name of this device.  Refer to Chapter 3 for detailed information
about the path names for these types of devices.  If you are using a
user-supplied device, the path name must be a valid UNIX path
name.  Refer to Chapter 3 for an explanation of  the procedures for
using a user-supplied device.

-H hostname_list This argument specifies the hosts where the device is to be regis-
tered.  The hostnames should be listed with no blanks and sepa-
rated with commas.  For example:

-H endor, rudi, cosmo, orbity

The name of the local host where the device actually resides must
be in this hostname list.  Only those remote hosts that plan to
attach a scheduler to this timing device need to be in the
hostname_list.

When successful, the rtcp rd command will output the /dev/rdev/<host-
name>/device<n> path name that should be used on a subsequent rtcp ats attach
scheduler command.  Note that the  /dev/rdev/<hostname> hostname will be the
name of the local host, as it was specified in the -H hostname_list.

Urd - Unregister a Coupled FBS timing device 5

The urd command enables you to unregister a Coupled FBS timing device on the calling
local host.  Once unregistered, the device is no longer available for use on the hosts where
the device was previously registered.  In order to unregister a device, there may be no
schedulers currently attached to the Coupled FBS timing device on any of the hosts where
the device is registered.  To successfully unregister a Coupled FBS timing device, you
must have the P_RTIME privilege as well as enough privilege to open the device file.

The format for entering the command and a description of the corresponding argument are
presented in the sections that follow.

Format 

urd -d device

Arguments

Arguments are described as follows.

-d device This argument specifies the path name of the device that is being
unregistered as a Coupled FBS timing device.  This path name
should be the same path name that was originally specified on the
previous corresponding ‘rd -d device’ argument.
5-48



Using Rtcp
Vr - View a Rdevfs File Configuration 5

The vr command enables you to view the configuration information for a Coupled FBS
timing device.

Unlike the vs command, the rtcp vr command may be used to directly obtain informa-
tion about a /dev/rdev/<hostname>/device<n> timing device without requiring
that a scheduler be currently attached to the device.

The format for entering the command and a description of the corresponding argument is
presented in the sections that follow.

Format

vr -d device

Argument

This command requires one argument, which is described as follows:

-d device This argument specifies the already existing
/dev/rdev/<hostname>/device<n> path name of the reg-
istered Coupled FBS timing device that the caller wishes to obtain
information about.

Screen Display

Note that the screen display output from this command is exactly the same as the Coupled
FBS timing device portion of the output from the vs command when the scheduler is
attached to a Coupled FBS timing device.

If the command is successfully executed, configuration and status information similar to
the following is displayed if the scheduler  is attached to a Closely-Coupled timing device:

Closely-Coupled timing device.
Device interrupt source on host: endor
Real device name = /dev/rrtc/0c2
Registered on hosts: endor rudi cosmo orbity
Attached schedulers on hosts: rudi cosmo
SBC id where device resides: 1
SBC id mask of attached FBSs: 0x6

If the command is successfully executed, configuration and status information similar to
the following is displayed if the scheduler  is attached to a RCIM Coupled timing device:

RCIM Coupled timing device.
Device interrupt source on host: endor
Real device name = /dev/rrtc/2c1
Registered on hosts: endor rudi cosmo orbity
Attached schedulers on hosts: rudi cosmo
5-49



PowerMAX OS Guide to Real-Time Services
Descriptions of the fields presented in this display follow.

Closely-Coupled timing device

This line will be output if the scheduler is attached to a Closely-Coupled timing
device.

RCIM Coupled timing device

This line will be output if the scheduler is attached to a RCIM Coupled timing
device.

Device interrupt source on host

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains the hostname of the host where the timing device actually resides.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or rtcp reg command.

Real device name

If this scheduler is attached to a Coupled FBS timing device, then this field contains
the actual device filename of the timing device on the host where that device is
located.  If this device is a RCIM Coupled timing device, then this field will contain
the actual name of the distributed interrupt device:

/dev/reti/eti0<n>  or  /dev/rrtc/2c<n>

Registered on hosts

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains a list of hostnames where the timing device is registered for use.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or rtcp reg command.

Attached schedulers on hosts

When the scheduler is attached to a Coupled FBS timing device then this field con-
tains a list of hostnames of the hosts that currently have schedulers attached to this
timing device.

This line does not appear for Coupled timing devices that were registered with the
obsolete fbs_register_cluster_device function or ’rtcp reg’ command.

SBC id where device resides

If this scheduler is attached to a Closely-Coupled timing device, then this field con-
tains the SBC board ID where the actual timing device resides.

SBC id mask of attached FBSs

If this scheduler is attached to a Closely-Coupled timing device, then this field con-
tains a SBC board ID bitmask of all SBCs that currently have a frequency-based
scheduler attached to this timing device.
5-50



Using Rtcp
Reg –  Register a Closely-Coupled Timing Device 5

The reg command enables you to register a device on the calling SBC as a Closely-Cou-
pled timing device.  Once registered, the device is then available for use on all SBCs in the
cluster.  In order to register a device, you must have the P_RTIME privilege as well as
enough privilege to open the device file.

The format for entering the command and a description of the corresponding argument are
presented in the sections that follow. 

Format

reg –d device

Arguments

Arguments are described as follows.

–d device This argument specifies the path name of the device that is being
registered as a Closely-Coupled timing device.  If you are using a
real-time clock or RCIM distributed device interrupt, you must
enter the path name of a certain form.  Refer to Chapter 3 for
detailed information on the form associated with these device
types.  If you are using a user-suppled device, the path name must
be a valid UNIX path name.  Refer to Chapter 3 for an explanation
of the procedures for using a user-supplied device.

When successful, the rtcp reg command will output the /dev/rdev path name that
should be used on subsequent rtcp ats attached scheduler commands.

NOTE

The rtcp reg command is obsolete, and is provided only for
backward compatibility with previous PowerMAX OS releases.
Users are encouraged to make use of the rd command instead of
the reg command.  Note that the reg command only provides for
the registration of Closely-Coupled timing devices; the rd com-
mand provides for the registration of both Closely-Coupled and
RCIM Coupled timing devices.

Unreg – Unregister Closely-Coupled Timing Device 5

The unreg command enables you to unregister a device on the calling SBC as a Closely-
Coupled timing device.  Once unregistered, the device is no longer available for use on all
SBCs in the cluster.  In order to unregister a device, you must have the P_RTIME privilege
as well as enough privilege to open the device file.

The format for entering the command and a description of the corresponding argument are
presented in the sections that follow. 
5-51



PowerMAX OS Guide to Real-Time Services
Format

unreg –d device

Arguments

Arguments are described as follows.

–d device This argument specifies the path name of the device that is being
unregistered as a Closely-Coupled timing device.  If you are using
a real-time clock or RCIM distributed device interrupt, you must
enter the path name of a certain form.  Refer to Chapter 3 for
detailed information on the form associated with these device
types.  If you are using a user-suppled device, the path name must
be a valid UNIX path name.  Refer to Chapter 3 for an explanation
of the procedures for using a user-supplied device.

NOTE

The rtcp unreg command is obsolete, and is provided only for
backward compatibility with previous PowerMAX OS releases.
User are encouraged to make use of the urd command instead of
the unreg command.
5-52



6
The Ada Interfaces to RT Services

The RT_Interface Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
The FBS Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

FBS_Access – Change Permissions for an FBS . . . . . . . . . . . . . . . . . . . . . 6-2
FBS_Attach – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . 6-5
FBS_Configure – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
FBS_Cycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . 6-10
FBS_Detach – Detach Timing Source from an FBS. . . . . . . . . . . . . . . . . . 6-12
FBS_Getrtc – Obtain Current Values for Real–Time Clock . . . . . . . . . . . . 6-12
FBS_Id – Return the FBS Identifier for a Key . . . . . . . . . . . . . . . . . . . . . . 6-14
FBS_Info – Return Information for an FBS . . . . . . . . . . . . . . . . . . . . . . . . 6-15
FBS_Intrpt – Start/Stop/Resume Scheduling on an FBS . . . . . . . . . . . . . . 6-17
FBS_Query – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
FBS_Remove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
FBS_Resume - Resume Scheduling on an FBS . . . . . . . . . . . . . . . . . . . . . 6-23
FBS_Runrtc – Start/Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . 6-25
FBS_Sched_Self - Schedule an Ada Task on an FBS  . . . . . . . . . . . . . . . . 6-26
FBS_Setrtc – Set Real–Time Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
FBS_Wait – Wait on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31
PGM_Query – Query a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . 6-32
PGM_Remove – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . 6-35
PGM_Reschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . 6-38
PGM_Schedule – Schedule a Process on an FBS  . . . . . . . . . . . . . . . . . . . 6-42
PGM_Stat – Query State of FBS–Scheduled Process. . . . . . . . . . . . . . . . . 6-46
PGM_Trigger – Trigger Process Waiting on FBS. . . . . . . . . . . . . . . . . . . . 6-48
RT_Param – Return Initiation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49
Sched_FBS_Query   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49
Sched_PGM_Add   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-52
Sched_PGM_Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56
Sched_PGM_Reschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-59

Name_To_Pid – Obtain Process Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-64
The Performance Monitor Subprograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-65

PM_Clrpgm – Clear Values for a Process. . . . . . . . . . . . . . . . . . . . . . . . . . 6-66
PM_Clrtable – Clear Values for Processor(s) . . . . . . . . . . . . . . . . . . . . . . . 6-69
PM_Monitor – Start/Stop Performance Monitoring on Processor(s) . . . . . 6-70
PM_Program – Start/Stop Performance Monitoring on a Process . . . . . . . 6-71
PM_Query_cpu – Query Values for Selected Processor(s). . . . . . . . . . . . . 6-74
PM_Query_list – Query Values for a List of Processes  . . . . . . . . . . . . . . . 6-77
PM_Query_pgm – Query Values for a Selected Process  . . . . . . . . . . . . . . 6-80
PM_Querytimer – Query Performance Monitor Mode. . . . . . . . . . . . . . . . 6-83
PM_Select – Select Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . 6-83

Compiling and Linking Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-84





6
Chapter 6The Ada Interfaces to RT Services

6
6
6

The Ada interfaces to the real–time services related to the frequency–based scheduler and
the performance monitor are provided as part of the MAXAda product and are located in
the MAXAda environment, /usr/ada/default/vendorlib. The interfaces to the
frequency–based scheduler and the performance monitor are defined in the
RT_Interface package. Procedures for using this package are explained in “The
RT_Interface Package.” 

The RT_Interface Package 6

The RT_Interface package contains subprograms that enable you to perform the entire
range of functions associated with the frequency–based scheduler and the performance
monitor. The frequency–based scheduler subprograms are presented in “The FBS Subpro-
grams.” The performance monitor subprograms are presented in “The Performance Moni-
tor Subprograms.”

For each subprogram in the RT_Interface package, the following information is pro-
vided:

• A description of the subprogram

• The Ada specification

• Detailed descriptions of each parameter

Procedures for compiling and linking user programs are presented in “Compiling and
Linking Procedures.”

The FBS Subprograms 6

The FBS subprograms provide access to the key features of the scheduler.  They enable
you to perform such basic operations as the following: (1) configure a scheduler; (2)
schedule programs on it; (3) set up and connect a timing source to a scheduler; (4) start,
stop, and resume scheduling on a scheduler; (5) obtain information about scheduled pro-
cesses; (6) reschedule and remove scheduled processes; (7) disconnect a timing source;
and (8) remove a scheduler.

In the sections that follow, all of the FBS subprograms contained in the RT_Interface
package are presented in alphabetical order. Figure 6-1 illustrates the approximate order in
which you might invoke the subprograms from an application program. 
6-1



PowerMAX OS Guide to Real-Time Services
Figure 6-1.  Ada Subprogram Call Sequence:  FBS

FBS_Access – Change Permissions for an FBS 6

This subprogram is invoked to change the permissions assigned for a selected frequency–
based scheduler.  It is important to note that the permissions can be changed only by a pro-
cess that has the P_OWNER privilege or has an effective user ID that is equal to that of the
owner/creator of the frequency–based scheduler. 

FBS_Configure

SCHEDULE
PROGRAMS

FBS_Attach

FBS_Setrtc

FBS_Runrtc

FBS_Runrtc

START SIMULATION
FBS_Intrpt

STOP SIMULATION
FBS_Intrpt

FBS_Detach

FBS_Remove

Sched_PGM_Add
Sched_PGM_Reschedule
PGM_Remove
PGM_Stat
Sched_PGM_Query
Sched_FBS_Query

START

END
6-2



The Ada Interfaces to RT Services
If the Enhanced Security Utilities are installed and running, the following conditions must
be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

• The calling process must have the P_OWNER privilege or an effective user
identification of owner/creator to pass the ownership restriction.

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

subtype fbs_mode_type is integer; 

md_public_alter : constant fbs_mode_type := 8#002#; 
md_public_read : constant fbs_mode_type := 8#004#; 
md_group_alter : constant fbs_mode_type := 8#020#; 
md_group_read : constant fbs_mode_type := 8#040#; 
md_owner_alter : constant fbs_mode_type := 8#200#; 
md_owner_read : constant fbs_mode_type := 8#400#; 
md_public : constant fbs_mode_type := 8#666#; 

procedure FBS_Access       ( scheduler : in integer; 
uid : in integer; 
gid : in integer; 
permissions: in fbs_mode_type; 
istat : out integer );

Parameters

Parameters are described as follows. 

scheduler       refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

uid                 refers to a variable that contains an integer value represent-
ing the effective user ID of the specified frequency–based
scheduler. 

gid                 refers to a variable that contains an integer value represent-
ing the effective group ID of the specified frequency–based
scheduler. 
6-3



PowerMAX OS Guide to Real-Time Services
permissions   refers to a variable that contains a bit pattern that defines the
permissions associated with the specified frequency–based
scheduler.

Permissions are specified by using a combination of the fol-
lowing 

md_public_alter 
md_public_read 
md_group_alter 
md_group_read 
md_owner_alter 
md_owner_read 
md_public 

You can specify a particular permission by adding or sub-
t rac t ing  constants ;  fo r  example,  (md_public  −
md_group_alter − md_public_alter) yields 644
(owner read/write, group read, others read).  Additional
information on setting permissions for frequency–based
scheduler operations is provided in the system manual page
intro(2). 

istat              refers to a variable to which FBS_Access will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 20 Operation permission is denied to the calling
process (see intro(2)).

− 22 The effective user ID of the calling process is not
equa l  to  the  va lue  o f  fbs_perm.uid  o r
fbs_perm.cuid in the data structure associated
with scheduler, and the process does not have the
P_OWNER privilege.  
6-4



The Ada Interfaces to RT Services
FBS_Attach – Attach Timing Source to an FBS 6

This subprogram is invoked to attach a timing source to a frequency–based scheduler or to
specify end–of–cycle scheduling.  The timing source can be a real–time clock, an edge–
triggered interrupt device, or a user–supplied real–time device. 

NOTE

Subprograms contained in the RT_Interface package do not
provide the functionality to set up and control operation of an
edge–triggered interrupt device or a user–supplied device, as they
do for a real–time clock. Procedures for using a real–time clock
are described in detail in Chapter 3. Procedures for using an edge–
triggered interrupt and a user–supplied real–time device are also
explained in that chapter. 

To use a real–time clock as the timing source for a frequency–
based scheduler on a PowerMAX OS system on which the
Enhanced Security Utilities are installed, you must have enough
privilege to open the device. Refer to the “Trusted Facility Man-
agement” chapter of System Administration Volume 1 for an
explanation of the procedures for using devices when the
Enhanced Security Utilities are installed.

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification

procedure FBS_Attach        ( scheduler : in integer; 
CPU       : in integer; 
devname   : in string; 
istat     : out integer ); 

procedure FBS_Attach       ( scheduler : in integer; 
CPU      : in integer; 
devname   : in unbounded_string; 
istat     : out integer);

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which the timing source is to be attached or
end–of–cycle scheduling specified. You can obtain this
value by making a call to FBS_Configure (see page 6-7
for an explanation of this subprogram). If you wish to refer-
ence the frequency–based scheduler on which the calling
6-5



PowerMAX OS Guide to Real-Time Services
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

CPU          refers to a variable that must contain the value 0.

devname   refers to a string or dynamically allocated string that
contains a null string or the path name of the device that is
to be used as the timing source for the specified scheduler. If
devname contains a null string, end–of–cycle scheduling is
specified; that is, execution of the processes in the next
minor cycle will occur when the last process scheduled to
execute in the current minor cycle finishes its execution for
that cycle. If devname contains a path name, it may refer to
a real–time clock, an edge–triggered interrupt, or a user–
supplied device. 

If the device is a real–time clock or an edge–triggered inter-
rupt, the path name must be of a certain form. Refer to
Chapter 3 for detailed information on the form associated
with each type of device. 

If the device is a user–supplied device, the path name must
be a valid UNIX path name. The device must support the
IOCTLVECNUM ioctl(2) call (see Chapter 3 for addi-
tional information). 

istat           refers to a variable to which FBS_Attach will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 4 CPU does not equal zero. 

− 5 Device specified by devname does not exist or is
not configured. 

− 6 Scheduler has already been attached. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 23 Device specified by devname is already attached
to another scheduler. 

− 24 Path name specified by devname is too long. 

− 25 Device specified by devname does not support the
IOCTLVECNUM ioctl command. 

− 26 End–of–cycle scheduling cannot be enabled
because the scheduler has previously been
attached.
6-6



The Ada Interfaces to RT Services
FBS_Configure – Configure an FBS 6

This subprogram is invoked to configure a frequency–based scheduler or to obtain config-
uration details for a frequency–based scheduler that has already been configured. Note
that to configure a scheduler, the calling process must have the P_RTIME privilege (for
additional information on privileges, refer to the PowerMAX OS Programming Guide and
the intro(2) system manual page). 

If you wish to configure a scheduler, you must specify a key, which is a user–chosen
numeric identifier for a frequency–based scheduler.  You must also specify a configflg,
which is a word that sets the permission and control flag bits to characterize the scheduler. 

The permissions are defined in the system manual page intro(2). 

The control flags are described in the header file <sys/ipc.h>.  They include
IPC_CREAT and IPC_EXCL.  Setting the IPC_CREAT bit without setting the
IPC_EXCL bit ensures that a new frequency–based scheduler is created if one corre-
sponding to the value of key does not exist; it results in the return of the associated fre-
quency–based scheduler identifier if one does exist and if all of the following conditions
are met: 

• The number of minor cycles specified by the cycles parameter matches the
number of minor cycles associated with the existing scheduler 

• The maximum specified by the progs parameter is less than or equal to the
maximum number of processes per minor cycle associated with the exist-
ing scheduler 

• The maximum specified by the max parameter is less than or equal to the
maximum number of processes allowed on the existing scheduler at one
time

Setting both the IPC_CREAT and the IPC_EXCL bits results in the creation of a new
scheduler if one corresponding to the value of key does not exist; it ensures that an error is
returned if one does exist.

A unique, nonnegative frequency–based scheduler identifier and corresponding data
structure will be created for the specified key if the number of frequency–based schedulers
already configured is less than the maximum number of schedulers allowed on your
system (see Chapter 2 for a description of system tunable parameters) and if one of the fol-
lowing conditions is met: 

• The value of key is equal to IPC_PRIVATE (that is, zero) 

• The value of key is not associated with a frequency–based scheduler identi-
fier and (configflg & IPC_CREAT) is “true” 

The Ada specification and corresponding parameters are presented in the following
sections.
6-7



PowerMAX OS Guide to Real-Time Services
Ada Specification 

subtype fbs_mode_type is integer; 

md_ipc_private : constant fbs_mode_type := 16#0000#; 
md_ipc_creat    : constant fbs_mode_type := 16#0200#; 
md_ipc_excl     : constant fbs_mode_type := 16#0400#; 

type fbs_reset_flag_type is 
  ( reset_with_abort, no_reset, reset ); 

procedure FBS_Configure    ( key : in fbs_mode_type; 
                                                 cycles   : in out integer; 
                                                 progs    : in out integer; 
                                                 max      : in out integer; 
                                                 reset    : in out fbs_reset_flag_type; 
                                                 configflg : in out fbs_mode_type; 
                                                 scheduler : in out integer; 
                                                 istat     : out integer );

Parameters 

To create a frequency–based scheduler, you must specify the following parameters as
described. 

key        refers to a variable that contains an integer value identifying
the frequency–based scheduler that is to be created. Note
that the number of schedulers that can be configured at one
time cannot exceed the value of FBSMNI, which is the maxi-
mum number of frequency–based schedulers permitted on
your system (see Chapter 2 for a description of system tun-
able parameters). 

cycles    refers to a variable that contains an integer value indicating
the number of minor cycles that compose a frame on the
specified scheduler.

progs     refers to a variable that contains an integer value indicating
the maximum number of programs that can be scheduled to
execute during one minor cycle.

max       refers to a variable that contains an integer value indicating
the maximum number of programs that can be scheduled on
the specified scheduler at one time.  This value must be less
than or equal to the product that is obtained by multiplying
the values specified for the cycles and progs parameters.

reset     refers to a variable that contains an enumeration value indi-
cating whether or not processes currently scheduled on the
specified scheduler are to be killed before the scheduler is
reconfigured. Acceptable values and corresponding results
are presented in Table 6-1. 
6-8



The Ada Interfaces to RT Services
configflg  refers to a variable that contains a bit pattern indicating the
control flags and permissions assigned to the specified
scheduler.  Control flags and permissions are specified by
using a combination of the following constants: 

md_ipc_private 
md_ipc_create 
md_ipc_excl 
md_public_alter 
md_public_read 
md_group_alter 
md_group_read 
md_owner_alter 
md_owner_read 
md_public 

You can specify a particular permission by adding or sub-
t rac t ing  constants ;  fo r  example,  (md_public  −
md_group_alter  −  md_public_alter  +
md_ipc_create) yields 1644 octal (create scheduler,
owner read/write, group read, others read). 

scheduler    refers to a variable to which FBS_Configure will return a
unique, positive integer value representing the identifier for
the specified frequency–based scheduler.  It is important to
note that this identifier is required by most of the library
subprograms. 

istat       refers to a variable to which FBS_Configure will return
an integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Cannot create a new scheduler because the limit on
the number of schedulers per system would be
exceeded. 

Table 6-1.  Reset Options 

Value Result

reset_with_abort  Kill and remove all processes currently scheduled on
the specified scheduler   

no_reset  Ignore all processes currently scheduled on the speci-
fied scheduler   

reset  Remove all processes currently scheduled on the speci-
fied scheduler   
6-9



PowerMAX OS Guide to Real-Time Services
− 4 Cannot create a new scheduler with the specified
parameters. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 22 The calling process does not have the P_RTIME

privilege.

− 28 Scheduler for key already exists, but
md_ipc_create and md_ipc_excl were speci-
fied in configflg. 

To obtain information for an existing frequency–based scheduler, you must specify the
following parameters as described.

key        refers to a variable that contains an integer value identifying
the frequency–based scheduler for which configuration
information is to be returned.  If this value is zero, the fre-
quency–based scheduler identifier associated with this
scheduler must also be provided by using the scheduler
parameter. 

cycles    refers to a variable that contains the integer value zero, indi-
cating that current configuration information for the speci-
fied scheduler is to be returned.  FBS_Configure will
also return to this variable an integer value indicating the
number of minor cycles that compose a frame on the speci-
fied scheduler. 

progs     refers to a variable to which FBS_Configure will return
the maximum number of programs that can be scheduled to
run during one minor cycle on the specified scheduler. 

max       refers to a variable to which FBS_Configure will return
the maximum number of programs that can be scheduled on
the specified scheduler at one time. 

configflg  refers to a variable to which FBS_Configure will return
the permissions assigned to the specified scheduler. 

scheduler    refers to a variable to which FBS_Configure will return a
unique, positive integer value representing the identifier for
the specified frequency–based scheduler.  If you specify a
key of 0, this variable must contain the related frequency–
based scheduler identifier. 

FBS_Cycle – Return Minor Cycle/Major Frame Count 6

This subprogram is invoked to obtain the current minor cycle and major frame count
values for a frequency–based scheduler.  These values enable you to determine the
progress of a simulation. 
6-10



The Ada Interfaces to RT Services
The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification

type cycle_count is record 
   minor_cycle_count : integer; 
   major_frame_count : integer; 
end record; 

procedure FBS_Cycle        ( scheduler : in integer; 
                                              count    : out cycle_count; 
                                              istat      : out integer );

Parameters

Parameters are described as follows. 

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain the current cycle and
frame counts. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

count  refers to a record to which FBS_Cycle will return integer
values indicating the current minor cycle and major frame
for the specified scheduler.  The minor_cycle_count
component will contain the number of the cycle.  The
major_frame_count component will contain the
number of the frame. 

istat    refers to a variable to which FBS_Cycle will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).
6-11



PowerMAX OS Guide to Real-Time Services
FBS_Detach – Detach Timing Source from an FBS 6

This subprogram is invoked to detach the currently attached timing source from a fre-
quency–based scheduler or to disable end–of–cycle scheduling. If the timing source is a
real-time clock, it is recommended that you stop the clock prior to invoking this subpro-
gram. You can do so by making a call to FBS_Runrtc (see page 6-25 for an explanation
of this subprogram). 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

procedure FBS_Detach       ( scheduler : in integer; 
                                               istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler from which you wish to detach the currently
attached timing source or for which you wish to disable
end–of–cycle scheduling. You can obtain this value by mak-
ing a call to FBS_Configure (see page 6-7 for an expla-
nation of this subprogram). If you wish to reference the fre-
quency–based scheduler on which the calling process is
scheduled without knowing its identifier, you can specify a
value of − 1. 

istat        refers to a variable to which FBS_Detach will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Scheduler is not attached. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

FBS_Getrtc – Obtain Current Values for Real–Time Clock 6

This subprogram is invoked to obtain the current count and resolution values for the real–
time clock that is attached to a specified frequency–based scheduler. 

The Ada specification and corresponding parameters are presented in the following
sections. 
6-12



The Ada Interfaces to RT Services
Ada Specification 

type rtc_count_type is new integer range 1.. 65_535; 

type rtc_resolution_type is private; 

rtc_resolution_1_microsecs    : constant rtc_resolution_type; 
rtc_resolution_10_microsecs   : constant rtc_resolution_type; 
rtc_resolution_100_microsecs : constant rtc_resolution_type; 
rtc_resolution_1000_microsecs : constant rtc_resolution_type; 
rtc_resolution_10000_microsecs : constant rtc_resolution_type; 

procedure FBS_Getrtc       ( scheduler : in integer; 
                                              count      : out rtc_count_type; 
                                              resolution : out rtc_resolution_type; 
                                              istat1     : out integer; 
                                              istat2     : out integer );

Parameters 

Parameters are described as follows. 

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which the real–time clock is attached. You can
obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of − 1. 

count       refers to a variable to which FBS_Getrtc will return an
integer value indicating the current number of clock counts
per minor cycle.  This value can range from one to 65535. 

resolution  refers to a variable to which FBS_Getrtc will return a
constant value indicating the duration in microseconds of
one clock count.  This value will be one of the following: 

rtc_resolution_1_microsecs 
rtc_resolution_10_microsecs 
rtc_resolution_100_microsecs 
rtc_resolution_1000_microsecs 
rtc_resolution_10000_microsecs

istat1        refers to a variable to which FBS_Getrtc will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 
6-13



PowerMAX OS Guide to Real-Time Services
− 4 Scheduler is not attached. 

− 5 An error occurred on the open of the attached
device; istat2 contains the error status of the
open call. 

− 6 An error occurred on the ioctl call to the attached
device; istat2 contains the error status of the
ioctl call. 

− 7 Scheduler is not configured. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

If istat1 contains a value indicating that an error has
occurred on an open or ioctl call, the error status of that
call is returned in istat2. 

istat2 refers to a variable to which FBS_Getrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the error. 

FBS_Id – Return the FBS Identifier for a Key 6

This subprogram is invoked to obtain the frequency–based scheduler identifier associated
with a particular user–specified key.  The key must match the key that was specified when
the scheduler was created by making a call to FBS_Configure. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

subtype fbs_mode_type is integer; 

 procedure FBS_Id         ( key            : in fbs_mode_type; 
                                          scheduler : out integer; 
                                          istat     : out integer );

Parameters 

Parameters are described as follows. 

key         refers to a variable that contains an integer value identifying
a frequency–based scheduler; this value must be the same
value that was specified for key when the scheduler was
created by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). 

scheduler  refers to a variable to which FBS_Id will return an integer
value representing the unique frequency–based scheduler
identifier associated with the key. 
6-14



The Ada Interfaces to RT Services
istat        refers to a variable to which FBS_Id will return an integer
value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
occurred.  The nonzero values that may be returned are
explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 7 Scheduler is not configured. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 22 The calling process does not have the P_RTIME

privilege. 

FBS_Info – Return Information for an FBS 6

This subprogram is invoked to obtain information that is related to a selected frequency–
based scheduler but cannot be obtained by invoking other subprograms (for example,
Sched_FBS_Query, Sched_PGM_Query).  Such information includes the following:

• The user and group IDs of the owner and the creator of the scheduler 

• The permissions assigned for the scheduler 

• The key associated with the scheduler’s identifier 

• The total number of overruns for all processes on the scheduler 

• The CPUs that are active in the system 

• The CPUs on which performance monitoring has been enabled 

• The FBS–enabled flag 

• The path name of the device that has been attached to the scheduler 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment.

Ada Specification 

subtype fbs_mode_type is integer; 

md_public_alter : constant fbs_mode_type := 8#002#; 
md_public_read : constant fbs_mode_type := 8#004#; 
md_group_alter : constant fbs_mode_type := 8#020#; 
md_group_read : constant fbs_mode_type := 8#040#; 
md_owner_alter : constant fbs_mode_type := 8#200#; 
md_owner_read : constant fbs_mode_type := 8#400#; 
6-15



PowerMAX OS Guide to Real-Time Services
md_public : constant fbs_mode_type := 8#666#; 

type reserved_words_type is array( integer range 1 .. 30 ) of integer; 

type fbs_info_buffer_type is record

owner_uid : integer; 
owner_gid : integer; 
creator_uid : integer; 
creator_gid : integer; 
permissions : fbs_mode_type; 
key : integer; 
flags : integer; 
reserved_word : integer; 
overruns : integer; 
cpu_active_mask : integer; 
cpu_pm_enabled_mask : integer; 
enabled_flag : integer; 
reserved_words : reserved_words_type; 
end record; 

 procedure FBS_Info         ( scheduler : in integer; 
                                             buf           : out fbs_info_buffer_type; 
                                             devname  : out unbounded_string; 
                                             istat      : out integer );

Parameters 

Parameters are described as follows. 

scheduler    refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

buf        refers to a record to which FBS_Info will return a series of
integer values that represent certain types of information
about the specified scheduler. The information returned in
each component of the record is presented in Table 6-2. 

Table 6-2.  Contents of buf Record Components 

Component Contents

buf.owner_uid  owner’s user ID   

buf.owner_gid  owner’s group ID   

buf.creator_uid  creator’s user ID   

buf.creator_gid  creator’s group ID   

buf.permissions  access modes   
6-16



The Ada Interfaces to RT Services
devname  refers to a dynamically allocated string to which
FBS_Info will return the path name of the device that is
being used as the timing source for the specified frequency–
based scheduler.  If end–of–cycle scheduling has been spec-
ified, devname will contain a null string. 

istat      refers to a variable to which FBS_Info will return an inte-
ger value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
occurred.  The nonzero values that may be returned are
explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

FBS_Intrpt – Start/Stop/Resume Scheduling on an FBS 6

This subprogram is invoked to start, stop, or resume scheduling on a frequency–based
scheduler.  If you invoke this subprogram to start scheduling, the minor cycle, major
frame, and overrun count values are reset.  If you invoke it to resume scheduling, these
values are not reset.  

Prior to invoking FBS_Intrpt, you must have invoked FBS_Attach to specify end–
of–cycle scheduling or attach a timing source to the frequency–based scheduler on which
you are starting scheduling (see page 6-5 for an explanation of FBS_Attach). If you
have specified a real–time clock as the timing source, scheduling will not begin until you
have set and started the clock (see page 6-30 and page 6-25 for explanations of
FBS_Setrtc and FBS_Runrtc, respectively). If you have specified an edge–triggered

buf.key  key   

buf.flags  flags word   

buf.reserved_word  reserved for future use   

buf.overruns  total number of overruns for all processes on the sched-
uler   

buf.cpu_active_mask  mask of CPUs active in the system   

buf.cpu_pm_enabled_mask  mask of CPUs on which performance monitoring has
been enabled   

buf.enabled_flag  FBS–enabled flag   

buf.reserved_words  reserved for future use   

Table 6-2.  Contents of buf Record Components  (Cont.)

Component Contents
6-17



PowerMAX OS Guide to Real-Time Services
interrupt device or a user–supplied device as the timing source, it must already be generat-
ing interrupts in order for scheduling to start.

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

type intr_flag_type is 
   ( reset_counters_and_arm, disarm, arm ); 

 procedure FBS_Intrpt       ( scheduler   : in integer; 
                                              intrpt_flag : in intr_flag_type; 
                                              istat       : out integer );

Parameters 

Parameters are described as follows. 

scheduler    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to start, stop, or resume sched-
uling of processes. You can obtain this value by making a
call to FBS_Configure (see page 6-7 for an explanation
of this subprogram). If you wish to reference the frequency–
based scheduler on which the calling process is scheduled
without knowing its identifier, you can specify a value of −
1. 

intrpt_flag refers to a variable that contains an enumeration value indi-
cating whether scheduling of processes on the specified
scheduler is to be started, stopped, or resumed. Acceptable
values and corresponding results are presented in Table 6-3. 

Table 6-3.  Intrpt_flag Options

Value Result

reset_counters_and_arm  Start scheduling of processes with the initial frame,
cycle, and overrun count values set to zero

disarm  Stop scheduling of processes, and save the count values
for the current frame and cycle

arm  Resume scheduling of processes with the frame, cycle,
and overrun count values set to the values that were
saved when the scheduler was last stopped
6-18



The Ada Interfaces to RT Services
istat       refers to a variable to which FBS_Intrpt will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Scheduler is not attached. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

FBS_Query – Query Processes on an FBS 6

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated.   If you have an existing application that uses this interface,
it is recommended that you change your application to use
Sched_FBS_Query (see p. 6-49). For details on obsolete inter-
faces, refer to Chapter 2, “Overview of the FBS.”

This subprogram is invoked to obtain information about processes that have been sched-
uled on a frequency–based scheduler.  Information is returned for all processes scheduled
on the user–specified processor(s).  Information provided for each process includes the
following: 

• A mask of the CPU(s) on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling priority

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame)

• The value of the “halt on overrun” flag

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 
6-19



PowerMAX OS Guide to Real-Time Services
Ada Specification

type fbs_query_buffer_element is record 
   name       : unbounded_string; 
   CPU        : integer; 
   slot       : integer; 
   priority   : integer; 
   period     : integer; 
   cycle     : integer; 
   abort_flag : integer; 
end record; 

 type fbs_query_buffer_type is array( integer range <> ) 
   of fbs_query_buffer_element; 

 procedure FBS_Query        ( scheduler : in integer; 
                                                CPU       : in integer; 
                                                buffer    : in out fbs_query_buffer_type; 
                                                istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain scheduling informa-
tion. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

CPU         refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 6-4. 

Table 6-4.  CPU Options:  FBS_Query

Value Result

0  Scheduling information for processes executing on the
processor from which the call is made is returned   

-1 Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned
6-20



The Ada Interfaces to RT Services
buffer      refers to an array of records to which FBS_Query will
return a dynamically allocated string containing the FBS–
scheduled process’s name and other scheduling informa-
tion. Buffer contains scheduling information for all pro-
cesses scheduled on the specified CPUs bound by the
declared size of the Ada buffer array.  The type of informa-
tion returned in each record component for a single process
is presented in Table 6-5.   

istat       refers to a variable to which FBS_Query will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 More processes can be queried than can fit in
buffer, but buffer has been filled to its capac-
ity. 

− 4 CPU value is invalid or out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

Table 6-5.  Contents of buffer Record Components for a Process

Component for Process p Contents

buffer(p).name  Pointer to a variable length string that contains the path
name of process p   

buffer(p).CPU  A bit mask indicating the processor(s) on which the
process can execute (see Table 6-4 for a description of
the bit mask)   

buffer(p).slot  The process’s frequency–based scheduler process iden-
tifier   

buffer(p).priority  The process’s scheduling priority  

buffer(p).period  The number of minor cycles indicating the frequency
with which the process is to be wakened in each major
frame (period)   

buffer(p).cycle  The first minor cycle in which the process is scheduled
to be wakened in each major frame (starting base
cycle)   

buffer(p).abort_flag  The value of the “halt on overrun” flag.  A nonzero
value indicates that the flag is set.  A value of zero indi-
cates that the flag is not set.   
6-21



PowerMAX OS Guide to Real-Time Services
− 27 Service could not allocate enough buffers to
perform the query. 

FBS_Remove – Remove an FBS 6

This subprogram is invoked to remove a frequency–based scheduler and to free the data
structure associated with it. It is important to note that prior to invoking FBS_Remove,
you must ensure that the timing source is detached from the scheduler or that end–of–
cycle scheduling is disabled (see page 6-12 for information on the use of FBS_Detach).
It is important to note that FBS_Remove will remove all processes scheduled on the spec-
ified scheduler. It is recommended, however, that you remove all scheduled processes
prior to invoking FBS_Remove. You can do so by making a call to PGM_Remove (see
page 6-35 for information on the use of this subprogram). 

Note that to remove a frequency-based scheduler, the calling process must have the
P_OWNER privilege or an effective user ID that is equal to that of the owner/creator of the
scheduler.

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

type fbs_remove_reset_type is  ( reset_and_abort, reset_only ); 

 procedure FBS_Remove       ( scheduler : in integer; 
                                                  reset     : in fbs_remove_reset_type; 
                                                  istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler that you wish to remove. You can obtain this
value by making a call to FBS_Configure (see page 6-7
for an explanation of this subprogram). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

reset           refers to a variable that contains an enumeration value indi-
cating the manner in which processes scheduled on the
scheduler are to be handled. Acceptable values and corre-
sponding results are presented in Table 6-6. 
6-22



The Ada Interfaces to RT Services
istat       refers to a variable to which FBS_Remove will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 6 Scheduler is still attached. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 22 The effective user ID of the calling process is not
equa l  to  th e  va lue  o f  fbs_perm.uid  o r
fbs_perm.cuid in the data structure associated
with scheduler, and the process does not have the
P_OWNER privilege. 

FBS_Resume - Resume Scheduling on an FBS 6

The FBS_Resume subprogram is invoked to resume scheduling of processes on a fre-
quency-based scheduler at the specified minor cycle, major frame, and overrun count.

Note that to resume scheduling of processes on a frequency-based scheduler, the calling
process must have alter permission for the scheduler.  If the Enhanced Security Utilities
are installed and running, the following conditions must also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have the P_MACWRITE privilege.

If you wish to resume scheduling of processes on a frequency-based scheduler without
altering the scheduler’s current frame, cycle, and overrun values, it is recommended that
you use the FBS_Intrpt subprogram (see page 6-17 for an explanation of this routine).

Table 6-6.  Reset Options

Value Result

reset_and_abort  Kill and remove all processes currently scheduled on
the specified scheduler   

reset_only  Remove all processes currently scheduled on the speci-
fied scheduler   
6-23



PowerMAX OS Guide to Real-Time Services
CAUTION

The FBS_Resume subprogram clears performance monitor val-
ues for all processes scheduled on the specified scheduler.  Chang-
ing the frame and cycle count for the scheduler causes the values
that are being maintained by the performance monitor to be inac-
curate.

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

procedure FBS_Resume       ( scheduler : in integer; 
                                                frame     : in integer;
                                                cycle     : in integer;

overruns : in integer;
istat : out integer);

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to resume scheduling of pro-
cesses. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram).   If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value -1.

frame           an integer value indicating the major frame in which you
wish scheduling of processes to be resumed on the specified
scheduler

cycle an integer value indicating the minor cycle in which you
wish scheduling of processes to be resumed on the specified
scheduler. This value can range from zero to the total num-
ber of minor cycles per frame minus one. The total number
of minor cycles per frame was specified when the scheduler
was created by making a call to FBS_Configure (see
page 6-7 for an explanation of this subprogram).

overruns an integer value indicating the value to which you wish the
overrun count to be set when scheduling resumes on the
specified scheduler 

If you do not wish to change the overrun count, you can
specify the value −1.

istat       refers to a variable to which FBS_Resume will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
6-24



The Ada Interfaces to RT Services
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Scheduler is not attached.

− 4 Specified frame or cycle is out of range.

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

FBS_Runrtc – Start/Stop Real–Time Clock 6

This subprogram is invoked to start or stop the counting of a real–time clock that has been
attached to a frequency–based scheduler. 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification

type runrtc_flag_type is ( stop_clock, start_clock ); 

 procedure FBS_Runrtc       ( scheduler : in integer; 
                                                run_flag  : in runrtc_flag_type; 
                                                istat1    : out integer; 
                                                istat2    : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to start or stop the attached
real–time clock. You can obtain this value by making a call
to FBS_Configure (see page 6-7 for an explanation of
this subprogram). If you wish to reference the frequency–
based scheduler on which the calling process is scheduled
without knowing its identifier, you can specify a value of 
−1.

run_flag    refers to a variable that contains an enumeration value indi-
cating whether the real–time clock is to be started or
stopped.  Specify start_clock to indicate that the clock
is to be started.  Specify stop_clock   to indicate that the
clock is to be stopped. 

istat1        refers to a variable to which FBS_Runrtc will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
6-25



PowerMAX OS Guide to Real-Time Services
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 4 Scheduler is not attached. 

− 5 An error occurred on the open of the attached
device; istat2 contains the error status of the
open call. 

− 6 An error occurred on the ioctl call to the attached
device; istat2 contains the error status of the
ioctl call. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

  If istat1 contains a value indicating that an error has
occurred on an open or ioctl call, the error status of that
call is returned in istat2. 

istat2        refers to a variable to which FBS_Runrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the error. 

FBS_Sched_Self - Schedule an Ada Task on an FBS 6

The FBS_Sched_Self subprogram is invoked to schedule the calling Ada task on a fre-
quency-based scheduler.

For purposes of discussion, a nontasking application is considered to have a single task,
which is called the environment task, that executes the main subprogram. Similarly, a mul-
titasking application also includes the environment task, which executes the main subpro-
gram.

The FBS_Sched_Self subprogram may be used by a nontasking or multitasking
application; however, if it is used in a multitasking application, the calling task’s weight
must be bound. A bound task is one that has a dedicated lightweight process (LWP) iden-
tified for its execution. (Refer to the “Run-Time Concepts” and “Run-Time Configura-
tion” chapters of the MAXAda Reference Manual (0890516) for more information on Ada
tasking concepts and configuration.)

It is important to note that FBS_Sched_Self does not allow the calling task to set its
scheduling policy and priority or its CPU bias.  These operations must be performed prior
to invoking FBS_Sched_Self.

A bound Ada task may set its scheduling policy, priority, and CPU bias by interfacing
directly with such system program interfaces as priocntl(2) and mpadvise(3C),
but use of these interfaces is not (underlined) recommended. It is recommended that you
use MAXAda pragmas and options for such operations. The MAXAda pragma
TASK_CPU_BIAS, for example, is used to set the CPU bias for a task. Similarly, the MAX-
6-26



The Ada Interfaces to RT Services
Ada pragmas TASK_PRIORITY and TASK_QUANTUM are used to set the priority and sched-
uler class for a task. (Refer to the “Run-Time Configuration” chapter of the MAXAda Ref-
erence Manual (0890516) for more information.)

Note that a nontasking application may set its scheduling policy, priority, and CPU bias by
using sched_setscheduler(3C) and cpu_bias(2).

Note that you cannot use this routine to add /idle or /spare to a frequency-based
scheduler.

To schedule the calling task on a frequency-based scheduler, the calling task must have
alter permission for the scheduler.  If the Enhanced Security Utilities are installed and run-
ning, the following conditions must also be met:

• The calling task and the frequency-based scheduler must have identical
security levels, or the task must have the P_MACWRITE privilege.

You must not change the scheduling policy or priority of task while it is scheduled on a
scheduler by using sched_setscheduler or other program interfaces that allow you
to change scheduling policy and priority.  The frequency-based scheduler is not aware of
changes in scheduling policy and priority that are made by using these interfaces.

If you need to change the scheduling policy or priority of a non-tasking FBS scheduled
process, you may do so by using Sched_Pgm_Reschedule to reschedule it (see page
6-62 for an explanation of this subprogram).

If you need to change the scheduling policy or priority of a bound task, you must first
remove it from the scheduler on which it is has been scheduled by using Pgm_Remove
(see page 6-35 for an explanation of this subprogram). You can then use services in the
package Ada.Dynamic_Priorities to change its priority and FBS_Sched_Self to
schedule it on a scheduler.

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type fbs_sched_self_buffer_type is record
version : integer;
param : integer;
period : integer;
cycle : integer;
abort_flag : integer;
fpid : integer;

end record;

procedure FBS_Sched_Self   ( scheduler  : in integer; 
                                                  name : in string; 
                                                  buffer : in out fbs_sched_self_buffer_type; 
                                                  istat : out integer);

procedure FBS_Sched_Self   ( scheduler  : in integer; 
                                                  name : in unbounded_string; 
                                                  buffer : in out fbs_sched_self_buffer_type; 
                                                  istat : out integer);
6-27



PowerMAX OS Guide to Real-Time Services
Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling task is scheduled without
knowing its identifier, you can specify a value of −1. 

name         refers to a string that contains a standard UNIX path name
or arbitrary content identifying the program associated with
the calling task. A full or relative path name of up to 1023
characters can be specified.

buffer   refers to a record that contains the scheduling parameters
with which the calling task is to be scheduled.The type of
information returned in each record component for a single
process is presented in Table 6-7. 

Table 6-7.  Contents of buffer Record Components for a Process  

Component Contents

buffer.version  an integer value indicating the version of buffer that is
being passed to FBS_Sched_Self.  The constant
FBSSCHED_CUR_VERSION specifies the value to which
version should be set for the structure definition pre-
sented above.  Note that this value is automatically sup-
plied via default record initialization

buffer.param  an integer value to be passed to a task that is scheduled
on a frequency-based scheduler. This value can be
retrieved by the FBS scheduled task through a call to
RT_Param (see page 6-49 for an explanation of this
subprogram).

buffer.period  an integer value indicating the frequency with which
the calling task is to be wakened in each frame.  A
period of one indicates that the calling task is to be
wakened every minor cycle; a period of two indicates
that it is to be wakened every two minor cycles, and so
on.

This value can range from one to the number of minor
cycles that compose a frame on the specified scheduler
as defined in a call to FBS_Configure (see page 6-7
for an explanation of this subprogram).
6-28



The Ada Interfaces to RT Services
istat         refers to a variable to which FBS_Sched_Self will return
an integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1 Unrecognized or incompatible version was speci-
fied.

− 2 Scheduler does not exist. 

− 4 Period or cycle are out of range. 

− 5  Name evaluated to /spare or /idle.

− 7 Scheduler is not configured.

− 20 Operation permission is denied to the calling task
(see intro(2)). 

− 24 The length of path name name is too long.

buffer.cycle  an integer value that specifies the first minor cycle in
which the calling task is to be wakened in each frame.
This value can range from zero to the total number of
minor cycles per frame minus one. The total number of
minor cycles per frame is specified in a call to
FBS_Configure (see page 6-7 for an explanation of
this subprogram).

buffer.abort_flag  a flag indicating whether or not the scheduler should be
stopped in the event that the calling task overruns its
frame.  A nonzero value indicates that the scheduler
should be stopped

buffer.fpid on successful return from FBS_Sched_Self, this
variable contains the unique frequency-based scheduler
identifier for the calling task

Table 6-7.  Contents of buffer Record Components for a Process  (Cont.) 

Component Contents
6-29



PowerMAX OS Guide to Real-Time Services
FBS_Setrtc – Set Real–Time Clock 6

This subprogram is invoked to establish the duration of a minor cycle by setting the count
and the resolution values for a real–time clock. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type rtc_count_type is new integer range 1 .. 65_535; 

type rtc_resolution_type is private; 

rtc_resolution_1_microsecs    : constant rtc_resolution_type; 
rtc_resolution_10_microsecs   : constant rtc_resolution_type; 
rtc_resolution_100_microsecs  : constant rtc_resolution_type; 
rtc_resolution_1000_microsecs : constant rtc_resolution_type; 
rtc_resolution_10000_microsecs : constant rtc_resolution_type; 

procedure FBS_Setrtc       ( scheduler  : in integer; 
                                             count      : in rtc_count_type; 
                                             resolution : in rtc_resolution_type; 
                                             istat1     : out integer; 
                                             istat2     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which a real–time clock has been attached. You
can obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of − 1. 

count         refers to a variable that contains an integer value indicating
the number of clock counts per minor cycle.  This value can
range from one to 65535. 

resolution   refers to a variable that contains a constant value indicating
the duration in microseconds of one clock count.  This value
must be one of the following: 

rtc_resolution_1_microsecs
rtc_resolution_10_microsecs
rtc_resolution_100_microsecs
rtc_resolution_1000_microsecs
rtc_resolution_10000_microsecs

istat1         refers to a variable to which FBS_Setrtc will return an
integer value indicating whether or not an error has
6-30



The Ada Interfaces to RT Services
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 4 Scheduler is not attached. 

− 5 An error occurred on the open of the attached
device; istat2 contains the error status of the
ioctl call. 

− 6 An error occurred on the ioctl call to the attached
device; istat2 contains the error status of the
ioctl call. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 31 Count value is out of range. 

  If istat1 contains a value indicating that an error has
occurred on an open or ioctl call, the error status of that
call is returned in istat2. 

istat2      refers to a variable to which FBS_Setrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the error. 

FBS_Wait – Wait on an FBS 6

This subprogram enables a process that is scheduled on a frequency–based scheduler to
sleep until its next scheduled minor cycle. 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification

procedure FBS_Wait         ( istat       : out integer );

Parameter 

FBS_Wait requires one parameter: istat. Istat refers to a variable to which FBS_Wait
will return an integer value indicating whether or not an error has occurred and whether
the process has been wakened by the scheduler or by an fbstrig(2) call from another
process. Values that may be returned are described in Table 6-8. 
6-31



PowerMAX OS Guide to Real-Time Services
PGM_Query – Query a Process on an FBS 6

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated.   If you have an existing application that uses this interface,
it is recommended that you change your application to use
Sched_PGM_Query (see p. 6-56). For details on obsolete inter-
faces, refer to Chapter 2, “Overview of the FBS.”

This subprogram is invoked to obtain information for a particular process that has been
scheduled on a frequency–based scheduler.  You can identify the process by using one of
the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Table 6-8.  Istat Values: FBS_Wait

Value Description

0  The process has been wakened normally   

1  The process has been wakened as the resul t  of an
fbstrig(2) call   

Other nonzero value  An error of a specific type has occurred.  The nonzero values
that may be returned and the types of errors that they repre-
sent are as follows:   

  –1 Scheduler is not configured   

  –3 Process is not scheduled on a frequency–based 
scheduler   

  –4 Process has been removed from the scheduler   
6-32



The Ada Interfaces to RT Services
Information that is returned includes the following: 

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification 

procedure PGM_Query        ( scheduler  : in integer; 
                                                name       : in out unbounded_string; 
                                                CPU        : in out integer; 
                                                slot       : in out integer; 
                                                priority   : out integer; 
                                                period     : out integer; 
                                                cycle      : out integer; 
                                                abort_flag : out integer; 
                                                istat      : out integer );

Parameters

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information has been scheduled. You can
obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of –1. 

name        refers to a dynamically allocated string that contains a
standard UNIX path name identifying the process for which
information is to be returned.  A full or relative path name
of up to 1024 characters can be specified.  If this variable
contains blanks, you must provide the frequency–based
scheduler process identifier in the slot parameter.
6-33



PowerMAX OS Guide to Real-Time Services
CPU         refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which infor-
mation is to be returned. Acceptable values and correspond-
ing results are presented in Table 6-9. 

slot           refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which information is to be returned. This
value is obtained when you make a call to PGM_Schedule
(see page 6-42 for an explanation of this subprogram). This
value must be − 1 if you wish to identify the program to be
queried only by specifying name and cpu. 

priority     refers to a variable to which PGM_Query will return an
integer value indicating the specified process’s scheduling
priority. 

period       refers to a variable to which PGM_Query will return an
integer value indicating the frequency with which the speci-
fied program is to be wakened in each major frame.  A
period of one indicates that the specified program is to be
wakened every minor cycle; a period of two indicates that it
is to be wakened once every two minor cycles, a period of
three once every three minor cycles, and so on.

cycle        refers to a variable to which PGM_Query will return an
integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame 

abort_flag  refers to a variable to which PGM_Query will return an
integer value indicating the value of the “halt on overrun”
flag.  A nonzero value indicates that the flag is set.  A value
of zero indicates that the flag is not set. 

Table 6-9.  CPU Options:  PGM_Query

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-34



The Ada Interfaces to RT Services
istat         refers to a variable to which PGM_Query will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows: 

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on this scheduler. 

− 4 CPU value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 24 Path name specified by name is too long. 

PGM_Remove – Remove a Process from an FBS 6

This subprogram is invoked to remove a process from a frequency–based scheduler.  You
can identify the process that you wish to remove by using one of the following methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 
6-35



PowerMAX OS Guide to Real-Time Services
Ada Specification 

procedure PGM_Remove       ( scheduler : in integer; 
                                                  name      : in string; 
                                                  CPU       : in integer; 
                                                  slot      : in integer; 
                                                  abrt      : in integer; 
                                                  istat     : out integer ); 

 procedure PGM_Remove       ( scheduler : in integer; 
                                                    name      : in unbounded_string; 
                                                    CPU       : in integer; 
                                                    slot      : in integer; 
                                                    abrt      : in integer; 
                                                    istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing its identifier, you
can specify a value of − 1. 

name      refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the process
to be removed from the specified scheduler.  A full or rela-
tive path name of up to 1024 characters can be specified.  If
this variable contains blanks, you must provide the fre-
quency–based scheduler process identifier in the slot param-
eter.

CPU       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be removed
from the specified scheduler. Acceptable values and corre-
sponding results are presented in Table 6-10. 
6-36



The Ada Interfaces to RT Services
slot       refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be removed from the specified scheduler.
This  va lue  i s  ob ta ined  when  you  make  a  ca l l  to
Sched_PGM_Add (see page 6-52 for an explanation of this
subprogram). This value must be − 1 if you choose to iden-
tify the program to be removed only by specifying name and
cpu. 

abrt       refers to a flag that contains an integer value indicating the
manner in which the specified process is be removed from
the specified scheduler.  A positive value indicates that the
process is to be removed from the scheduler but allowed to
continue executing.  A negative value indicates that the
process is to be removed from the scheduler and terminated. 

istat       refers to a variable to which PGM_Remove will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on the specified scheduler. 

− 4 CPU value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

Table 6-10.  CPU Options:  PGM_Remove

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
removed   

-1 The first process named by name that is currently run-
ning on any processor is removed

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is removed

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is removed   
6-37



PowerMAX OS Guide to Real-Time Services
PGM_Reschedule – Reschedule a Process 6

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a pro-
cess’s scheduling priority has changed. If you have an existing
application that uses this interface, it is recommended that you
change your application to use Sched_PGM_Reschedule
(see p. 6-59). For details on obsolete interfaces, refer to Chapter 2,
“Overview of the FBS.”

This subprogram is invoked to change the scheduling parameters for a process that is
scheduled on a frequency–based scheduler.  You may wish, for example, to change a
program’s priority or the frequency with which it is scheduled to run.  You cannot, how-
ever, change the CPU on which it has been scheduled. 

To change a process’s priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page.

You can call PGM_Reschedule to change the parameters without having called
PGM_Remove to remove the process from the scheduler (see page 6-35) or FBS_Intrpt
to stop the simulation (see page 6-17). 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.
6-38



The Ada Interfaces to RT Services
NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification 

procedure PGM_Reschedule   ( scheduler : in integer; 
   name      : in string; 

                                                   CPU       : in integer; 
                                                   slot      : in integer; 
                                                   priority  : in integer; 
                                                   param     : in integer; 
                                                   period    : in integer; 
                                                   cycle     : in integer; 
                                                   abrt      : in integer; 
                                                   istat     : out integer ); 

 procedure PGM_Reschedule   ( scheduler : in integer; 
                                                    name      : in unbounded_string; 
                                                    CPU       : in integer; 
                                                    slot      : in integer; 
                                                    priority  : in integer; 
                                                    param     : in integer; 
                                                    period    : in integer; 
                                                    cycle     : in integer; 
                                                    abrt      : in integer; 
                                                    istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing its identifier, you
can specify a value of − 1. 

name      refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the process
to be rescheduled.  A full or relative path name of up to
1024 characters can be specified.  If this variable contains
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter.
6-39



PowerMAX OS Guide to Real-Time Services
CPU       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be resched-
uled. Acceptable values and corresponding results are pre-
sented in Table 6-11.   

slot       refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be rescheduled. This value is obtained when
you make a call to PGM_Schedule (see page 6-42 for an
explanation of this subprogram). This value must be − 1 if
you wish to identify the program to be rescheduled only by
specifying name and cpu. 

priority    an integer value indicating the specified process’s schedul-
ing priority. A process that has been scheduled using
PGM_Schedule (see p. 6-42 for an explanation of this
subprogram) is scheduled under the POSIX SCHED_RR

scheduling policy. The value specified must lie in the range
of priorities associated with this policy. You can obtain the
allowable range of priorities by invoking the run(1)
command from the shell and not specifying any options or
arguments (see the corresponding system manual page for
an explanation of this command). Higher numerical values
correspond to more favorable scheduling priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.

param     refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. 

Table 6-11.  CPU Options: PGM_Reschedule

Value Result

0  The first process named by name that is currently running
on the processor from which the call is made is resched-
uled   

-1 The first process named by name that is currently running
on any processor is rescheduled

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the only
bit set, the first process named by name that is running
on CPU i is rescheduled

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running on
any of the selected CPUs is rescheduled   
6-40



The Ada Interfaces to RT Services
period     refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to FBS_Configure (see
page 6-7). 

cycle      refers to a variable that contains an integer value indicating
the first minor cycle in which the specified process is sched-
uled to be wakened in each frame. This value can range
from zero to the total number of minor cycles per frame
minus one. The total number of minor cycles per frame is
specified in a call to FBS_Configure (see page 6-7 for an
explanation of this subprogram). 

abrt       refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified process causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped. 

istat       refers to a variable to which PGM_Reschedule will return
an integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on the specified scheduler. 

− 4 CPU, period or cycle value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 29 There is no space left to perform the reschedule. 

− 33 The sched_setschedular(3C) call failed for
the scheduled process when attempting to set the
scheduling class or priority.
6-41



PowerMAX OS Guide to Real-Time Services
PGM_Schedule – Schedule a Process on an FBS 6

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated.   If you have an existing application that uses this interface,
it is recommended that you change your application to use
Sched_PGM_Add (see p. 6-52). For details on obsolete inter-
faces, refer to Chapter 2, “Overview of the FBS.”

This subprogram is invoked to create a new process and schedule it on a frequency–based
scheduler. When a process is scheduled using this subprogram, it is scheduled under the
POSIX SCHED_RR scheduling policy (for complete information on scheduling policies
and priorities, refer to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide). Note that a process can not be scheduled under this policy
on a CPU on which servicing of the 60 Hz clock interrupt has been disabled. In such cases,
the process will behave as though it were scheduled under the SCHED_FIFO policy.

If you wish to set the process’s scheduling priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this subprogram, the fol-
lowing conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias, the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.
6-42



The Ada Interfaces to RT Services
The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification 

procedure PGM_Schedule     ( scheduler : in integer; 
                                                  name      : in string; 
                                                  priority  : in integer; 
                                                  param     : in integer; 
                                                  period    : in integer; 
                                                  cycle     : in integer; 
                                                  abrt      : in integer; 
                                                  CPU       : in integer; 
                                                  slot      : out integer; 
                                                  istat     : out integer ); 

procedure PGM_Schedule     ( scheduler : in integer; 
                                                  name      : in unbounded_string; 
                                                  priority  : in integer; 
                                                  param     : in integer; 
                                                  period    : in integer; 
                                                  cycle     : in integer; 
                                                  abrt      : in integer; 
                                                  CPU       : in integer; 
                                                  slot      : out integer; 
                                                  istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

name      refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the
program to be scheduled on the scheduler.  A full or relative
path name of up to 1024 characters can be specified. 

priority    an integer value indicating the specified process’s schedul-
in g  p r i o r i t y.  A  p r oc e s s  t ha t  i s  s c h e du led  u s i ng
PGM_Schedule is scheduled under the POSIX SCHED_RR

scheduling policy. The value specified must lie in the range
of priorities associated with this policy. You can obtain the
allowable range of priorities by invoking the run(1)
command from the shell and not specifying any options or
arguments (see the corresponding system manual page for
6-43



PowerMAX OS Guide to Real-Time Services
an explanation of this command). Higher numerical values
correspond to more favorable scheduling priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.

param     refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. This value can be retrieved by the FBS–sched-
uled process through a call to RT_Param (see page 6-49 for
an explanation of this subprogram). 

period     refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to FBS_Configure (see
page 6-7). 

cycle      refers to a variable that contains an integer value indicating
the first minor cycle in which the specified program is
scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per
frame minus one. (The total number of minor cycles per
frame is specified in a call to FBS_Configure. See page
6-7 for an explanation of this subprogram).

abrt       refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified program causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped. 

CPU       refers to a mask that identifies the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are  presented in
Table 6-12. 
6-44



The Ada Interfaces to RT Services
slot        refers to a variable to which PGM_Schedule will return an
integer value that is the unique frequency–based scheduler
process identifier for the scheduled process. 

istat       refers to a variable to which PGM_Schedule will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7  Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 CPU, period or cycle value is out of range. 

− 5 Process specified by name does not exist. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 24 Path name specified by name is too long. 

− 28 The /idle or /spare process is already sched-
uled. 

− 29 There is no space left to perform the scheduling. 

− 32 Process was killed or stopped by a signal. 

− 33 The sched_setscheduler(3C) call failed for
the scheduled process when attempting to set the
scheduling class or priority.

− 34 The fork(2) of the scheduled process failed. 

Table 6-12.  CPU Options:  PGM_Schedule

Value Result

0  The program specified by name can be scheduled on
the processor from which the call is made   

-1 The program specified by name can be scheduled on
any processor

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) the program
specified by name can be scheduled on CPU i   
6-45



PowerMAX OS Guide to Real-Time Services
PGM_Stat – Query State of FBS–Scheduled Process 6

This subprogram is invoked to obtain information about the state of a particular process
that has been scheduled on a frequency–based scheduler.  The state of the process indi-
cates whether it is in the FBS_Wait sleep state or is in another state. 

You can identify the process by using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• A mask of the CPU(s) on which the process can run 

• The frequency–based scheduler process identifier 

• The current state of the process 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification 

procedure PGM_Stat         ( scheduler  : in integer; 
                                             name       : in out unbounded_string; 
                                             CPU        : in out integer; 
                                             slot        : in out integer; 
                                             state      : out integer; 
                                             istat       : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain state information has been scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-46



The Ada Interfaces to RT Services
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing its identifier, you
can specify a value of − 1. 

name      refers to a dynamically allocated string that contains a
standard UNIX path name identifying the process for which
state information is to be returned.  A full or relative path
name of up to 1024 characters can be specified.  If this vari-
able contains blanks, you must provide the frequency–based
scheduler process identifier in the slot parameter.
PGM_Stat will return to this variable the path name of the
specified FBS–scheduled process. 

CPU       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which state
information is to be returned. Acceptable values and corre-
sponding results are presented in Table 6-13.   

PGM_Stat will return to this variable the mask of the CPUs on which the specified
process can run. 

slot        refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which the state is to be returned. This value
is obtained when you make a call to PGM_Schedule (see
page 6-42 for an explanation of this subprogram). This
value must be − 1 if you wish to identify the program to be
queried only by specifying name and cpu. PGM_Stat will
return to this variable the frequency–based scheduler
process identifier for the specified process. 

Table 6-13.  CPU Options:  PGM_Stat

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-47



PowerMAX OS Guide to Real-Time Services
state       refers to a variable to which PGM_Stat will return an inte-
ger value indicating the current state of the specified
process as defined in fbslib.h. 

istat       refers to a variable to which PGM_Stat will return an inte-
ger value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
occurred.  The nonzero values that may be returned are
explained as follows:

− 1,− 7  Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on this scheduler. 

− 4 CPU value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 24 Path name specified by name is too long. 

PGM_Trigger – Trigger Process Waiting on FBS 6

This subprogram enables a process to wake a process that is in the FBS_Wait sleep state.
It is important to note that the calling process does not have to be scheduled on a fre-
quency–based scheduler; the target process must be. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type trigger_flag is  ( no_context_switch, trigger_context_switch ); 

 procedure PGM_Trigger      ( scheduler : in integer; 
                                                 slot      : in integer; 
                                                 tgrflag   : in trigger_flag; 
                                                 istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler on which the sleeping process is scheduled. 

slot        refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the sleeping process. This value is obtained when you make
a call to Sched_PGM_Add (see page 6-52 for an explana-
tion of this subprogram). 
6-48



The Ada Interfaces to RT Services
tgrflg      refers to a variable that contains an enumeration value indi-
cating whether or not a context switch is to be forced on the
processor on which the wakened process is executing.  If
y o u  w is h  t o  f o r c e  a  c o n t e x t  s wi t c h ,  s p e c i fy
trigger_context_switch;  otherwise, specify
no_context_switch.

istat       refers to a variable to which PGM_Trigger will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that the process is run-
nable.  A nonzero value indicates that an error of a specific
type has occurred.  The nonzero values that may be returned
are explained as follows:

− 1,− 7  Scheduler is not configured 

− 4 Process is not scheduled. 

− 5 Process is already running. 

RT_Param – Return Initiation Parameter 6

This subprogram enables a process that is scheduled on a frequency–based scheduler to
obtain the value of a process initiation parameter that has been passed to it via a call to
Sched_PGM_Add (see page 6-52) or Sched_PGM_Reschedule (see page 6-59). 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

procedure RT_Param         ( param    : out integer );

Parameter 

RT_Param requires one parameter: param.  Param refers to a variable to which
RT_Param wil l  return the integer value passed to the process via a call  to
Sched_PGM_Add or Sched_PGM_Reschedule.  If the call is not successful, a value
of zero will be returned. 

Sched_FBS_Query  6

This subprogram is invoked to obtain information about processes that have been sched-
uled on a frequency-based scheduler.  Information is returned for all processes scheduled
on the user-specified processor(s).  Information provided for each process includes the fol-
lowing:

• A mask of the CPU(s) on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling policy under which the process has been scheduled

• The scheduling priority
6-49



PowerMAX OS Guide to Real-Time Services
• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is
scheduled to be wakened in each major frame)

• The value of the “halt on overrun” flag

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification

type s_fbs_query_buffer_element is record
name : unbounded_string;
CPU : integer;
slot : integer;
policy : integer;
priority : integer;
period:  integer;
cycle : integer;
abort_flag : integer;

end record;

type s_fbs_query_buffer_type is array ( integer range <> )
of s_fbs_query_buffer_element;

procedure Sched_FBS_Query(scheduler: in integer;
  CPU : in integer;

buffer: in out s_fbs_query_buffer_type;
istat : out integer  );

Parameters

Parameters are described as follows.

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information. You can obtain this value by
making a call to FBS_Configure (see page 6-7 for an
explanation of this subprogram). If you wish to reference
the frequency–based scheduler on which the calling process
is scheduled without knowing its identifier, you can specify
a value of  − 1

CPU refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 6-14.
6-50



The Ada Interfaces to RT Services
buffer refers to an array of records to which Sched_FBS_Query
will return a dynamically allocated string containing the
FBS–scheduled process’s name and other scheduling infor-
mation. Buffer contains scheduling information for all
processes scheduled on the specified CPUs bound by the
declared size of the Ada buffer array.  The type of informa-
tion returned in each record component for a single process
is presented in Table 6-15. 

istat refers to a variable to which Sched_FBS_Query will return
an integer value indicating whether or not an error has

Table 6-14.  CPU Options:  Sched_FBS_Query

Value Result

0 Scheduling information for processes executing on the
processor from which the call is made is returned

-1 Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned

Table 6-15.  Contents of buffer Record Components for a Process  

Component for Process p Contents

buffer(p).name  Pointer to a variable length string that contains the path
name of process p   

buffer(p).CPU  A bit mask indicating the processor(s) on which the
process can execute (see Table 6-14 for a description of
the bit mask)   

buffer(p).slot  The process’s frequency–based scheduler process iden-
tifier   

buffer(p).policy  The process’s scheduling policy

buffer(p).priority  The process’s scheduling priority

buffer(p).period  The number of minor cycles indicating the frequency
with which the process is to be wakened in each major
frame (period)   

buffer(p).cycle  The first minor cycle in which the process is scheduled
to be wakened in each major frame (starting base
cycle)   

buffer(p).abort_flag  The value of the “halt on overrun” flag. A nonzero
value indicates that the flag is set. A value of zero indi-
cates that the flag is not set.   
6-51



PowerMAX OS Guide to Real-Time Services
occurred. A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred. The nonzero values that may be
returned are explained as follows:

− 1,− 7  Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 More processes can be queried than can fit in
buffer, but buffer has been filled to its capac-
ity. 

− 4 CPU value is invalid or out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 27 Service could not allocate enough buffers to
perform the query. 

Sched_PGM_Add  6

The Sched_PGM_Add  subprogram is invoked to create a new process and schedule it on
a frequency–based scheduler. If you execute this command and you wish to (1) change a
process’s scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, the fol-
lowing conditions must be met:

• The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:
6-52



The Ada Interfaces to RT Services
• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this command, the follow-
ing conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias,  the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification

type pgm_sched_policy is (SCHED_INVALID,
SCHED_OTHER)
SCHED_FIFO,
SCHED_RR);

procedure Sched_PGM_Add (scheduler: in  integer;
name : in  string;
cid : in  pgm_sched_policy;
priority : in  integer;
param : in  integer;
period : in  integer;
cycle : in  integer;
abrt : in  integer;
CPU : in   integer;
slot : in out integer;
istat : out  integer  );

procedure Sched_PGM_Add(scheduler: in  integer;
name : in unbounded_string;
cid : in  pgm_sched_policy;
priority : in  integer;
param : in  integer;
period : in  integer;
cycle : in  integer;
abrt : in  integer;
CPU : in  integer;
6-53



PowerMAX OS Guide to Real-Time Services
slot : in out integer;
istat : in  integer  );

Parameters

Parameters are described as follows.

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see 6-7 for an explanation of this sub-
program). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value 1.

name refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the
program to be scheduled on the scheduler.  A full or relative
path name of up to 1024 characters can be specified.

cid refers to a variable that contains an enumeration  value indi-
cating the POSIX scheduling policy under which the speci-
fied program is to be scheduled.   Acceptable values are pre-
sented  as follows (SCHED_INVALID may not be supplied
here): 

SCHED_OTHER 
time-sharing scheduling policy 

SCHED_FIFO 
first–in–first–out (FIFO) scheduling policy

SCHED_RR 
round–robin (RR) scheduling policy.  Note that a
process cannot be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock
interrupt has been disabled.  In such cases, the
process will behave as though it were scheduled
under the SCHED_FIFO policy. 

priority refers to a variable that contains an integer value indicating
the scheduling priority of the specified program. The range
of acceptable priority values is governed by the scheduling
policy specified. 

You can determine the allowable range of priorities associ-
ated with each policy (SCHED_FIFO ,  SCHED_RR ,  or
SCHED_OTHER) by invoking the run(1) command from
the shell and not specifying any options or arguments (see
the corresponding system manual page for an explanation of
this command). Higher numerical values correspond to
more favorable priorities.
6-54



The Ada Interfaces to RT Services
For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.

param refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. This value can be retrieved by the FBS–
scheduled process through a call to RT_Param (see page
6-49 for an explanation of this subprogram).

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to FBS_Configure (see
page 6-7). 

cycle refers to a variable that contains an integer value indicating
the first minor cycle in which the specified program is
scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per
frame minus one. (The total number of minor cycles per
frame is specified in a call to FBS_Configure. See page
6-7 for an explanation of this subprogram).

abrt refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified program causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped.

CPU refers to a mask that identifies the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are  presented in
Table 6-16. 

Table 6-16.  CPU Options: Sched_PGM_Add

Value Result

0  The program specified by name can be scheduled on
the processor from which the call is made   

-1 The program specified by name can be scheduled on
any processor

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) the program
specified by name can be scheduled on CPU i   
6-55



PowerMAX OS Guide to Real-Time Services
slot refers to a variable to which Sched_PGM_Add will return
an integer value that is the unique frequency–based sched-
uler process identifier for the scheduled process.

istat refers to a variable to which Sched_PGM_Add will return
an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:  

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 CPU, period or cycle value is out of range. 

− 5 Process specified by name does not exist. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 24 Path name specified by name is too long. 

− 28 The /idle or /spare process is already
scheduled. 

− 29 There is no space left to perform the scheduling. 

− 32 Process was killed or stopped by a signal. 

− 33 The sched_setscheduler(3C) call failed for
the scheduled process when attempting to set the
scheduling class or priority. 

− 34 The fork(2) of the scheduled process failed. 

Sched_PGM_Query 6

The Sched_PGM_Query subprogram is invoked to obtain information for a particular
process that has been scheduled on a frequency–based scheduler.  You can identify the
process by using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 
6-56



The Ada Interfaces to RT Services
NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following:

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling policy 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification

type pgm_sched_policy is (SCHED_INVALID,
SCHED_OTHER)
SCHED_FIFO,
SCHED_RR);

procedure Sched_PGM_Query (scheduler:  in integer;
name :  in out unbounded_string;
CPU :  in out integer;
slot :  in out  integer;
cid :  out  pgm_sched_policy;
priority :  out integer;
period :  out integer;
cycle :  out integer;
abort_flag :  out integer;
istat :  out integer  );

Parameters

Parameters are described as follows.

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
6-57



PowerMAX OS Guide to Real-Time Services
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value 1.

name refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the
program for which information is to be returned.  A full or
relative path name of up to 1024 characters can be specified.

CPU refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which infor-
mation is to be returned. Acceptable values and correspond-
ing results are presented in Table 6-17. 

slot refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which information is to be returned. This
v a lu e  i s  o b t a i n e d  wh e n  y o u  m a k e  a  c a l l  t o
Sched_PGM_Add (see page 6-52 for an explanation of this
subprogram). This value must be − 1 if you wish to identify
the program to be queried only by specifying name and cpu. 

cid refers to a variable to which Sched_PGM_Query will
return an integer value indicating the scheduling policy
under which the specified process has been scheduled

priority refers to a variable to which Sched_PGM_Query will
return an integer value indicating the specified process’s
scheduling priority

period refers to a variable to which Sched_PGM_Query will
return an integer value indicating the frequency with which
the specified program is to be wakened in each major frame.

Table 6-17.  CPU Options:  Sched_PGM_Query

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process named by name that is currently run-
ning on any of the selected CPUs is specified   
6-58



The Ada Interfaces to RT Services
A period of one indicates that the specified program is to be
wakened every minor cycle; a period of two indicates that it
is to be wakened once every two minor cycles, a period of
three once every three minor cycles, and so on

cycle refers to a variable to which Sched_PGM_Query will
return an integer value indicating the first minor cycle in
which the specified process is scheduled to be wakened in
each frame

abort_flag refers to a variable to which Sched_PGM_Query will
return an integer value indicating the value of the “halt on
overrun” flag.  A nonzero value indicates that the flag is set.
A value of zero indicates that the flag is not set

istat refers to a variable to which Sched_PGM_Query will
return an integer value indicating whether or not an error
has occurred. A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred. The nonzero values that may be
returned are explained as follows:

− 1,− 7  Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on this scheduler. 

− 4 CPU value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 24 Path name specified by name is too long. 

Sched_PGM_Reschedule 6

The Sched_PGM_Reschedule subprogram is invoked to change the scheduling param-
eters for a process that is scheduled on a frequency–based scheduler.  You may wish, for
example, to change a program’s scheduling policy or priority or the frequency with which
it is scheduled to run. You cannot, however, change the CPU on which it has been sched-
uled.

If you wish to (1) change a process’s scheduling policy to the SCHED_FIFO or the
SCHED_RR policy or (2) change the priority of a process scheduled under the SCHED_FIFO

or the SCHED_RR policy, the following conditions must be met:

•  The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 
6-59



PowerMAX OS Guide to Real-Time Services
If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’s frequency-based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The Ada specification and corresponding parameters are presented in the following
sections.
6-60



The Ada Interfaces to RT Services
Ada Specification

type pgm_sched_policy is (SCHED_INVALID,
SCHED_OTHER)
SCHED_FIFO,
SCHED_RR);

procedure Sched_PGM_Reschedule(scheduler: in   integer;
name : in   string;
CPU : in   integer;
slot : in out  integer;

 cid : in  pgm_sched_policy;
priority : in  integer;
param : in  integer;
period : in  integer;
cycle : in  integer;
abrt : in  integer;
istat : out  integer  );

procedure Sched_PGM_Reschedule(scheduler: in  integer;
name : in unbounded_string;
CPU : in  integer;
slot : in out integer;
cid : in  pgm_sched_policy;
priority : in  integer;
param : in  integer;
period : in  integer;
cycle : in  integer;
abrt : in  integer;
istat : in  integer  );

Parameters

Parameters are described as follows.

scheduler refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing the identifier, you
can specify the value − 1.

name refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the
program to be rescheduled.  A full or relative path name of
up to 1024 characters can be specified.

CPU refers to a mask that identifies the processor(s) to be used in
conjunction with the value of the name parameter to iden-
tify the process to be rescheduled.   Acceptable values and
corresponding results are presented in Table 6-18. 
6-61



PowerMAX OS Guide to Real-Time Services
slot refers to a variable which provides the unique frequency–
based scheduler process identifier for the process to be
rescheduled. This value is obtained when you make a call to
Sched_PGM_Add (see page 6-55 for an explanation of this
subprogram). This value must be − 1 if you wish to identify
the program to be rescheduled only by specifying name and
cpu.   

cid refers to a variable that contains an enumeration  value indi-
cating the scheduling policy under which the specified
program is to be scheduled.  Acceptable values are pre-
sented as follows (SCHED_INVALID may not be supplied
here):

SCHED_OTHER 
time-sharing scheduling policy

SCHED_FIFO 
first–in–first–out (FIFO) scheduling policy

SCHED_RR 
round–robin (RR) scheduling policy.  Note that a
process cannot be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock inter-
rupt has been disabled.  In such cases, the process
will behave as though it were scheduled under the
SCHED_FIFO policy.  

priority refers to a variable that contains an integer value indicating
the scheduling priority of the specified program. The range
of acceptable priority values is governed by the scheduling
policy specified. 

You can determine the allowable range of priorities associ-
ated with each policy (SCHED_FIFO ,  SCHED_RR ,  or
SCHED_OTHER) by invoking the run(1) command from
the shell and not specifying any options or arguments (see
the corresponding system manual page for an explanation of
this command). Higher numerical values correspond to
more favorable priorities.

Table 6-18.  CPU Options:  Sched_PGM_Reschedule

Value Result

0  The program specified by name can be scheduled on
the processor from which the call is made   

-1 The program specified by name can be scheduled on
any processor

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) the program
specified by name can be scheduled on CPU i   
6-62



The Ada Interfaces to RT Services
For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.

param refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. This value can be retrieved by the FBS–
scheduled process through a call to RT_Param (see 6-49
for an explanation of this subprogram).

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to FBS_Configure (see
page 6-7).

cycle refers to a variable that contains an integer value indicating
the first minor cycle in which the specified program is
scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per
frame minus one. (The total number of minor cycles per
frame is specified in a call to FBS_Configure. See page
6-7 for an explanation of this subprogram).

abrt refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified program causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped.

istat refers to a variable to which Sched_PGM_Reschedule
will return an integer value indicating whether or not an
error has occurred. A value of zero indicates that no error
has occurred.  A nonzero value indicates that an error of a
specific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on the specified scheduler. 

− 4 CPU, period or cycle value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 29 There is no space left to perform the reschedule. 
6-63



PowerMAX OS Guide to Real-Time Services
− 33 The sched_setscheduler(3C) call failed for
the scheduled process when attempting to set the
scheduling class or priority.

Name_To_Pid – Obtain Process Identifier 6

This subprogram is invoked to obtain the process identification number (PID) for a
selected process name.  You can invoke this subprogram to obtain the PID for a process
that is scheduled on a frequency–based scheduler and one that is not.  

CAUTION

When the PID is returned, the process with which it is associated
may no longer be active. 

The Ada specification and corresponding parameters are presented in the following sec-
tions. 

Ada Specification

procedure Name_To_Pid (name : in   string;
 key : in  integer;

  cpu : in  integer;
 pid : out  integer;
 istat : out  integer);

Parameters

Parameters are described as follows.

name    refers to a variable that contains a standard UNIX path
name identifying the process for which the PID is to be
returned.  A full or relative path name of up to 1024 charac-
ters can be specified. 

key              refers to a variable that contains an integer value identifying
a frequency–based scheduler; this value must be the same
value that was specified for key when the scheduler was cre-
ated by making a call to FBS_Configure (see page 6-7
for an explanation of this subprogram). If you wish to obtain
the PID for a process that is not scheduled on a frequency–
based scheduler, specify the value − 1. 

cpu              refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which the
6-64



The Ada Interfaces to RT Services
process identifier is to be returned. Acceptable values and
corresponding results are presented in Table 6-19.   

pid refers to a variable to which Name_To_Pid will return the
process ID of the process that matches the specifications
defined by name, key, and cpu.  The first process that meets
those specifications is returned.

istat refers to a variable to which Name_To_Pid will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows: 

-3 A process with the specified path name is not active
on the system.

-5 An invalid path name has been specified, or the
specified path name does not exist on the system.

-7 The frequency-based scheduler is not configured in
the system (and key is something other than -1).

The Performance Monitor Subprograms 6

The performance monitor subprograms provide access to the key features of the perfor-
mance monitor.  They enable you to perform such basic operations as the following: (1)
clear performance monitor values for a process or processor, (2) start and stop perfor-
mance monitoring for a process or processor, and (3) obtain performance monitor values
for a process or processor. 

Table 6-19.  CPU Options:  Name_To_Pid

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1  The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-65



PowerMAX OS Guide to Real-Time Services
In the sections that follow, all of the performance monitor subprograms contained in the
RT_Interface package are presented in alphabetical order. Figure 6-2 illustrates the
approximate order in which you might invoke the subprograms from an application pro-
gram.

Figure 6-2.  Ada Subprogram Call Sequence:  Performance Monitor

PM_Clrpgm – Clear Values for a Process 6

This subprogram is invoked to clear performance monitor values for a particular process
that has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

START

PM_Select

PM_Clrtable

PM_Monitor PM_Program

PM_Query_cpu
PM_Query_list PM_Query_pgm

PM_Monitor PM_Program

END
6-66



The Ada Interfaces to RT Services
• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

Ada Specification 

procedure PM_Clrpgm       ( scheduler : in integer; 
                                              name      : in string; 
                                              CPU       : in integer; 
                                              slot      : in integer; 
                                              istat     : out integer ); 

 procedure PM_Clrpgm       ( scheduler : in integer; 
                                               name      : in unbounded_string; 
                                               CPU       : in integer; 
                                               slot      : in integer; 
                                               istat     : out integer );

Parameters 

Parameters are described as follows. 

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing its identifier, you
can specify a value of –1. 

name      refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the process
for which values are to be cleared.  A full or relative path
name of up to 1024 characters can be specified.  If this vari-
able is filled with blanks, you must provide the frequency–
based scheduler process identifier in the slot parameter.

CPU       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which values
are to be cleared. Acceptable values and corresponding
results are presented in Table 6-20. 
6-67



PowerMAX OS Guide to Real-Time Services
slot        refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which values are to be cleared. This value is
obtained when you make a call to Sched_PGM_Add (see
page 6-52 for an explanation of this subprogram). This
value must be − 1 if you wish to identify the process only
by specifying name and cpu. 

istat       refers to a variable to which PM_Clrpgm will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on the specified scheduler. 

− 4 CPU value is out of range. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 24 Path name specified by name is too long. 

Table 6-20.  CPU Options:  PM_Clrpgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified 

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-68



The Ada Interfaces to RT Services
PM_Clrtable – Clear Values for Processor(s) 6

This subprogram is invoked to clear performance monitor values for FBS–scheduled pro-
cesses on one or more specified processors on a selected scheduler. 

The Ada specification and corresponding parameters are presented in the following
sections.

Ada Specification 

type processor_list is array( integer range <> ) of integer; 

 procedure PM_Clrtable      ( scheduler : in integer; 
                                                CPU_list  : in processor_list; 
                                                istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of − 1. 

CPU_list   refers to an array of integer values that indicate the proces-
sor(s) for which performance monitor values are to be
cleared. The size of the CPU_list array is specified by the
user declaration of the actual CPU_list parameter. Accept-
able values and corresponding results are presented in
Table 6-21. 

Table 6-21.  CPU Options:  PM_Clrtable

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are cleared   

-1 Performance monitor values for all processes on the
scheduler are cleared

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
cleared   
6-69



PowerMAX OS Guide to Real-Time Services
istat       refers to a variable to which PM_Clrtable will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7  Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 A processor specified in CPU_list is not in this
complex. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

PM_Monitor – Start/Stop Performance Monitoring on Processor(s) 6

This subprogram is invoked to start or stop performance monitoring for FBS–scheduled
processes on one or more specified processors on a selected scheduler. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type pm_flag_type is  ( turn_off_PM, turn_on_PM ); 

type processor_list is array( integer range <> ) of integer; 

procedure PM_Monitor       ( scheduler : in integer; 
                                                pm_flag   : in pm_flag_type; 
                                                CPU_list  : in processor_list; 
                                                istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of − 1. 

pm_flag    refers to a variable that contains an enumeration value indi-
cating whether performance monitoring is to be started or
stopped.  Specify turn_on_PM to indicate that perfor-
mance monitoring is to be started.  Specify turn_off_PM
to indicate that performance monitoring is to be stopped. 
6-70



The Ada Interfaces to RT Services
CPU_list   refers to an array of integer values that indicate the proces-
sor(s) for which performance monitoring is to be started or
stopped. The size of the CPU_list array is specified by the
user declaration of the actual CPU_list parameter. Accept-
able values and corresponding results are presented in
Table 6-22.   

istat         refers to a variable to which PM_Monitor will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 4 A processor specified in CPU_list is not in this
complex. 

− 7 Pmflag is set to start performance monitoring, and
the high-resolution timing facility is not configured
into the currently executing kernel.

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

PM_Program – Start/Stop Performance Monitoring on a Process 6

This subprogram is invoked to start or stop performance monitoring for a particular
process that has been scheduled on a frequency–based scheduler.  You can identify the
process by using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

Table 6-22.  CPU Options:  PM_Monitor

Value Result

0  Performance monitoring for FBS–scheduled processes
executing on the processor from which the call is made
is started or stopped   

-1 Performance monitoring for all processes on the sched-
uler is started or stopped

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitoring for processes executing on CPU i is started
or stopped   
6-71



PowerMAX OS Guide to Real-Time Services
• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency–based scheduler process identifier. 

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification

type pm_flag_type is  ( turn_off_PM, turn_on_PM ); 

 procedure PM_Program       ( scheduler : in integer; 
                                                 name      : in string; 
                                                 CPU       : in integer; 
                                                 slot      : in integer; 
                                                 pm_flag   : in pm_flag_type; 
                                                 istat     : out integer ); 

 procedure PM_Program       ( scheduler : in integer; 
                                                 name      : in unbounded_string; 
                                                 CPU       : in integer; 
                                                 slot      : in integer; 
                                                 pm_flag   : in pm_flag_type; 
                                                 istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to FBS_Configure (see page
6-7 for an explanation of this subprogram). If you wish to
reference the frequency–based scheduler on which the call-
ing process is scheduled without knowing its identifier, you
can specify a value of − 1. 

name      refers to a string or dynamically allocated string that
contains a standard UNIX path name identifying the process
for which performance monitoring is to be started or
stopped.  A full or relative path name of up to 1024 charac-
ters can be specified.  If this variable is filled with blanks,
you must provide the frequency–based scheduler process
identifier in the slot parameter. 

CPU       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring is to be started or stopped. Acceptable
6-72



The Ada Interfaces to RT Services
values and corresponding results are  presented in
Table 6-23.   

slot        refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which performance monitoring is to be
started or stopped. This value is obtained when you make a
call to Sched_PGM_Add (see page 6-52 for an explanation
of this subprogram). This value must be − 1 if you wish to
identify the process only by specifying name and cpu. 

pm_flag    refers to a variable that contains an enumeration value indi-
cating whether performance monitoring is to be started or
stopped.  Specify turn_on_PM to indicate that perfor-
mance monitoring is to be started.  Specify turn_off_PM
to indicate that performance monitoring is to be stopped. 

istat       refers to a variable to which PM_Program will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured. 

− 2 Scheduler does not exist. 

− 3 Process is not scheduled on the specified scheduler. 

− 4 CPU value is out of range. 

Table 6-23.  CPU Options:  PM_Program 

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified 

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-73



PowerMAX OS Guide to Real-Time Services
− 7 Pmflag is set to start performance monitoring, and
the high-resolution timing facility is not configured
into the currently executing kernel.

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)). 

− 24 Path name specified by name is too long. 

PM_Query_cpu – Query Values for Selected Processor(s) 6

This subprogram is invoked to obtain performance monitor values for FBS–scheduled
processes on one or more specified processors on a selected scheduler. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification

type pm_query_buffer_element is record 
   last_cycle_time         : integer; 
   total_iterations        : integer; 
   total_seconds           : integer; 
   total_useconds          : integer; 
   number_of_overruns      : integer; 
   min_cycle_time          : integer; 
   min_cycle_cycle         : integer; 
   min_cycle_frame         : integer; 
   max_cycle_time          : integer; 
   max_cycle_cycle         : integer; 
   max_cycle_frame         : integer; 
   min_frame_time          : integer; 
   min_frame_frame         : integer; 
   max_frame_time          : integer; 
   max_frame_frame         : integer; 
end record; 

type pm_query_cpu_buffer_element is record 
   program_slot      : integer; 
   pm_query_buffer   : pm_query_buffer_element; 
end record; 

 type pm_query_cpu_buffer_type is array( integer range <> ) 
   of pm_query_cpu_buffer_element; 

 procedure PM_Query_cpu     ( scheduler : in integer; 
                                                   CPU       : in integer; 
                                                   buffer    : in out pm_query_cpu_buffer_type; 
                                                   istat     : out integer );
6-74



The Ada Interfaces to RT Services
Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to FBS_Configure
(see page 6-7 for an explanation of this subprogram). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of − 1. 

CPU       refers to a variable that contains an integer value indicating
the processor(s) for which performance monitor values are
to be obtained. Acceptable values and corresponding results
are presented in Table 6-24. 

buffer      refers to an array of records to which PM_Query_cpu will
return the performance monitor values for each FBS–sched-
uled process on the processor(s) specified with the CPU
parameter. The number of processes for which these values
are returned is bound by the size of the Ada buffer array.
The type of information returned in each record component
for a single process is presented in Table 6-25. 

Table 6-24.  CPU Options:  PM_Query_cpu 

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are returned   

-1 Performance monitor values for all processes on the
scheduler are returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
returned   
6-75



PowerMAX OS Guide to Real-Time Services
Table 6-25.  Contents of buffer Record Components: PM_Query_cpu

Component for Process p Contents

buffer(p).program_slot  The process’s frequency–based scheduler process iden-
tifier (slot number)   

buffer(p).pm_query_buffer.last_cycle_time  The amount of time that the process has spent running
from the last time that it has been wakened by the
scheduler until it has called FBS_Wait (last time)   

buffer(p).pm_query_buffer.total_iterations  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

buffer(p).pm_query_buffer.total_seconds  The total number of seconds that the process has spent
running in all cycles (total seconds).  The total amount
of time that the process has spent running is equal to
th e  va l u e  o f  total_seconds  p l u s
total_useconds.

buffer(p).pm_query_buffer.total_useconds  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
sp e n t  r u n n i n g  i s  eq u a l  t o  t h e  v a l u e  o f
total_seconds plus total_useconds.

buffer(p).pm_query_buffer.number_of_overruns The number of frame overruns caused by the process   

buffer(p).pm_query_buffer.min_cycle_time  The least amount of time that the process has spent run-
ning in a cycle (minimum cycle time)   

buffer(p).pm_query_buffer.min_cycle_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

buffer(p).pm_query_buffer.min_cycle_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

buffer(p).pm_query_buffer.max_cycle_times  The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)   

buffer(p).pm_query_buffer.max_cycle_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

buffer(p).pm_query_buffer.max_cycle_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

buffer(p).pm_query_buffer.min_frame_time  The least amount of time that the process has spent run-
ning during a major frame (minimum frame time)   

buffer(p).pm_query_buffer.min_frame_frame  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

buffer(p).pm_query_buffer.max_frame_time  The greatest amount of time that the process has spent
running during a major frame (maximum frame time)   

buffer(p).pm_query_buffer.max_frame_frame  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   
6-76



The Ada Interfaces to RT Services
istat       refers to a variable to which PM_Query_cpu will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured.

− 2 Scheduler does not exist.

− 3 Buffer is too small.  Space available will be filled.

− 4 CPU value is out of range.

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 27 The service cannot allocate enough memory for the
query.

PM_Query_list – Query Values for a List of Processes 6

This subprogram is invoked to obtain performance monitor values for a list of processes
scheduled on a frequency–based scheduler.

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type pm_query_buffer_element is record 
   last_cycle_time         : integer; 
   total_iterations        : integer; 
   total_seconds           : integer; 
   total_useconds          : integer; 
   number_of_overruns      : integer; 
   min_cycle_time          : integer; 
   min_cycle_cycle         : integer; 
   min_cycle_frame         : integer; 
   max_cycle_time          : integer; 
   max_cycle_cycle         : integer; 
   max_cycle_frame         : integer; 
   min_frame_time          : integer; 
   min_frame_frame         : integer; 
   max_frame_time          : integer; 
   max_frame_frame         : integer; 
end record; 
type pm_query_buffer_type is array( integer range <> ) 
   of pm_query_buffer_element; 

 type slot_buffer_type is array( integer range <> ) of integer; 

 procedure PM_Query_list    ( scheduler : in integer; 
6-77



PowerMAX OS Guide to Real-Time Services
                                                slot_list : in slot_buffer_type; 
                                                 buffer    : in out pm_query_buffer_type; 
                                                 istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

slot_list    refers to an array that consists of the number of elements
specified by the size of the Ada slot_list array and
contains one or more integer values indicating the fre-
quency–based scheduler process identifiers for which per-
formance monitor values are to be returned. 

buffer      refers to an array of records to which PM_Query_list
will return the performance monitor values for each FBS–
scheduled process. The number of processes for which these
values are returned is bound by the size of the Ada buffer
array. The type of information returned in each record com-
ponent for a single process is presented in Table 6-26. 

Table 6-26.  Contents of buffer Record Components: PM_Query_list

Component for Process p Contents

buffer(p).last_cycle_time  The amount of time that the process has spent running
from the last time that it has been wakened by the
scheduler until it has called FBS_Wait (last time)   

buffer(p).total_iterations  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

buffer(p).total_seconds  The total number of seconds that the process has spent
running in all cycles (total seconds).  The total amount
of time that the process has spent running is equal to
th e  va l u e  o f  total_seconds  p l u s
total_useconds.

buffer(p).total_useconds  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
sp e n t  r u n n i n g  i s  eq u a l  t o  t h e  v a l u e  o f
total_seconds plus total_useconds.

buffer(p).number_of_overruns  The number of frame overruns caused by the process   
6-78



The Ada Interfaces to RT Services
istat       refers to a variable to which PM_Query_list will return
an integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured.

− 2 Scheduler does not exist.

− 3 Buffer is too small.  Space available will be filled.

− 4 One of the slot values is out of range.

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

− 27 The service cannot allocate enough memory for the
query.

buffer(p).min_cycle_time  The least amount of time that the process has spent run-
ning in a cycle (minimum cycle time)   

buffer(p).min_cycle_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

buffer(p).min_cycle_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

buffer(p).max_cycle_time  The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)   

buffer(p).max_cycle_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

buffer(p).max_cycle_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

buffer(p).min_frame_time  The least amount of time that the process has spent run-
ning during a major frame (minimum frame time)   

buffer(p).min_frame_frame  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

buffer(p).max_frame_time  The greatest amount of time that the process has spent
running during a major frame (maximum frame time)   

buffer(p).max_frame_frame  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 6-26.  Contents of buffer Record Components: PM_Query_list (Cont.)

Component for Process p Contents
6-79



PowerMAX OS Guide to Real-Time Services
PM_Query_pgm – Query Values for a Selected Process 6

This subprogram is invoked to obtain performance monitor values for a particular process
scheduled on a frequency–based scheduler.

The Ada specification and corresponding parameters are presented in the following
sections.  The dynamic string data type unbounded_string is defined in the package
Ada.Strings.Unbounded, which is located in the /usr/ada/default/pre-
defined environment. 

Ada Specification

type pm_query_buffer_element is record 
   last_cycle_time         : integer; 
   total_iterations        : integer; 
   total_seconds           : integer; 
   total_useconds          : integer; 
   number_of_overruns      : integer; 
   min_cycle_time          : integer; 
   min_cycle_cycle         : integer; 
   min_cycle_frame         : integer; 
   max_cycle_time          : integer; 
   max_cycle_cycle         : integer; 
   max_cycle_frame         : integer; 
   min_frame_time          : integer; 
   min_frame_frame         : integer; 
   max_frame_time          : integer; 
   max_frame_frame         : integer; 
end record; 

 procedure PM_Query_pgm     ( scheduler : in integer; 
                                                    name      : in out unbounded_string; 
                                                    CPU       : in integer; 
                                                    slot      : in integer; 
                                                    buffer    : out pm_query_buffer_element; 
                                                    istat     : out integer );

Parameters 

Parameters are described as follows.

scheduler   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
FBS_Configure (see page 6-7 for an explanation of this
subprogram). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1.

name        refers to a dynamically allocated string that contains a
standard UNIX path name identifying the process for which
performance monitoring values are to be returned.  A full or
relative path name of up to 1024 characters can be specified.
If this variable is filled with blanks, you must provide the
6-80



The Ada Interfaces to RT Services
frequency–based scheduler process identifier in the slot
parameter.

CPU         refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring values are to be returned. Acceptable val-
ues and corresponding results are presented in Table 6-27.   

slot        refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which performance monitoring values are to
be returned. This value is obtained when you make a call to
Sched_PGM_Add (see page 6-52 for an explanation of this
subprogram). This value must be − 1 if you wish to identify
the process only by specifying name and cpu. 

buffer      refers to a record to which PM_Query_pgm will return the
performance monitor values for the specified process. The
information returned in each component of the record is
presented in Table 6-28. 

Table 6-27.  CPU Options:  PM_Query_pgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
6-81



PowerMAX OS Guide to Real-Time Services
Table 6-28.  Contents of buffer Record Components: PM_Query_pgm

Component for Process p Contents

buffer(p).last_cycle_time  The amount of time that the process has spent running
from the last time that it has been wakened by the
scheduler until it has called FBS_Wait (last time)   

buffer(p).total_iterations  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

buffer(p).total_seconds  The total number of seconds that the process has spent
running in all cycles (total seconds).  The total amount
of time that the process has spent running is equal to
th e  va l u e  o f  total_seconds  p l u s
total_useconds. 

buffer(p).total_useconds  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
sp e n t  r u n n i n g  i s  eq u a l  t o  t h e  v a l u e  o f
total_seconds plus total_useconds.  

buffer(p).number_of_overruns  The number of frame overruns caused by the process   

buffer(p).min_cycle_time  The least amount of time that the process has spent run-
ning in a cycle (minimum cycle time)   

buffer(p).min_cycle_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)

buffer(p).min_cycle_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

buffer(p).max_cycle_time  The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)   

buffer(p).max_cycle_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

buffer(p).max_cycle_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

buffer(p).min_frame_time  The least amount of time that the process has spent run-
ning during a major frame (minimum frame time)   

buffer(p).min_frame_frame  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

buffer(p).max_frame_time  The greatest amount of time that the process has spent
running during a major frame (maximum frame time)   

buffer(p).max_frame_frame  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   
6-82



The Ada Interfaces to RT Services
istat       refers to a variable to which PM_Query_pgm will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 1,− 7 Scheduler is not configured.  

− 2 Scheduler does not exist.  

− 3 Specified process is not scheduled on the specified
scheduler.  

− 4 CPU value is out of range.  

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).  

− 24 Path name specified by name is too long.  

PM_Querytimer – Query Performance Monitor Mode 6

This subprogram is invoked to determine whether performance monitor timing values
include or exclude time spent servicing interrupts.  The timing mode can be set to include
or exclude interrupt time.

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification

type timing_mode_type is ( exclude_interrupt_time, include_interrupt_time ); 

 procedure PM_Querytimer    ( mode    : out timing_mode_type );

Parameter 

PM_Querytimer requires one parameter:  mode.  Mode refers to a variable to which
PM_Querytimer will return an enumeration value indicating whether performance
monitor timing values include or exclude time spent servicing interrupts.  The enumera-
tion value of include_interrupt_time or exclude_interrupt_time will be
returned. 

PM_Select – Select Performance Monitor Mode 6

This subprogram is invoked to select the timing mode under which the performance mon-
itor is to run. The timing mode can be set to include or exclude time spent servicing inter-
rupts. Note that to set the timing mode, the calling process must have the P_RTIME privi-
lege (for additional information on privileges, refer to the PowerMAX OS Programming
Guide and the intro(2) system manual page). 
6-83



PowerMAX OS Guide to Real-Time Services
CAUTION

The timing mode for the high–resolution timing facility is set
system–wide.  It affects all processes running on all CPUs. 

The Ada specification and corresponding parameters are presented in the following
sections. 

Ada Specification 

type timing_mode_type is (exclude_interrupt_time, include_interrupt_time ); 

procedure PM_Select        ( mode     : in timing_mode_type; 
istat      : out integer );

Parameters 

Parameters are described as follows.   

mode   refers to a variable that contains an enumeration value of
include_interrupt_time  o r
exclude_interrupt_time to indicate whether inter-
rupt time is included in or excluded from performance mon-
itor timing values. 

istat     refers to a variable to which PM_Select will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  The nonzero values that may be
returned are explained as follows:

− 7 The high–resolution timing facility is not config-
ured in the currently executing kernel. 

− 20 Operation permission is denied to the calling pro-
cess (see intro(2)).

Compiling and Linking Procedures 6

To compile and link an Ada program using the MAXAda product, the command line
instructions are as follows: 

/usr/ada/bin/a.mkenv 

/usr/ada/bin/a.intro source_file 

/usr/ada/bin/a.partition -create active main_unit_name 

/usr/ada/bin/a.build main_unit_name   

For additional information on compiling and linking procedures, refer to the MAXAda Ref-
erence Manual (0890516).
6-84



7
The C Library Interface

The FBS Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fbsaccess – Change Permissions for an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Fbsattach – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Fbsconfigure – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Fbscycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . . . . . . . 7-9
Fbsdetach – Detach Timing Source from an FBS  . . . . . . . . . . . . . . . . . . . . . . . 7-10
Fbsgetrtc – Obtain Current Values for Real–Time Clock. . . . . . . . . . . . . . . . . . 7-11
Fbsid – Return the FBS Identifier for a Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Fbsinfo – Return Information for an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Fbsinfo_rdev - Return rdevfs timing device information. . . . . . . . . . . . . . . . . . 7-15
Fbsinfo_cluster - Return cluster information for an FBS. . . . . . . . . . . . . . . . . . 7-17
Fbsintrpt – Start/Stop/Resume Scheduling on an FBS. . . . . . . . . . . . . . . . . . . . 7-19
Fbsquery – Query Processes on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Fbsremove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Fbsresume – Resume Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24
Fbsrunrtc – Start/Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Fbsschedself – Schedule an LWP on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Fbssetrtc – Set Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Fbswait – Wait on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30
Fbs_register_rdev - Register Coupled FBS Timing Device. . . . . . . . . . . . . . . . 7-31
Fbs_unregister_rdev - Unregister a Coupled FBS Timing Device. . . . . . . . . . . 7-33
Fbs_register_cluster_device - Register Cluster Timing Source . . . . . . . . . . . . . 7-34
Fbs_unregister_cluster_device - Unregister Cluster Timing Source . . . . . . . . . 7-35
Pgmquery – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-36
Pgmremove – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . 7-39
Pgmreschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-42
Pgmschedule – Schedule a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 7-45
Pgmtrigger – Trigger Process Waiting on FBS . . . . . . . . . . . . . . . . . . . . . . . . . 7-49
Sched_fbsqry – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-49
Sched_pgmadd – Schedule a Process on an FBS. . . . . . . . . . . . . . . . . . . . . . . . 7-52
Sched_pgm_set_soft_overrun_limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56
Sched_pgm_soft_overrun_query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Sched_pgmqry – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Sched_pgmresched – Reschedule a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-60

The Performance Monitor Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-65
Pmclrpgm – Clear Values for a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-66
Pmclrtable – Clear Values for Processor(s)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-67
Pmmonitor – Start/Stop Performance Monitoring on Processor(s) . . . . . . . . . . 7-69
Pmprogram – Start/Stop Performance Monitoring on a Process . . . . . . . . . . . . 7-70
Pmqrycpu – Query Values for Selected Processor(s) . . . . . . . . . . . . . . . . . . . . . 7-72
Pmqrylist – Query Values for a List of Processes  . . . . . . . . . . . . . . . . . . . . . . . 7-75
Pmqrypgm – Query Values for a Selected Process  . . . . . . . . . . . . . . . . . . . . . . 7-78
Pmqrytimer – Query Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . 7-81
Pmselect – Select Performance Monitor Mode  . . . . . . . . . . . . . . . . . . . . . . . . . 7-82

Compiling and Linking Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-83





7
Chapter 7The C Library Interface

7
7
7

The real–time static and dynamic linked libraries for C, /usr/lib/librt.a and
/usr/lib/librt.so, respectively contains routines that enable you to perform the
entire range of functions associated with the frequency–based scheduler and the perfor-
mance monitor. The frequency–based scheduler routines are presented in “The FBS Rou-
tines.” The performance monitor routines are presented in “The Performance Monitor
Routines.” The following information is provided for each routine: 

• A description of the routine 

• The C specification and call needed to reference the routine in an applica-
tion program 

• Detailed descriptions of each parameter 

• The return value

Procedures for compiling and linking user programs are presented in “Compiling and
Linking Programs.” An example program that illustrates use of the C library interface to
the frequency–based scheduler and the performance monitor is provided in Appendix C.

The FBS Routines 7

The FBS routines provide access to the key features of the scheduler.  They enable you to
perform such basic operations as:

• Configure a scheduler

• Schedule programs on it

• Set up and connect a timing source to a scheduler

• Start, stop, and resume scheduling on a scheduler

• Get information about scheduled processes

• Reschedule and remove scheduled processes

• Disconnect a timing source

• Register/unregister a Coupled FBS timing device

• Remove a scheduler. 

In the sections that follow, all of the FBS routines contained in the librt library are pre-
sented in alphabetical order. Figure 7-1 illustrates the approximate order in which you
might call the routines from an application program.
7-1



PowerMAX OS Guide to Real-Time Services
Figure 7-1.  C Library Call Sequence:  FBS

START

END

fbsconfigure

SCHEDULE
PROGRAMS

fbsattach

-sched_pgmadd
-sched_pgmresched
-pgmremove
-sched_pgmqry
-sched_fbsqry

fbssetrtc

fbsrunrtc

fbsrunrtc fbsdetach

fbsremove

START SIMULATION
fbsintrpt

STOP SIMULATION
fbsintrpt
7-2



The C Library Interface
Fbsaccess – Change Permissions for an FBS 7

This routine is invoked to change the permissions assigned for a selected frequency–based
scheduler.  It is important to note that the permissions can be changed only by a process
that has the P_OWNER privilege or has an effective user ID that is equal to that of the
owner/creator of the frequency–based scheduler. 

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsaccess(fbs_id, uid, gid, permissions) 
int fbs_id; 
int uid; 
int gid; 
int permissions;

Call 

int istat; 
istat = fbsaccess(fbs_id, uid, gid, permissions);

Parameters 

Parameters are described as follows. 

fbs_id         refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

uid              refers to a variable that contains an integer value represent-
ing the effective user ID of the specified frequency–based
scheduler. 

gid              refers to a variable that contains an integer value represent-
ing the effective group ID of the specified frequency–based
scheduler. 

permissions   refers to a variable that contains a bit pattern used to set the
permissions associated with the specified frequency–based
scheduler. Bit patterns and corresponding permissions are
7-3



PowerMAX OS Guide to Real-Time Services
presented in Table 7-1. Additional information on setting
permissions for frequency–based scheduler operations is
provided in the system manual page intro(2). 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsaccess(3rt) for a listing of the types of errors that may occur. 

Fbsattach – Attach Timing Source to an FBS 7

This routine is invoked to attach a timing source to a frequency–based scheduler or to
specify end–of–cycle scheduling.  The timing source can be a real–time clock, an edge–
triggered interrupt device, or a user–supplied real–time device. 

NOTE

Routines contained in the C library do not provide the functional-
ity to set up and control operation of an edge–triggered interrupt
device or a user–supplied device, as they do for a real–time clock.
Procedures for using a real–time clock are described in detail in
Chapter 3. Procedures for using an edge–triggered interrupt and a
user–supplied real–time device are also explained in that chapter.

To use a real–time clock as the timing source for a frequency–
based scheduler on a PowerMAX OS system on which the
Enhanced Security Utilities are installed, you must have enough
privilege to open the device. Refer to the “Trusted Facility Man-
agement” chapter of System Administration Volume 1 for an
explanation of the procedures for using devices when the
Enhanced Security Utilities are installed.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Table 7-1.  FBS Permissions

Bit Pattern Permissions

400  Read by user   

200  Alter by user   

060  Read, alter by group   

006  Read, alter by others   
7-4



The C Library Interface
Specification 

#include <fbslib.h> 

int  fbsattach(fbs_id, devname) 
int  fbs_id; 
char *devname;

Call 

int istat; 
istat = fbsattach(fbs_id, devname);

Parameters 

Parameters are described as follows. 

fbs_id      refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which the timing source is to be attached or
end–of–cycle scheduling specified. You can obtain this
value by making a call to fbsconfigure (see 7-6 for an
explanation of this routine). If you wish to reference the fre-
quency–based scheduler on which the calling process is
scheduled without knowing its identifier, you can specify a
value of − 1. 

devname refers to a variable that contains a null string or the path
name of the device that is to be used as the timing source for
the specified scheduler. If devname contains a null string,
end–of–cycle scheduling is specified; that is, execution of
the processes in the next minor cycle will occur when the
last process scheduled to execute in the current minor cycle
finishes its execution for that cycle. If devname contains a
path name, it may refer to a real–time clock, an edge–trig-
gered interrupt, or a user–supplied device. 

If the device is a real–time clock or an edge–triggered inter-
rupt, the path name must be of a certain form. Refer to
Chapter 3 for detailed information on the form associated
with each type of device. 

If the device is a user–supplied device, the path name must
be a valid UNIX path name. The device must support the
IOCTLVECNUM ioctl(2) call (see Chapter 3 for addi-
tional information).

If the device is a Coupled FBS timing device, the path name
must be of a certain form.  Refer to Chapter 3 for detailed
information on the form associated with a Coupled FBS
timing source. 
7-5



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsattach(3rt) for a listing of the types of errors that may occur. 

Fbsconfigure – Configure an FBS 7

This routine is invoked to configure a frequency–based scheduler or to obtain configura-
tion details for a frequency–based scheduler that has already been configured. Note that to
configure a scheduler, the calling process must have the P_RTIME privilege (for additional
information on privileges, refer to the PowerMAX OS Programming Guide and the
intro(2) system manual page). 

If you wish to configure a scheduler, you must specify a key, which is a user–chosen
numeric identifier for a frequency–based scheduler.  You must also specify a configflg,
which is a word that sets the permission and control flag bits to characterize the scheduler. 

The permissions are defined in the system manual page intro(2). 

The control flags are described in the header file <sys/ipc.h>.  They include
IPC_CREAT and IPC_EXCL.  Setting the IPC_CREAT bit without setting the
IPC_EXCL bit ensures that a new frequency–based scheduler is created if one corre-
sponding to the value of key does not exist; it results in the return of the associated fre-
quency–based scheduler identifier if one does exist and if all of the following conditions
are met: 

• The number of minor cycles specified by the cycles parameter matches the
number of minor cycles associated with the existing scheduler 

• The maximum specified by the progs parameter is less than or equal to the
maximum number of processes per minor cycle associated with the exist-
ing scheduler 

• The maximum specified by the max parameter is less than or equal to the
maximum number of processes allowed on the existing scheduler at one
time  

Setting both the IPC_CREAT and the IPC_EXCL bits results in the creation of a new
scheduler if one corresponding to the value of key does not exist; it ensures that an error is
returned if one does exist.

A unique, nonnegative frequency–based scheduler identifier and corresponding data
structure will be created for the specified key if the number of frequency–based schedulers
already configured is less than the maximum number of schedulers allowed on your
system (see Chapter 2 for a description of system tunable parameters) and if one of the fol-
lowing conditions is met: 

• The value of key is equal to IPC_PRIVATE (that is, zero) 

• The value of key is not associated with a frequency–based scheduler identi-
fier and (configflg & IPC_CREAT) is “true” 
7-6



The C Library Interface
The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsconfigure(fbs_buf) 
struct fbsconfig_ds { 
    int key; 
    int cycles; 
    int progs; 
    int max; 
    int reset; 
    int configflg; 
    int fbs_id; 
} *fbs_buf;

Call 

struct fbsconfig_ds  fbs_buf; 
int istat; 
istat = fbsconfigure(&fbs_buf);

Parameters 

To create a frequency–based scheduler, you must specify the following parameters as
described. 

fbs_buf    refers to an fbsconfig_ds structure that contains the
information with which you wish to configure a frequency–
based scheduler. The type of information that is specified in
each component is presented in Table 7-2.

Table 7-2.  Contents of Structure Components: fbsconfigure 

Component Contents

key An integer value identifying the frequency–based scheduler that is to
be created. Note that the number of schedulers that can be configured
at one time cannot exceed the value of FBSMNI, which is the maxi-
mum number of frequency–based schedulers permitted on your sys-
tem (see Chapter 2 for a description of system tunable parameters).

cycles An integer value indicating the number of minor cycles that compose
a frame on the specified scheduler.

progs An integer value indicating the maximum number of programs that
can be scheduled to execute during one minor cycle.

max An integer value indicating the maximum number of programs that
can be scheduled on the specified scheduler at one time.  This value
must be less than or equal to the product that is obtained by multiply-
ing the values specified for the cycles and progs parameters.
7-7



PowerMAX OS Guide to Real-Time Services
To obtain information for an existing frequency–based scheduler, you must specify the
following parameters as described.

fbs_buf    refers to an fbsconfig_ds structure to which fbscon-
figure will return information for an existing frequency -
based scheduler. The type of information that is specified or
returned in each component is presented in Table 7-3.

reset An integer value indicating whether or not processes currently sched-
uled on the specified scheduler are to be killed before the scheduler is
reconfigured.  Acceptable values and corresponding results are as fol-
lows:

<0 Kill and remove all processes currently scheduled on the
specified scheduler 

0 Ignore all processes currently scheduled on the specified
scheduler

>0 Remove all processes currently scheduled on the specified
scheduler

configflg An integer value indicating the control flags and permissions
assigned to the specified scheduler.  See the header file <sys/
ipc.h> to determine the locations of the bits.

fbs_id a unique, positive integer value that is returned by fbsconfigure
and represents the identifier for the specified frequency–based sched-
uler.  It is important to note that this identifier is required by most of
the library routines for the FBS and the performance monitor

Table 7-2.  Contents of Structure Components: fbsconfigure  (Cont.)

Component Contents
7-8



The C Library Interface
 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsconfigure(3rt) for a listing of the types of errors that may occur. 

Fbscycle – Return Minor Cycle/Major Frame Count 7

This routine is invoked to obtain the current minor cycle and major frame count values for
a frequency–based scheduler.  These values enable you to determine the progress of a sim-
ulation. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbscycle(fbs_id, cycle_buf) 

Table 7-3.  Contents of Structure Components: fbsconfigure  

Component Contents

key  an integer value identifying the frequency–based scheduler for which
configuration information is to be returned.  If this value is zero, the
frequency–based scheduler identifier associated with this scheduler
must also be provided by using the fbs_id component.   

cycles  refers to the component that contains the integer value zero, indicat-
ing that current configuration information for the specified scheduler
is to be returned.  Fbsconfigure will return to this component an
integer value indicating the number of minor cycles that compose a
frame on the specified scheduler.   

progs  refers to the component to which fbsconfigure will return the
maximum number of programs that can be scheduled to run during
one minor cycle on the specified scheduler   

max  refers to the component to which fbsconfigure will return the
maximum number of programs that can be scheduled on the specified
scheduler at one time   

configflg  refers to the component to which fbsconfigure will return the
permissions assigned to the specified scheduler.   

fbs_id  refers to the component to which fbsconfigure will return a
unique, positive integer value representing the identifier for the speci-
fied frequency–based scheduler.  If you specify a key of 0, this com-
ponent must contain the related frequency–based scheduler identifier.   
7-9



PowerMAX OS Guide to Real-Time Services
int fbs_id; 
struct fbscycle_ds { 
    int ccycle; 
    int cframe; 
} *cycle_buf;

Call 

struct fbscycle_ds  cycle_buf; 
int istat; 
istat = fbscycle(fbs_id, &cycle_buf);

Parameters 

Parameters are described as follows. 

fbs_id      refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain the current cycle and
frame counts. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

cycle_buf   refers to an fbscycle_ds structure to which fbscycle
will return integer values indicating the current minor cycle
and major frame for the specified scheduler.  The ccycle
component will contain the number of the cycle.  The
cframe component will contain the number of the frame. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbscycle(3rt) for a listing of the types of errors that may occur.

Fbsdetach – Detach Timing Source from an FBS 7

This routine is invoked to detach the currently attached timing source from a frequency–
based scheduler or to disable end–of–cycle scheduling. If the timing source is a real-time
clock, it is recommended that you stop the clock prior to invoking this routine. You can do
so by making a call to fbsrunrtc (see page 7-26 for an explanation of this routine). 

The C specification, call, corresponding parameters, and return value are presented in the
following sections.

Specification 

#include <fbslib.h> 

int fbsdetach(fbs_id) 
int fbs_id;
7-10



The C Library Interface
Call 

int istat; 
istat = fbsdetach(fbs_id);

Parameters

Parameters are described as follows. 

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler from which you wish to detach the currently
attached timing source or for which you wish to disable
end–of–cycle scheduling. You can obtain this value by mak-
ing a call to fbsconfigure (see page 7-6 for an explana-
tion of this routine). If you wish to reference the frequency–
based scheduler on which the calling process is scheduled
without knowing its identifier, you can specify a value of −
1. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsdetach(3rt) for a listing of the types of errors that may occur. 

Fbsgetrtc – Obtain Current Values for Real–Time Clock 7

This routine is invoked to obtain the current count and resolution values for the real–time
clock that is attached to a specified frequency–based scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsgetrtc(fbs_id, count, resolution) 
int fbs_id; 
int *count; 
int *resolution;

Call 

int istat;
int count; 
int resolution; 
istat = fbsgetrtc(fbs_id, &count, &resolution);

Parameters 

Parameters are described as follows. 
7-11



PowerMAX OS Guide to Real-Time Services
fbs_id     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which the real–time clock is attached. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

count      refers to a variable that contains the address to which
fbsgetrtc will return an integer value indicating the
current number of clock counts per minor cycle.  This value
can range from one to 65535. 

resolution  refers to a variable that contains the address to which
fbsgetrtc will return an integer value indicating the
current duration in microseconds of one clock count.  This
value will be one of the following: 1, 10, 100, 1000, or
10000. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsgetrtc(3rt) for a listing of the types of errors that may occur. 

Fbsid – Return the FBS Identifier for a Key 7

This routine is invoked to obtain the frequency–based scheduler identifier associated with
a particular user–specified key.  The key must match the key that was specified when the
scheduler was created by making a call to fbsconfigure(3rt).

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsid(fbs_key) 
int fbs_key;

Call 

int fbs_id; 
fbs_id = fbsid(fbs_key);

Parameters 

Parameters are described as follows. 

fbs_key   refers to a variable that contains an integer value identifying
a frequency–based scheduler; this value must be the same
7-12



The C Library Interface
value that was specified for key when the scheduler was
created by making a call to fbsconfigure (see page 7-6
for an explanation of this subroutine). 

Return Value 

Upon successful completion, fbsid returns an integer value representing the unique fre-
quency–based scheduler identifier associated with the key.  A return value of − 1 indicates
that an error has occurred; errno is set to indicate the error.  Refer to the system manual
page fbsid(3rt) for a listing of the types of errors that may occur. 

Fbsinfo – Return Information for an FBS 7

This routine is invoked to obtain information that is related to a selected frequency–based
scheduler but  cannot be obtained by invoking other routines (for example,
sched_fbsqry, sched_pgmqry).  Such information includes the following: 

• The user and group IDs of the owner and the creator of the scheduler 

• The permissions assigned for the scheduler 

• The key associated with the scheduler’s identifier 

• The total number of overruns for all processes on the scheduler 

• The CPUs that are active in the system 

• The CPUs on which performance monitoring has been enabled 

• The FBS–enabled flag 

• The path name of the device that has been attached to the scheduler 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsinfo(fbs_id, info_buf, devname) 
int fbs_id; 
struct fbsinfo_ds { 
    int uid; 
    int gid; 
    int cuid; 
    int cgid; 
    int mode 
    int key; 
    int flags; 
    int devid; 
    int overruns; 
    int cpuactive; 
    int pm_cpuactive; 
    int enabled; 
7-13



PowerMAX OS Guide to Real-Time Services
    int filler[29] 
} *info_buf; 
char *devname;

Call 

struct fbsinfo_ds  info_buf; 
int istat; 
istat = fbsinfo(fbs_id, &info_buf, devname);

Parameters 

Parameters are described as follows. 

fbs_id     refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

info_buf   refers to an fbsinfo_ds structure to which fbsinfo
will return information about the specified scheduler. The
information returned in each component of the structure is
presented in Table 7-4. 

Table 7-4.  Contents of Structure Components:  fbsinfo

Component Contents

uid  owner’s user ID   

gid  owner’s group ID   

cuid  creator’s user ID   

cgid  creator’s group ID   

mode  access modes   

key  key   

flags  flags word   

devid  reserved for future use   

overruns  total number of hard overruns for all processes on
the scheduler   

cpuactive  mask of CPUs active in the system   

pm_cpuactive  mask of CPUs on which performance monitoring
has been enabled   

enabled  FBS–enabled flag   

filler  reserved for future use   
7-14



The C Library Interface
devname   refers to a variable to which fbsinfo will return the path
name of the device that is being used as the timing source
for the specified frequency–based scheduler.  If end–of–
cycle scheduling has been specified, devname will contain a
null string. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsinfo(3rt) for a listing of the types of errors that may occur. 

Fbsinfo_rdev - Return rdevfs timing device information 7

This routine may be used to obtain information about the rdevfs Coupled FBS timing
device specified by the rdevfs device file path name.

The information returned from this routine includes the following:

• The type of Coupled FBS timing device; either RCIM Coupled or Closely-
Coupled.  See Chapter 3 for more information about these two types of tim-
ing devices.

• The hostname of the host where the timing device actually resides (where
the device interrupt originates).

• A list of all the hostnames of the hosts where this device is registered.

• A list of all the hostnames of the hosts that currently have schedulers
attached to this device.

• The path name of the actual device on the host where the device resides.

The C specification, call, corresponding parameters, and return value are presented in the
following sections.

Specification

#include <fbslib.h>
int fbsinfo_rdev(rdevfs_name, info_buf)
char *rdevfs_name;
struct fbsinfo_rdev_ds {
          u_int attr_flags;
          char device_name[MAXPATHLEN];
          int num_hosts;
struct fbsinfo_rdev_host_ds *host_array;
} *info_buf;

Call

struct fbsinfo_rdev_ds info_buf;
int status;
char *rdevfs_name;
status = fbsinfo_rdev(rdevfs_name, &info_buf);
7-15



PowerMAX OS Guide to Real-Time Services
Parameters

Parameters are described as follows.

rdevfs_name Refers to a caller-supplied character string pointer that
points to the /dev/rdev/<hostname>/device<n>
path name of the Coupled FBS timing device that the caller
wishes to obtain information about.

info_buf Refers to the fbsinfo_rdev_ds structure pointer that points to
the structure where the Coupled FBS timing device infor-
mation will be returned.  The caller is also required to setup
certain fields within this structure before calling this func-
tion.  Use of this structure is detailed in Table 7-5 below.

Table 7-5.  Contents of Structure Components:  fbsinfo_rdev_ds

Component Contents

attr_flag The type of timing device is returned in this field; FBS_CC_TYPE for a 
Closely-Coupled timing device, or FBS_RC_TYPE for a RCIM Coupled 
timing device. All other flag bits in this field are reserved for future 
use.

device_name The path name of the actual device on the host where the device 
resides is returned in this location.

num_hosts The caller supplies the size of the host_array in this field before    
calling fbsinfo_rdev. When this call is successful or when -1 is 
returned and errno is set to EFBIG, fbsinfo_rdev updates this field with 
the actual number of registered hosts for this timing device.  When 
this call is successful, then the value returned in this field represents 
the number of valid entries in the host array that may be examined by 
the caller upon return from this function call. When -1 is returned and 
errno is set to EFBIG, then fbsinfo_rdev fills in all the available 
host_array entry locations with per-host information.  The per-host 
information for all hosts is not returned in this case.  The caller may 
either simply examine all the entries in the host_array, or they may 
allocate a larger host_array and call this function again in order to 
obtain the per-host information for all the registered hosts, instead of 
just a subset of the registered hosts.

host_array The caller should set this field up before calling the fbsinfo_rdev 
function.  This field should point to an array of fbsinfo_rdev_host_ds 
structures where this function returns information about each regis-
tered host.  The size of this array should be equal to the value that the 
caller specified in the num_hosts field.  The per-host information 
about each host where the specified Coupled FBS timing device has 
been registered is returned in the user’s fbsinfo_rdev_host_ds struc-
ture array, where each entry in this array is detailed in Table 7-6 
below.
7-16



The C Library Interface
Return Value

A return value of 0 indicates that the call has been successful.  A return value of -1 indi-
cates that an error has occurred, and errno is set to indicate the error.  Refer to the system
manual page fbsinfo_rdev(3rt) for a listing of the types of errors that may occur.

NOTE

The fbsinfo_rdev function call is not compatible for use with
t im i n g  d e v i c e s  t h a t  w e r e  r e g i s t e r e d  w i th  a
fbs_register_cluster_device function call.  In this case, the user
should use the fbsinfo_cluster function call to obtain additional
information about the Closely-Coupled timing device.  However,
t h e  f bs _ re g i s t e r_ c l u s t er _ de v ic e  and
fbs_unregister_cluster_device function calls are obsolete and
users are encouraged to make use of the fbs_register_rdev,
fbs_unregister_rdev and fbsinfo_rdev function calls.

Fbsinfo_cluster - Return cluster information for an FBS 7

This routine is invoked to obtain information about the Closely-Coupled timing device
that a selected frequency-based scheduler is currently attached to.  The information
returned from this routine includes the following: 

• The SBC board ID where the Closely-Coupled timing device actually
resides

• The path name of the actual device on the SBC board where the device
resides

• A bit mask of SBC board IDs of the SBCs that currently have schedulers
attached to this device

Note that the selected frequency-based scheduler must be currently attached to a Closely-
Coupled timing device in order for this routine call to be successful.

Table 7-6.  Contents of Structure Components: fbsinfo_rdev_host_ds

Component Contents

hostname This location contains the hostname of the host where this timing 
device is registered.

host_flag This field will contain additional information pertaining to the host 
returned in the hostname field.  The valid flags are 
FBSINFO_SCHED_ATTACHED, which indicates that this host currently 
has a scheduler attached to this timing device, and 
FBSINFO_INTR_SOURCE, which indicates that the timing device resides 
on this host.
7-17



PowerMAX OS Guide to Real-Time Services
The C specification, call, corresponding parameters, and return value are presented in the
following sections.

Specification

#include <fbslib.h>
int fbsinfo_cluster(fbsid, info_buf, devname)
int fbs_id;
struct fbsinfo_cluster_ds {
         int     sbc_id_location;

uint_t  sbc_id_attached_mask;
int     filler[6];

} *info_buf;
char *devname;

Call

struct fbsinfo_cluster_ds info_buf;
int istat;
istat = fbsinfo_cluster(fbs_id, &info_buf, devname);

Parameters

Parameters are described as follows.

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency-based
scheduler.  You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine).  If you wish to reference the frequency-based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of -1.

info_buf refers to a fbsinfo_cluster_ds structure to which
fbsinfo_cluster will return information about the specified
scheduler.  The information returned in each component of
the structure is presented in Table 7-7.

devname refers to a variable to which fbsinfo_cluster will return the
path name of the actual device that is being used as the tim-
ing source on the SBC board where the device resides

Table 7-7.  Contents of Structure Components:  fbsinfo_cluster

Component Contents

sbc_id_location SBC board ID where device actually resides

sbc_id_attached_mask SBC board ID mask of those SBCs that contain
schedulers that are currently attached to this timing
device

filler  reserved for future use   
7-18



The C Library Interface
Return Value

A return value of 0 indicates that the call has been successful.  A return value of -1 indi-
cates that an error has occurred: errno is set to indicate the error.  Refer to the system
manual page fbsinfo_cluster(3rt) for a listing of the type of errors that may
occur. 

Fbsintrpt – Start/Stop/Resume Scheduling on an FBS 7

This routine is invoked to start, stop, or resume scheduling on a frequency–based sched-
uler.  If you invoke this routine to start scheduling, the minor cycle, major frame, and
overrun count values are reset.  If you invoke it to resume scheduling, these values are not
reset. 

Prior to invoking fbsintrpt, you must have invoked fbsattach to specify end–of–
cycle scheduling or attach a timing source to the frequency–based scheduler on which you
are starting scheduling (see page 7-4 for an explanation of fbsattach). If you have
specified a real–time clock as the timing source, scheduling will not begin until you have
set and started the clock (see pages 7-29 and 7-26 for explanations of fbssetrtc and
fbsrunrtc, respectively). If you have specified an edge–triggered interrupt device or a
user–supplied device as the timing source, it must already be generating interrupts in order
for scheduling to start. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsintrpt(fbs_id, intrflag) 
int fbs_id; 
int intrflag;

Call 

int istat; 
istat = fbsintrpt(fbs_id, intrflag);

Parameters 

Parameters are described as follows. 

fbs_id   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to start, stop, or resume sched-
uling of processes. You can obtain this value by making a
call to fbsconfigure (see page 7-6 for an explanation of
this routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 
7-19



PowerMAX OS Guide to Real-Time Services
intrflag refers to a variable that contains an integer value indicating
whether scheduling of processes on the specified scheduler
is to be started, stopped, or resumed. Acceptable values and
corresponding results are presented in Table 7-8. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsintrpt(3rt) for a listing of the types of errors that may occur. 

Fbsquery – Query Processes on an FBS 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated.   If you have an existing application that uses this interface,
it is recommended that you change your application to use
sched_fbsqry(3rt) (see page 7-49). For details on obsolete
interfaces, refer to Chapter 2, “Overview of the FBS.”

This routine is invoked to obtain information about processes that have been scheduled on
a frequency–based scheduler.  Information is returned for all processes scheduled on the
user–specified processor(s).  Information provided for each process includes the follow-
ing: 

• A mask of the CPU(s) on which the process can execute   

• The frequency–based scheduler process identifier   

• The scheduling priority   

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)   

Table 7-8.  Intrflag Options

Value Result

<0  Start scheduling of processes with the initial frame,
cycle, and overrun count values set to zero   

0  Stop scheduling of processes, and save the count values
for the current frame and cycle   

>0  Resume scheduling of processes with the frame, cycle,
and overrun count values set to the values that were
saved when the scheduler was last stopped   
7-20



The C Library Interface
• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame)   

• The value of the “halt on overrun” flag   

• The current state of the process 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsquery(fbs_id, cpu, fbs_buf, buf_cnt) 
int fbs_id; 
int cpu; 
struct pgm_ds { 
    char *name_ptr; 
    int  cpu; 
    int  fpid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
    int  status; 
} *fbs_buf; 
int buf_cnt;

Call 

struct pgm_ds  fbs_buf[buf_cnt]; 
int istat; 
istat = fbsquery(fbs_id, cpu, fbs_buf, buf_cnt);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain scheduling informa-
tion. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 7-9. 
7-21



PowerMAX OS Guide to Real-Time Services
fbs_buf   refers to an array of pgm_ds structures to which
fbsquery will return scheduling information for each
process on the processor(s) specified with the cpu parame-
ter. The type of information returned in each component of
the structure for a single process is presented in Table 7-10. 

buf_cnt   refers to a variable that contains an integer value indicating
the number of structures in the array to which fbs_buf
points. 

Table 7-9.  CPU Options:  fbsquery

Value Result

0  Scheduling information for processes executing on the
processor from which the call is made is returned   

–1 Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned

Table 7-10.  Contents of Structure Components: fbsquery

Component Contents

name_ptr  A pointer to a variable that contains a standard UNIX path name
identifying the process for which information is returned.

cpu  A bit mask indicating the processor(s) on which the process can
execute

fpid  The process’s frequency–based scheduler process identifier   

prior  The process’s scheduling priority   

param  The process’s initiation parameter   

period  The number of minor cycles indicating the frequency with which
the process is to be wakened in each major frame (period)   

cycle  The first minor cycle in which the process is scheduled to be
wakened in each major frame (starting base cycle)   

halt  The value of the “halt on overrun” flag.  A nonzero value indi-
cates that the flag is set.  A value of zero indicates that the flag is
not set.

status  The current state of the process as defined in <fbslib.h>.
7-22



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsquery(3rt) for a listing of the types of errors that may occur. 

Fbsremove – Remove an FBS 7

This routine is invoked to remove a frequency–based scheduler and to free the data
structure associated with it. It is important to note that prior to invoking fbsremove, you
must ensure that the timing source is detached from the scheduler or that end–of–cycle
scheduling is disabled (see page 7-10 for information on the use of fbsdetach). It is
important to note that fbsremove will remove all processes scheduled on the specified
scheduler. It is recommended, however, that you remove all scheduled processes prior to
invoking fbsremove. You can do so by making a call to pgmremove (see page 7-39 for
information on the use of this routine). 

Note that to remove a frequency-based scheduler, the calling process must have the
P_OWNER privilege or an effective user ID that is equal to that of the owner/creator of the
scheduler.

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsremove(fbs_id, ab) 
int fbs_id; 
int ab;

Call 

int istat; 
istat = fbsremove(fbs_id, ab);

Parameters 

Parameters are described as follows. 

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler that you wish to remove. You can obtain this
value by making a call to fbsconfigure (see page 7-6
for an explanation of this routine). If you wish to reference
7-23



PowerMAX OS Guide to Real-Time Services
the frequency–based scheduler on which the calling process
is scheduled without knowing its identifier, you can specify
a value of − 1.

ab     refers to a variable that contains an integer value indicating
the manner in which processes scheduled on the scheduler
are to be handled. Acceptable values and corresponding
results are presented in Table 7-11. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsremove(3rt) for a listing of the types of errors that may occur. 

Fbsresume – Resume Scheduling on an FBS 7

The fbsresume library routine is invoked to resume scheduling of processes on a fre-
quency-based scheduler at the specified minor cycle, major frame, and overrun count.

Note that to resume scheduling of processes on a frequency-based scheduler, the calling
process must have alter permission for the scheduler.  If the Enhanced Security Utilities
are installed and running, the following conditions must also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have the P_MACWRITE privilege.

If you wish to resume scheduling of processes on a frequency-based scheduler without
altering the scheduler’s current frame, cycle, and overrun values, it is recommended that
you use the fbsintrpt(3rt) routine (see page 7-19 for an explanation of this routine).

CAUTION

The fbsresume routine clears performance monitor values for
all processes scheduled on the specified scheduler.  Changing the
frame and cycle count for the scheduler causes the values that are
being maintained by the performance monitor to be inaccurate.

Table 7-11.  Ab Options

Value Result

<0  Kill and remove all processes currently scheduled on
the specified scheduler   

≥0  Remove all processes currently scheduled on the speci-
fied scheduler   
7-24



The C Library Interface
The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsresume(fbs_id, frame, cycle, overruns) 
int fbs_id; 
int frame;
int cycle;
int overruns;

Call 

int istat; 
istat = fbsresume(fbs_id, frame, cycle, overruns);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to resume scheduling of pro-
cesses. You can obtain this value by making a call to
fbsconfigure or fbsid (see page 7-6 and page 7-12,
respectively, for explanations of these routines). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing the identifier,
you can specify the value −1.

frame an integer value indicating the major frame in which you
wish scheduling of processes to be resumed on the specified
scheduler

cycle an integer value indicating the minor cycle in which you
wish scheduling of processes to be resumed on the specified
scheduler. This value can range from zero to the total num-
ber of minor cycles per frame minus one. The total number
of minor cycles per frame was specified when the scheduler
was created by making a call to fbsconfigure (see page
7-6 for an explanation of this routine).

overruns an integer value indicating the value to which you wish the
overrun count to be set when scheduling resumes on the
specified scheduler

If you do not wish to change the overrun count, you can
specify the value −1.

Return Value 

A return value of 0 indicates that the call has been successful.   A return value of −1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsresume(3rt) for a listing of the types of errors that may occur. 
7-25



PowerMAX OS Guide to Real-Time Services
Fbsrunrtc – Start/Stop Real–Time Clock 7

This routine is invoked to start or stop the counting of a real–time clock that has been
attached to a frequency–based scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsrunrtc(fbs_id, runflag) 
int fbs_id; 
int runflag;

Call 

int istat; 
istat = fbsrunrtc(fbs_id, runflag);

Parameters 

Parameters are described as follows. 

fbs_id   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to start or stop the attached
real–time clock. You can obtain this value by making a call
to fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1.

runflag  refers to a variable that contains an integer value indicating
whether the real–time clock is to be started or stopped.  A
nonzero value indicates that the clock is to be started.  A
zero value indicates that the clock is to be stopped. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsrunrtc(3rt) for a listing of the types of errors that may occur. 

Fbsschedself – Schedule an LWP on an FBS 7

The fbsschedself library routine is invoked to schedule the calling lightweight pro-
cess (LWP) on a frequency-based scheduler.

This routine is designed to be used by a single-threaded or a multithreaded application;
however, if it is to be used in a multithreaded application, it can be used only by bound
threads.
7-26



The C Library Interface
It is important to note that fbsschedself does not allow an LWP to set its scheduling
policy and priority or its CPU bias.  These tasks must be performed prior to invoking
fbsschedself.

A single-threaded process can set its scheduling policy and priority by using the
sched_setscheduler(3C) library routine; it can set its CPU bias by using the
cpu_bias(2) system call or the mpadvise(3C) library routine. Procedures for using
these functions are explained in the “Process Scheduling and Management” and “Process
Management” chapters of the PowerMAX OS Programming Guide.

A boun d  th read  can  se t  i t s  schedul ing  po l i cy  and  pr io r i ty  by  us in g  the
thr_setscheduler(3thread) library routine; it can set its CPU bias by using the
cpu_bias system call or the mpadvise library routine. Complete information on
bound thread scheduling and use of the thr_setscheduler routine are provided in the
“Thread Scheduling” section of the “Programming with the Threads Library” chapter of
the PowerMAX OS Programming Guide.

Note that you cannot use this routine to add /idle or /spare to a frequency-based
scheduler.

To schedule the calling LWP on a frequency-based scheduler, the calling LWP must have
alter permission for the scheduler.  If the Enhanced Security Utilities are installed and run-
ning, the following conditions must also be met:

• The calling LWP and the frequency-based scheduler must have identical
security levels, or the LWP must have the P_MACWRITE privilege. 

You must not change the scheduling policy or priority of an LWP while it is scheduled on
a scheduler by using sched_setscheduler, thr_setscheduler, or other pro-
gram interfaces that allow you to change scheduling policy and priority.  The frequency-
based scheduler is not aware of changes in scheduling policy and priority that are made by
using these interfaces.

If you need to change the scheduling policy or priority of a single-threaded FBS-
scheduled process, you may do so by using sched_pgmresched to reschedule it (see
page 7-60 for an explanation of this routine).

If you need to change the scheduling policy or priority of a bound thread, you must first
remove it from the scheduler on which it is has been scheduled by using pgmremove (see
page 7-39 for an explanation of this routine). You can then use thr_setscheduler to
change its policy or priority and fbsschedself to schedule it on a scheduler.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbsschedself(fbs_id, name, sched_buf) 
int fbs_id; 
char *name;
7-27



PowerMAX OS Guide to Real-Time Services
struct fbssched_buf { 
    int  version; 
    int  param; 
    int  period; 
    int cycle; 
    int  ab; 
    int  fpid; 
} *sched_buf;

Call 

struct fbssched_buf  sched_buf; 
int istat; 
istat = fbsschedself(fbs_id, name, &sched_buf);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure or fbsid (see page 7-6 and page 7-12,
respectively, for explanations of these routines). If you wish
to reference the frequency–based scheduler on which the
calling LWP is scheduled without knowing the identifier,
you can specify the value −1.

name a pointer to a variable that contains a standard UNIX path
name or arbitrary content identifying the program associ-
ated with the calling LWP.   A full or relative path name of
up to 1023 characters can be specified.

sched_buf refers to a sched_buf structure that contains the scheduling
parameters with which you wish to schedule the LWP. The
type of information that is specified in each component is
presented in Table 7-12. 

Table 7-12.  Contents of Structure Components: fbsschedself 

Component Contents

version  an integer value indicating the version of sched_buf that is being
passed to fbsschedself.   Specify the symbolic constant
FBSSCHED_BUF_V1, which is defined in <fbslib.h> for this pur-
pose.

param  an integer value to be passed to a process that is scheduled on a fre-
quency-based scheduler. This value can be retrieved by the FBS–
scheduled process through a call to sched_pgmqry (see page 7-57
for an explanation of this routine).
7-28



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of −1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbsschedself(3rt) for a listing of the types of errors that may occur.

Fbssetrtc – Set Real–Time Clock 7

This routine is invoked to establish the duration of a minor cycle by setting the count and
the resolution values for a real–time clock. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int fbssetrtc(fbs_id, count, resolution) 
int fbs_id; 
int count; 
int resolution;

period  an integer value indicating the frequency with which the calling LWP
is to be wakened in each major frame. A period of one indicates that
the calling LWP is to be wakened every minor cycle; a period of two
indicates that it is to be wakened once every two minor cycles, a
period of three once every three minor cycles, and so on. 

This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-6 for an explanation of this routine).

cycle  an integer value indicating the first minor cycle in which the calling
LWP is scheduled to be wakened in each frame. This value can range
from zero to the total number of minor cycles per frame minus one.
The total number of minor cycles per frame is specified in a call to
fbsconfigure (see page 7-6 for an explanation of this routine).   

ab  an integer value indicating whether or not the scheduler should be
stopped in the event that the calling LWP causes a frame overrun.  A
nonzero value indicates that the scheduler will be stopped.   

fpid  an integer value that is returned by fbsschedself and is the
unique frequency–based scheduler process identifier for the sched-
uled LWP

Table 7-12.  Contents of Structure Components: fbsschedself  (Cont.)

Component Contents
7-29



PowerMAX OS Guide to Real-Time Services
Call 

int istat; 
istat = fbssetrtc(fbs_id, count, resolution);

Parameters 

Parameters are described as follows. 

fbs_id      refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which a real–time clock has been attached. You
can obtain this value by making a call to fbsconfigure
(see page 7-6 for an explanation of this routine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

count       refers to a variable that contains an integer value indicating
the number of clock counts per minor cycle.  This value can
range from one to 65535. 

resolution  refers to a variable that contains an integer value indicating
the duration in microseconds of one clock count.  This value
must be one of the following: 1, 10, 100, 1000, or 10000. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbssetrtc(3rt) for a listing of the types of errors that may occur. 

Fbswait – Wait on an FBS 7

NOTE

There is no C interface routine for fbswait; the fbswait(2)
system call should be used instead. 

Fbswait enables a process that is scheduled on a frequency–based scheduler to sleep
until its next scheduled minor cycle.

The C specification, call, and return value are presented in the following sections. 

Specification 

int fbswait()
7-30



The C Library Interface
Call 

int istat; 
istat = fbswait();

Return Value 

A return value of 0 indicates that the process has been wakened by the frequency–based
scheduler. A return value of 1 indicates that the process has been wakened by
fbstrig(2). A return value of −1 indicates that an error has occurred; errno is set to
indicate the error. A return value of 2 indicates that the process did not sleep because the
kernel detected a soft overrun and is allowing the process to attempt to recover from it.
Refer to the system manual page fbswait(2) for a listing of the types of errors that
may occur.

Fbs_register_rdev - Register Coupled FBS Timing Device 7

This routine may be used to register a local device as a remote timing device
(rdevfs(4)) which may be subsequently used as a Coupled FBS timing device.  A
Coupled timing device may be used to couple together FBS schedulers that are located on
more than one computer system.  All schedulers that are attached to the same Coupled
FBS timing device will start, stop and resume their executions together on the same frame
and cycle, using the Coupled FBS timing device as the interrupt source.

To register a timing device, the calling process must have the P_RTIME privilege as well as
enough privilege to open the device file.

Successfully registering a device as a Coupled FBS timing source creates a placeholder, or
virtual FBS identifier to reserve the device’s interrupt vector.  There is one virtual FBS for
each device registered and a virtual FBS provides the means for a process on another host
to communicate with the real device. Because the virtual FBS is allocated exactly the
same way as user FBS identifiers, each device registered reduces by one the number of
user schedulers that can be configured.  Therefore, depending upon system requirements,
it may be necessary to increase the value of the system tunable parameter FBSMNI.  Vir-
tual FBS descriptors are not directly accessible to user programs.

Registering a device as a Coupled FBS timing device also  creates a device file entry in the
/dev/rdev file system on each host where the device is registered.  This  /dev/rdev/
<hostname/device<n> path name may be specified on subsequent calls to
fbsattach.  A device may not be registered as a Coupled FBS timing device if a FBS
scheduler is already directly attached to that device.  The C specification, call, correspond-
ing parameters and return value are presented in the following sections.

Specification

#include <fbslib.h>
int fbs_register_rdev(device_name, rdevfs_name,
type, num_hosts, hostname_array)
char *device_name;
char *rdevfs_name;
int type;
int num_hosts;
char **hostname_array;
7-31



PowerMAX OS Guide to Real-Time Services
Call

int status, types, num_hosts;
char *device_name, *rdevfs_name;
char **hostname_array;
status = fbs_register_rdev(device_name, rdevfs_name, 
type, num_hosts, hostname_array);

Parameters

The parameters are described as follows.

device_name Refers to a variable that contains the user-specified path
name of the device that is to be registered as a Coupled FBS
timing device.  

If the device is a real-time clock or edge triggered interrupt,
then the path name must be of a certain form.  See Chapter 3
for detailed information on these types of path names.

If the device is user-supplied device, the path name must be
a valid UNIX path name, and the device must support the
IOCTLVECNUM ioctl(2) call.  See Chapter 3 for addi-
tional information.

rdevfs_name Refers to the location where the corresponding /dev/
rdev/<hostname>/device<n> rdevfs file system
device file entry will be returned.  This path name should be
used on subsequent fbsattach calls for attaching FBS sched-
ulers to this Coupled FBS timing device.

type In this field, the caller specifies the type of  timing device
that is to be registered. When type is set to FBS_RC_TYPE,
then a RCIM Coupled timing device will be registered.
When type is set to FBS_CC _TYPE, then a Closely-Coupled
timing device is to be registered.  See Chapter 3 or the
fbs_register_rdev(3rt) system manual page for
details about these two types of timing devices.

num_hosts The caller specifies in this field the number of hosts where
this device is to be registered.  This value should match the
number of hostnames in the hostname_array.

hostname_array This field contains a pointer to an array of character point-
ers, where each entry is a hostname string of a host where
the device is to be registered.  The local host’s hostname
must be specified in this list.  

Only those remote hosts that intend to attach a scheduler to
this Coupled FBS timing device need to be in the
hostname_array.

Return Value

A return value of 0 indicates that the call has been successful.  A return value of -1
indicates that an error has occurred.  In  this case, errno is set to a value that indicates the
type of error.  Refer to the system manual page fbs_register_rdev(3rt) for a list-
ing of the types of errors that may occur, as well as other detailed usage information.
7-32



The C Library Interface
Fbs_unregister_rdev - Unregister a Coupled FBS Timing Device 7

This routine may be called to unregister a local device that was previously registered as a
Coupled FBS timing device.  To unregister a device, the calling process must have the
P_RTIME privilege as well as enough privilege to open the device file.

Unregistering a device from being a Coupled FBS timing device results in the removal of
the virtual FBS identifier that was created when the device was initially registered.  The
unregistration also removes the corresponding /dev/rdev/<hostname>
/device<n> rdevfs file system device file entry on each host where the device was
previously registered.

Once a device is unregistered, it may once again be directly attached to an FBS scheduler
on the local system as a normal, non-Coupled FBS timing device, or, it may be re-regis-
tered as a Coupled FBS timing device with the fbs_register_rdev(3rt) function.

The C specification, call, corresponding parameters and return value are presented in the
following sections.

Specification

#include <fbslib.h>
int fbs_unregister_rdev(device_name)
char *device_name;

Call

int status;
status = fbs_unregister_rdev(device_name)

Parameters

Parameters are described as follows.

device_name Refers to a variable that contains the path name of the
device that is to be unregistered from being a Coupled FBS
timing device.  The path name should be the same path
name that was specified on a previous fbs_register_rdev
function call.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred.  In this case, errno is set to an appropriate value to
in d ic a t e  th e  ty p e  o f  e r r o r.   R e f e r  t o  t h e  s y s t e m  m a n u a l  p a g e
fbs_unregister_rdev(3rt) for a listing of the types of errors that may occur.

Fbs_register_cluster_device - Register Cluster Timing Source 7

This routine is invoked to register a local device as a Closely-Coupled timing device in a
Closely-Coupled system.  To register a device, the calling process must have the P_RTIME

privilege as well as enough privilege to open the device file.
7-33



PowerMAX OS Guide to Real-Time Services
Registering a Closely-Coupled timing device creates a placeholder, or virtual, FBS
identifier to reserve the device’s interrupt vector.  There is one virtual FBS for each device
registered  and a virtual FBS provides the means for a process on another SBC to commu-
nicate with the real device.  Because the virtual FBS is allocated exactly the same way as
user FBS identifiers, each device registered reduces by one the number of user schedulers
that can be configured.  Therefore, some thought should be given to increasing the value
of the system tunable parameter FBSMNI.  Virtual FBS descriptors are not directly acces-
sible to user programs. 

Registering a device as a Closely-Coupled timing source also creates entries in the /dev/
rdev directories on all SBCs in the VME cluster.  These entries can be specified on a sub-
sequent call to fbsattach.

A device can either be registered as a Closely-Coupled timing device or be attached to an
FBS, but not both at the same time.

The C specification, call, corresponding parameters, and return value are presented in the
following sections.

Specification 

#include <fbslib.h> 

int fbs_register_cluster_device(device_name, rdevfs_name) 
char *device_name;
char *rdevfs_name;

Call 

int istat;
istat = fbs_register_cluster_device(device_name, rdevfs_name);

Parameters 

Parameters are described as follows.

device_name Refers to a variable that contains the path name of the
device that is to be registered as a Closely-Coupled timing
device. device_name may refer to a real-time clock, edge-
triggered interrupt or to a user-suppled device.

If the device is a real-time clock or edge-triggered interrupt,
then refer to Chapter 3 for detailed information about these
pathnames and their associated attributes.

If the device is a user-supplied device, the path name must
be a valid UNIX path name and the device must support the
IOCTLVECNUM ioctl(2) call.  See Chapter 3 for addi-
tional information.

rdevfs_name Refers to the location where the corresponding
rdvfs_dev device file entry path name will be returned.
This returned path name should be used on subsequent
fbsattach calls to attach schedulers to this Closely-Coupled
timing device
7-34



The C Library Interface
 Return Value

A return value of 0 indicates that the call has been successful.  A return value of -1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbs_register_cluster_device(3rt) for a listing of the types of
errors that may occur. 

NOTE

The fbs_register_cluster_device function call is obsolete.  It is
being supported only for providing backward compatibility with
previous PowerMAX OS releases.  Users are highly encouraged
to make use of the newer fbs_register_rdev function call.  Note
that fbs_register_cluster_device only supports the registration of
Closely-Coupled timing devices, while the fbs_register_rdev
function supports both Closely-Coupled and RCIM Coupled
timing device registrations.

Fbs_unregister_cluster_device - Unregister Cluster Timing Source 7

This routine is invoked to unregister a local device as a Closely-Coupled timing device in
a Closely-Coupled system.  To unregister a device, the calling process must have the
P_RTIME privilege as well as enough privilege to open the device file.

Unregistering a device as a Closely-Coupled timing device removes the virtual FBS iden-
tifier created when the device was registered and also removes the /dev/rdev entries
on all SBCs in the VME cluster.  Once a device is unregistered, it is once again available
to be attached to an FBS on the local SBC.

The C specification, call, corresponding parameters, and return value are presented in the
following sections.

Specification 

#include <fbslib.h> 

int fbs_unregister_cluster_device(device_name)
char *device_name;

Call 

int istat;
istat = fbs_unregister_cluster_device(device_name);

Parameters 

Parameters are described as follows.

device_name Refers to a variable that contains the path name of the
device that is to be unregistered as a Closely-Coupled tim-
ing device. 
7-35



PowerMAX OS Guide to Real-Time Services
The device name should be the same path name that was
p r e v io u s l y  sp e c i f i ed  o n  th e  c o r r e sp o n d in g
fbs_register_cluster_device function call.

If the device is a real-time clock, the path name must be of a
certain form.  Refer to Chapter 3 for detailed information on
the form associated with the real-time clock.

If the device is a user-suppled device, the path name must
be a valid UNIX path name.  The device must support the
IOCTLVECNUM ioctl(2) call.  See Chapter 3 for addi-
tional information.

Return Value

A return value of 0 indicates that the call has been successful.  A return value of -1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page fbs_unregister_cluster_device(3rt) for a listing of the types
of errors that may occur. 

NOTE

The fbs_unregister_cluster_device function call is obsolete.  It is
being supported only for providing backward compatibility  with
previous PowerMAX OS releases.  Users are highly encouraged
to make use of the newer fbs_unregister_rdev function call.

Pgmquery – Query a Process on an FBS 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns a process’s scheduling priority without any
indication of the scheduling policy with which that priority is
associated. If you have an existing application that uses this inter-
face, it is recommended that you change your application to use
sched_pgmqry(3rt)(see page 7-57). For details on obsolete
interfaces, refer to Chapter 2, “Overview of the FBS.”

This routine is invoked to obtain information for a particular process that has been sched-
uled on a frequency–based scheduler.  You can identify the process by using one of the
following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 
7-36



The C Library Interface
NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pgmquery(fbs_id, qry_buf) 
int fbs_id; 
struct pgm_ds { 
    char *name_ptr; 
    int cpu; 
    int fpid; 
    int prior; 
    int param; 
    int period; 
    int cycle; 
    int halt; 
    int status; 
} *qry_buf;

Call 

struct pgm_ds  qry_buf; 
int istat; 
istat = pgmquery(fbs_id, &qry_buf);

Parameters 

Parameters are described as follows. 
7-37



PowerMAX OS Guide to Real-Time Services
fbs_id   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information has been scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

qry_buf   refers to a pgm_ds structure that contains information iden-
tifying the process for which information is to be returned.
Pgmquery will return to this structure the scheduling infor-
mation for a specified process. The information contained in
each component of the structure to which qry_buf points
is presented in Table 7-13. 

Table 7-13.  Contents of Structure Components: pgmquery

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the process for which information is to be returned.  A full or
relative path name of up to 1024 characters can be specified.  If the
pointer points to a null string, you must provide the frequency–based
scheduler process identifier in the fpid component.   

cpu  An integer value indicating the processor(s) to be used in conjunction
with the value of name_ptr to identify the program for which informa-
tion is to be obtained.  Acceptable values and corresponding results
follow:

0 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on the processor from which the call is made is
specified

–1 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on any processor is specified   

Bit mask If (cpu & ( 1<<i )) is set (where i is an integer 
ranging from zero to 15 and representing a CPU)
and it is the only bit set, the first process whose
name matches the name pointed to by name_ptr that
is running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process whose name matches the name
pointed to by name_ptr that is currently running on
any of the selected CPUs is specified
7-38



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pgmquery(3rt) for a listing of the types of errors that may occur. 

Pgmremove – Remove a Process from an FBS 7

This routine is invoked to remove a process from a frequency–based scheduler.  You can
identify the process that you wish to remove by using one of the following methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

fpid  an integer value providing the unique frequency–based scheduler pro-
cess identifier for the process for which information is to be returned.
This value is obtained when you make a call to pgmschedule (see
page 7-45 for an explanation of this routine). This value must be –1 if
you wish to identify the program to be queried only by specifying
name_ptr and cpu.

prior  an integer value indicating the specified process’s scheduling priority

param  an integer value indicating the value passed to the process via a call to
pgmschedule or pgmreschedule   

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame.   

cycle  an integer value indicating the first minor cycle in which the specified
process is scheduled to be wakened in each frame   

halt  an integer value indicating the value of the “halt on overrun” flag.  A
nonzero value indicates that the flag is set.  A value of zero indicates
that the flag is not set.   

status  an integer value indicating the current state of the specified process as
defined in <fbslib.h>  

Table 7-13.  Contents of Structure Components: pgmquery (Cont.)

Component Contents
7-39



PowerMAX OS Guide to Real-Time Services
The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pgmremove(fbs_id, name, cpu, fpid, ab) 
int  fbs_id; 
char *name; 
int  cpu; 
int  fpid; 
int  ab;

Call 

int istat; 
istat = pgmremove(fbs_id, name, cpu, fpid, ab);

Parameters 

Parameters are described as follows. 

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
7-6 for an explanation of this routine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process to be removed from the speci-
fied scheduler.  A full or relative path name of up to 1024
characters can be specified.  If this variable contains the null
string, you must provide the frequency–based scheduler
process identifier in the slot parameter. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be removed
from the specified scheduler. Acceptable values and corre-
sponding results are presented in Table 7-14.   

fpid    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be removed from the specified scheduler.
This  va lue  i s  ob ta ined  when  you  make  a  ca l l  to
sched_pgmadd (see page 7-52 for an explanation of this
routine). This value must be − 1 if you choose to identify
the program to be removed only by specifying name and
cpu. 

ab      refers to a flag that contains an integer value indicating the
manner in which the specified process is be removed from
7-40



The C Library Interface
the specified scheduler.  A positive value indicates that the
process is to be removed from the scheduler but allowed to
continue executing.  A negative value indicates that the
process is to be removed from the scheduler and terminated. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pgmremove(3rt) for a listing of the types of errors that may occur. 

Pgmreschedule – Reschedule a Process 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a pro-
cess’s scheduling priority has changed. If you have an existing
application that uses this interface, it is recommended that you
change your application to use sched_pgmresched(3rt)
(see page 7-60). For details on obsolete interfaces, refer to
Chapter 2, “Overview of the FBS.”

This routine is invoked to change the scheduling parameters for a process that is scheduled
on a frequency–based scheduler.  You may wish, for example, to change a program’s pri-
ority or the frequency with which it is scheduled to run.  You cannot, however, change the
CPU on which it has been scheduled.

To change a process’s priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

Table 7-14.  CPU Options:  pgmremove

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
removed 

–1 The first process named by name that is currently run-
ning on any processor is removed

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is removed

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is removed
7-41



PowerMAX OS Guide to Real-Time Services
• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

You can call pgmreschedule to change the parameters without having called pgmre-
move to remove the process from the scheduler (see page 7-39) or fbsintrpt to stop
the simulation (see page 7-19). 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pgmreschedule(fbs_id, rsch_buf) 
int fbs_id; 
struct pgm_ds { 
    char *name_ptr; 
    int  cpu; 
    int  fpid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
7-42



The C Library Interface
    int  status; 
} *rsch_buf;

Call 

struct pgm_ds  rsch_buf; 
int istat; 
istat = pgmreschedule(fbs_id, &rsch_buf);

Parameters 

Parameters are described as follows. 

fbs_id     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
7-6 for an explanation of this routine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

rsch_buf   refers to a pgm_ds structure that contains the scheduling
parameters with which you wish to reschedule the process.
The type of information that is specified in each component
is presented in Table 7-15. Note that the status compo-
nent is ignored on this call. 

Table 7-15.  Contents of Structure Components: pgmreschedule

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the process for which information is to be rescheduled.  A full
or relative path name of up to 1024 characters can be specified.  If the
pointer points to a null string, you must provide the frequency–based
scheduler process identifier in the fpid component.   

cpu  An integer value indicating the processor(s) to be used in conjunction
with the value of name_ptr to identify the process to be rescheduled.
Acceptable values and corresponding results are as follows:   

  0 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on the processor from which the call is made is
rescheduled

  –1 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on any processor is rescheduled 
7-43



PowerMAX OS Guide to Real-Time Services
  Bit mask If (cpu & ( 1<<i )) is set (where i is an integer 
ranging from zero to 15 and representing a CPU)
and it is the only bit set, the first process whose
name matches the name pointed to by name_ptr that
is running on CPU i is rescheduled

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process whose name matches the name
pointed to by name_ptr that is currently running on
any of the selected CPUs is rescheduled

fpid  an integer value providing the unique frequency–based scheduler pro-
cess identifier for the process to be rescheduled. This value is
obtained when you make a call to pgmschedule (see page 7-45 for
an explanation of this routine). This value must be − 1 if you wish to
identify the program to be rescheduled only by specifying name_ptr
and cpu.

prior  an integer value indicating the specified process’s scheduling priority.
A process that has been scheduled using pgmschedule (see page
7-45 for an explanation of this routine) is scheduled under the POSIX
SCHED_RR scheduling policy. The value specified must lie in the
range of priorities associated with this policy. You can obtain the
allowable range of priorities by invoking the run(1) command
from the shell and not specifying any options or arguments (see the
corresponding system manual page for an explanation of this com-
mand). Higher numerical values correspond to more favorable sched-
uling priorities.

For complete information on scheduling policies and priorities, refer
to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide.

param  an integer value to be passed to a process that is scheduled on a fre-
quency–based scheduler   

Table 7-15.  Contents of Structure Components: pgmreschedule (Cont.)

Component Contents
7-44



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pgmreschedule(3rt) for a listing of the types of errors that may occur. 

Pgmschedule – Schedule a Process on an FBS 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a pro-
cess’s scheduling priority has changed.   If you have an existing
application that uses this interface, it is recommended that you
change your application to use sched_pgmadd(3rt) (see
page 7-52). For details on obsolete interfaces, refer to Chapter 2,
“Overview of the FBS.”

This routine is invoked to create a new process and schedule it on a frequency–based
scheduler. When a process is scheduled using this routine, it is scheduled under the POSIX
SCHED_RR scheduling policy (for complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management” chapter of the PowerMAX OS
Programming Guide). Note that a process can not be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock interrupt has been disabled. In such cases, the
process will behave as though it were scheduled under the SCHED_FIFO policy.

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame. A period of one indi-
cates that the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every two minor
cycles, a period of three once every three minor cycles, and so on.
This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-6).

cycle  an integer value indicating the first minor cycle in which the specified
process is scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per frame minus
one. The total number of minor cycles per frame is specified in a call
to fbsconfigure (see page 7-6 for an explanation of this routine).

halt  an integer value indicating whether or not the scheduler should be
stopped in the event that the specified process causes a frame over-
run.  A nonzero value indicates that the scheduler will be stopped.   

Table 7-15.  Contents of Structure Components: pgmreschedule (Cont.)

Component Contents
7-45



PowerMAX OS Guide to Real-Time Services
If you wish to set the process’s scheduling priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this routine, the following
conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias, the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pgmschedule(fbs_id, sched_buf) 
int fbs_id; 
struct pgm_ds { 
    char *name_ptr; 
    int  cpu; 
    int  fpid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
    int  status; 
} *sched_buf;
7-46



The C Library Interface
Call 

struct pgm_ds  sched_buf; 
int istat; 
istat = pgmschedule(fbs_id, &sched_buf);

Parameters 

Parameters are described as follows. 

fbs_id        refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

sched_buf refers to a sched_buf structure that contains the scheduling
parameters with which you wish to schedule the process.
The type of information that is specified in each component
is presented in Table 7-16. Note that the status compo-
nent is ignored on this call.

Table 7-16.  Contents of Structure Components: pgmschedule

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the program to be scheduled on the scheduler.  A full or rela-
tive path name of up to 1024 characters can be specified.   

cpu  An integer value indicating the processors on which the specified pro-
gram can be scheduled to run.  Acceptable values and corresponding
results are as follows:   

  0 The program pointed to by name_ptr can be 
scheduled on the processor from which the call is
made 

  -1 The program pointed to by name_ptr can be 
scheduled on any processor

  Bit mask If (cpu & ( 1<<i )) is set (where i is an integer 
ranging from zero to 15 and representing a CPU),
the program pointed to by name_ptr can be 
scheduled on CPU i

fpid  an integer value that is returned by pgmschedule and is the unique
frequency–based scheduler process identifier for the scheduled pro-
cess   
7-47



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pgmschedule(3rt) for a listing of the types of errors that may occur. 

prior  an integer value indicating the specified process’s scheduling priority.
A process that is scheduled using pgmschedule is scheduled under
the POSIX SCHED_RR scheduling policy.  The value specified must
lie in the range of priorities associated with this policy.  You can
obtain the allowable range of priorities by invoking the run(1)
command from the shell and not specifying any options or arguments
(see the corresponding system manual page for an explanation of this
command).  Higher numerical values correspond to more favorable
scheduling priorities.

For complete information on scheduling policies and priorities, refer
to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide.

param  an integer value to be passed to a process that is scheduled on a fre-
quency–based scheduler. This value can be retrieved by the FBS–
scheduled process through a call to pgmquery (see page 7-36 for an
explanation of this routine).   

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame. A period of one indi-
cates that the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every two minor
cycles, a period of three once every three minor cycles, and so on.
This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-6).

cycle  an integer value indicating the first minor cycle in which the specified
program is scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per frame minus
one. The total number of minor cycles per frame is specified in a call
to fbsconfigure (see page 7-6 for an explanation of this routine).

halt  an integer value indicating whether or not the scheduler should be
stopped in the event that the specified program causes a frame over-
run.  A nonzero value indicates that the scheduler will be stopped.

Table 7-16.  Contents of Structure Components: pgmschedule (Cont.)

Component Contents
7-48



The C Library Interface
Pgmtrigger – Trigger Process Waiting on FBS 7

This routine enables a process to wake a process that is in the fbswait sleep state.  It is
important to note that the calling process does not have to be scheduled on a frequency–
based scheduler; the target process must be. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pgmtrigger(fpid, tgrflg) 
int fpid; 
int tgrflg;

Call 

int istat; 
istat = pgmtrigger(fpid, tgrflg);

Parameters 

Parameters are described as follows. 

fpid     refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the sleeping process. This value is obtained when you make
a call to sched_pgmadd (see page 7-52 for an explanation
of this routine). 

tgrflg   refers to a variable that contains an integer value indicating
whether or not a context switch is to be forced on the pro-
cessor on which the wakened process is executing.  A non-
zero value indicates that a context switch is to be forced.

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pgmtrigger(3rt)for a listing of the types of errors that may occur. 

Sched_fbsqry – Query Processes on an FBS 7

The sched_fbsqry routine is invoked to obtain information about processes that have
been scheduled on a frequency–based scheduler.  Information is returned for all processes
scheduled on the user–specified processor(s).  Information provided for each process
includes the following: 

• A mask of the CPU(s) on which the process can execute 

• The frequency–based scheduler process identifier 
7-49



PowerMAX OS Guide to Real-Time Services
• The policy under which the process has been scheduled 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

• The current state of the process 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int sched_fbsqry(fbs_id, cpu, fbs_buf, buf_cnt) 
int fbs_id; 
int cpu; 
struct pgm2_ds { 
    char *name_ptr; 
    int  cpu; 
    int  fpid; 
    int  cid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
    int  status; 
} *fbs_buf; 
int buf_cnt;

Call 

struct pgm2_ds  fbs_buf[buf_cnt]; 
int istat; 
istat = sched_fbsqry(fbs_id, cpu, fbs_buf, buf_cnt);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain scheduling informa-
tion. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 
7-50



The C Library Interface
cpu        refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 7-17. 

fbs_buf   refers to an array of pgm2_ds structures to which
sched_fbsqry will return scheduling information for
each process on the processor(s) specified with the cpu
parameter. The type of information returned in each compo-
nent of the structure for a single process is presented in
Table 7-18. 

Table 7-17.  CPU Options:  sched_fbsqry

Value Result

0  Scheduling information for processes executing on the
processor from which the call is made is returned   

-1  Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned

Table 7-18.  Contents of Structure Components: sched_fbsqry

Component Contents

name_ptr  A pointer to a variable that contains a standard UNIX
path name identifying the process for which informa-
tion is returned.   

cpu  A bit mask indicating the processor(s) on which the
process can execute   

fpid  The process’s frequency–based scheduler process iden-
tifier   

cid  The process’s scheduling policy   

prior  an integer value indicating the specified process’s
scheduling priority

param  The process’s initiation parameter   

period  The number of minor cycles indicating the frequency
with which the process is to be wakened in each major
frame (period)   
7-51



PowerMAX OS Guide to Real-Time Services
buf_cnt   refers to a variable that contains an integer value indicating
the number of structures in the array to which fbs_buf
points. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page sched_fbsqry(3rt) for a listing of the types of errors that may occur. 

Sched_pgmadd – Schedule a Process on an FBS 7

The sched_pgmadd routine is invoked to create a new process and schedule it on a fre-
quency–based scheduler.  It is important to note that to use this routine to (1) change a pro-
cess’s scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the pri-
ority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, the following
conditions must be met:

• The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

cycle  The first minor cycle in which the process is scheduled
to be wakened in each major frame (starting base
cycle)   

halt  The value of the “halt on overrun” flag.  A nonzero
value indicates that the flag is set.  A value of zero indi-
cates that the flag is not set.   

status  The current  state  of the process as defined in
<fbslib.h>.   

Table 7-18.  Contents of Structure Components: sched_fbsqry (Cont.)

Component Contents
7-52



The C Library Interface
• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this routine, the following
conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias,  the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int sched_pgmadd(fbs_id, sched_buf) 
int fbs_id; 
struct pgm2_ds { 
    char *name_ptr; 
    int  cpu; 
    int  fpid; 
    int  cid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
    int  status; 
} *sched_buf;
7-53



PowerMAX OS Guide to Real-Time Services
Call 

struct pgm2_ds  sched_buf; 
int istat; 
istat = sched_pgmadd(fbs_id, &sched_buf);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

sched_buf refers to a sched_buf structure that contains the scheduling
parameters with which you wish to schedule the process.
The type of information that is specified in each component
is presented in Table 7-19. Note that the status compo-
nent is ignored on this call. 

Table 7-19.  Contents of Structure Components: sched_pgmadd

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the program to be scheduled on the scheduler.  A full or rela-
tive path name of up to 1024 characters can be specified.

cpu  An integer value indicating the processors on which the specified pro-
gram can be scheduled to run.  Acceptable values and corresponding
results are as follows: 

  0 The program pointed to by name_ptr can be
 scheduled on the processor from which the call is 

made.

  -1 The program pointed to by name_ptr can be 
scheduled on any processor

  Bit mask If (cpu & ( 1<<i )) is set (where i is an integer
ranging from zero to 15 and representing a CPU),
the program pointed to by name_ptr can be 
scheduled on CPU i

fpid  an integer value that is returned by sched_pgmadd and is the
unique frequency–based scheduler process identifier for the sched-
uled process   
7-54



The C Library Interface
cid  an integer value indicating the POSIX scheduling policy under which
the specified program is to be scheduled.  Scheduling policies are
defined in the file <sched.h>.  The value of cid must be one of the
following:

  SCHED_FIFO first–in–first out (FIFO) scheduling policy

  SCHED_RR round–robin (RR) scheduling policy. Note
that a process cannot be scheduled under
this policy on a CPU on which servicing
of the 60 Hz clock interrupt has been
disabled.  In such cases, the process
behaves as though it were scheduled under
the SCHED_FIFO policy 

  SCHED_OTHER time-sharing scheduling policy

prior  an integer value indicating the scheduling priority of the specified
process. The range of acceptable priority values is governed by the
scheduling policy specified.

You can determine the allowable range of priorities associated with
each policy (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) by invok-
ing the run(1) command from the shell and not specifying any
options or arguments (see the corresponding system manual page for
an explanation of this command). Higher numerical values corre-
spond to more favorable priorities.

For complete information on scheduling policies and priorities, refer
to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide.

param  an integer value to be passed to a process that is scheduled on a fre-
quency–based scheduler. This value can be retrieved by the FBS–
scheduled process through a call to sched_pgmqry (see page 7-57
for an explanation of this routine).   

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame. A period of one indi-
cates that the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every two minor
cycles, a period of three once every three minor cycles, and so on.
This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-6).

Table 7-19.  Contents of Structure Components: sched_pgmadd (Cont.)

Component Contents
7-55



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful. A return value of −1 indi-
cates that an error has occurred; errno is set to indicate the error. Refer to the system
manual page sched_pgmadd(3rt) for a listing of the types of errors that may occur. 

Sched_pgm_set_soft_overrun_limit 7

Sets the consecutive soft overrun limit for a currently scheduled LWP on the frequency-
based scheduler. To set the consecutive soft overrun limit, the calling LWP must have alter
permission for the scheduler. If the Enhanced Security Utilities are installed and running,
the Mandatory Access Control (MAC) level of the calling process must equal the MAC
level of the target process, or the calling process must have the P_MACWRITE privilege. 

The LWP can be identified in one of the following ways:

• fpid only (if name_ptr is the null string).

• path name and processor id pair only (if fpid is -1).

• fpid, path name, and processor id.

Specification

#include <fbslib.h>

int sched_pgm_set_soft_overrun_limit (fbs_id, soft_overrun_buf)
int fbs_id;
struct soft_overrun_ds *soft_overrun_buf;

Parameters

fbs_id Obtained from an fbsid(3rt) library routine call or set to -1. -1
enables an FBS-scheduled LWP to reference the frequency-based
scheduler on which it is scheduled without knowing the scheduler
identifier.

soft_overrun_buf soft_overrun_ds structure that contains the soft overrun status for
the scheduled LWP.

cycle  an integer value indicating the first minor cycle in which the specified
program is scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per frame minus
one. The total number of minor cycles per frame is specified in a call
to fbsconfigure (see page 7-6 for an explanation of this routine).   

halt  an integer value indicating whether or not the scheduler should be
stopped in the event that the specified program causes a frame over-
run.  A nonzero value indicates that the scheduler will be stopped.   

Table 7-19.  Contents of Structure Components: sched_pgmadd (Cont.)

Component Contents
7-56



The C Library Interface
Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and errno is set to one of the error values listed in the system manual pages.

Sched_pgm_soft_overrun_query 7

Invoked to obtain status of soft overrun processing for a currently scheduled LWP on the
frequency-based scheduler.

Specification

#include <fbslib.h> 

int sched_pgm_soft_overrun_query(fbs_id, soft_overrun_buf)
int fbs_id; 
struct soft_overrun_info_ds *soft_overrun_buf;

Parameters

fbs_id Obtained from an fbsid(3rt) library routine call or set to -1. -1
enables an FBS-scheduled LWP to reference the frequency-based
scheduler on which it is scheduled without knowing the scheduler
identifier.

soft_overrun_buf soft_overrun_ds structure that contains the soft overrun status for
the scheduled LWP.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
and errno is set to one of the values listed in the system manual pages.

Sched_pgmqry – Query a Process on an FBS 7

The sched_pgmqry routine is invoked to obtain information for a particular process that
has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 
7-57



PowerMAX OS Guide to Real-Time Services
NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling policy under which the process has been scheduled 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int sched_pgmqry(fbs_id, qry_buf) 
int fbs_id; 
struct pgm2_ds { 
    char *name_ptr; 
    int cpu; 
    int fpid; 
    int cid; 
    int prior; 
    int param; 
    int period; 
    int cycle; 
    int halt; 
    int status; 
} *qry_buf;

Call 

struct pgm2_ds  qry_buf; 
int istat; 
istat = sched_pgmqry(fbs_id, &qry_buf);
7-58



The C Library Interface
Parameters 

Parameters are described as follows. 

fbs_id   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information has been scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of –1.

qry_buf   refers to a pgm2_ds structure that contains information
identifying the process for which information is to be
returned. Sched_pgmqry will return to this structure the
scheduling information for a specified process. The infor-
mation contained in each component of the structure to
which qry_buf points is presented in Table 7-20. 

Table 7-20.  Contents of Structure Components: sched_pgmqry

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the process for which information is to be returned.  A full or
relative path name of up to 1024 characters can be specified.  If the
pointer points to a null string, you must provide the frequency–based
scheduler process identifier in the fpid component.   

cpu  An integer value indicating the processor(s) to be used in conjunction
with the value of name_ptr to identify the program for which informa-
tion is to be obtained.  Acceptable values and corresponding results
follow:   

  0 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on the processor from which the call is made is
specified

  –1 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on any processor is specified 

  Bit mask If (cpu & ( 1<<i )) is set (where i is an integer 
ranging from zero to 15 and representing a CPU)
and it is the only bit set, the first process whose
name matches the name pointed to by name_ptr that
is running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process whose name matches the name
pointed to by name_ptr that is currently running on
any of the selected CPUs is specified
7-59



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page sched_pgmqry(3rt) for a listing of the types of errors that may occur. 

Sched_pgmresched – Reschedule a Process 7

The sched_pgmresched routine is invoked to change the scheduling parameters for a
process that is scheduled on a frequency–based scheduler.  You may wish, for example, to
change a program’s policy or priority or the frequency with which it is scheduled to run.
You cannot, however, change the CPU on which it has been scheduled. 

If you wish to (1) change a process’s scheduling policy to the SCHED_FIFO or the
SCHED_RR policy or (2) change the priority of a process scheduled under the SCHED_FIFO

or the SCHED_RR policy, the following conditions must be met:

•  The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

fpid  an integer value providing the unique frequency–based scheduler pro-
cess identifier for the process for which information is to be returned.
This value is obtained when you make a call to sched_pgmadd (see
page 7-52 for an explanation of this routine). This value must be –1 if
you wish to identify the program to be queried only by specifying
name_ptr and cpu. 

cid  an integer value indicating the specified process’s scheduling policy   

prior  an integer value indicating the specified process’s scheduling priority

param  an integer value indicating the value passed to the process via a call to
sched_pgmadd or sched_pgmresched   

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame   

cycle  an integer value indicating the first minor cycle in which the specified
process is scheduled to be wakened in each frame   

halt  an integer value indicating the value of the “halt on overrun” flag.  A
nonzero value indicates that the flag is set.  A value of zero indicates
that the flag is not set.   

status  an integer value indicating the current state of the specified process as
defined in <fbslib.h>

Table 7-20.  Contents of Structure Components: sched_pgmqry (Cont.)

Component Contents
7-60



The C Library Interface
If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int sched_pgmresched(fbs_id, rsch_buf) 
int fbs_id; 
struct pgm2_ds { 
    char *name_ptr; 
7-61



PowerMAX OS Guide to Real-Time Services
    int  cpu; 
    int  fpid; 
    int  cid; 
    int  prior; 
    int  param; 
    int  period; 
    int  cycle; 
    int  halt; 
    int  status; 
} *rsch_buf;

Call 

struct pgm2_ds  rsch_buf; 
int istat; 
istat = sched_pgmresched(fbs_id, &rsch_buf);

Parameters 

Parameters are described as follows. 

fbs_id     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
7-6 for an explanation of this routine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

rsch_buf   refers to a pgm2_ds structure that contains the scheduling
parameters with which you wish to reschedule the process.
The type of information that is specified in each component
is presented in Table 7-21. Note that the status component is
ignored on this call. 

Table 7-21.  Contents of Structure Components: sched_pgmresched

Component Contents

name_ptr  a pointer to a variable that contains a standard UNIX path name iden-
tifying the process for which information is to be rescheduled.  A full
or relative path name of up to 1024 characters can be specified.  If the
pointer points to a null string, you must provide the frequency–based
scheduler process identifier in the fpid component.   

cpu  An integer value indicating the processor(s) to be used in conjunction
with the value of name_ptr to identify the process to be rescheduled.
Acceptable values and corresponding results are as follows:   

  0 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on the processor from which the call is made is
rescheduled
7-62



The C Library Interface
  –1 The first process whose name matches the name
pointed to by name_ptr that is currently running 
on any processor is rescheduled 

  Bit mask If (cpu & ( 1<<i )) is set (where i is an integer 
ranging from zero to 15 and representing a CPU)
and it is the only bit set, the first process whose
name matches the name pointed to by name_ptr that
is running on CPU i is rescheduled

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process whose name matches the name
pointed to by name_ptr that is currently running on
any of the selected CPUs is rescheduled

fpid  an integer value providing the unique frequency–based scheduler pro-
cess identifier for the process to be rescheduled. This value is
obtained when you make a call to sched_pgmadd (see page 7-52
for an explanation of this routine). This value must be − 1 if you wish
to identify the program to be rescheduled only by specifying
name_ptr and cpu.    

cid  an integer value indicating the scheduling policy under which the
specified program is to be scheduled.  Scheduling policies are defined
in the file <sched.h>.  The value of cid must be one of the follow-
ing:

SCHED_FIFO first–in–first out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy.
Note that a process cannot be scheduled
under this policy on a CPU on which 
servicing of the 60 Hz clock interrupt has
been disabled.  In such cases, the process
behaves as though it were scheduled

 under the SCHED_FIFO policy.

SCHED_OTHER time-sharing scheduling policy

Table 7-21.  Contents of Structure Components: sched_pgmresched (Cont.)

Component Contents
7-63



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page sched_pgmresched(3rt) for a listing of the types of errors that may
occur.

prior  an integer value indicating the scheduling priority of the specified
process. The range of acceptable priority values is governed by the
scheduling policy specified.

You can determine the allowable range of priorities associated with
each policy (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) by invok-
ing the run(1) command from the shell and not specifying any
options or arguments (see the corresponding system manual page for
an explanation of this command). Higher numerical values corre-
spond to more favorable priorities.

For complete information on scheduling policies and priorities, refer
to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide.

param  an integer value to be passed to a process that is scheduled on a fre-
quency–based scheduler   

period  an integer value indicating the frequency with which the specified
program is to be wakened in each major frame. A period of one indi-
cates that the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every two minor
cycles, a period of three once every three minor cycles, and so on.
This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-6).

cycle  an integer value indicating the first minor cycle in which the specified
process is scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per frame minus
one. The total number of minor cycles per frame is specified in a call
to fbsconfigure (see page 7-6 for an explanation of this routine).

halt  an integer value indicating whether or not the scheduler should be
stopped in the event that the specified process causes a frame over-
run.  A nonzero value indicates that the scheduler will be stopped.   

Table 7-21.  Contents of Structure Components: sched_pgmresched (Cont.)

Component Contents
7-64



The C Library Interface
The Performance Monitor Routines 7

The performance monitor routines provide access to the key features of the performance
monitor.  They enable you to perform such basic operations as the following: (1) clear per-
formance monitor values for a process or processor, (2) start and stop performance moni-
toring for a process or processor, and (3) obtain performance monitor values for a process
or processor.

In the sections that follow, all of the performance monitor routines contained in the
librt library are presented in alphabetical order. Figure 7-2 illustrates the approximate
order in which you might call the routines from an application program.

Figure 7-2.  C Library Call Sequence:  Performance Monitor

END

START

pmselect

pmclrtable

pmmonitor

pmqrycpu
pmqrylist

pmmonitor

pmqrypgm

pmprogram

pmprogram
7-65



PowerMAX OS Guide to Real-Time Services
Pmclrpgm – Clear Values for a Process 7

This routine is invoked to clear performance monitor values for a particular process that
has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

This routine will clear the process’ total soft overrun count.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int  pmclrpgm(fbs_id, name, cpu, fpid) 
int  fbs_id; 
char *name; 
int  cpu; 
int  fpid; 

Call 

int istat; 
istat = pmclrpgm(fbs_id, name, cpu, fpid);

Parameters 

Parameters are described as follows. 

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
7-6 for an explanation of this routine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which values are to be
cleared.  A full or relative path name of up to 1024 charac-
7-66



The C Library Interface
ters can be specified.  If this variable is the null string, you
must provide the frequency–based scheduler process identi-
fier in the fpid parameter. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which values
are to be cleared. Acceptable values and corresponding
results are presented in Table 7-22. 

fpid    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which values are to be cleared. This value is
obtained when you make a call to sched_pgmadd (see
page 7-52 for an explanation of this routine). This value
must be –1 if you wish to identify the process only by spec-
ifying name and cpu. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmclrpgm(3rt) for a listing of the types of errors that may occur. 

Pmclrtable – Clear Values for Processor(s) 7

This routine is invoked to clear performance monitor values for FBS–scheduled processes
on one or more specified processors on a selected scheduler. 

Table 7-22.  CPU Options:  pmclrpgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified 

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified
7-67



PowerMAX OS Guide to Real-Time Services
NOTE

This routine will clear the total soft overrun count for all related
processes.

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int  pmclrtable(fbs_id, cpu) 
int  fbs_id; 
int  cpu;

Call 

int istat; 
istat = pmclrtable(fbs_id, cpu);

Parameters 

Parameters are described as follows.

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

cpu      refers to an integer value indicating the processor or proces-
sors for which performance monitor values are to be
cleared. Acceptable values and corresponding results are
presented in Table 7-23. 

Table 7-23.  CPU Options:  pmclrtable 

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are cleared   

-1  Performance monitor values for all processes on the
scheduler are cleared

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
cleared 
7-68



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmclrtable(3rt) for a listing of the types of errors that may occur. 

Pmmonitor – Start/Stop Performance Monitoring on Processor(s) 7

This routine is invoked to start or stop performance monitoring for FBS–scheduled pro-
cesses on one or more specified processors on a selected scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int  pmmonitor(fbs_id, pmflag, cpu) 
int  fbs_id; 
int  pmflag; 
int  cpu;

Call 

int istat; 
istat = pmmonitor(fbs_id, pmflag, cpu);

Parameters 

Parameters are described as follows.

fbs_id     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

pmflag    refers to a variable that contains an integer value indicating
whether performance monitoring is to be started or stopped.
A nonzero value indicates that performance monitoring is to
be started.  A zero value indicates that performance moni-
toring is to be stopped. 

cpu      refers to an integer that indicates the processor or processors
for which performance monitoring is to be started or
stopped. Acceptable values and corresponding results are
presented in Table 7-24. 
7-69



PowerMAX OS Guide to Real-Time Services
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmmonitor(3rt) for a listing of the types of errors that may occur. 

Pmprogram – Start/Stop Performance Monitoring on a Process 7

This routine is invoked to start or stop performance monitoring for a particular process
that has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency–based scheduler process identifier. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

 int  pmprogram(fbs_id, name, cpu, fpid, pmflag) 
int  fbs_id; 
char *name; 
int  cpu; 
int  fpid; 
int  pmflag;

Table 7-24.  CPU Options:  pmmonitor

Value Result

0  Performance monitoring for FBS–scheduled processes
executing on the processor from which the call is made
is started or stopped   

-1 Performance monitoring for all processes on the sched-
uler is started or stopped

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitoring for processes executing on CPU i is started
or stopped   
7-70



The C Library Interface
Call 

int istat; 
istat = pmprogram(fbs_id, name, cpu, fpid, pmflag);

Parameters 

Parameters are described as follows.

fbs_id refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
7-6 for an explanation of this routine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which performance moni-
toring is to be started or stopped.  A full or relative path
name of up to 1024 characters can be specified.  If this vari-
able is the null string, you must provide the frequency–
based scheduler process identifier in the slot parameter. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring is to be started or stopped. Acceptable
values and corresponding results are  presented in
Table 7-25. 

Table 7-25.  CPU Options:  pmprogram

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified 

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
7-71



PowerMAX OS Guide to Real-Time Services
fpid    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which performance monitoring is to be
started or stopped. This value is obtained when you make a
call to sched_pgmadd (see page 7-52 for an explanation
of this routine). This value must be − 1 if you wish to iden-
tify the process only by specifying name and cpu. 

pmflag  refers to a variable that contains an integer value indicating
whether performance monitoring is to be started or stopped.
A nonzero value indicates that performance monitoring is to
be started.  A zero value indicates that performance moni-
toring is to be stopped. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmprogram(3rt) for a listing of the types of errors that may occur. 

Pmqrycpu – Query Values for Selected Processor(s) 7

This routine is invoked to obtain performance monitor values for FBS–scheduled pro-
cesses on one or more specified processors on a selected scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections.  Note that all time related units are in microseconds (usecs).

Specification 

#include <fbslib.h> 

int  pmqrycpu(fbs_id, cpu, pm_buf, buf_cnt) 
int  fbs_id; 
int  cpu; 
struct pmqry_ds { 
    int     fpid; /* FBS process identifier */
    int     lastcyc_tm; /* time used in last run cycle */
    usecs
    int     tot_cycles; /* total number of cycles executed */
    int     tot_sec; /* total number of seconds used */
    int     tot_usec; /* total microseconds used */
    int     overruns; /* number of overruns by process */
    int     mincyc_tm; /* minimum time used in a cycle */
    usecs
    int     mincyc_cycle; /* cycle number of minimum cycle time */
    int     mincyc_frame; /* frame number of minimum cycle time */
    int     maxcyc_tm; /* maximum time used in a cycle */
    usecs
    int     maxcyc_cycle; /* cycle number of maximum cycle time */
    int     maxcyc_frame; /* frame number of maximum frame time */
    int     minframe_tm; /* minimum time used in a frame */
7-72



The C Library Interface
    usecs
    int     minframe; /* frame number of minimum frame time */
    int     maxframe_tm; /* maximum time used in a frame */
    usecs
    int     maxframe; /* frame number of maximum frame time */
} *pm_buf; 
int  buf_cnt;

Call 

struct pmqry_ds  pm_buf[buf_cnt]; 
int istat; 
istat = pmqrycpu(fbs_id, cpu, pm_buf, buf_cnt);

Parameters 

Parameters are described as follows. 

fbs_id   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 7-6 for an explanation of this routine). If you wish to
reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

cpu       refers to a variable that contains an integer value indicating
the processor(s) for which performance monitor values are
to be obtained. Acceptable values and corresponding results
are presented in Table 7-26. 

pm_buf   refers to an array of pmqry_ds structures to which
pmqrycpu will return the performance monitor values for
each FBS–scheduled process on the processor(s) specified
with the cpu parameter. The number of processes for which
these values are returned is bound by the value of the
buf_cnt parameter. The type of information returned in each

Table 7-26.  CPU Options:  pmqrycpu

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are returned   

-1 Performance monitor values for all processes on the
scheduler are returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
returned   
7-73



PowerMAX OS Guide to Real-Time Services
component of the structure for a single process is presented
in Table 7-27. 

Table 7-27.  Contents of Structure Components: pmqrycpu 

Component Contents

fpid  The process’s frequency–based scheduler process iden-
tifier (slot number)   

lastcyc_tm  The amount of time (in usecs) that the process has
spent running from the last time that it has been wak-
ened by the scheduler until it has called fbswait (last
time)   

tot_cycles  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

tot_sec  The number of seconds that the process has spent run-
ning in all cycles (total seconds).  The total amount of
time that the process has spent running is equal to the
value of tot_sec plus the value of tot_usec.   

tot_usec  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
spent running is equal to the value of tot_sec plus the
value of tot_usec.   

overruns  The number of hard frame overruns caused by the pro-
cess   

mincyc_tm  The least amount of time (in usecs) that the process has
spent running in a cycle (minimum cycle time)   

mincyc_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

mincyc_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

maxcyc_tm  The greatest amount of time (in usecs) that the process
has spent running in a cycle (maximum cycle time)   

maxcyc_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

maxcyc_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

minframe_tm  The least amount of time (in usecs) that the process has
spent running during a major frame (minimum frame
time)   
7-74



The C Library Interface
buf_cnt   refers to a variable that contains an integer value indicating
the number of structures in the array to which pm_buf
points. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmqrycpu(3rt) for a listing of the types of errors that may occur. 

Pmqrylist – Query Values for a List of Processes 7

This routine is invoked to obtain performance monitor values for a list of processes sched-
uled on a frequency–based scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int  pmqrylist(fbs_id, pm_buf, buf_cnt) 
int  fbs_id; 
struct pmqry_ds { 
    int     fpid; /* FBS process identifier */
    int     lastcyc_tm; /* time used in last run cycle */
    usecs
    int     tot_cycles; /* total number of cycles executed */
    int     tot_sec; /* total number of seconds used */
    int     tot_usec; /* total microseconds used */
    int     overruns; /* number of overruns by process */
    int     mincyc_tm; /* minimum time used in a cycle */
    usecs
    int     mincyc_cycle; /* cycle number of minimum cycle time */
    int     mincyc_frame; /* frame number of minimum cycle time */
    int     maxcyc_tm; /* maximum time used in a cycle */
    usecs

minframe  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

maxframe_tm  The greatest amount of time (in usecs) that the process
has spent running during a major frame (maximum
frame time)   

maxframe  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 7-27.  Contents of Structure Components: pmqrycpu  (Cont.)

Component Contents
7-75



PowerMAX OS Guide to Real-Time Services
    int     maxcyc_cycle; /* cycle number of maximum cycle time */
    int     maxcyc_frame; /* frame number of maximum frame time */
    int     minframe_tm; /* minimum time used in a frame */
    usecs
    int     minframe; /* frame number of minimum frame time */
    int     maxframe_tm; /* maximum time used in a frame */
    usecs
    int     maxframe; /* frame number of maximum frame time */
} *pm_buf; 
int  buf_cnt;

Call 

struct pmqry_ds  pm_buf[buf_cnt]; 
int istat; 
istat = pmqrylist(fbs_id, pm_buf, buf_cnt);

Parameters 

Parameters are described as follows.

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of –1. 

pm_buf   refers to an array of pmqry_ds structures to which
pmqrylist will return the performance monitor values for
a list of FBS–scheduled processes. The list of processes for
which values are returned is created by placing the fre-
quency–based scheduler identifier in the fpid component of
each structure in the array. The type of information con-
tained in each component of the structure for a single
process is presented in Table 7-28. 

Table 7-28.  Contents of Structure Components: pmqrylist

Component Contents

fpid  An integer value providing the unique frequency–based
scheduler process identifier for which performance
monitor values are to be returned   

lastcyc_tm  The amount of time (in usecs) that the process has
spent running from the last time that it has been wak-
ened by the scheduler until it has called fbswait (last
time)   

tot_cycles  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   
7-76



The C Library Interface
buf_cnt   refers to a variable that contains an integer value indicating
the number of structures in the array to which pm_buf
points. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmqrylist(3rt) for a listing of the types of errors that may occur. 

tot_sec  The number of seconds that the process has spent run-
ning in all cycles (total seconds).  The total amount of
time that the process has spent running is equal to the
value of tot_sec plus the value of tot_usec.

tot_usec  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
spent running is equal to the value of tot_sec plus the
value of tot_usec.

overruns  The number of hard frame overruns caused by the pro-
cess   

mincyc_tm  The least amount of time (in usecs) that the process has
spent running in a cycle (minimum cycle time)   

mincyc_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

mincyc_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

maxcyc_tm  The greatest amount of time (in usecs) that the process
has spent running in a cycle (maximum cycle time)   

maxcyc_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

maxcyc_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

minframe_tm  The least amount of time (in usecs) that the process has
spent running during a major frame (minimum frame
time)   

minframe  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

maxframe_tm  The greatest amount of time (in usecs) that the process
has spent running during a major frame (maximum
frame time)   

maxframe  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 7-28.  Contents of Structure Components: pmqrylist (Cont.)

Component Contents
7-77



PowerMAX OS Guide to Real-Time Services
Pmqrypgm – Query Values for a Selected Process 7

This routine is invoked to obtain performance monitor values for a particular process
scheduled on a frequency–based scheduler. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int  pmqrypgm(fbs_id, name, cpu, pm_buf) 
int  fbs_id; 
char *name; 
int  cpu; 
struct pmqry_ds { 
    int     fpid; /* FBS process identifier */
    int     lastcyc_tm; /* time used in last run cycle */
    usecs
    int     tot_cycles; /* total number of cycles executed */
    int     tot_sec; /* total number of seconds used */
    int     tot_usec; /* total microseconds used */
    int     overruns; /* number of overruns by process */
    int     mincyc_tm; /* minimum time used in a cycle */
    usecs
    int     mincyc_cycle; /* cycle number of minimum cycle time */
    int     mincyc_frame; /* frame number of minimum cycle time */
    int     maxcyc_tm; /* maximum time used in a cycle */
    usecs
    int     maxcyc_cycle; /* cycle number of maximum cycle time */
    int     maxcyc_frame; /* frame number of maximum frame time */
    int     minframe_tm; /* minimum time used in a frame */
    usecs
    int     minframe; /* frame number of minimum frame time */
    int     maxframe_tm; /* maximum time used in a frame */
    usecs
    int     maxframe; /* frame number of maximum frame time */
} *pm_buf;

Call 

struct pmqry_ds  pm_buf; 
int istat; 
istat = pmqrypgm(fbs_id, name, cpu, &pm_buf);

Parameters 

Parameters are described as follows. 

fbs_id    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
7-78



The C Library Interface
fbsconfigure (see page 7-6 for an explanation of this
routine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

name     refers to a pointer to a variable that contains a standard
UNIX path name identifying the process for which perfor-
mance monitoring values are to be returned.  A full or rela-
tive path name of up to 1024 characters can be specified.  If
this variable is the null string, you must provide the fre-
quency–based scheduler process identifier in the fpid com-
ponent of the structure to which pm_buf points.

cpu       refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring values are to be returned. Acceptable val-
ues and corresponding results are presented in Table 7-29. 

pm_buf   refers to a pmqry_ds structure to which pmqrypgm will
return the performance monitor values for the FBS–sched-
uled process pointed to by the name parameter. The type of
information contained in each component of the structure is
presented in Table 7-30 below.

Table 7-29.  CPU Options:  pmqrypgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified 

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
7-79



PowerMAX OS Guide to Real-Time Services
 

Table 7-30.  Contents of Structure Components: pmqrypgm

Component Contents

fpid  An integer value providing the unique frequency–based
scheduler process identifier for which performance
monitor values are to be returned. This value is
obtained when you make a call to sched_pgmadd
(see page 7-52 for an explanation of this routine). This
value must be − 1 if you wish to identify the process
only by specifying name and cpu.   

lastcyc_tm  The amount of time (in usecs) that the process has
spent running from the last time that it has been wak-
ened by the scheduler until it has called fbswait (last
time)   

tot_cycles  The number of times that the process has been wak-
ened by the scheduler since the last time that perfor-
mance monitor values have been cleared and perfor-
mance monitoring has been enabled (total iterations, or
cycles)   

tot_sec  The number of seconds that the process has spent run-
ning in all cycles (total seconds).  The total amount of
time that the process has spent running is equal to the
value of tot_sec plus the value of tot_usec.

tot_usec  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
spent running is equal to the value of tot_sec plus the
value of tot_usec.

overruns  The number of hard frame overruns caused by the pro-
cess   

mincyc_tm  The least amount of time (in usecs) that the process has
spent running in a cycle (minimum cycle time)   

mincyc_cycle  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

mincyc_frame  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

maxcyc_tm  The greatest amount of time (in usecs) that the process
has spent running in a cycle (maximum cycle time)   

maxcyc_cycle  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

maxcyc_frame  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   
7-80



The C Library Interface
Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmqrypgm(3rt) for a listing of the types of errors that may occur. 

Pmqrytimer – Query Performance Monitor Mode 7

This routine is invoked to determine whether performance monitor timing values include
or exclude time spent servicing interrupts. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pmqrytimer() 
int mode;

Call 

int mode; 
mode = pmqrytimer;

Return Value 

The value of mode is set to zero to indicate that interrupt time is excluded from perfor-
mance monitor timing values; it is set to one to indicate that interrupt time is included in
timing values; it is set to − 1 if an error occurs, and errno is set to indicate the error.
Refer to the system manual page pmqrytimer(3rt) for a listing of the types of errors
that may occur.

minframe_tm  The least amount of time (in usecs) that the process has
spent running during a major frame (minimum frame
time)   

minframe  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

maxframe_tm  The greatest amount of time (in usecs) that the process
has spent running during a major frame (maximum
frame time)   

maxframe  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 7-30.  Contents of Structure Components: pmqrypgm (Cont.)

Component Contents
7-81



PowerMAX OS Guide to Real-Time Services
Pmselect – Select Performance Monitor Mode 7

This routine is invoked to select the timing mode under which the performance monitor is
to run. The timing mode can be set to include or exclude time spent servicing interrupts.
Note that to set the timing mode, the calling process must have the P_RTIME privilege (for
additional information on privileges, refer to the PowerMAX OS Programming Guide and
the intro(2) system manual page). 

CAUTION

The timing mode for the high–resolution timing facility is set
system–wide.  It affects all processes running on all CPUs. 

The C specification, call, corresponding parameters, and return value are presented in the
following sections. 

Specification 

#include <fbslib.h> 

int pmselect(mode) 
int mode;

Call 

int istat; 
istat = pmselect(mode);

Parameters 

Parameters are described as follows.

mode  refers to a variable that contains an integer value indicating
whether time spent servicing interrupts is to be included in
or excluded from performance monitor timing values.  A
nonzero value indicates that interrupt time is to be included.
A value of zero indicates that interrupt time is to be
excluded. 

Return Value 

A return value of 0 indicates that the call has been successful.  A return value of − 1 indi-
cates that an error has occurred; errno is set to indicate the error.  Refer to the system
manual page pmselect(3rt) for a listing of the types of errors that may occur. 
7-82



The C Library Interface
Compiling and Linking Programs 7

When statically linking a C program, the following library is required. 

/usr/lib/librt.a 

When dynamically linking a program the following library is used:

/usr/lib/librt.so

To compile and link a C program, the command line instruction is as follows: 

hc  source_file.c  –lrt 

For additional information on compiling and linking procedures, refer to the system
manual pages ld(1) and cc(1). 
7-83



PowerMAX OS Guide to Real-Time Services
7-84



8
The FORTRAN Library Interface

The FBS Subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Fbsaccess – Change Permissions for an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Fbsattach – Attach Timing Source to an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Fbsconfigure – Configure an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
Fbscycle – Return Minor Cycle/Major Frame Count  . . . . . . . . . . . . . . . . . . . . 8-9
Fbsdetach – Detach Timing Source from an FBS  . . . . . . . . . . . . . . . . . . . . . . . 8-10
Fbsgetrtc – Obtain Current Values for Real–Time Clock. . . . . . . . . . . . . . . . . . 8-10
Fbsid – Return the FBS Identifier for a Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12
Fbsinfo – Return Information for an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13
Fbsinfo_rdev - Return Coupled FBS timing device information . . . . . . . . . . . . 8-14
Fbsinfo_cluster - Return cluster information for an FBS. . . . . . . . . . . . . . . . . . 8-17
Fbsintrpt – Start/Stop/Resume Scheduling on an FBS. . . . . . . . . . . . . . . . . . . . 8-18
Fbsquery – Query Processes on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
Fbsremove – Remove an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22
Fbsresume – Resume Scheduling on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24
Fbsrunrtc – Start/Stop Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26
Fbsschedself – Schedule an LWP on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-27
Fbssetrtc – Set Real–Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30
Fbswait – Wait on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31
Fbs_register_rdev - Register Coupled FBS Timing Device. . . . . . . . . . . . . . . . 8-31
Fbs_unregister_rdev - Unregister a Coupled FBS timing device. . . . . . . . . . . . 8-33
Fbs_register_cluster_device - Register cluster timing device . . . . . . . . . . . . . . 8-34
Fbs_unregister_cluster_device - Unregister cluster timing device  . . . . . . . . . . 8-35
Pgmquery – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Pgmquery – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Pgmremove – Remove a Process from an FBS . . . . . . . . . . . . . . . . . . . . . . . . . 8-39
Pgmreschedule – Reschedule a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-41
Pgmschedule – Schedule a Process on an FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 8-45
Pgmstat – Query State of FBS–Scheduled Process . . . . . . . . . . . . . . . . . . . . . . 8-48
Pgmtrigger – Trigger Process Waiting on FBS  . . . . . . . . . . . . . . . . . . . . . . . . . 8-51
Rtparm – Return Initiation Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-52
Sched_pgm_set_soft_overrun_limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-52
Sched_pgm_soft_overrun_query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-53
Schedfbsqry – Query Processes on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-54
Schedpgmadd – Schedule a Process on an FBS. . . . . . . . . . . . . . . . . . . . . . . . . 8-57
Schedpgmqry – Query a Process on an FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-60
Schedpgmresched – Reschedule a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-63

The Performance Monitor Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-67
Pmclrpgm – Clear Values for a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-69
Pmclrtable – Clear Values for Processor(s)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-71
Pmmonitor – Start/Stop Performance Monitoring on Processor(s) . . . . . . . . . . 8-72
Pmprogram – Start/Stop Performance Monitoring on a Process . . . . . . . . . . . . 8-74
Pmqrycpu – Query Values for Selected Processor(s) . . . . . . . . . . . . . . . . . . . . . 8-76
Pmqrylist – Query Values for a List of Processes  . . . . . . . . . . . . . . . . . . . . . . . 8-78
Pmqrypgm – Query Values for a Selected Process  . . . . . . . . . . . . . . . . . . . . . . 8-81



Pmquerytimer – Query Performance Monitor Mode . . . . . . . . . . . . . . . . . . . . . 8-84
Pmselect – Select Performance Monitor Mode  . . . . . . . . . . . . . . . . . . . . . . . . . 8-85

Compiling and Linking Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-86



8
Chapter 8The FORTRAN Library Interface

8
8
8

The real–time library for FORTRAN, /usr/lib/libF77rt.a, contains subroutines
that enable you to perform the entire range of functions associated with the frequency–
based scheduler and the performance monitor. The frequency–based scheduler subrou-
tines are presented in “The FBS Subroutines.” The performance monitor subroutines are
presented in “The Performance Monitor Subroutines.” For each subroutine, the following
information is provided: 

• A description of the subroutine 

• The FORTRAN variable declarations and CALL statement needed to refer-
ence the subroutine in an application program 

• Detailed descriptions of each parameter.  

Procedures for compiling and linking user programs are presented in “Compiling and
Linking Procedures.”

The FBS Subroutines 8

The FBS subroutines provide access to the key features of the scheduler.  They enable you
to perform such basic operations as the following: (1) configure a scheduler; (2) schedule
programs on it; (3) set up and connect a timing device to a scheduler; (4) start, stop, and
resume scheduling on a scheduler; (5) obtain information about scheduled processes; (6)
reschedule and remove scheduled processes; (7) disconnect a timing device; and (8)
remove a scheduler. 

In the sections that follow, all of the FBS subroutines contained in the libF77rt library
are presented in alphabetical order. Figure 8-1 illustrates the approximate order in which
you might invoke the subroutines from an application program.
8-1



PowerMAX OS Guide to Real-Time Services
Figure 8-1.  FORTRAN Library Call Sequence:  FBS

START

END

fbsconfigure

SCHEDULE
PROGRAMS

fbsattach

-schedpgmadd
-schedpgmresched
-pgmremove
-schedpgmqry
-schedfbsqry

fbssetrtc

fbsrunrtc

fbsrunrtc fbsdetach

fbsremove

START SIMULATION
fbsintrpt

STOP SIMULATION
fbsintrpt
8-2



The FORTRAN Library Interface
Fbsaccess – Change Permissions for an FBS 8

This subroutine is invoked to change the permissions assigned for a selected frequency–
based scheduler.  It is important to note that the permissions can be changed only by a pro-
cess that has the P_OWNER privilege or has an effective user ID that is equal to that of the
owner/creator of the frequency–based scheduler. 

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER uid 
INTEGER gid 
INTEGER permissions 
INTEGER istat

CALL Statement 

CALL fbsaccess (schdle, uid, gid, permissions, istat) 

Parameters 

Parameters are described as follows. 

schdle         refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value −1. 

uid              refers to a variable that contains an integer value represent-
ing the effective user ID of the specified frequency–based
scheduler. 

gid              refers to a variable that contains an integer value represent-
ing the effective group ID of the specified frequency–based
scheduler. 

permissions   refers to a variable that contains a bit pattern used to set the
permissions associated with the specified frequency–based
scheduler. Bit patterns and corresponding permissions are
presented in Table 8-1. Additional information on setting
permissions for frequency–based scheduler operations is
provided in the system manual page intro(2). 
8-3



PowerMAX OS Guide to Real-Time Services
istat           refers to a variable to which fbsaccess will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
fbsaccess(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Fbsattach – Attach Timing Source to an FBS 8

This subroutine is invoked to attach a timing source to a frequency–based scheduler or to
specify end–of–cycle scheduling.  The timing source can be a real–time clock, an edge–
triggered interrupt device, or a user–supplied real–time device.

NOTE

Subroutines contained in the FORTRAN library do not provide
the functionality to set up and control operation of an edge–trig-
gered interrupt device or a user–supplied device, as they do for a
real–time clock. Procedures for using a real–time clock are
described in detail in Chapter 3. Procedures for using an edge–
triggered interrupt and a user–supplied real–time device are also
explained in that chapter. 

To use a real–time clock as the timing source for a frequency–
based scheduler on a PowerMAX OS system on which the
Enhanced Security Utilities are installed, you must have enough
privilege to open the device. Refer to the “Trusted Facility Man-
agement” chapter of System Administration Volume 1 for an
explanation of the procedures for using devices when the
Enhanced Security Utilities are installed.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Table 8-1.  FBS Permissions

Bit Pattern Permissions

400  Read by user   

200  Alter by user   

060  Read, alter by group   

006  Read, alter by others   
8-4



The FORTRAN Library Interface
Variable Declarations 

INTEGER schdle 
INTEGER cpu 
CHARACTER* (*) devname 
INTEGER istat

CALL Statement 

CALL fbsattach(schdle, cpu, devname, istat)

Parameters 

Parameters are described as follows. 

schdle    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which the timing source is to be attached or
end–of–cycle scheduling specified. You can obtain this
value by making a call to fbsconfigure (see page 8-6
for an explanation of this subroutine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

cpu        refers to a variable that must contain the value 0.

devname refers to a variable that contains a null string or the path
name of the device that is to be used as the timing source for
the specified scheduler. If devname contains a null string,
end–of–cycle scheduling is specified; that is, execution of
the processes in the next minor cycle will occur when the
last process scheduled to execute in the current minor cycle
finishes its execution for that cycle. If devname contains a
path name, it may refer to a real–time clock, an edge–
triggered interrupt, or a user–supplied device. 

If the device is a real–time clock or an edge–triggered inter-
rupt, the path name must be of a certain form. Refer to
Chapter 3 for detailed information on the form associated
with each type of device. 

If the device is a user–supplied device, the path name must
be a valid UNIX path name. The device must support the
IOCTLVECNUM ioctl(2) call (see Chapter 3 for addi-
tional information).

If the device is a Coupled timing device, the path name must
be of a certain form.  Refer to Chapter 3 for detailed infor-
mation on the form associated with a cluster timing source. 

istat      refers to a variable to which fbsattach will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
8-5



PowerMAX OS Guide to Real-Time Services
cific type has occurred.  Refer to the system manual page
fbsattach(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Fbsconfigure – Configure an FBS 8

This subroutine is invoked to configure a frequency–based scheduler or to obtain configu-
ration details for a frequency–based scheduler that has already been configured. Note that
to configure a scheduler, the calling process must have the P_RTIME privilege (for addi-
tional information on privileges, refer to the PowerMAX OS Programming Guide and the
intro(2) system manual page). 

If you wish to configure a scheduler, you must specify a key, which is a user–chosen
numeric identifier for a frequency–based scheduler.  You must also specify a configflg,
which is a word that sets the permission and control flag bits to characterize the scheduler. 

The permissions are defined in the system manual page intro(2). 

The control flags are described in the header file <sys/ipc.h>.  They include
IPC_CREAT and IPC_EXCL.  Setting the IPC_CREAT bit without setting the
IPC_EXCL bit ensures that a new frequency–based scheduler is created if one corre-
sponding to the value of key does not exist; it results in the return of the associated fre-
quency–based scheduler identifier if one does exist and if all of the following conditions
are met: 

• The number of minor cycles specified by the cycles parameter matches the
number of minor cycles associated with the existing scheduler 

• The maximum specified by the progs parameter is less than or equal to the
maximum number of processes per minor cycle associated with the exist-
ing scheduler 

• The maximum specified by the max parameter is less than or equal to the
maximum number of processes allowed on the existing scheduler at one
time  

Setting both the IPC_CREAT and the IPC_EXCL bits results in the creation of a new
scheduler if one corresponding to the value of key does not exist; it ensures that an error is
returned if one does exist.

A unique, nonnegative frequency–based scheduler identifier and corresponding data
structure will be created for the specified key if the number of frequency–based schedulers
already configured is less than the maximum number of schedulers allowed on your
system (see Chapter 2 for a description of system tunable parameters) and if one of the fol-
lowing conditions is met: 

• The value of key is equal to IPC_PRIVATE (that is, zero) 

• The value of key is not associated with a frequency–based scheduler identi-
fier and (configflg & IPC_CREAT) is “true” 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 
8-6



The FORTRAN Library Interface
Variable Declarations 

INTEGER key 
INTEGER cycles 
INTEGER progs 
INTEGER max 
INTEGER reset 
INTEGER configflg 
INTEGER schdle 
INTEGER istat

CALL Statement 

CALL fbsconfigure(key, cycles, progs, max, reset, configflg, schdle, istat) 

Parameters 

To create a frequency–based scheduler, you must specify the following parameters as
described. 

key        refers to a variable that contains an integer value identifying
the frequency–based scheduler that is to be created. Note
that the number of schedulers that can be configured at one
time cannot exceed the value of FBSMNI, which is the
maximum number of frequency–based schedulers permitted
on your system (see Chapter 2 for a description of system
tunable parameters). 

cycles    refers to a variable that contains an integer value indicating
the number of minor cycles that compose a frame on the
specified scheduler. 

progs     refers to a variable that contains an integer value indicating
the maximum number of programs that can be scheduled to
execute during one minor cycle.

max       refers to a variable that contains an integer value indicating
the maximum number of programs that can be scheduled on
the specified scheduler at one time.  This value must be less
than or equal to the product that is obtained by multiplying
the values specified for the cycles and progs parameters.

reset       refers to a variable that contains an integer value indicating
whether or not processes currently scheduled on the speci-
fied scheduler are to be killed before the scheduler is recon-
figured. Acceptable values and corresponding results are
presented in Table 8-2. 

configflg  refers to a variable that contains an integer value indicating
the control flags and permissions assigned to the specified
scheduler.  See the header file <sys/ipc.h> to determine
the locations of the bits. 

schdle    refers to a variable to which fbsconfigure will return a
unique, positive integer value representing the identifier for
the specified frequency–based scheduler.  It is important to
8-7



PowerMAX OS Guide to Real-Time Services
note that this identifier is required by most of the library
subroutines for the FBS and the performance monitor.

istat       refers to a variable to which fbsconfigure will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
fbsconfigure(3F77rt) for a listing of the nonzero
values that may be returned and the types of errors that they
represent. 

To obtain information for an existing frequency–based scheduler, you must specify the
following parameters as described.

key        refers to a variable that contains an integer value identifying
the frequency–based scheduler for which configuration
information is to be returned.  If this value is zero, the fre-
quency–based scheduler identifier associated with this
scheduler must also be provided by using the schdle param-
eter. 

cycles    refers to a variable that contains the integer value zero, indi-
cating that current configuration information for the speci-
fied scheduler is to be returned.  Fbsconfigure will
return to this variable an integer value indicating the
number of minor cycles that compose a frame on the speci-
fied scheduler. 

progs     refers to a variable to which fbsconfigure will return
the maximum number of programs that can be scheduled to
run during one minor cycle on the specified scheduler. 

max       refers to a variable to which fbsconfigure will return
the maximum number of programs that can be scheduled on
the specified scheduler at one time. 

configflg  refers to a variable to which fbsconfigure will return
the permissions assigned to the specified scheduler. 

schdle    refers to a variable to which fbsconfigure will return a
unique, positive integer value representing the identifier for

Table 8-2.  Reset Options

Value Result

<0  Kill and remove all processes currently scheduled on
the specified scheduler   

0  Ignore all processes currently scheduled on the speci-
fied scheduler   

>0  Remove all processes currently scheduled on the speci-
fied scheduler   
8-8



The FORTRAN Library Interface
the specified frequency–based scheduler.  If you specify a
key of 0, this variable must contain the related frequency–
based scheduler identifier. 

Fbscycle – Return Minor Cycle/Major Frame Count 8

This subroutine is invoked to obtain the current minor cycle and major frame count values
for a frequency–based scheduler.  These values enable you to determine the progress of a
simulation. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER count(2) 
INTEGER istat

CALL Statement 

CALL fbscycle(schdle, count, istat) 

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain the current cycle and
frame counts. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of –1. 

count  refers to an array to which fbscycle will return integer
values indicating the current minor cycle and major frame
for the specified scheduler.  Count(1) will contain the
number of the cycle. Count(2) will contain the number of
the frame. 

istat    refers to a variable to which fbscycle will return an inte-
ger value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
occur red .   Refer  t o  the  sys tem manua l  page  fo r
fbscycle(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 
8-9



PowerMAX OS Guide to Real-Time Services
Fbsdetach – Detach Timing Source from an FBS 8

This subroutine is invoked to detach the currently attached timing source from a fre-
quency–based scheduler or to disable end–of–cycle scheduling. If the timing source is a
real-time clock, it is recommended that you stop the clock prior to invoking this subrou-
tine. You can do so by making a call to fbsrunrtc (see page 8-26 for an explanation of
this subroutine). 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER istat

CALL Statement 

CALL fbsdetach(schdle, istat) 

Parameters

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler from which you wish to detach the currently
attached timing source or for which you wish to disable
end–of–cycle scheduling. You can obtain this value by mak-
ing a call to fbsconfigure (see page 8-6 for an explana-
tion of this subroutine). If you wish to reference the fre-
quency–based scheduler on which the calling process is
scheduled without knowing its identifier, you can specify a
value of − 1. 

istat    refers to a variable to which fbsdetach will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
fbsdetach(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Fbsgetrtc – Obtain Current Values for Real–Time Clock 8

This subroutine is invoked to obtain the current count and resolution values for the real–
time clock that is attached to a specified frequency–based scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.
8-10



The FORTRAN Library Interface
Variable Declarations 

INTEGER schdle 
INTEGER count 
INTEGER resolution 
INTEGER istat1 
INTEGER istat2 

CALL Statement 

CALL fbsgetrtc(schdle, count, resolution, istat1, istat2) 

Parameters 

Parameters must be specified in the order indicated.  They are described as follows. 

schdle      refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which the real–time clock is attached. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

count       refers to a variable to which fbsgetrtc will return an
integer value indicating the current number of clock counts
per minor cycle.  This value can range from one to 65535. 

resolution   refers to a variable to which fbsgetrtc will return an
integer value indicating the current duration in microsec-
onds of one clock count.  This value will be one of the fol-
lowing: 1, 10, 100, 1000, or 10000. 

istat1          refers to a variable to which fbsgetrtc will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
fbsgetrtc(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent.  If istat1 contains a value indicating that an error has
occurred on an open or ioctl call, the error status of that
call is returned in istat2.

istat2 refers to a variable to which fbsgetrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the errors.
8-11



PowerMAX OS Guide to Real-Time Services
Fbsid – Return the FBS Identifier for a Key 8

This subroutine is invoked to obtain the frequency–based scheduler identifier associated
with a particular user–specified key.  The key must match the key that was specified when
the scheduler was created by making a call to fbsconfigure(3C).

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER key 
INTEGER schdle 
INTEGER istat

CALL Statement 

CALL fbsid(key, schdle, istat) 

Parameters 

Parameters must be specified in the order indicated.  They are described as follows. 

key         refers to a variable that contains an integer value identifying
a frequency–based scheduler; this value must be the same
value that was specified for key when the scheduler was
created by making a call to fbsconfigure (see page 8-6
for an explanation of this subroutine). 

schdle    refers to a variable to which fbsid will return an integer
value representing the unique frequency–based scheduler
identifier associated with the key. 

istat        refers to a variable to which fbsid will return an integer
value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
o c c u r r e d .   R e f e r  t o  th e  s y s t e m  m a n u a l  p a g e
fbsid(3F77rt) for a listing of the nonzero values that
may be returned and the types of errors that they represent. 
8-12



The FORTRAN Library Interface
Fbsinfo – Return Information for an FBS 8

This subroutine is invoked to obtain information that is related to a selected frequency–
based scheduler but cannot be obtained by invoking other subroutines (for example,
schedfbsqry, schedpgmqry).  Such information includes the following: 

• The user and group IDs of the owner and the creator of the scheduler 

• The permissions assigned for the scheduler 

• The key associated with the scheduler’s identifier 

• The total number of overruns for all processes on the scheduler 

• The CPUs that are active in the system 

• The CPUs on which performance monitoring has been enabled 

• The FBS–enabled flag 

• The path name of the device that has been attached to the scheduler 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER buf(41) 
CHARACTER* (*) devname 
INTEGER istat

CALL Statement 

CALL fbsinfo(schdle, buf, devname, istat) 

Parameters 

Parameters are described as follows. 

schdle    refers to a variable that contains a unique, positive integer value repre-
senting the identifier for a frequency–based scheduler. You can obtain
this value by making a call to fbsconfigure (see page 8-6 for an
explanation of this subroutine). If you wish to reference the frequency–
based scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of −1.

buf         refers to an array to which fbsinfo will return information about the
specified scheduler. The information returned in each element of the
array is presented in Table 8-3.
8-13



PowerMAX OS Guide to Real-Time Services
 

devname  refers to a variable to which fbsinfo will return the path
name of the device that is being used as the timing source
for the specified frequency–based scheduler.  If end–of–
cycle scheduling has been specified, devname will contain
a null string. 

istat        refers to a variable to which fbsinfo will return an integer
value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
o c c u r r e d .   R e f e r  t o  th e  s y s t e m  m a n u a l  p a g e
fbsinfo(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Fbsinfo_rdev - Return Coupled FBS timing device information 8

This routine may be called to obtain information about a Coupled FBS timing device.  The
information returned from  this routine includes the following:

Table 8-3.  Contents of Array Elements

Element Contents

buf(1)  owner’s user ID   

buf(2)  owner’s group ID   

buf(3)  creator’s user ID   

buf(4)  creator’s group ID   

buf(5)  access modes   

buf(6)  key   

buf(7)  flags word   

buf(8)  reserved for future use   

buf(9)  total number of hard overruns for all pro-
cesses on the scheduler   

buf(10)  mask of CPUs active in the system   

buf(11)  mask of CPUs on which performance
monitoring has been enabled   

buf(12)  FBS–enabled flag   

buf(13)–(41)  reserved for future use   
8-14



The FORTRAN Library Interface
• The type of Coupled FBS timing device; either RCIM Coupled or  Closely-
Coupled.  See Chapter 3 for more information about these two types of
timing devices.

• The host name of the host where the timing device actually resides (where
the device interrupt originates).

• A list of all the host names of the hosts where this device is registered.

• A list of all the host names of the hosts where there are schedulers attached
to this device.

• The path name of the actual device on the host where the device resides.

The FORTRAN variable declarations, CALL statement and corresponding parameters are
presented in the following sections.

Variable Declarations

INTEGER attr_flags, num_hosts, host_flags(num_hosts), istat
CHARACTER *(*) rdevfs_name
CHARACTER *(*) device_name
CHARACTER *(*) hostnames(num_hosts)

Call Statement

CALL fbsinfo_rdev(rdevfs_name, device_name, attr_flags, num_hosts, host_flags, host-
names, istat)

Parameters

rdevfs_name Refers to a string where the caller specifies the full path
name of the registered rdevfs(4) device: /dev/rdev/
<hostname>/device<n>.

device_name Refers to a variable where the actual device name of the
timing device on the host where the device resides will be
returned.

attr_flags Refers to a variable where fbsinfo_rdev will return the
type of timing device, where the type values may be:

1 -  for a Closely-Coupled timing device, or
2 -  for a RCIM Coupled timing device.

See Chapter 3 for a description of these two types of timing
devices.

num_hosts Refers to a variable where the caller specifies how many
entries are in the host_flags and hostnames arrays.

When 0 or -3 is returned in the istat parameter upon return
from fbsinfo_rdev, the num_hosts parameter will be modi-
fied so that it contains the number of actual registered hosts
for this device.
8-15



PowerMAX OS Guide to Real-Time Services
When -3 is returned, then the caller did not make the
host_flags and hostnames arrays large enough to
hold all of the registered per-host information.  In this case,
the value returned in num_hosts reflects the total number
of registered hosts, where this value is larger than the num-
ber of entries in the host_flags and hostnames array.
When -3 is returned, the caller may wish to allocate more
space for these arrays.  However, fbsinfo_rdev has
filled in all available entries in the host_flags and hostname
arrays with valid data, and thus, the caller may still examine
the per-host information that was returned.

host_flags Refers to an integer array of host attribute flags, with one
word for each registered host. When successful, the
returned num_hosts value contains the number of valid
entries in this array, starting from the front entry in the array.
Each relative entry in the num_hosts array corresponds to
the same relative entry in the hostnames character array.
The flag values that may be returned in each host_flags
entry are:

1  -  this host has a scheduler attached to this device.

2  -  this host is where the device interrupt originates.

3  -  this host has a scheduler attached to this device and 
this host is also where the device interrupt originates.

hostnames Refers to a character array of space where the hostname
strings of the registered hosts for this timing device are
returned.  When successful, the num_hosts parameter
contains the number of valid entries in this array, starting
from the front of the array.

istat Refers to a variable in which fbsinfo_rdev will return
an integer value indicating whether or not an error has
occurred.  A non-zero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
fbsinfo_rdev(3F77rt) for a listing of the non-zero
values  that may be returned and the types of errors that they
represent.

NOTE

The fbsinfo_rdev function call is not compatible for use with
t im i n g  d e v i c e s  t h a t  w e r e  r e g i s t e r e d  w i th  a
fbs_register_cluster_device function call.  In this case, the user
should use the fbsinfo_cluster function call to obtain additional
information about the Closely-Coupled timing device.  However,
the fbs_register_cluster_device and fbs_unregister_cluster_
device function calls are obsolete and users are encouraged to
make use of the fbs_register_rdev, fbs_unregister_rdev and
fbsinfo_rdev function calls.
8-16



The FORTRAN Library Interface
Fbsinfo_cluster - Return cluster information for an FBS 8

This routine is invoked to obtain information about the Closely-Coupled timing device
that a selected frequency-based scheduler is currently  attached to.  The information
returned from this routine includes the following:

• The SBC board ID where the Closely-Coupled timing device actually
resides

• The path name of the actual device on the SBC board where the device
resides 

• A bit mask of SBC board IDs of the SBCs that currently have schedulers
attached to this device

Note that the selected frequency-based scheduler must be currently attached to a Closely-
Coupled timing device in order for this routine  call to be successful.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations

INTEGER schdle
INTEGER buf(8) 
CHARACTER *(*) devname
INTEGER istat 

CALL Statement

CALL fbsinfo_cluster(schdle, buf, devname, istat)

Parameters

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency-based
scheduler.  You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine).  If you wish to reference the frequency-based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of -1. 

 buf refers to an array to which fbsinfo_cluster will return infor-
mation about the specified scheduler.  The information
returned in each element of the array is presented in
Table 8-4.

devname refers to a variable to which fbsinfo_cluster will
return the path name of the actual device that is being used
as the timing source on the SBC board where the device
resides. 

istat refers to a variable which fbsinfo_cluster will return
an integer value indicating whether or not an error has
occurred.  A non-zero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
8-17



PowerMAX OS Guide to Real-Time Services
fbsinfo_cluster(3F77rt) for a listing of the non-
zero values that may be returned and the types of errors that
they represent. 

Fbsintrpt – Start/Stop/Resume Scheduling on an FBS 8

This subroutine is invoked to start, stop, or resume scheduling on a frequency–based
scheduler.  If you invoke this subroutine to start scheduling, the minor cycle, major frame,
and overrun count values are reset.  If you invoke it to resume scheduling, these values are
not reset. 

Prior to invoking fbsintrpt, you must have invoked fbsattach to specify end–of–
cycle scheduling or attach a timing source to the frequency–based scheduler on which you
are starting scheduling (see page 8-4 for an explanation of fbsattach). If you have
specified a real–time clock as the timing source, scheduling will not begin until you have
set and started the clock (see pages 8-30 and 8-26 for explanations of fbssetrtc and
fbsrunrtc, respectively). If you have specified an edge–triggered interrupt device or a
user–supplied device as the timing source, it must already be generating interrupts in order
for scheduling to start. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER intrflag 
INTEGER istat

CALL Statement 

CALL fbsintrpt(schdle, intrflag, istat) 

Parameters 

Parameters are described as follows. 

Table 8-4.  Contents of Array Elements

Element Contents

buf(1)  SBC board ID where device actually
resides

buf(2)  SBC board ID mask of those SBCs that
contain 
schedulers that are currently attached to
this 
timing device

buf(3)-(8) reserved for future use 
8-18



The FORTRAN Library Interface
schdle   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to start, stop, or resume sched-
uling of processes. You can obtain this value by making a
call to fbsconfigure (see page 8-6 for an explanation of
this subroutine). If you wish to reference the frequency–
based scheduler on which the calling process is scheduled
without knowing its identifier, you can specify a value of 
− 1. 

intrflag refers to a variable that contains an integer value indicating
whether scheduling of processes on the specified scheduler
is to be started, stopped, or resumed. Acceptable values and
corresponding results are presented in Table 8-5. 

istat     refers to a variable to which fbsintrpt will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
fbsintrpt(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Fbsquery – Query Processes on an FBS 8

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated.   If you have an existing application that uses this interface,
it is recommended that you change your application to use
schedfbsqry(3F77rt) (see p. 8-54). For details on obsolete
interfaces, refer to Chapter 2, “Overview of the FBS.”

Table 8-5.  Intrflag Options

Value Result

<0  Start scheduling of processes with the initial frame,
cycle, and overrun count values set to zero   

0  Stop scheduling of processes, and save the count values
for the current frame and cycle   

>0  Resume scheduling of processes with the frame, cycle,
and overrun count values set to the values that were
saved when the scheduler was last stopped   
8-19



PowerMAX OS Guide to Real-Time Services
This subroutine is invoked to obtain information about processes that have been scheduled
on a frequency–based scheduler. Information is returned for all processes scheduled on the
user–specified processor(s). Information provided for each process includes the following: 

• A mask of the CPU(s) on which the process can execute   

• The frequency–based scheduler process identifier   

• The scheduling priority   

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)   

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame)   

• The value of the “halt on overrun” flag 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER cpu 
INTEGER buf1size 
INTEGER buf1(buf1size) 
INTEGER maxsize 
INTEGER buf2size 
CHARACTER* (*) buf2 
INTEGER istat

CALL Statement 

CALL fbsquery(schdle, cpu, buf1size, buf1, maxsize, buf2size, buf2, istat) 

Parameters 

Parameters are described as follows. 

schdle    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain scheduling informa-
tion. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of −1.

cpu      refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 8-6. 

buf1size  refers to a variable that contains an integer value indicating
the size in 32–bit words of the array represented by buf1.
Because 10 words of information are returned for each
8-20



The FORTRAN Library Interface
process, it is recommended that this value be a multiple of
10.

buf1       refers to an array to which fbsquery will return a series of
10 integer values for each process on the processor(s) speci-
fied with the cpu parameter. The number of processes for
which these values are returned is bound by the value of the
buf1size parameter. If, for example, the value of buf1size is
145, values for 14 processes will be returned. These values
represent the scheduling information for the process(es).
The type of information returned in each array element for a
single process is presented in Table 8-7. 

Table 8-6.  CPU Options:  fbsquery

Value Result

0  Scheduling information for processes executing on the
processor from which the call is made is returned   

-1  Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned 

Table 8-7.  Contents of Array Elements for a Process

Element Contents

1  Byte offset of the process’s path name in buf2   

2  Length in bytes of the process’s path name   

3  Zero   

4  Zero   

5  Mask of the CPU(s) on which the process can execute   

6  The process’s frequency–based scheduler process iden-
tifier   

7  The process’s scheduling priority   
8-21



PowerMAX OS Guide to Real-Time Services
maxsize  refers to a variable that contains an integer value indicating
the maximum length of a path name to be returned in buf2 

buf2size refers to a variable that contains an integer value indicating
the size in bytes of the character string represented by buf2.
To ensure that buf2 is large enough to accommodate the
names of all processes that you wish to query, you may find
it helpful to compute the number of bytes needed by multi-
plying the maximum number of processes allowed on the
scheduler (see the information on fbsconfigure pre-
sented on page 8-6) by 32.

buf2     refers to a variable to which fbsquery will return the path
names for each process on the processor(s) specified with
the cpu parameter.  Path names are returned as a series of
strings.  The length of each string is less than or equal to the
value of maxsize.  Where maxsize is not large enough to
accommodate a full path name, the concluding component
names are returned.  The number of path names returned is
bound by the value of the buf2size parameter. 

istat     refers to a variable to which fbsquery will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
fbsquery(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent.

Fbsremove – Remove an FBS 8

This subroutine is invoked to remove a frequency–based scheduler and to free the data
structure associated with it. It is important to note that prior to invoking fbsremove, you
must ensure that the timing source is detached from the scheduler or that end–of–cycle
scheduling is disabled (see page 8-10 for information on the use of fbsdetach). It is

8  The number of minor cycles indicating the frequency
with which the process is to be wakened in each major
frame (period)   

9  The first minor cycle in which the process is scheduled
to be wakened in each major frame (starting base
cycle)   

10  The value of the “halt on overrun” flag.  A nonzero
value indicates that the flag is set.  A value of zero indi-
cates that the flag is not set.   

Table 8-7.  Contents of Array Elements for a Process (Cont.)

Element Contents
8-22



The FORTRAN Library Interface
important to note that fbsremove will remove all processes scheduled on the specified
scheduler. It is recommended, however, that you remove all scheduled processes prior to
invoking fbsremove. You can do so by making a call to pgmremove (see page 8-39
for information on the use of this subroutine). 

Note that to remove a frequency-based scheduler, the calling process must have the
P_OWNER privilege or an effective user ID that is equal to that of the owner/creator of the
scheduler.

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER ab 
INTEGER istat

CALL Statement 

CALL fbsremove(schdle, ab, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler that you wish to remove. You can obtain this
value by making a call to fbsconfigure (see page 8-6
for an explanation of this subroutine). If you wish to refer-
ence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of −1. 

ab     refers to a variable that contains an integer value indicating
the manner in which processes scheduled on the scheduler
are to be handled. Acceptable values and corresponding
results are presented in Table 8-8. 

istat   refers to a variable to which fbsremove will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
for fbsremove(3F77rt) for a listing of the nonzero
8-23



PowerMAX OS Guide to Real-Time Services
values that may be returned and the types of errors that they
represent. 

Fbsresume – Resume Scheduling on an FBS 8

The fbsresume subroutine is invoked to resume scheduling of processes on a fre-
quency-based scheduler at the specified minor cycle, major frame, and overrun count.

Note that to resume scheduling of processes on a frequency-based scheduler, the calling
process must have alter permission for the scheduler.  If the Enhanced Security Utilities
are installed and running, the following conditions must also be met:

• The calling process and the frequency-based scheduler must have identical
security levels, or the process must have the P_MACWRITE privilege.

If you wish to resume scheduling of processes on a frequency-based scheduler without
altering the scheduler’s current frame, cycle, and overrun values, it is recommended that
you use the fbsintrpt(3F77rt) subroutine (see page 8-18 for an explanation of this
subroutine).

CAUTION

The fbsresume subroutine clears performance monitor values
for all processes scheduled on the specified scheduler.  Changing
the frame and cycle count for the scheduler causes the values that
are being maintained by the performance monitor to be inaccu-
rate.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER frame
INTEGER cycle

Table 8-8.  Ab Options

Value Result

<0  Kill and remove all processes currently scheduled on
the specified scheduler   

≥0  Remove all processes currently scheduled on the speci-
fied scheduler   
8-24



The FORTRAN Library Interface
INTEGER overruns
INTEGER istat 

CALL Statement 

CALL fbsresume(schdle, frame, cycle, overruns, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which you wish to resume scheduling of pro-
cesses. You can obtain this value by making a call to
fbsconfigure or fbsid (see page 8-6 and page 8-12,
respectively, for explanations of these subroutine). If you
wish to reference the frequency–based scheduler on which
the calling LWP is scheduled without knowing the identi-
fier, you can specify the value −1.

frame an integer value indicating the major frame in which you
wish scheduling of processes to be resumed on the specified
scheduler

cycle an integer value indicating the minor cycle in which you
wish scheduling of processes to be resumed on the specified
scheduler. This value can range from zero to the total num-
ber of minor cycles per frame minus one. The total number
of minor cycles per frame was specified when the scheduler
was created by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine).

overruns an integer value indicating the value to which you wish the
overrun count to be set when scheduling resumes on the
specified scheduler.  If you do not wish to change the over-
run count, you can specify the value −1.

istat   refers to a variable to which fbsresume will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
fbsresume(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they
represent.
8-25



PowerMAX OS Guide to Real-Time Services
Fbsrunrtc – Start/Stop Real–Time Clock 8

This subroutine is invoked to start or stop the counting of a real–time clock that has been
attached to a frequency–based scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER runflag 
INTEGER istat1 
INTEGER istat2

CALL Statement 

CALL fbsrunrtc(schdle, runflag, istat1, istat2) 

Parameters 

Parameters are described as follows. 

schdle   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to start or stop the attached
real–time clock. You can obtain this value by making a call
to fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of −1. 

runflag  refers to a variable that contains an integer value indicating
whether the real–time clock is to be started or stopped.  A
nonzero value indicates that the clock is to be started.  A
zero value indicates that the clock is to be stopped. 

istat1   refers to a variable to which fbsrunrtc will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
for fbsrunrtc(3F77rt) for a listing of the nonzero
values that may be returned and the types of errors that they
represent.  If istat1 contains a value indicating that an error
has occurred on an open or ioctl call, the error status of
that call is returned in istat2. 

istat2   refers to a variable to which fbsrunrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the error. 
8-26



The FORTRAN Library Interface
Fbsschedself – Schedule an LWP on an FBS 8

The fbsschedself subroutine is invoked to schedule the calling lightweight process
(LWP) on a frequency-based scheduler.

This subroutine is designed to be used by a single-threaded or a multithreaded application;
however, if it is to be used in a multithreaded application, it can be used only by bound
threads.

It is important to note that fbsschedself does not allow an LWP to set its scheduling
policy and priority or its CPU bias.  These tasks must be performed prior to invoking
fbsschedself.

A single-threaded process can set its scheduling policy and priority by using the
sched_setscheduler(3C) library routine; it can set its CPU bias by using the
cpu_bias(2) system call or the mpadvise(3C) library routine. Procedures for using
these functions are explained in the “Process Scheduling and Management” and “Process
Management” chapters of the PowerMAX OS Programming Guide.

A boun d  th read  can  se t  i t s  schedul ing  po l i cy  and  pr io r i ty  by  us in g  the
thr_setscheduler(3thread) library routine; it can set its CPU bias by using the
cpu_bias system call or the mpadvise library routine. Complete information on
bound thread scheduling and use of the thr_setscheduler routine are provided in the
“Thread Scheduling” section of the “Programming with the Threads Library” chapter of
the PowerMAX OS Programming Guide.

Note that you cannot use this subroutine to add /idle or /spare to a frequency-based
scheduler.

To schedule the calling LWP on a frequency-based scheduler, the calling LWP must have
alter permission for the scheduler.  If the Enhanced Security Utilities are installed and run-
ning, the following conditions must also be met:

• The calling LWP and the frequency-based scheduler must have identical
security levels, or the LWP must have the P_MACWRITE privilege. 

You must not change the scheduling policy or priority of an LWP while it is scheduled on
a scheduler by using sched_setscheduler, thr_setscheduler, or other pro-
gram interfaces that allow you to change scheduling policy and priority.  The frequency-
based scheduler is not aware of changes in scheduling policy and priority that are made by
using these interfaces.

If you need to change the scheduling policy or priority of a single-threaded FBS-sched-
uled process, you may do so by using schedpgmresched to reschedule it (see page
8-63 for an explanation of this routine).

If you need to change the scheduling policy or priority of a bound thread, you must first
remove it from the scheduler on which it is has been scheduled by using pgmremove (see
page 8-39 for an explanation of this subroutine). You can then use thr_setscheduler
to change its policy or priority and fbsschedself to schedule it on a scheduler.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 
8-27



PowerMAX OS Guide to Real-Time Services
Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER (*) sched_buf
INTEGER istat 

CALL Statement 

CALL fbsschedself(schdle, name, sched_buf, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure or fbsid (see page 8-6 and page 8-12,
respectively, for explanations of these subroutines). If you
wish to reference the frequency–based scheduler on which
the calling LWP is scheduled without knowing the identi-
fier, you can specify the value −1.

name   refers to a variable that contains a standard UNIX path
name or arbitrary content identifying the program associ-
ated with the calling LWP.   A full or relative path name of
up to 1023 characters can be specified.

sched_buf         refers to an integer array that contains the scheduling
parameters with which you wish to schedule the LWP. The
information that is specified in this array is presented in
Table 8-9.  

istat   refers to a variable to which fbsschedself will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
fbsschedself(3F77rt) for a listing of the nonzero
values that may be returned and the types of errors that they
represent.
8-28



The FORTRAN Library Interface
Table 8-9.  Contents of Array Elements  

Element Contents

sched_buf(1)  an integer value indicating the version of sched_buf that is
being passed to fbsschedself. Specify the symbolic
cons tan t  F B S S C H E D _ B U F _ V 1 ,  which  i s  def ined  i n
<fbslib.h> for this purpose.

sched_buf(2)  an integer value to be passed to a process that is scheduled
on a frequency-based scheduler. This value can be retrieved
by the FBS–scheduled process through a call to rtparm
(see page 8-52 for an explanation of this subroutine). 

sched_buf(3)  an integer value indicating the frequency with which the
calling LWP is to be wakened in each major frame. A period
of one indicates that the calling LWP is to be wakened every
minor cycle; a period of two indicates that it is to be wak-
ened once every two minor cycles, a period of three once
every three minor cycles, and so on.

This value can range from one to the number of minor cycles
that compose a frame on the specified scheduler as defined
in a call to fbsconfigure (see page 8-6 for an explana-
tion of this subroutine). 

sched_buf(4)  an integer value indicating the first minor cycle in which the
calling LWP is scheduled to be wakened in each frame. This
value can range from zero to the total number of minor
cycles per frame minus one. The total number of minor
cycles per frame is specified in a call to fbsconfigure
(see page 8-6 for an explanation of this routine).

sched_buf(5)  an integer value indicating whether or not the scheduler
should be stopped in the event that the calling LWP causes a
frame overrun.  A nonzero value indicates that the scheduler
will be stopped.  

sched_buf(6)  an integer value that is returned by fbsschedself and is
the unique frequency–based scheduler process identifier for
the scheduled LWP
8-29



PowerMAX OS Guide to Real-Time Services
Fbssetrtc – Set Real–Time Clock 8

This subroutine is invoked to establish the duration of a minor cycle by setting the count
and the resolution values for a real–time clock. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER count 
INTEGER resolution 
INTEGER istat1 
INTEGER istat2

CALL Statement 

CALL fbssetrtc(schdle, count, resolution, istat1, istat2) 

Parameters 

Parameters must be specified in the order indicated.  They are described as follows. 

schdle     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler to which a real–time clock has been attached. You
can obtain this value by making a call to fbsconfigure
(see page 8-6 for an explanation of this subroutine). If you
wish to reference the frequency–based scheduler on which
the calling process is scheduled without knowing its identi-
fier, you can specify a value of −1. 

count      refers to a variable that contains an integer value indicating
the number of clock counts per minor cycle.  This value can
range from one to 65535. 

resolution  refers to a variable that contains an integer value indicating
the duration in microseconds of one clock count.  This value
must be one of the following: 1, 10, 100, 1000, or 10000. 

istat1       refers to a variable to which fbssetrtc will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
fbssetrtc(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. If istat1 contains a value indicating that an error has
occurred on an open or ioctl call, the error status of that
call is returned in istat2. 

istat2       refers to a variable to which fbssetrtc will return the
error status of an open or ioctl call.  See the include file
<errno.h> for a description of the error. 
8-30



The FORTRAN Library Interface
Fbswait – Wait on an FBS 8

This subroutine enables a process that is scheduled on a frequency-based scheduler to
sleep until its next scheduled minor cycle.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER istat

CALL Statement 

CALL fbswait(istat) 

Parameter 

Fbswait requires one parameter: istat. Istat refers to a variable to which fbswait will
return an integer value indicating whether or not an error has occurred and whether the
process has been wakened by the scheduler or by an fbstrig(2) call from another
process. Values that may be returned are described in Table 8-10. 

Fbs_register_rdev - Register Coupled FBS Timing Device 8

This routine may be used to register a local device as a remote timing device
(rdevfs(4)) which may be subsequently used as a Coupled FBS timing device.  A
Coupled timing device may be used to couple together FBS schedulers that are located on
more than one computer system.  All schedulers that are attached to the same Coupled
FBS timing device will start, stop and resume their executions together on the same frame
and cycle, using the Coupled FBS timing device as the interrupt source.

To register a timing device, the calling process must have the P_RTIME privilege as well as
enough privilege to open the device file.

Table 8-10.  Istat Values:  fbswait

Value Description

0  The process has been wakened normally   

1  The process has been wakened as the result of an
fbstrig(2) call   

2 The process did not sleep because the kernel detected a
soft overrun and is allowing the process to attempt to
recover from it.

Other nonzero value  An error of a specific type has occurred.  Refer to the
system manual page fbswait(3F77rt) for a listing
of the nonzero values that may be returned and the
types of errors that they represent.   
8-31



PowerMAX OS Guide to Real-Time Services
Successfully registering a device as a Coupled FBS timing source creates a placeholder, or
virtual FBS identifier to reserve the device’s interrupt vector.  There is one virtual FBS for
each device registered, and this virtual FBS provides the means for a process on another
host to communicate with the real device. Because the virtual FBS is allocated exactly the
same way as user FBS identifiers, each device registered reduces by one the number of
user schedulers that can be configured.  Therefore, depending upon system requirements,
it may be necessary to increase the value of the system tunable parameter FBSMNI.  Virtual
FBS descriptors are not directly accessible to user programs.

Registering a device as a Coupled FBS timing device also creates a device file entry in the
/dev/rdev file system on each host where the device is registered.  This /dev/rdev/
<hostname/device<n> path name may be specified on subsequent calls to fbsattach.

A device may not be registered as a Coupled FBS timing device if a FBS scheduler is
already directly attached to that device.

The FORTRAN variable declarations, CALL statement and corresponding parameters are
presented in the following sections.

Variable Declarations

INTEGER type, num_hosts, istat
CHARACTER *(*) device_name
CHARACTER *(*) rdevfs_name
CHARACTER *(*) hostname_array(num_hosts)

Call Statement

CALL fbs_register_rdev(device_name, rdevfs_name, type, 
  num_hosts, hostname_array, istat)

Parameters

device_name Refers to a caller-specified string that contains the path
name of the device to be registered.

If the device is a real-time clock or edge-triggered interrupt,
then refer to Chapter 3 for detailed information about these
path names and their associated attributes.

If the device is a user-supplied device, the path name must
be a valid UNIX path name, and the device must support the
IOCTLVECNUM ioctl(2) call. See Chapter 3 for addi-
tional information.

rdevfs_name Refers to a variable in which fbs_register_rdev will return
the path name within the rdevfs(4) filesystem that cor-
responds to this Coupled FBS timing device registration,
where the rdevfs path name will have the form of /dev/
rdev/<hostname>/device<n>.  This returned path
name should be used on subsequent fbsattach calls to attach
FBS schedulers to this Coupled FBS timing device.
8-32



The FORTRAN Library Interface
type Refers to a variable where the caller specifies the type of
Coupled FBS timing device to be registered.  The type vari-
able may be: 1 to indicate a Closely-Coupled timing device,
or 2 to indicate a RCIM Coupled timing device.  See
Chapter 3 or the fbs_register_rdev(3F77rt) sys-
tem manual page for information about these two types of
timing devices.

num_hosts Refers to a variable where the caller specifies the number of
hostnames in the hostname_array.

hostname_array Refers to a variable that contains an array of caller-specified
hostname strings that denote the hosts where the Coupled
FBS timing device is to be registered.  A host name that cor-
responds to the local host must be included in this array.
Note that while alias hostnames may be specified in this
array, each host should only appear once in this array.

istat Refers to a variable in which fbs_register_rdev will return
an integer value indicating whether or not an error has
occurred.  A non-zero value indicates that an error of a spe-
cific type has occurred. Refer to the system manual page
fbs_register_rdev(3F77rt) for a listing of the
non-zero values that may be returned and the types of errors
that they represent.

Fbs_unregister_rdev - Unregister a Coupled FBS timing device  8

This routine may be called to unregister a local device that was previously registered as a
Coupled FBS timing device.  To unregister a device, the calling process must have the
P_RTIME privilege as well as enough privilege to open the device file.

Unregistering a device from being a Coupled FBS timing device results in the removal of
the virtual FBS identifier that was created when the device was initially registered.  The
unregistration also removes the corresponding /dev/rdev/<hostname>
/device<n> rdevfs file system device file entry on each host where the device  was
previously registered.

Once a device is unregistered, it may once again be directly attached to an FBS scheduler
on the local system as a normal, non-Coupled FBS timing device, or, it may be re-regis-
tered as a Coupled FBS timing device with the fbs_register_rdev(3rt) function.

The FORTRAN variable declarations, CALL statement and  corresponding parameters are
presented in the following sections.

Variable Declarations

INTEGER istat
CHARACTER *(*) device_name

Call Statement

CALL fbs_unregister_rdev(device_name, istat)
8-33



PowerMAX OS Guide to Real-Time Services
Parameters

device_name Refers to a caller-specified string that contains the path
name of the device to be unregistered.  Device_name should
contain the same path name that was specified on the previ-
ous corresponding fbs_register_rdev call.

istat Refers to a variable which fbs_unregister_rdev will return
an integer value indicating whether or not an error has
occurred.  A non-zero value indicates that an error of a spe-
cific type has occurred. Refer to the system manual page
fbs_unregister_rdev(3F77rt) for a listing of the
non-zero values that may be returned and the types of errors
that they represent.

Fbs_register_cluster_device - Register cluster timing device 8

This routine is invoked to register a local device as a Closely-Coupled timing device in a
Closely-Coupled system.  To register a device, the calling process must have the P_RTIME

privilege as well as enough privilege to open the device file. 

Registering a Closely-Coupled timing device creates a placeholder, or virtual, FBS identi-
fier to reserve the device’s interrupt vector.  There is one virtual FBS for each device reg-
istered and a virtual FBS provides the means for a process on another SBC to communi-
cate with the real device.  Because the virtual FBS is allocated exactly the same way as
user FBS identifiers, each device registered reduces by one the number of user schedulers
that can be configured.  Therefore, some thought should be given to increasing the value
of  the system tunable parameter FBSMNI.  Virtual FBS descriptors are not directly accessi-
ble to user programs. 

Registering a device as a Closely-Coupled timing source also creates entries in the /dev
/rdev directories on all SBCs in the VME cluster.  These entries can be specified on a
subsequent call to fbsattach. 

A device can either be registered as a Closely-Coupled timing device or be attached to an
FBS, but not both at the same time.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations

CHARACTER* (*) device_name 
CHARACTER* (*) rdevfs_name 
INTEGER istat

CALL Statement 

CALL fbs_register_cluster_device(device_name, rdevfs_name, istat);

Parameters

Parameters are described as follows.
8-34



The FORTRAN Library Interface
device_name refers to a variable that contains the path  name of the
device that is to be registered as a Closely-Coupled timing
source. The device_name may refer to a real-time clock or
to a user-supplied device. 

If the device is a real-time clock, the path name must be of a
certain form.  Refer to Chapter 3 for detailed information on
the form associated with the real-time clock.

If the device is a user-supplied device, the path name must
be a valid UNIX path name.  The device Chapter 3 must
support the IOCTLVECNUM ioctl(2) call.  See  for
additional information. 

rdevfs_name refers to a variable to which fbs_register_cluster_device
will return the path name within the rdev(4) file system
that corresponds to this Closely-Coupled timing device
registration.  This returned path name should used on subse-
quent fbsattach calls to attach schedulers to this
Closely-Coupled timing device. 

istat refers to a variable to which fbs_register_cluster_device
will return an integer value indicating whether or not an
error has occurred.  A value of zero indicates that no error
has occurred.  A nonzero value indicates that an error has
o c c u r r e d .   R e f e r  t o  th e  s y s t e m  m a n u a l  p a g e
fbs_register_cluster_device(3F77rt) for a
listing of the nonzero values that may be returned and the
types of errors that they represent.

Note

The fbs_register_cluster_device function call is obsolete.  It is
being supported only for providing backward compatibility with
previous PowerMAX OS releases.  Users are highly encouraged
to make use of the newer fbs_register_rdev function call.  Note
that fbs_register_cluster_device only supports the registration of
Closely-Coupled timing devices, while the fbs_register_rdev
function supports both Closely-Coupled and RCIM Coupled tim-
ing device registrations.

Fbs_unregister_cluster_device - Unregister cluster timing device 8

This routine is invoked to unregister a local device as a Closely-Coupled timing device in
a closely-coupled system.  To unregister a device, the calling process must have the
P_RTIME privilege as well as enough privilege to open the device file. 

Unregistering a device as a Closely-Coupled timing source removes the virtual FBS iden-
tifier created when the device was registered and also removes the /dev/rdev entries on
all SBCs in the VME cluster.  Once a device is unregistered, it is once again available to
be attached to an FBS on the local SBC. 
8-35



PowerMAX OS Guide to Real-Time Services
The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations

CHARACTER* (*) device_name 
INTEGER istat

CALL Statement 

CALL fbs_unregister_cluster_device(device_name, istat);

Parameters

Parameters are described as follows.

device_name Refers to a variable that contains the path name of the
device that is to be unregistered as a Closely-Coupled tim-
ing source. device_name may refer to a real-time clock or to
a user-supplied device. 

If the device is a real-time clock, the path name must be of a
certain form.  Refer to Chapter 3 for detailed information on
the form associated with the real-time clock.

If the device is a user-supplied device, the path name must
be a valid UNIX path name.  The device must support the
IOCTLVECNUM ioctl(2) call.  See Chapter 3  for addi-
tional information. 

ristat refers to a variable to which fbs_unregister_cluster_device
will return an integer value indicating whether or not an
error has occurred.  A value of zero indicates that no error
has occurred.  A nonzero value indicates that an error has
o c c u r r e d .   R e f e r  t o  th e  s y s t e m  m a n u a l  p a g e
fbs_unregister_cluster_device(3F77rt) for
a listing of the nonzero values that may be returned and the
types of errors that they represent.

Note

The fbs_unregister_cluster_device function call is obsolete.  It is
being supported only for providing backward compatibility with
previous PowerMAX OS releases.  Users are highly encouraged
to make use of the newer fbs_unregister_rdev function call.
8-36



The FORTRAN Library Interface
Pgmquery – Query a Process on an FBS 8

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

Pgmquery – Query a Process on an FBS 8

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER prior 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER istat

CALL Statement 

CALL pgmquery(schdle, name, cpu, slot, prior, period, cycle, ab, istat)

Parameters 

Parameters are described as follows. 
8-37



PowerMAX OS Guide to Real-Time Services
schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information has been scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which information is to be
returned.  A full or relative path name of up to 1024 charac-
ters can be specified.  If this variable contains blanks, you
must provide the frequency–based scheduler process identi-
fier in the slot parameter.

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which infor-
mation is to be returned. Acceptable values and correspond-
ing results are presented in Table 8-11. 

slot      refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which information is to be returned. This
value is obtained when you make a call to pgmschedule
(see page 8-45 for an explanation of this subroutine). This
value must be − 1 if you wish to identify the program to be
queried only by specifying name and cpu. 

prior   refers to a variable to which pgmquery will return an
integer value indicating the specified process’s scheduling
priority. 

Table 8-11.  CPU Options:  pgmquery

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
8-38



The FORTRAN Library Interface
period  refers to a variable to which pgmquery will return an inte-
ger value indicating the frequency with which the specified
program is to be wakened in each major frame. 

cycle   refers to a variable to which pgmquery will return an
integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame 

ab       refers to a variable to which pgmquery will return an
integer value indicating the value of the “halt on overrun”
flag.  A nonzero value indicates that the flag is set.  A value
of zero indicates that the flag is not set. 

istat    refers to a variable to which pgmquery will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pgmquery(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Pgmremove – Remove a Process from an FBS 8

This subroutine is invoked to remove a process from a frequency–based scheduler.  You
can identify the process that you wish to remove by using one of the following methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
8-39



PowerMAX OS Guide to Real-Time Services
INTEGER ab 
INTEGER istat

CALL Statement 

CALL pgmremove(schdle, name, cpu, slot, ab, istat) 

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process to be removed from the speci-
fied scheduler.  A full or relative path name of up to 1024
characters can be specified.  If this variable contains blanks,
you must provide the frequency–based scheduler process
identifier in the slot parameter. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be removed
from the specified scheduler. Acceptable values and corre-
sponding results are presented in Table 8-12.   

Table 8-12.  CPU Options: pgmremove

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
removed

-1 The first process named by name that is currently run-
ning on any processor is removed

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is removed

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is removed
8-40



The FORTRAN Library Interface
slot    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be removed from the specified scheduler.
This  va lue  i s  ob ta ined  when  you  make  a  ca l l  to
schedpgmadd (see page 8-57 for an explanation of this
subroutine). This value must be − 1 if you choose to iden-
tify the program to be removed only by specifying name and
cpu. 

ab     refers to a flag that contains an integer value indicating the
manner in which the specified process is be removed from
the specified scheduler.  A positive value indicates that the
process is to be removed from the scheduler but allowed to
continue executing.  A negative value indicates that the
process is to be removed from the scheduler and terminated.

istat   refers to a variable to which pgmremove will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pgmremove(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Pgmreschedule – Reschedule a Process 8

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a pro-
cess’s scheduling priority has changed. If you have an existing
application that uses this interface, it is recommended that you
change your application to use schedpgmresched(3F77rt)
(see p. 8-63). For details on obsolete interfaces, refer to Chapter 2,
“Overview of the FBS.”

This subroutine is invoked to change the scheduling parameters for a process that is sched-
uled on a frequency–based scheduler.  You may wish, for example, to change a program’s
priority or the frequency with which it is scheduled to run.  You cannot, however, change
the CPU on which it has been scheduled.

To change a process’s priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.
8-41



PowerMAX OS Guide to Real-Time Services
If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page.

You can call pgmreschedule to change the parameters without having called pgmre-
move to remove the process from the scheduler (see page 8-39) or fbsintrpt to stop
the simulation (see page 8-18). 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER prior 
INTEGER param 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER istat 

CALL Statement 

CALL pgmreschedule(schdle, name, cpu, slot, prior, param, period, cycle, ab, istat) 

Parameters 

Parameters are described as follows. 
8-42



The FORTRAN Library Interface
schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process to be rescheduled.  A full or
relative path name of up to 1024 characters can be specified.
If this variable contains blanks, you must provide the fre-
quency–based scheduler process identifier in the slot param-
eter. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be resched-
uled. Acceptable values and corresponding results are pre-
sented in Table 8-13. 

slot    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be rescheduled. This value is obtained when
you make a call to pgmschedule (see page 8-45 for an
explanation of this subroutine). This value must be − 1 if
you wish to identify the program to be rescheduled only by
specifying name and cpu.   

prior   an integer value indicating the specified process’s schedul-
ing priority. A process that has been scheduled using pgm-

Table 8-13.  CPU Options:  pgmreschedule

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
rescheduled   

-1 The first process named by name that is currently run-
ning on any processor is rescheduled

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is rescheduled

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is rescheduled   
8-43



PowerMAX OS Guide to Real-Time Services
schedule (see p. 8-45 for an explanation of this subrou-
tine) is scheduled under the POSIX SCHED_RR scheduling
policy. The value specified must lie in the range of priorities
associated with this policy. You can obtain the allowable
range of priorities by invoking the run(1) command
from the shell and not specifying any options or arguments
(see the corresponding system manual page for an explana-
tion of this command). Higher numerical values correspond
to more favorable scheduling priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide. 

param  refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. 

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to fbsconfigure (see
page 8-6). 

cycle   refers to a variable that contains an integer value indicating
the first minor cycle in which the specified process is sched-
uled to be wakened in each frame. This value can range
from zero to the total number of minor cycles per frame
minus one. The total number of minor cycles per frame is
specified in a call to fbsconfigure (see page 8-6 for an
explanation of this subroutine). 

ab     refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified process causes a frame overrun.  A
nonzero value indicates that the scheduler will be stopped. 

istat   refers to a variable to which pgmreschedule will return
an integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pgmreschedule(3F77rt) for a listing of the nonzero
values that may be returned and the types of errors that they
represent. 
8-44



The FORTRAN Library Interface
Pgmschedule – Schedule a Process on an FBS 8

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a pro-
cess’s scheduling priority has changed. If you have an existing
application that uses this interface, it is recommended that you
change your application to use schedpgmadd(3F77rt) (see
p. 8-57). For details on obsolete interfaces, refer to Chapter 2,
“Overview of the FBS.”

This subroutine is invoked to create a new process and schedule it on a frequency–based
scheduler. When a process is scheduled using this subroutine, it is scheduled under the
POSIX SCHED_RR scheduling policy (for complete information on scheduling policies
and priorities, refer to the “Process Scheduling and Management” chapter of the Power-
MAX OS Programming Guide). Note that a process can not be scheduled under this policy
on a CPU on which servicing of the 60 Hz clock interrupt has been disabled. In such cases,
the process will behave as though it were scheduled under the SCHED_FIFO policy.

If you wish to set the process’s scheduling priority, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this subroutine, the follow-
ing conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias, the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.
8-45



PowerMAX OS Guide to Real-Time Services
For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER prior 
INTEGER param 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER cpu 
INTEGER slot 
INTEGER istat

CALL Statement 

CALL pgmschedule(schdle, name, prior, param, period, cycle, ab, cpu, slot, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value −1. 

name   refers to a variable that contains a standard UNIX path
name identifying the program to be scheduled on the sched-
uler.  A full or relative path name of up to 1024 characters
can be specified. 

prior   an integer value indicating the specified process’s schedul-
in g  p r i o r i t y.  A  p r oc e s s  t ha t  i s  s c h e du led  u s i ng
pgmschedule is scheduled under the POSIX SCHED_RR

scheduling policy. The value specified must lie in the range
of priorities associated with this policy. You can obtain the
allowable range of priorities by invoking the run(1)
command from the shell and not specifying any options or
arguments (see the corresponding system manual page for
an explanation of this command). Higher numerical values
correspond to more favorable scheduling priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.
8-46



The FORTRAN Library Interface
param refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. This value can be retrieved by the FBS–sched-
uled process through a call to rtparm (see page 8-52 for an
explanation of this subroutine).

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to fbsconfigure (see
page 8-6). 

cycle   refers to a variable that contains an integer value indicating
the first minor cycle in which the specified program is
scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per
frame minus one. (The total number of minor cycles per
frame is specified in a call to fbsconfigure. See page
8-6 for an explanation of this subroutine.)

ab     refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified program causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped.

cpu    refers to a mask that identifies the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are  presented in
Table 8-14.

slot    refers to a variable to which pgmschedule will return an
integer value that is the unique frequency–based scheduler
process identifier for the scheduled process.

istat   refers to a variable to which pgmschedule will return an
integer value indicating whether or not an error has

Table 8-14.  CPU Options:  pgmschedule

Value Result

0  The program specified by name can be scheduled on
the processor from which the call is made   

-1 The program specified by name can be scheduled on
any processor

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) the program
specified by name can be scheduled on CPU i   
8-47



PowerMAX OS Guide to Real-Time Services
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
pgmschedule(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 

Pgmstat – Query State of FBS–Scheduled Process 8

This subroutine is invoked to obtain information about the state of a particular process that
has been scheduled on a frequency–based scheduler.  The state of the process indicates
whether it is in the fbswait sleep state or is in another state. 

You can identify the process by using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• A mask of the CPU(s) on which the process can run 

• The frequency–based scheduler process identifier 

• The current state of the process 

The FORTRAN specifications and corresponding parameters are presented in the follow-
ing sections.

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER state 
INTEGER istat 
8-48



The FORTRAN Library Interface
CALL Statement 

CALL pgmstat(schdle, name, cpu, slot, state, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain state information has been scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which state information is
to be returned.  A full or relative path name of up to 1024
characters can be specified.  If this variable contains blanks,
you must provide the frequency–based scheduler process
identifier in the slot parameter.  Pgmstat will return to
this variable the path name of the specified FBS–scheduled
process. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which state
information is to be returned. Acceptable values and corre-
sponding results are presented in Table 8-15.   

Table 8-15.  CPU Options:  pgmstat

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set,
the first process named by name that is currently run-
ning on any of the selected CPUs is specified   
8-49



PowerMAX OS Guide to Real-Time Services
Pgmstat will return to this variable the mask of the CPUs on which the specified
process can run. 

slot    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which status information is to be returned.
This  va lue  i s  ob ta ined  when  you  make  a  ca l l  to
schedpgmadd (see page 8-57 for an explanation of this
subroutine). This value must be − 1 if you wish to identify
the program to be queried only by specifying name and cpu.
Pgmstat will return to this variable the frequency–based
scheduler process identifier for the specified process. 

state   refers to a variable to which pgmstat will return an integer
value indicating the current state of the specified process as
defined in <fbslib.h.> 

istat   refers to a variable to which pgmstat will return an integer
value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
occurred.  Refer to the system manual page pgm-
stat(3F77rt) for a listing of the nonzero values that
may be returned and the types of errors that they represent. 
8-50



The FORTRAN Library Interface
Pgmtrigger – Trigger Process Waiting on FBS 8

This subroutine enables a process to wake a process that is in the fbswait sleep state.  It
is important to note that the calling process does not have to be scheduled on a frequency–
based scheduler; the target process must be. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER slot 
INTEGER tgrflg 
INTEGER istat 

CALL Statement 

CALL pgmtrigger(schdle, slot, tgrflg, istat) 

Parameters 

Parameters are described as follows. 

schdle  refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler on which the sleeping process is scheduled. 

slot    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the sleeping process. This value is obtained when you make
a call to schedpgmadd (see page 8-57 for an explanation
of this subroutine). 

tgrflg  refers to a variable that contains an integer value indicating
whether or not a context switch is to be forced on the pro-
cessor on which the wakened process is executing.  A non-
zero value indicates that a context switch is to be forced. 

istat   refers to a variable to which pgmtrigger will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that the process is run-
nable.  A nonzero value indicates that an error of a specific
type has occurred.  Refer to the system manual page
pgmtrigger(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 
8-51



PowerMAX OS Guide to Real-Time Services
Rtparm – Return Initiation Parameter 8

This subroutine enables a process that is scheduled on a frequency–based scheduler to
obtain the value of a process initiation parameter that has been passed to it via a call to
schedpgmadd (see page 8-57) or schedpgmresched (see 8-63). 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER param

CALL Statement 

CALL rtparm(param) 

Parameter 

Rtparm requires one parameter: param. Param refers to a variable to which rtparm will
return the integer value passed to the process via a call to schedpgmadd or
schedpgmresched. 

Sched_pgm_set_soft_overrun_limit 8

Sets the consecutive soft overrun limit for a currently scheduled LWP on a frequency-
based scheduler. 

To set the consecutive soft overrun limit, the calling LWP must have alter permission for
the scheduler. If the Enhanced Security Utilities are installed and running, the Mandatory
Access Control (MAC) level of the calling process must equal the MAC level of the target
process, or the calling process must have the P_MACWRITE privilege.

The LWP can be identified in one of the following ways: 

- A slot only (if name is blank). 

- A path name and processor id pair only (if slot is -1). 

- Both a slot and the path name and processor id pair.  

The FORTRAN variable declarations, CALL statement, corresponding parameters and
return values are presented in the following sections.

Variable Declarations

INTEGER schdle, cpu, slot, soft_limit, istat
CHARACTER* (*) name

CALL Statement

CALL sched_pgm_set_soft_overrun_limit (schdle, name, cpu, slot, soft_limit, istat)
8-52



The FORTRAN Library Interface
Parameters 

schdle Obtained from an fbsid(3F77rt) library routine call or set to -1. -1 enables an
FBS-scheduled LWP to reference the frequency-based scheduler on which it
is scheduled without knowing the scheduler identifier.

name Path name that identifies the LWP. If the name is all blanks, then the slot field
(frequency-based scheduler process identifier) must be given.

cpu Either a bit mask or set to 0 or -1. If a bit mask is specified, then those proces-
sors with (cpu & (1 << i)) set are requested. If cpu is 0, then the processor on
which the call is made is requested. If cpu is -1, then all processors are
requested. The first LWP named that is currently running on one of the
requested processors has its soft overrun limit set.

slot Frequency-based scheduler process identifier for the LWP. If the slot number
equals -1, then a name and processor ID must be given.

soft_limit Number of consecutive soft overruns allowed to occur before failure.
soft_limit must be non-negative and must be less than INT_MAX. By default,
this value is zero; i.e., if the LWP never sets a consecutive soft overrun limit,
then it is zero. 

istat           Variable to which sched_pgm_set_soft_overrun_limit returns an integer value
indicating whether or not an error has occurred.  A value of zero indicates that
no error has occurred.  A nonzero value indicates that an error of a specific
type has occurred.  Refer to the system manual page fbsid(3F77rt) for a listing
of the nonzero values that may be returned and the types of errors that they
represent. 

Sched_pgm_soft_overrun_query 8

Queries the status of soft overrun processing for a currently scheduled LWP on a fre-
quency-based scheduler. The LWP can be identified in one of the following ways: 

- A slot only (if name is blank). 

- A path name and processor id pair only (if slot is -1). 

- Both a slot and the path name and processor id pair.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations

INTEGER schdle, cpu, slot, soft_limit, soft_total, istat
CHARACTER* (*) name 

CALL Statement

CALL sched_pgm_soft_overrun_query (schdle, name, cpu, slot, soft_limit, soft_total,
 istat)
8-53



PowerMAX OS Guide to Real-Time Services
Parameters

schdle Obtained from an fbsid(3F77rt) library routine call or set to -1. -1 enables an
FBS-scheduled LWP to reference the frequency-based scheduler on which it
is scheduled without knowing the scheduler identifier.

name Path name that identifies the LWP. If the name is all blanks, then the slot field
(frequency-based scheduler process identifier) must be given.

cpu Either a bit mask or set to 0 or -1. If a bit mask is specified, then those proces-
sors with (cpu & ( 1<<i )) set are requested. If cpu is 0, then the processor on
which the call is made is requested. If cpu is -1, then all processors are
requested. The first LWP named name that is currently running on one of the
requested processors is returned.

slot Frequency-based scheduler process identifier for the LWP. If the slot number
equals -1, then a name and processor id must be given.

soft_limit Number of consecutive soft overruns set by calling
sched_pgm_set_soft_overrun_limit.

soft_total Total number of soft overruns incurred by the LWP.

istat           Variable to which sched_pgm_set_soft_overrun_limit returns an integer value
indicating whether or not an error has occurred.  A value of zero indicates that
no error has occurred.  A nonzero value indicates that an error of a specific
type has occurred.  Refer to the system manual page fbsid(3F77rt) for a listing
of the nonzero values that may be returned and the types of errors that they
represent.

Schedfbsqry – Query Processes on an FBS 8

The schedfbsqry subroutine is invoked to obtain information about processes that have
been scheduled on a frequency–based scheduler.  Information is returned for all processes
scheduled on the user–specified processor(s).  Information provided for each process
includes the following: 

• A mask of the CPU(s) on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling policy under which the process has been scheduled 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 
8-54



The FORTRAN Library Interface
Variable Declarations 

INTEGER schdle 
INTEGER cpu 
INTEGER buf1size 
INTEGER buf1(buf1size) 
INTEGER maxsize 
INTEGER buf2size 
CHARACTER* (*) buf2 
INTEGER istat 

CALL Statement 

CALL schedfbsqry(schdle, cpu, buf1size, buf1, maxsize, buf2size, buf2, istat) 

Parameters 

Parameters are described as follows. 

schdle    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which you wish to obtain scheduling informa-
tion. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) for which scheduling information is to be
obtained. Acceptable values and corresponding results are
presented in Table 8-16.

buf1size  refers to a variable that contains an integer value indicating
the size in 32–bit words of the array represented by buf1.
Because 9 words of information are returned for each
process, it is recommended that this value be a multiple of
9. 

Table 8-16.  CPU Options:  schedfbsqry

Value Result

0  Scheduling information for processes executing on the
processor from which the call is made is returned   

-1 Scheduling information for all processes on the sched-
uler is returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned
8-55



PowerMAX OS Guide to Real-Time Services
buf1     refers to an array to which schedfbsqry will return a
series of 11 integer values for each process on the proces-
sor(s) specified with the cpu parameter. The number of pro-
cesses for which these values are returned is bound by the
value of the buf1size parameter. If, for example, the value of
buf1size is 145, values for 16 processes will be returned.
These values represent the scheduling information for the
process(es). The type of information returned in each array
element for a single process is presented in Table 8-17. 

maxsize  refers to a variable that contains an integer value indicating
the maximum length of a path name to be returned in buf2 

buf2size refers to a variable that contains an integer value indicating
the size in bytes of the character string represented by buf2.
To ensure that buf2 is large enough to accommodate the
names of all processes that you wish to query, you may find
it helpful to compute the number of bytes needed by multi-
plying the maximum number of processes allowed on the
scheduler (see the information on fbsconfigure pre-
sented on page 8-6) by 32. 

buf2      refers to a variable to which schedfbsqry will return the
path names for each process on the processor(s) specified
with the cpu parameter.  Path names are returned as a series
of strings.  The length of each string is less than or equal to
the value of maxsize.  Where maxsize is not large enough to
accommodate a full path name, the concluding component

Table 8-17.  Contents of Array Elements for a Process

Element Contents

1  Byte offset of the process’s path name in buf2   

2  Length in bytes of the process’s path name   

3  Mask of the CPU(s) on which the process can execute   

4  The process’s frequency–based scheduler process iden-
tifier   

5 The process’s scheduling policy   

6  The process’s scheduling priority   

7  The number of minor cycles indicating the frequency
with which the process is to be wakened in each major
frame (period)   

8  The first minor cycle in which the process is scheduled
to be wakened in each major frame (starting base
cycle)   

9  The value of the “halt on overrun” flag.  A nonzero
value indicates that the flag is set.  A value of zero indi-
cates that the flag is not set.   
8-56



The FORTRAN Library Interface
names are returned.  The number of path names returned is
bound by the value of the buf2size parameter. 

istat      refers to a variable to which schedfbsqry will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
schedfbsqry(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 

Schedpgmadd – Schedule a Process on an FBS 8

The schedpgmadd subroutine is invoked to create a new process and schedule it on a
frequency–based scheduler.  It is important to note that to use this subroutine  to (1)
change a process’s scheduling policy to the  SCHED_FIFO or the SCHED_RR  policy or (2)
change the priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy,
the following conditions must be met:

• The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to modify the process’s CPU bias when you invoke this subroutine, the follow-
ing conditions must be met:
8-57



PowerMAX OS Guide to Real-Time Services
• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU assignment is being
changed, or the calling process must have the P_OWNER privilege.

• To add a CPU to a process’s CPU bias,  the calling process must have the
P_CPUBIAS privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege. 

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cid 
INTEGER prior 
INTEGER param 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER cpu 
INTEGER slot 
INTEGER istat 

CALL Statement 

CALL schedpgmadd(schdle, name, cid, prior, param, period, cycle, ab, cpu, slot, istat)

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for a frequency–based
scheduler. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing the identifier, you can specify the value − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the program to be scheduled on the sched-
uler.  A full or relative path name of up to 1024 characters
can be specified. 
8-58



The FORTRAN Library Interface
cid      refers to a variable that contains an integer value indicating
the POSIX scheduling policy under which the specified pro-
cess is to be scheduled.  Scheduling policies are defined in
the file <sched.h>.  The value of cid must be one of the
following: 

SCHED_FIFO 
first–in–first–out (FIFO) scheduling policy 

SCHED_RR 
round–robin (RR) scheduling policy.  Note that a
process cannot be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock inter-
rupt has been disabled.  In such cases, the process
will behave as though it were scheduled under the
SCHED_FIFO policy. 

SCHED_OTHER 
time-sharing scheduling policy 

prior   refers to a variable that contains an integer value indicating
the scheduling priority of the specified program. The range
of acceptable priority values is governed by the scheduling
policy specified.

You can determine the allowable range of priorities associ-
ated with each policy (SCHED_FIFO ,  SCHED_RR ,  or
SCHED_OTHER) by invoking the run(1) command from
the shell and not specifying any options or arguments (see
the corresponding system manual page for an explanation of
this command). Higher numerical values correspond to
more favorable priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide. 

param refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. This value can be retrieved by the FBS–sched-
uled process through a call to rtparm (see page 8-52 for an
explanation of this subroutine). 

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to fbsconfigure (see
page 8-6). 
8-59



PowerMAX OS Guide to Real-Time Services
cycle   refers to a variable that contains an integer value indicating
the first minor cycle in which the specified program is
scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per
frame minus one. (The total number of minor cycles per
frame is specified in a call to fbsconfigure. See page
8-6 for an explanation of this subroutine). 

ab     refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified program causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped.

cpu    refers to a mask that identifies the processors on which the
specified program can be scheduled to run. Acceptable val-
ues and corresponding results are presented in Table 8-18. 

slot    refers to a variable to which schedpgmadd will return an
integer value that is the unique frequency–based scheduler
process identifier for the scheduled process. 

istat   refers to a variable to which schedpgmadd will return an
integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has
occurred. A nonzero value indicates that an error of a
specific type has occurred. Refer to the system manual page
schedpgmadd(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 

Schedpgmqry – Query a Process on an FBS 8

The schedpgmqry subroutine is invoked to obtain information for a particular process
that has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

Table 8-18.  CPU Options:  schedpgmadd

Value Result

0  The program specified by name can be scheduled on
the processor from which the call is made   

-1 The program specified by name can be scheduled on
any processor

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) the program
specified by name can be scheduled on CPU i   
8-60



The FORTRAN Library Interface
• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

Information that is returned includes the following: 

• The process’s path name 

• The CPU on which the process can execute 

• The frequency–based scheduler process identifier 

• The scheduling policy 

• The scheduling priority 

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame) 

• The starting base cycle (the first minor cycle in which the process is sched-
uled to be wakened in each major frame) 

• The value of the “halt on overrun” flag 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER cid 
INTEGER prior 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER istat 

CALL Statement 

CALL schedpgmqry(schdle, name, cpu, slot, cid, prior, period, cycle, ab, istat)

Parameters 

Parameters are described as follows. 
8-61



PowerMAX OS Guide to Real-Time Services
schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process for which you wish to
obtain scheduling information has been scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which information is to be
returned.  A full or relative path name of up to 1024 charac-
ters can be specified.  If this variable contains blanks, you
must provide the frequency–based scheduler process identi-
fier in the slot parameter. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the program for which infor-
mation is to be returned. Acceptable values and correspond-
ing results are presented in Table 8-19.   

slot     refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which information is to be returned. This
value is obtained when you make a call to schedpgmadd
(see page 8-57 for an explanation of this subroutine). This
value must be − 1 if you wish to identify the program to be
queried only by specifying name and cpu. 

cid     refers to a variable to which schedpgmqry will return an
integer value indicating the scheduling policy under which
the specified process has been scheduled 

Table 8-19.  CPU Options:  schedpgmqry

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
8-62



The FORTRAN Library Interface
prior   refers to a variable to which schedpgmqry will return an
integer value indicating the specified process’s scheduling
priority 

period  refers to a variable to which schedpgmqry will return an
integer value indicating the frequency with which the speci-
fied program is to be wakened in each major frame. 

cycle   refers to a variable to which schedpgmqry will return an
integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame 

ab      refers to a variable to which schedpgmqry will return an
integer value indicating the value of the “halt on overrun”
flag.  A nonzero value indicates that the flag is set.  A value
of zero indicates that the flag is not set. 

istat    refers to a variable to which schedpgmqry will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
schedpgmqry(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 

Schedpgmresched – Reschedule a Process 8

The schedpgmresched subroutine is invoked to change the scheduling parameters for
a process that is scheduled on a frequency–based scheduler.  You may wish, for example,
to change a program’s scheduling policy or priority or the frequency with which it is
scheduled to run.  You cannot, however, change the CPU on which it has been scheduled.  

If you wish to (1) change a process’s scheduling policy to the SCHED_FIFO or the
SCHED_RR policy or (2) change the priority of a process scheduled under the SCHED_FIFO

or the SCHED_RR policy, the following conditions must be met:

•  The calling process must have the P_RTIME privilege. 

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER privi-
lege. 

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:
8-63



PowerMAX OS Guide to Real-Time Services
• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

• The Mandatory Access Control (MAC) level of the calling process must
equal the MAC level of the target process, or the calling process must have
the P_MACWRITE privilege.

For additional information on privileges, refer to the PowerMAX OS Programming Guide
and the intro(2) system manual page. 

You can identify the process that you wish to reschedule by using one of the following
methods: 

• Specify the name of the process and the CPU on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER cid 
INTEGER prior 
INTEGER param 
INTEGER period 
INTEGER cycle 
INTEGER ab 
INTEGER istat 

CALL Statement 

CALL schedpgmresched(schdle, name, cpu, slot, cid, prior, param, period, cycle, ab, istat) 
8-64



The FORTRAN Library Interface
Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process to be rescheduled.  A full or
relative path name of up to 1024 characters can be specified.
If this variable contains blanks, you must provide the fre-
quency–based scheduler process identifier in the slot param-
eter. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process to be resched-
uled. Acceptable values and corresponding results are pre-
sented in Table 8-20. 

slot    refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process to be rescheduled. This value is obtained when
you make a call to schedpgmadd (see page 8-57 for an
explanation of this subroutine). This value must be –1 if you
wish to identify the program to be rescheduled only by
specifying name and cpu.   

Table 8-20.  CPU Options:  schedpgmresched

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
rescheduled   

-1 The first process named by name that is currently run-
ning on any processor is rescheduled

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is run-
ning on CPU i is rescheduled

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is rescheduled   
8-65



PowerMAX OS Guide to Real-Time Services
cid     refers to a variable that contains an integer value indicating
the scheduling policy under which the specified program is
to be scheduled.  Scheduling policies are defined in the file
<sched.h>.  The value of cid must be one of the follow-
ing: 

SCHED_FIFO 
first–in–first–out (FIFO) scheduling policy

SCHED_RR 
round–robin (RR) scheduling policy.  Note that a
process cannot be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock inter-
rupt has been disabled.  In such cases, the process
will behave as though it were scheduled under the
SCHED_FIFO policy. 

SCHED_OTHER 
time-sharing scheduling policy 

prior   refers to a variable that contains an integer value indicating
the scheduling priority of the specified program. The range
of acceptable priority values is governed by the scheduling
policy specified. 

You can determine the allowable range of priorities associ-
ated with each policy (SCHED_FIFO ,  SCHED_RR ,  or
SCHED_OTHER) by invoking the run(1) command from
the shell and not specifying any options or arguments (see
the corresponding system manual page for an explanation of
this command). Higher numerical values correspond to
more favorable priorities.

For complete information on scheduling policies and priori-
ties, refer to the “Process Scheduling and Management”
chapter of the PowerMAX OS Programming Guide.

param  refers to a variable that contains an integer value to be
passed to a process that is scheduled on a frequency–based
scheduler. 

period refers to a variable that contains an integer value indicating
the frequency with which the specified program is to be
wakened in each major frame. A period of one indicates that
the specified program is to be wakened every minor cycle; a
period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor
cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the speci-
fied scheduler as defined in a call to fbsconfigure (see
page 8-6). 

cycle   refers to a variable that contains an integer value indicating
the first minor cycle in which the specified process is sched-
uled to be wakened in each frame. This value can range
8-66



The FORTRAN Library Interface
from zero to the total number of minor cycles per frame
minus one. The total number of minor cycles per frame is
specified in a call to fbsconfigure (see page 8-6 for an
explanation of this subroutine). 

ab     refers to a flag that contains an integer value indicating
whether or not the scheduler should be stopped in the event
that the specified process causes a frame overrun.  A non-
zero value indicates that the scheduler will be stopped. 

istat   refers to a variable to which schedpgmresched will
return an integer value indicating whether or not an error
has occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
schedpgmresched(3F77rt) for a listing of the non-
zero values that may be returned and the types of errors that
they represent. 

The Performance Monitor Subroutines 8

The performance monitor subroutines provide access to the key features of the perfor-
mance monitor.  They enable you to perform such basic operations as the following: (1)
clear performance monitor values for a process or processor, (2) start and stop perfor-
mance monitoring for a process or processor, and (3) obtain performance monitor values
for a process or processor. 

In the sections that follow, all of the performance monitor subroutines contained in the
libF77rt library are presented in alphabetical order. Figure 8-2 illustrates the approxi-
mate order in which you might invoke the subroutines from an application program. 
8-67



PowerMAX OS Guide to Real-Time Services
Figure 8-2.  FORTRAN Library Call Sequence:  Performance Monitor

END

START

pmselect

pmclrtable

pmmonitor

pmqrycpu
pmqrylist

pmprogram

pmmonitor

pmqrypgm

pmprogram
8-68



The FORTRAN Library Interface
Pmclrpgm – Clear Values for a Process 8

This subroutine is invoked to clear performance monitor values for a particular process
that has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier. 

NOTE

This subroutine will clear the process’ total soft overrun count.

The FORTRAN variable declarations, call statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER istat 

CALL Statement 

CALL pmclrpgm(schdle, name, cpu, slot, istat) 

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which values are to be
cleared.  A full or relative path name of up to 1024 charac-
ters can be specified.  If this variable is filled with blanks,
you must provide the frequency–based scheduler process
identifier in the slot parameter. 
8-69



PowerMAX OS Guide to Real-Time Services
cpu     refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which values
are to be cleared. Acceptable values and corresponding
results are presented in Table 8-21

slot refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which values are to be cleared. This value is
obtained when you make a call to schedpgmadd (see page
8-57 for an explanation of this subroutine). This value must
be − 1 if you wish to identify the process only by specifying
name and cpu. 

istat    refers to a variable to which pmclrpgm will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pmclrpgm(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Table 8-21.  CPU Options:  pmclrpgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified   

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
8-70



The FORTRAN Library Interface
Pmclrtable – Clear Values for Processor(s) 8

This subroutine is invoked to clear performance monitor values for FBS–scheduled
processes on one or more specified processors on a selected scheduler. 

NOTE

This subroutine will clear the total soft overrun count for all
related processes.

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER cpucount 
INTEGER cpulist(cpucount) 
INTEGER istat

CALL Statement 

CALL pmclrtable(schdle, cpucount, cpulist, istat) 

Parameters 

Parameters are described as follows. 

schdle     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

cpucount  refers to a variable that contains an integer value indicating
the number of elements contained in the array represented
by cpulist. 

cpulist     refers to an array that consists of the number of elements
specified by the cpucount parameter and contains one or
more integer values indicating the processor or processors
for which performance monitor values are to be cleared.
8-71



PowerMAX OS Guide to Real-Time Services
Acceptable values and corresponding results are presented
in Table 8-22. 

istat      refers to a variable to which pmclrtable will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
pmclrtable(3F77rt) for a listing of the nonzero val-
ues that may be returned and the types of errors that they
represent. 

Pmmonitor – Start/Stop Performance Monitoring on Processor(s) 8

This subroutine is invoked to start or stop performance monitoring for FBS–scheduled
processes on one or more specified processors on a selected scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections.

Variable Declarations 

INTEGER schdle 
INTEGER pmflag 
INTEGER cpucount 
INTEGER cpulist(cpucount) 
INTEGER istat 

CALL Statement 

CALL pmmonitor(schdle, pmflag, cpucount, cpulist, istat) 

Parameters 

Parameters are described as follows. 

Table 8-22.  CPU Options:  pmclrtable

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are cleared   

-1 Performance monitor values for all processes on the
scheduler 

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
cleared   
8-72



The FORTRAN Library Interface
schdle     refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

pmflag    refers to a variable that contains an integer value indicating
whether performance monitoring is to be started or stopped.
A nonzero value indicates that performance monitoring is to
be started.  A zero value indicates that performance moni-
toring is to be stopped. 

cpucount  refers to a variable that contains an integer value indicating
the number of elements in the array represented by cpulist.

cpulist    refers to an array that consists of the number of elements
specified by the cpucount parameter and contains one or
more integer values indicating the processor or processors
for which performance monitoring is to be started or
stopped. Acceptable values and corresponding results are
presented in Table 8-23.

istat      refers to a variable to which pmmonitor will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
pmmonitor(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Table 8-23.  CPU Options:  pmmonitor

Value Result

0  Performance monitoring for FBS–scheduled processes
executing on the processor from which the call is made
is started or stopped   

-1 Performance monitoring for all processes on the sched-
uler is started or stopped

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitoring for processes executing on CPU i is started
or stopped   
8-73



PowerMAX OS Guide to Real-Time Services
Pmprogram – Start/Stop Performance Monitoring on a Process 8

This subroutine is invoked to start or stop performance monitoring for a particular process
that has been scheduled on a frequency–based scheduler.  You can identify the process by
using one of the following methods: 

• Specify the name of the process and the CPU(s) on which it is scheduled. 

• Specify the process’s frequency–based scheduler process identifier (slot
number). 

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency–based scheduler process identifier. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER pmflag 
INTEGER istat 

CALL Statement 

CALL pmprogram(schdle, name, cpu, slot, pmflag, istat) 

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the process is scheduled. You can obtain
this value by making a call to fbsconfigure (see page
8-6 for an explanation of this subroutine). If you wish to ref-
erence the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1. 

name   refers to a variable that contains a standard UNIX path
name identifying the process for which performance moni-
toring is to be started or stopped.  A full or relative path
name of up to 1024 characters can be specified.  If this vari-
able is filled with blanks, you must provide the frequency–
based scheduler process identifier in the slot parameter. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring is to be started or stopped. Acceptable
8-74



The FORTRAN Library Interface
values and corresponding results are  presented in
Table 8-24. 

slot     refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which performance monitoring is to be
started or stopped. This value is obtained when you make a
call to schedpgmadd (see page 8-57 for an explanation of
this subroutine). This value must be − 1 if you wish to iden-
tify the process only by specifying name and cpu. 

pmflag  refers to a variable that contains an integer value indicating
whether performance monitoring is to be started or stopped.
A nonzero value indicates that performance monitoring is to
be started.  A zero value indicates that performance moni-
toring is to be stopped. 

istat     refers to a variable to which pmprogram will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a spe-
cific type has occurred.  Refer to the system manual page
pmprogram(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Table 8-24.  CPU Options:  pmprogram

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
8-75



PowerMAX OS Guide to Real-Time Services
Pmqrycpu – Query Values for Selected Processor(s) 8

This subroutine is invoked to obtain performance monitor values for FBS–scheduled
processes on one or more specified processors on a selected scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER cpu 
INTEGER bufsiz 
INTEGER buf(bufsize) 
INTEGER istat

CALL Statement 

CALL pmqrycpu(schdle, cpu, bufsiz, buf, istat) 

Parameters 

Parameters are described as follows. 

schdle refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler on which the processes are scheduled. You can
obtain this value by making a call to fbsconfigure (see
page 8-6 for an explanation of this subroutine). If you wish
to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier,
you can specify a value of − 1. 

cpu    refers to a variable that contains an integer value indicating
the processor(s) for which performance monitor values are
to be obtained. Acceptable values and corresponding results
are presented in Table 8-25. 

Table 8-25.  CPU Options:  pmqrycpu

Value Result

0  Performance monitor values for FBS–scheduled pro-
cesses executing on the processor from which the call
is made are returned   

-1 Performance monitor values for all processes on the
scheduler are returned

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
returned   
8-76



The FORTRAN Library Interface
bufsiz  refers to a variable that contains an integer value indicating
the size in 32–bit words of the array represented by buf.
Because 16 words of information are returned for each
process, it is recommended that this value be a multiple of
16. 

buf      refers to an array to which pmqrycpu will return a series of
16 integer values for each FBS–scheduled process on the
processor(s) specified with the cpu parameter. The number
of processes for which these values are returned is bound by
the value of the bufsiz parameter. If, for example, the value
of bufsiz is 165, values for 10 processes will be returned.
These values represent the performance monitoring infor-
mation for the process(es). The type of information returned
in each array element for a single process is presented in
Table 8-26. 

Table 8-26.  Contents of Array Elements: pmqrycpu

Element Contents

1  The process’s frequency–based scheduler process iden-
tifier (slot number)   

2  The amount of time that the process has spent running
from the last time that it has been wakened by the
scheduler until it has called fbswait (last time)   

3  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

4  The number of seconds that the process has spent run-
ning in all cycles (total seconds).  The total amount of
time that the process has spent running is equal to the
value of Element 4 plus the value of Element 5.      

5  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
spent running is equal to the value of Element 4 plus
the value of Element 5.   

6  The number of hard frame overruns caused by the pro-
cess   

7  The least amount of time that the process has spent run-
ning in a cycle (minimum cycle time)   

8  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

9  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

10  The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)   
8-77



PowerMAX OS Guide to Real-Time Services
istat   refers to a variable to which pmqrycpu will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to  the system manual
page pmqrycpu(3F77rt) for a listing of the nonzero
values that may be returned and the types of errors that they
represent. 

Pmqrylist – Query Values for a List of Processes 8

This subroutine is invoked to obtain performance monitor values for a list of processes
scheduled on a frequency–based scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
INTEGER slotcount 
INTEGER slotlist(slotcount) 
INTEGER bufsiz 
INTEGER buf(bufsize) 
INTEGER istat 

CALL Statement 

CALL pmqrylist(schdle, slotcount, slotlist, bufsiz, buf, istat) 

Parameters 

11  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

12  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

13  The least amount of time that the process has spent run-
ning during a major frame (minimum frame time)   

14  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

15  The greatest amount of time that the process has spent
running during a major frame (maximum frame time)   

16  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 8-26.  Contents of Array Elements: pmqrycpu (Cont.)

Element Contents
8-78



The FORTRAN Library Interface
Parameters are described as follows. 

schdle    refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1. 

slotcount  refers to a variable that contains an integer value indicating
the number of frequency–based scheduler process identifi-
ers contained in the array represented by slotlist. 

slotlist     refers to an array that consists of the number of elements
specified by the slotcount parameter and contains one or
more integer values indicating the frequency–based sched-
uler process identifiers for which performance monitor
values are to be returned. 

bufsiz     refers to a variable that contains an integer value indicating
the size in 32–bit words of the array represented by buf.
Because 15 words of information are returned for each
process, it is recommended that this value be a multiple of
15. 

buf         refers to an array to which pmqrylist will return a series
of 15 integer values for each FBS–scheduled process. The
number of processes for which these values are returned is
bound by the value of the bufsiz parameter. If, for example,
the value of bufsiz is 155, values for 10 processes will be
returned. These values represent the performance monitor-
ing information for the processes. The type of information
returned in each array element for a single process is pre-
sented in Table 8-27. 

Table 8-27.  Contents of Array Elements:  pmqrylist

Element Contents

1  The amount of time that the process has spent running
from the last time that it has been wakened by the
scheduler until it has called fbswait (last time)   

2  The number of times that the process has been wak-
ened by the scheduler (total iterations, or cycles)   

3  The number of seconds that the process has spent run-
ning in all cycles (total seconds).  The total amount of
time that the process has spent running is equal to the
value of Element 3 plus the value of Element 4.   
8-79



PowerMAX OS Guide to Real-Time Services
istat      refers to a variable to which pmqrylist will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pmqrylist(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

4  The additional number of microseconds that the pro-
cess has spent running in all cycles (total microsec-
onds).  The total amount of time that the process has
spent running is equal to the value of Element 3 plus
the value of Element 4. 

5  The number of hard frame overruns caused by the pro-
cess   

6  The least amount of time that the process has spent run-
ning in a cycle (minimum cycle time)   

7  The number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle)   

8  The number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame)   

9  The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)   

10  The number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle)   

11  The number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame)   

12  The least amount of time that the process has spent run-
ning during a major frame (minimum frame time)   

13  The number of the major frame in which the minimum
frame time has occurred (minimum frame frame)   

14  The greatest amount of time that the process has spent
running during a major frame (maximum frame time)   

15  The number of the major frame in which the maximum
frame time has occurred (maximum frame frame)   

Table 8-27.  Contents of Array Elements:  pmqrylist

Element Contents
8-80



The FORTRAN Library Interface
Pmqrypgm – Query Values for a Selected Process 8

This subroutine is invoked to obtain performance monitor values for a particular process
scheduled on a frequency–based scheduler. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER schdle 
CHARACTER* (*) name 
INTEGER cpu 
INTEGER slot 
INTEGER last 
INTEGER iter 
INTEGER totsec 
INTEGER totusec 
INTEGER over 
INTEGER minc 
INTEGER minctc 
INTEGER minctf 
INTEGER maxc 
INTEGER maxctc 
INTEGER maxctf 
INTEGER minf 
INTEGER minftf 
INTEGER maxf 
INTEGER maxftf 
INTEGER istat 

CALL Statement 

CALL pmqrypgm(schdle, name, cpu, slot, last, iter, totsec, totusec, over, minc, 
minctc, minctf, maxc, maxctc, maxctf, minf, minftf, maxf, maxftf, istat) 

Parameters 

Parameters are described as follows. 

schdle   refers to a variable that contains a unique, positive integer
value representing the identifier for the frequency–based
scheduler for which performance monitor values are
requested. You can obtain this value by making a call to
fbsconfigure (see page 8-6 for an explanation of this
subroutine). If you wish to reference the frequency–based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1.

name   refers to a variable that contains a standard UNIX path
name identifying the process for which performance moni-
toring values are to be returned.  A full or relative path name
of up to 1024 characters can be specified.  If this variable is
8-81



PowerMAX OS Guide to Real-Time Services
filled with blanks, you must provide the frequency–based
scheduler process identifier in the slot parameter. 

cpu      refers to a variable that contains an integer value indicating
the processor(s) to be used in conjunction with the value of
the name parameter to identify the process for which perfor-
mance monitoring values are to be returned. Acceptable val-
ues and corresponding results are presented in Table 8-28. 

slot     refers to a variable that contains an integer value providing
the unique frequency–based scheduler process identifier for
the process for which performance monitoring values are to
be returned. This value is obtained when you make a call to
schedpgmadd (see page 8-57 for an explanation of this
subroutine). This value must be − 1 if you wish to identify
the process only by specifying name and cpu. 

last     refers to a variable to which pmqrypgm will return an inte-
ger value indicating the amount of time that the process has
spent running from the last time that it has been wakened by
the scheduler until it has called fbswait (last time). 

iter     refers to a variable to which pmqrypgm will return an inte-
ger value indicating the number of times that the process
has been wakened by the frequency–based scheduler since
the last time that performance monitor values have been
cleared and performance monitoring has been enabled (total
iterations, or cycles). 

totsec   refers to a variable to which pmqrypgm will return an inte-
ger value indicating the number of seconds that the process
has spent running in all cycles (total time in seconds).  The
total amount of time that the process has spent running is
equal to the value of totsec plus totusec. 

Table 8-28.  CPU Options:  pmqrypgm

Value Result

0  The first process named by name that is currently run-
ning on the processor from which the call is made is
specified

-1 The first process named by name that is currently run-
ning on any processor is specified

Bit mask  If (cpu & ( 1<<i )) is set (where i is an integer ranging
from zero to 15 and representing a CPU) and it is the
only bit set, the first process named by name that is cur-
rently running on CPU i is specified

If (cpu & ( 1<<i )) is set and it is not the only bit set, the
first process named by name that is currently running
on any of the selected CPUs is specified   
8-82



The FORTRAN Library Interface
totusec  refers to a variable to which pmqrypgm will return an
integer value indicating the additional number of microsec-
onds that the process has spent running in all cycles (total
time in microseconds).  The total amount of time that the
process has spent running is equal to the value of totsec plus
totusec.

over    refers to a variable to which pmqrypgm will return an
integer value indicating the number of times that the process
has caused a hard frame overrun. 

minc    refers to a variable to which pmqrypgm will return an
integer value indicating the least amount of time that the
process has spent running in a cycle (minimum cycle time). 

minctc refers to a variable to which pmqrypgm will return an
integer value indicating the number of the minor cycle in
which the minimum cycle time has occurred (minimum
cycle cycle). 

minctf  refers to a variable to which pmqrypgm will return an
integer value indicating the number of the major frame in
which the minimum cycle time has occurred (minimum
cycle frame). 

maxc   refers to a variable to which pmqrypgm will return an
integer value indicating the greatest amount of time that the
process has spent running in a cycle (maximum cycle time). 

maxctc refers to a variable to which pmqrypgm will return an
integer value indicating the number of the minor cycle in
which the maximum cycle time has occurred (maximum
cycle cycle). 

maxctf  refers to a variable to which pmqrypgm will return an
integer value indicating the number of the major frame in
which the maximum cycle time has occurred (maximum
cycle frame). 

minf    refers to a variable to which pmqrypgm will return an
integer value indicating least amount of time that the
process has spent running in a major frame (minimum
frame time). 

minftf   refers to a variable to which pmqrypgm will return an
integer value indicating the number of the major frame in
which the minimum frame time has occurred (minimum
frame frame). 

maxf    refers to a variable to which pmqrypgm will return an
integer value indicating the greatest amount of time that the
process has spent running in a major frame (maximum
frame time). 

maxftf refers to a variable to which pmqrypgm will return an
integer value indicating the number of the major frame in
8-83



PowerMAX OS Guide to Real-Time Services
which the maximum frame time has occurred (maximum
frame frame). 

istat    refers to a variable to which pmqrypgm will return an
integer value indicating whether or not an error has
occurred.  A value of zero indicates that no error has
occurred.  A nonzero value indicates that an error of a
specific type has occurred.  Refer to the system manual page
pmqrypgm(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 

Pmquerytimer – Query Performance Monitor Mode 8

This subroutine is invoked to determine whether performance monitor timing values
include or exclude time spent servicing interrupts. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER mode

CALL Statement 

CALL pmquerytimer(mode) 

Parameter 

Pmquerytimer requires one parameter:  mode.  Mode refers to a variable to which
pmquerytimer will return a value indicating whether performance monitor timing
values include or exclude time spent servicing interrupts.  A value of one indicates that
interrupt time is included.  A value of zero indicates that interrupt time is excluded.  A
value of one or zero is returned if the call is successful; a negative value is returned to
indicate that an error of a specific type has occurred.  Refer to  the system manual page
pmquerytimer(3F77rt) for a listing of the values that may be returned and the types
of errors that they represent. 
8-84



The FORTRAN Library Interface
Pmselect – Select Performance Monitor Mode 8

This subroutine is invoked to select the timing mode under which the performance
monitor is to run. The timing mode can be set to include or exclude time spent servicing
interrupts. Note that to set the timing mode, the calling process must have the P_RTIME

privilege (for additional information on privileges, refer to the PowerMAX OS Program-
ming Guide and the intro(2) system manual page). 

CAUTION

The timing mode for the high–resolution timing facility is set
system–wide.  It affects all processes running on all CPUs. 

The FORTRAN variable declarations, CALL statement, and corresponding parameters are
presented in the following sections. 

Variable Declarations 

INTEGER mode 
INTEGER istat

CALL Statement 

CALL pmselect(mode, istat) 

Parameters 

Parameters are described as follows.

mode  refers to a variable that contains an integer value indicating
whether time spent servicing interrupts is to be included in
or excluded from performance monitor timing values.  A
nonzero value indicates that interrupt time is to be included.
A value of zero indicates that interrupt time is to be
excluded. 

istat   refers to a variable to which pmselect will return an inte-
ger value indicating whether or not an error has occurred.  A
value of zero indicates that no error has occurred.  A non-
zero value indicates that an error of a specific type has
o c c u r r e d .   R e f e r  t o  th e  s y s t e m  m a n u a l  p a g e
pmselect(3F77rt) for a listing of the nonzero values
that may be returned and the types of errors that they repre-
sent. 
8-85



PowerMAX OS Guide to Real-Time Services
Compiling and Linking Procedures   8

To link a FORTRAN program, the following library is required: 

/usr/lib/libF77rt.a 

To compile and link a FORTRAN program, the command line instruction is as follows: 

hf77  program_name  –lF77rt 

For additional information on compiling and linking procedures, refer to the system
manual pages ld(1) and hf77(1). 
8-86



A
Appendix AExample Rtcp Script

1
1
1

This appendix contains an example of a script that can be invoked at the system command
prompt to execute rtcp commands. This script illustrates use of the commands to config-
ure a scheduler and schedule programs on it; view information about the FBS-scheduled
processes; view the scheduler configuration; attach, set, and start a real–time clock; clear
performance monitor values; start performance monitoring and frequency–based schedul-
ing; view the minor cycle and major frame count; stop performance monitoring; stop the
real-time clock and the frequency-based scheduler; detach the real-time clock; and remove
the scheduler and all scheduled processes.

rtcp cs –s37 –C10 –I664 –M5 –N10 
rtcp sp –s37 -n/usr1/rtc/tests/testprogram1 –c0 -bF –p19 –f4 –m0 -ohalt
rtcp sp –s37 -n/usr1/rtc/tests/testprogram2 –c1 -bF –p19 –f2 –m1 -ohalt
rtcp vp –s37 –c* 
rtcp vs –s37 
rtcp ats –s37 –d/dev/rrtc/0c2 
rtcp stc –s37 –O10000 –D1 
rtcp rc –s37 
rtcp cpm –s37 –c* 
rtcp pm –s37 –c* –PON 
rtcp start –s37 
rtcp vc –s37
rtcp pm -s37 -c* -POFF
rtcp sc -s37
rtcp stop -s37
rtcp dts -s37
rtcp rms -s37 -a
A-1



PowerMAX OS Guide to Real-Time Services
A-2



B
Appendix BRtcp Error Messages

2
2
2

This appendix contains descriptions of the errors that may be reported by the real–time
command processor, rtcp. System errors are listed and described in Table B-1. Rtcp
errors are listed and described in Table B-2.  

Table B-1.  System Errors

Error Description

EPERM  User not creator of FBS or does not have P_RTIME privilege   

ENOENT  Scheduler not configured   

ESRCH  Process not scheduled on FBS   

EINTR  EOC triggering is invalid at this time   

EIO  Real–time clock not configured   

ENOEXEC  Process not found   

EAGAIN  Unable to create (fork) the new process   

ENOMEM  Unable to allocate buffers   

EACCES  Permission denied   

EFAULT  Invalid parameter list   

EBUSY  Specified device already in use   

EEXIST  Scheduler already exists   

ENODEV  Specified device does not exist   

EINVAL  FBS not configured in kernel   

ENOTTY  Device does not support FBS ioctl call   

EFBIG  Buffer too small   

ENOSPC  No room in FBS table   

ERANGE  Parameter out of range   

EISCONN  Scheduler attached to interrupt   

ENOTCONN  Scheduler is not attached to interrupt   

ENAMETOOLONG  Invalid pathname specified   

ENOTEMPTY  Processes still scheduled   

ENOSYS  FBS not configured in kernel  

ESHUTDOWN Coupled FBS disabled

EREMOTE Remote message communication failed
B-1



PowerMAX OS Guide to Real-Time Services
 

EBADMSG Invalid reply to message was received

EIDRM Scheduler is a virtual FBS

ECOMM Message communication failed

EHOSTUNREACH Local hostname must be specified

EADDRNOTAVAIL A hostname could not be found

ECONFIG Device configuration error

ENOPKG Kernel configuration error

ECONNREFUSED A host refused message connection request

ETIMEDOUT Message communication timed out

Table B-2.  rtcp Errors

Error Description

-2  Interrupt device not specified

-3  Both EOC and interrupt device specified

-4 Process not specified

-5 Invalid rtcp command specified

-6  Invalid help command specified

-7 Invalid cpu (–c) parameter

-8 Invalid frequency (–f) parameter

-9 Invalid halt flag (–h) parameter

-10 Invalid start cycle (–m) parameter

-11 Invalid priority (–p) parameter

-12 Invalid cycle count (–C) parameter

-13 Invalid clock tick duration (–D) parameter

-14 Invalid process per cycle (–M) parameter

-15 Invalid process per fbs (–N) parameter

-16 Invalid clock ticks per cycle (–O) parameter

-17 Invalid PM flag (–P) parameter

-18 Invalid parameter specified

Table B-1.  System Errors (Cont.)

Error Description
B-2



Rtcp Error Messages
-22 rj file not specified

-23 Invalid rj file specified

-24 Invalid pm viewing mode specified

-25 Invalid pm timing mode specified

-26 Unable to change timing mode to exclude interrupt time

-27 Invalid scheduling policy specified

-28 Exit rtcp

-29 Invalid soft overrun limit (-L) parameter

-30 Invalid timing device type (-T) parameter

-31 Number of hosts (-H) exceeds limit

-32 Hostname(s) (-H) not specified

Table B-2.  rtcp Errors (Cont.)

Error Description
B-3



PowerMAX OS Guide to Real-Time Services
B-4



C
Appendix CExample:  C Interface to the FBS and PM

3
3
3

This appendix contains an example program that illustrates use of the C library interface
to the frequency–based scheduler and the performance monitor.  It shows how to config-
ure a scheduler; schedule programs on it; attach, set, and start a real–time clock; start per-
formance monitoring for each FBS–scheduled process; start frequency–based scheduling;
and obtain performance monitor values for the FBS–scheduled processes.  It also shows
how to monitor a processor’s idle time.

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/ipc.h>
#include <sched.h>  
#include <fbslib.h> 
#include <errno.h> 

#define NUM_PROCS  4 
#define START      1 
#define STOP       0 

main() 
{ 

struct fbsconfig_ds fbs_buf; 
struct pgm2_ds sched_buf; 
struct  pmqry_ds pm_buf[NUM_PROCS]; 
struct fbsinfo_ds info_buf; 
struct fbscycle_ds cycle_buf; 
int  idle0_fpid; /* fpid for idle on cpu 0 */ 
int  idle1_fpid; /* fpid for idle on cpu 1 */ 
int  pgm1_fpid; /* fpid for testprogram 1 */ 
int  pgm2_fpid; /* fpid for testprogram 2 */ 
int  cpu; 
int istat; 
int pmflg;
int intrflg; 
int  i; 
int count; 
int resolution; 
char    name[1024]; /* program’s full or relative path name */ 
char devname[40];  /* device name of timing source */ 
FILE *fp; 

/* Open file to store performance information */
fp= fopen("pmresults", "w+"); 

if (fp == NULL)  
printf("open failed errno = %d\n", errno); 

    
C-1



PowerMAX OS Guide to Real-Time Services
/* 
 * CONFIGURE SCHEDULER  
 */ 
fbs_buf.key = 37; /* scheduler key */ 
fbs_buf.cycles = 10; /* number of cycles per frame */ 
fbs_buf.progs = 5; /* max. number of programs per cycle */ 
fbs_buf.max = 10; /* max. number of programs allowed on the FBS */ 
fbs_buf.reset = -1; /* kill & remove processes currently scheduled */ 

/* owner/group read/write */ 
fbs_buf.configflg = IPC_CREAT | IPC_EXCL | 0664; 

 istat = fbsconfigure(&fbs_buf); 

if (istat != 0) { 
     printf("could not configure scheduler: errno = %d\n" ,errno);
     return; 

} 

 /* 
 * SCHEDULE test program1 "/usr1/rtc/tests/testprogram1"
 */ 
sched_buf.name_ptr = "/usr1/rtc/tests/testprogram1";
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.prior = 19; 
sched_buf.param = 0; /* optional initiation parameter */ 
sched_buf.period = 4; /* time between wakeups */ 
sched_buf.cycle = 0; /* starting base cycle */ 
sched_buf.halt = 0; /* halt on overrun */ 

 /* Set cpu mask to schedule testprogram1 on cpu 0 */ 
sched_buf.cpu = 1; 

istat =  sched_pgmadd(fbs_buf.fbs_id, &sched_buf); 
printf("fbsid = %d\n", fbs_buf.fbs_id); 

if (istat != 0) { 
printf("could not schedule %s on cpu %d : errno  = %d\n", 
sched_buf.name_ptr, sched_buf.cpu, errno); 
return; 

} 

pgm1_fpid = sched_buf.fpid; 
printf("pgm1 fpid = %d\n", pgm1_fpid); 

/* 
 * SCHEDULE test program2 "/usr1/rtc/tests/testprogram2"
 */ 
sched_buf.name_ptr = "/usr1/rtc/tests/testprogram2";
sched_buf.prior = 19; 
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.param = 0; /* optional initiation parameter */ 
sched_buf.period = 2; /* time between wakeups */ 
sched_buf.cycle = 1; /* starting base cycle */ 
sched_buf.halt = 0; /* halt on overrun */ 

 /* Set cpu mask to schedule testprogram2 on cpu 0 */ 
sched_buf.cpu = 1; 

istat =  sched_pgmadd(fbs_buf.fbs_id, &sched_buf); 
printf("fbsid = %d\n", fbs_buf.fbs_id); 
C-2



Example: C Interface to the FBS and PM
if (istat != 0) { 
printf("could not schedule %s on cpu %d : errno  = %d\n", 
sched_buf.name_ptr, sched_buf.cpu, errno);
return;

} 

pgm2_fpid = sched_buf.fpid; 
printf("pgm2 fpid = %d\n", pgm2_fpid); 

/* 
  * SCHEDULE IDLE ON CPU 0 
  * 
  * The only parameter required for /idle is the CPU.   
  */ 

sched_buf.name_ptr = "/idle"; 
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.prior = 20; 
sched_buf.param = 0; /* optional initiation parameter */ 
sched_buf.period = 1; /* time between wakeups */ 
sched_buf.cycle = 0; /* starting base cycle */ 
sched_buf.halt = 0; /* halt on overrun */ 

/* Set cpu mask to schedule idle on cpu 0 */ 
sched_buf.cpu = 1; 

istat =  sched_pgmadd(fbs_buf.fbs_id, &sched_buf); 
printf("fbsid = %d\n", fbs_buf.fbs_id); 

if (istat != 0) { 
printf("could not schedule %s on cpu %d : errno  = %d\n", 
sched_buf.name_ptr, sched_buf.cpu, errno);
return;

} 

idle0_fpid = sched_buf.fpid; 
printf("idle0 fpid = %d\n", idle0_fpid); 

/* 
  * SCHEDULE IDLE ON CPU 1 
  * 
  * The only parameter required for /idle is the CPU. 
  */ 

sched_buf.name_ptr = "/idle"; 
sched_buf.prior = 20; 
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.param = 0; /* optional initiation parameter */ 
sched_buf.period = 1; /* time between wakeups */ 
sched_buf.cycle = 0; /* starting base cycle */ 
sched_buf.halt = 0; /* halt on overrun */ 

/* Set cpu mask to schedule idle on cpu 1 */ 
sched_buf.cpu = 2; 

istat =  sched_pgmadd(fbs_buf.fbs_id, &sched_buf); 

if (istat != 0) { 
printf("could not schedule %s on cpu %d : errno  = %d\n", 
sched_buf.name_ptr, sched_buf.cpu, errno);
return;

} 

idle1_fpid = sched_buf.fpid; 
printf("idle1 fpid = %d\n", idle1_fpid); 
C-3



PowerMAX OS Guide to Real-Time Services
 /*  
 * ATTACH/SET REAL-TIME CLOCK 
 * Set the clock to interrupt every 10,000 usecs. 
 */  
count = 10000; 
resolution = 1; 
istat = fbsattach(fbs_buf.fbs_id, "/dev/rrtc/0c2"); 

if (istat != 0) { 
printf("could not attach timing source: errno = %d\n", errno);
return;

} 

istat = fbssetrtc(fbs_buf.fbs_id, count, resolution); 

if (istat != 0) { 
printf("could not set rtc: errno = %d\n", errno); 
return; 

} 

istat = fbsrunrtc(fbs_buf.fbs_id, START); 

if (istat != 0) { 
printf("could not start rtc: errno = %d\n", errno); 
return; 

} 

 /*  
 * START PERFORMANCE MONITORING 
 */ 
pmflg = 1; 

/* zero out the "name" variable (fpid must be specified). 
 * Ulimately, the "name" variable can be used to store
 * the full or relative path name of a test program.
 */
bzero(name, sizeof(name));  
cpu = 0; /* not used if fpid is being used */ 

 

 /* start performance monitoring for testprogram1 */ 
istat = pmprogram(fbs_buf.fbs_id, name, cpu, pgm1_fpid, pmflg); 

if (istat != 0) { 
printf("could not start pm for testprogram1 : errno = %d\n", errno); 
return; 

} 

 /* start performance monitoring for testprogram2 */ 
istat = pmprogram(fbs_buf.fbs_id, name, cpu, pgm2_fpid, pmflg); 

if (istat != 0) { 
printf("could not start pm for testprogram2 : errno = %d\n", errno); 
return; 

} 

/* start performance monitoring for idle on cpu 0 */ 
istat = pmprogram(fbs_buf.fbs_id, name, cpu, idle0_fpid, pmflg); 
C-4



Example: C Interface to the FBS and PM
if (istat != 0) { 
printf("could not start pm for idle0 : errno = %d\n", errno); 
return; 

} 

/* start performance monitoring for idle on cpu 1 */ 
istat = pmprogram(fbs_buf.fbs_id, name, cpu, idle1_fpid, pmflg); 

if (istat != 0) { 
printf("could not start pm for idle1 : errno = %d\n", errno); 
return; 

} 

/* 
  * START SCHEDULING 
  */ 

intrflg = 1; 
istat = fbsintrpt(fbs_buf.fbs_id, intrflg); 

if (istat != 0) { 
printf("could not start scheduler : errno = %d\n", errno); 
return; 

} 

/* 
  * QUERY PERFORMANCE MONITOR VALUES 
  * 1 second = 100 cycles  1 minute = 600 frames 
  * Query once per second for 1 minute 
  */ 

pm_buf[0].fpid = pgm1_fpid; 
pm_buf[1].fpid = pgm2_fpid; 
pm_buf[2].fpid = idle0_fpid; 
pm_buf[3].fpid = idle1_fpid; 

  
sleep(1); /* sleep for a while */ 

printf("Please wait, performance information is being gathered. \n");

istat = fbscycle(fbs_buf.fbs_id, &cycle_buf); 
while ((istat == 0) && (cycle_buf.cframe < 600)) { 
istat = pmqrylist(fbs_buf.fbs_id, pm_buf, NUM_PROCS); 
if (istat != 0) { 

printf("could not query process: errno = %d\n", errno); 
return; 

} 

/* Write performance information for each 
 * process into a file 
 */
for (i = 0; i < NUM_PROCS; i++) { 

fprintf(fp, "fpid %d\n", pm_buf[i].fpid); 
fprintf(fp, "last cycle tm = %d\n",pm_buf[i].lastcyc_tm); 
fprintf(fp, "total cyles = %d\n",pm_buf[i].tot_cycles); 
fprintf(fp, "total secs = %d\n",pm_buf[i].tot_sec); 
fprintf(fp, "total usec = %d\n",pm_buf[i].tot_usec); 
fprintf(fp, "overruns = %d\n",pm_buf[i].overruns); 
fprintf(fp, "mincyc_tm = %d\n",pm_buf[i].mincyc_tm); 
fprintf(fp, "mincyc_cycle = %d\n",pm_buf[i].mincyc_cycle); 
fprintf(fp, "mincyc_frame = %d\n",pm_buf[i].mincyc_frame); 
fprintf(fp, "maxcyc_tm = %d\n", pm_buf[i].maxcyc_tm); 
fprintf(fp, "maxcyc_cycle =%d\n",pm_buf[i].maxcyc_cycle); 
fprintf(fp, "maxcyc_frame =%d\n",pm_buf[i].maxcyc_frame); 
fprintf(fp, "minframe_tm = %d\n", pm_buf[i].minframe_tm); 
fprintf(fp, "minframe = %d\n", pm_buf[i].minframe); 
C-5



PowerMAX OS Guide to Real-Time Services
fprintf(fp, "maxframe_tm = %d\n", pm_buf[i].maxframe_tm); 
fprintf(fp, "maxframe = %d\n", pm_buf[i].maxframe); 
fprintf(fp, "\n"); 

     } 

fprintf(fp, "\n***************************\n"); 

 sleep(1); /* sleep for a while */ 
istat = fbscycle(fbs_buf.fbs_id, &cycle_buf); 

} 

printf("Performance data has been gathered. \n");

if (istat != 0) 
    printf("istat = %d\n", istat); 

/*Stop PM on CPUs 0 and 1 */
pmmonitor(fbs_buf.fbs_id, 0, 3);  

/* Stop the clock */
istat = fbsrunrtc(fbs_buf.fbs_id, STOP); 

if (istat != 0) { 
printf("could not stop rtc: errno = %d\n", errno); 
return; 

} 

/* Detach from the FBS */
istat = fbsdetach(fbs_buf.fbs_id); 

if (istat != 0) { 
printf("could not dettach timing source: errno = %d\n", errno);
return;

} 

/* Remove the FBS */
istat = fbsremove(fbs_buf.fbs_id, -1);

if (istat != 0) { 
printf("could not remove timing source: errno = %d\n", errno);
return;

} 

} 
C-6



Glossary

data monitoring

Services that make it possible to monitor variables in executing processes. 

end–of–cycle scheduling 

A form of frequency–based scheduling in which scheduling is triggered when the last pro-
cess that is scheduled to execute in the current minor cycle of the current major frame
completes its processing. 

FBSMNI 

A system tunable parameter that is associated with the frequency–based scheduler.  It
specifies the maximum number of frequency–based schedulers that can be configured at
one time system–wide.

 FBSUNSCHEDMAX

A system tunable parameter that is associated with the frequency–based scheduler.  It
specifies the maximum number of unscheduled processes that is permitted on a frequency-
based scheduler.

frame overrun 

The condition that occurs when an FBS–scheduled process does not finish its processing
before it is scheduled to run again. 

frequency–based scheduler 

A high resolution task synchronization mechanism that enables processes to run at user–
specified frequencies. 

high resolution timing facility 

A feature of PowerMAX OS systems that provides a means of measuring each process’s
or LWP’s execution time.  

idle time 

Time during which the CPU is not busy. 

iteration 

One instance of a process’s being wakened by a frequency–based scheduler. 
Glossary-1



PowerMAX OS Guide to Real-Time Services
last time 

A value returned by the performance monitor indicating the amount of time that an FBS–
scheduled process has spent running from the last time that it has been wakened by the
scheduler until it has called fbswait. 

major frame 

One pass through all of the minor cycles with which a frequency–based scheduler is con-
figured.  A major frame has associated with it a duration, which is obtained by multiplying
the duration of a minor cycle by the number of minor cycles per major frame. 

maximum cycle cycle 

A value returned by the performance monitor indicating the number of the minor cycle in
which the maximum cycle time has occurred. 

maximum cycle frame 

A value returned by the performance monitor indicating the number of the major frame in
which the maximum cycle time has occurred. 

maximum cycle time 

A value returned by the performance monitor indicating the greatest amount of time that
an FBS–scheduled process has spent running in a cycle. 

maximum frame frame 

A value returned by the performance monitor indicating the number of the major frame in
which the maximum frame time has occurred. 

maximum frame time 

A value returned by the performance monitor indicating the greatest amount of time that
an FBS–scheduled process has spent running during a major frame. 

minimum cycle cycle 

A value returned by the performance monitor indicating the number of the minor cycle in
which the minimum cycle time has occurred. 

minimum cycle frame 

A value returned by the performance monitor indicating the number of the major frame in
which the minimum cycle time has occurred. 

minimum cycle time 

A value returned by the performance monitor indicating the least amount of time that an
FBS–scheduled process has spent running in a cycle. 
Glossary-2



Glossary
minimum frame frame 

A value returned by the performance monitor indicating the number of the major frame in
which the minimum frame time has occurred. 

minimum frame time 

A value returned by the performance monitor indicating the least amount of time that an
FBS–scheduled process has spent running during a major frame. 

minor cycle 

The smallest unit of frequency maintained by a frequency–based scheduler. A minor cycle
has associated with it a duration, which is the time that elapses between interrupts gener-
ated by the timing source that is attached to the scheduler.  If the timing source is a real–
time clock, the minor cycle duration is defined by specifying the number of clock counts
per minor cycle and the number of microseconds per clock count.

number of overruns 

A value returned by the performance monitor indicating the number of times that an FBS–
scheduled process has caused a frame overrun. 

performance monitor 

A mechanism that makes it possible to monitor use of the CPU by processes that are
scheduled on a frequency–based scheduler. 

period 

A frequency–based scheduler scheduling parameter that specifies the frequency with
which a specified program is to be wakened in each major frame. A period of one indi-
cates that the program is to be wakened every minor cycle; a period of two indicates that it
is to be wakened once every two minor cycles; and so on. 

privilege 

A mechanism through which processes are allowed to perform sensitive operations or
override system restrictions.  

process dispatch latency 

The time that elapses from the occurrence of an external event, which is signified by an
interrupt, until the process that is waiting for that external event executes its first instruc-
tion in user mode. 

scheduler key 

A user–supplied numeric identifier for a frequency–based scheduler. 
Glossary-3



PowerMAX OS Guide to Real-Time Services
shielded processor 

A CPU that is responsible for running high–priority tasks that are protected from the
unpredictable processing associated with interrupts and system daemons. 

slot number 

A unique frequency–based scheduler process identifier that is returned when a program is
scheduled on a frequency–based scheduler. 

spare time 

Processor time that is composed of the following: (1) idle time, (2) CPU time of processes
that are not scheduled on a frequency–based scheduler, and (3) CPU time of FBS–sched-
uled processes for which performance monitoring has not been enabled. 

starting base cycle 

A frequency–based scheduler scheduling parameter that specifies the first minor cycle in
which an FBS–scheduled process is to be wakened in each major frame. 

timing mode 

The mode under which the performance monitor runs.  It specifies whether time spent ser-
vicing interrupts is to be included in or excluded from performance monitor timing values. 

total iterations 

A value returned by the performance monitor indicating the number of times that an FBS–
scheduled process has been wakened by the scheduler. 

total time 

A value returned by the performance monitor indicating the total amount of time that an
FBS–scheduled process has spent running in all cycles. 

unscheduled process 

A process that is not wakened by the frequency–based scheduler and does not call
fbswait; it is not scheduled to run at a certain frequency. 
Glossary-4



Index
A

Ada subprogram call sequence
FBS  6-1
Performance monitor  6-66

Ada subprograms
FBS_Access  6-3, 6-4
FBS_Attach  3-4, 3-7, 3-9, 6-5
FBS_Configure  6-7, 6-9, 6-10
FBS_Cycle  6-10, 6-11
FBS_Detach  3-4, 3-7, 3-9, 6-12
FBS_Getrtc  6-12, 6-13
FBS_Id  6-14
FBS_Info  6-15, 6-16
FBS_Intrpt  3-4, 3-7, 6-17, 6-18
FBS_Query  6-19, 6-20, 6-21, 6-28, 6-51
FBS_Remove  6-22, 6-23, 6-24
FBS_Resume  6-23
FBS_Runrtc  3-4, 3-7, 6-25
FBS_Sched_Self  6-26
FBS_Setrtc  3-4, 3-7, 6-28, 6-30
FBS_Wait  6-31
PGM_Query  6-32, 6-34
PGM_Remove  6-35, 6-36
PGM_Reschedule  6-38, 6-39, 6-40
PGM_Schedule  6-42, 6-44, 6-45
PGM_Stat  6-46, 6-47
PGM_Trigger  6-48
PM_Clrpgm  6-67, 6-68
PM_Clrtable  6-69
PM_Monitor  6-70, 6-71
PM_Program  6-71, 6-72, 6-73
PM_Query_cpu  6-74, 6-75, 6-76
PM_Query_list  6-77, 6-78, 6-82
PM_Query_pgm  6-80, 6-81
PM_Querytimer  6-83
PM_Select  6-83
RT_Param  6-49
Sched_FBS_Query  6-49, 6-50, 6-52
Sched_PGM_Add  6-52, 6-54, 6-56
Sched_PGM_Query  6-56, 6-57, 6-58
Sched_PGM_Reschedule  6-59, 6-61, 6-62, 6-63, 

6-64
ats command  5-9

Attaching a timing source  5-9, 6-5, 7-4, 7-5, 7-6, 8-4, 
8-5, 8-6

B

Bit mask  6-19, 6-20, 6-21, 6-28, 6-34, 6-37, 6-44, 6-45, 
6-47, 6-51, 6-55, 6-58, 6-61, 6-68, 6-69, 6-71, 
6-73, 6-75, 6-81, 7-20, 7-21, 7-22, 7-38, 7-41, 
7-47, 7-49, 7-50, 7-51, 7-54, 7-59, 7-67, 7-68, 
7-69, 7-71, 7-73, 7-79, 8-20, 8-21, 8-38, 8-40, 
8-47, 8-49, 8-54, 8-55, 8-56, 8-60, 8-62, 8-70, 
8-72, 8-73, 8-75, 8-76, 8-82

C

C library call sequence
FBS  7-1
Performance monitor  7-65

C library routine
sched_pgm_set_soft_overrun_limit  7-57

C library routines  7-1
fbsaccess  7-3, 7-4
fbsattach  3-4, 3-7, 3-9, 7-4, 7-5
fbsconfigure  7-6
fbscycle  7-9, 7-10
fbsdetach  3-4, 3-7, 3-9, 7-10
fbsgetrtc  7-11
fbsid  7-12
fbsinfo  7-13, 7-14
fbsintrpt  3-4, 3-7, 7-19
fbsquery  7-20, 7-21
fbsremove  7-23
fbsresume  7-24
fbsrunrtc  3-4, 3-7, 7-26
fbsschedself  7-26
fbssetrtc  3-4, 3-7, 7-29, 7-30
pgmquery  7-36, 7-38
pgmremove  7-39
pgmreschedule  7-41, 7-43
pgmschedule  7-47
pgmtrigger  7-49
Index-1



PowerMAX OS Guide to Real-Time Services
pmclrpgm  7-66, 7-67
pmclrtable  7-67, 7-68
pmmonitor  7-69, 7-70
pmprogram  7-70, 7-71
pmqrycpu  7-73, 7-74
pmqrylist  7-75, 7-76, 7-80
pmqrypgm  7-78, 7-79
pmqrytimer  7-81
pmselect  7-82
sched_fbsqry  7-49, 7-50, 7-51, 7-52
sched_pgm_set_soft_overrun_limit  7-56
sched_pgm_soft_overrun_query  7-57
sched_pgmadd  7-28, 7-52, 7-54
sched_pgmqry  7-57, 7-58, 7-59
sched_pgmresched  7-60, 7-61, 7-62

Changing a process’s priority  6-38, 6-39, 6-40, 6-42, 
6-44, 6-45, 6-55, 6-61, 7-28, 7-41, 7-43, 7-47, 
7-54, 7-60, 7-62, 8-41, 8-42, 8-46, 8-47, 8-59, 
8-60, 8-63, 8-64, 8-65, 8-66

Changing a process’s scheduling policy  6-55, 6-61, 
7-60, 7-62, 8-59, 8-60, 8-63, 8-64, 8-65, 8-66

Changing permissions for an FBS  5-11, 6-3, 6-4, 7-3, 
7-4, 8-3, 8-4

chs command  5-11
Clearing performance monitor values

Process  5-37, 5-38, 6-67, 6-68, 7-66, 7-67, 8-69, 
8-70

Processor  5-37, 5-38, 6-69, 7-67, 7-68, 8-71, 8-72
Compiling and linking a user program

Ada  6-84
C  7-83
Fortran  8-86

Configurations with Limited RCIM Hardware  3-17
Configuring a scheduler  5-12, 5-13, 5-14, 6-7, 6-9, 7-6, 

7-7, 8-6, 8-8
Control flags  6-7, 6-9, 6-10, 7-6, 7-7, 7-9, 8-6, 8-8
Coupled FBS Support  2-10
Coupled FBS Timing Devices  2-6
cpm command  5-37, 5-38
CPU  6-15, 6-16, 6-32, 6-34, 6-47, 6-56, 7-13, 7-14, 

7-36, 7-38, 7-57, 7-59, 8-13, 8-14, 8-29, 8-37, 
8-38, 8-49, 8-61, 8-62

CPU bias  4-5, 4-6, 6-19, 6-20, 6-21, 6-28, 6-51, 7-20, 
7-21, 7-22, 7-49, 7-50, 7-51, 8-20, 8-21, 8-54, 
8-55, 8-56

cs command  5-12, 5-13, 5-14

D

Defining scheduler frequency  2-2, 2-3
Deleting processes  5-25, 6-35, 6-36, 7-39, 7-40, 8-39, 

8-40

Detaching a timing source  5-14, 6-12, 7-10, 8-10
Disabling end-of-cycle scheduling  6-12, 7-10, 8-10
dts command  5-14

E

Edge-triggered interrupt  3-1, 3-8, 3-9
ioctl commands  3-9
User interface  3-9

Edge-triggered interrupt device  3-8, 6-5, 7-4, 7-5, 8-4, 
8-5

Enabling performance monitoring
Process  5-38, 5-39, 6-71, 6-72, 6-73, 7-70, 7-71, 

8-74, 8-75
Processor  5-38, 5-39, 6-70, 6-71, 7-69, 7-70, 8-72, 

8-73
End-of-cycle scheduling  6-5, 7-4, 7-5, 7-6, 8-4, 8-5, 8-6
ex command  5-45
Excluding interrupt time from performance monitor 

values  5-40, 6-83, 7-82, 8-85
Exiting rtcp  5-45

F

FBS_Access  6-3, 6-4
FBS_Attach  6-5
FBS_Configure  6-7, 6-8, 6-9, 6-10
FBS_Cycle  6-10, 6-11
FBS_Detach  6-12
FBS_Getrtc  6-12, 6-13
FBS_Id  6-14
FBS_Info  6-15, 6-16
FBS_Intrpt  6-17, 6-18
FBS_Query  6-19, 6-20, 6-21, 6-28, 6-51
fbs_register_rdev  7-31
FBS_Remove  6-22, 6-23, 6-24
FBS_Resume  6-23
FBS_Runrtc  6-25
FBS_Sched_Self  6-26
FBS_Setrtc  6-28, 6-30
fbs_unregister_rdev  7-33
FBS_Wait  6-31
fbsaccess  7-3, 7-4, 8-3, 8-4
fbsattach  7-4, 7-5, 7-6, 8-4, 8-5, 8-6
fbsconfigure  7-6, 7-7, 7-9, 8-6, 8-8
fbscycle  7-9, 7-10, 8-9
fbsdetach  7-10, 8-10
fbsgetrtc  7-11, 7-12, 8-10, 8-11
fbsid  7-12, 8-12
fbsinfo  7-13, 7-14, 8-13, 8-14, 8-29
Index-2



Index
fbsintrpt  7-19, 8-18
fbsquery  7-20, 7-21, 7-22, 7-23, 8-20, 8-21, 8-22
fbsremove  7-23, 8-22, 8-23, 8-24
fbsresume  7-24, 8-24
fbsrunrtc  7-26, 8-26
fbsschedself  7-26, 8-27
fbssetrtc  7-29, 7-30, 8-30
fbswait  7-30, 8-31
FORTRAN library call sequence

FBS  8-1
Performance monitor  8-67

FORTRAN library routines  8-1
fbsaccess  8-3, 8-4
fbsattach  3-4, 3-7, 3-9, 8-4, 8-5, 8-6
fbsconfigure  8-6, 8-8
fbscycle  8-9
fbsdetach  3-4, 3-7, 3-9, 8-10
fbsgetrtc  8-10, 8-11
fbsid  8-12
fbsinfo  8-13, 8-14, 8-29
fbsintrpt  3-4, 3-7, 8-18
fbsquery  8-20, 8-21, 8-22
fbsremove  8-22, 8-23, 8-24
fbsresume  8-24
fbsrunrtc  3-4, 3-7, 8-26
fbsschedself  8-27
fbssetrtc  3-4, 3-7, 8-30
fbswait  8-31
pgmquery  8-37, 8-38
pgmremove  8-39, 8-40
pgmreschedule  8-41, 8-42, 8-43
pgmschedule  8-46, 8-47
pgmstat  8-48, 8-49
pgmtrigger  8-51
pmclrpgm  8-69, 8-70
pmclrtable  8-71, 8-72
pmmonitor  8-72, 8-73
pmprogram  8-74, 8-75
pmqrycpu  8-76, 8-77
pmqrylist  8-78, 8-79
pmqrypgm  8-81, 8-82, 8-83, 8-84
pmquerytimer  8-84
pmselect  8-85
rtparm  8-52
sched_pgm_set_soft_overrun_limit  8-52
sched_pgm_soft_overrun_query  8-53
schedfbsqry  8-54, 8-55, 8-56
schedpgmadd  8-58, 8-59, 8-60
schedpgmqry  8-61, 8-62
schedpgmresched  8-63, 8-64, 8-65, 8-67

Frame overrun  6-15, 6-16, 6-17, 6-18, 7-13, 7-14, 7-19, 
8-13, 8-14, 8-18, 8-29

Frequency-based scheduler  2-1, 2-2, 2-3, 2-4, 4-5, 4-6
Frequency-based scheduler identifier  6-9, 6-10, 7-7, 7-9, 

8-8
Frequency-based scheduling  2-2, 2-3, 2-4

G

gtc command  5-23

H

he command  5-45, 5-51
Help facility

rtcp  5-5, 5-45, 5-51
High-resolution timing facility  5-40, 6-84, 7-82, 8-85

I

Identifying FBS-scheduled processes  7-66, 8-69
Idle time  4-6
Initiation parameter  6-42, 7-28, 7-47, 7-54, 8-46, 8-58
Integrity of the Coupled FBS Support  2-10
Iteration  4-2

L

Last time  4-2, 4-7, 6-82, 8-82
Load balancing  4-6

M

Major frame  2-2, 2-3, 2-4, 4-2, 6-7, 6-10, 6-17, 6-18, 
7-9, 7-19, 8-9, 8-18

Maximum cycle cycle  4-2, 6-76, 6-78, 6-82, 7-74, 7-76, 
7-80, 8-77, 8-79, 8-83

Maximum cycle frame  4-2, 6-76, 6-78, 6-82, 7-74, 7-76, 
7-80, 8-77, 8-79, 8-83

Maximum cycle time  4-2, 6-76, 6-78, 6-82, 7-74, 7-76, 
7-80, 8-77, 8-79, 8-83

Maximum frame frame  4-2, 4-7, 6-76, 6-78, 6-82, 7-74, 
7-76, 7-80, 8-77, 8-79, 8-83

Maximum frame time  4-2, 4-7, 6-76, 6-78, 6-82, 7-74, 
7-76, 7-80, 8-77, 8-79, 8-83

Minimum cycle cycle  4-2, 8-83
Minimum cycle frame  4-2, 6-76, 6-78, 6-82, 7-74, 7-76, 

7-80, 8-77, 8-79, 8-83
Index-3



PowerMAX OS Guide to Real-Time Services
Minimum cycle time  4-2, 8-83
Minimum frame frame  4-2, 4-7, 6-76, 6-78, 6-82, 7-74, 

7-76, 7-80, 8-77, 8-79, 8-83
Minimum frame time  4-2, 4-7, 6-76, 6-78, 6-82, 7-74, 

7-76, 7-80, 8-77, 8-79, 8-83
Minor cycle  2-2, 2-3, 2-4, 6-7, 6-10, 6-17, 6-18, 7-9, 

7-19, 8-9, 8-18
Monitoring idle time  4-3
Monitoring spare time  4-3, 4-5
Monitoring unscheduled processes  4-6, 4-7

N

Name_To_Pid  6-64
Number of overruns  4-2, 8-83

O

Obtaining configuration information for an FBS  5-17, 
6-7, 6-9, 6-10, 7-6, 7-7, 7-9, 8-6, 8-8

Obtaining current values for a real-time clock  5-23, 
6-12, 6-13, 7-11, 8-10, 8-11

Obtaining FBS identifier for a key  6-14, 7-12, 8-12
Obtaining information for an FBS  6-14, 6-15, 6-16, 

7-13, 7-14, 8-13, 8-14, 8-29
Obtaining initiation parameter  6-49, 8-52
Obtaining the minor cycle/major frame count  5-17, 

6-10, 7-9, 8-9

P

Parameters  8-42
PCSR  3-5, 3-6
Performance monitor  4-1, 4-5, 4-6
Performance monitor values  4-2
Period  2-2, 2-3, 6-19, 6-20, 6-21, 6-28, 6-32, 6-34, 6-42, 

6-51, 6-56, 7-20, 7-21, 7-22, 7-28, 7-36, 7-39, 
7-47, 7-49, 7-50, 7-51, 7-54, 7-57, 7-60, 8-20, 
8-21, 8-37, 8-38, 8-46, 8-54, 8-55, 8-56, 8-58, 
8-61, 8-62

Permissions  6-3, 6-4, 6-9, 6-10, 6-15, 6-16, 7-3, 7-4, 7-7, 
7-9, 7-13, 7-14, 8-3, 8-4, 8-8, 8-13, 8-14, 8-29

PGM_Query  6-32, 6-33, 6-34
PGM_Remove  6-35, 6-36
PGM_Reschedule  6-38, 6-39, 6-40
PGM_Schedule  6-42, 6-44, 6-45
PGM_Stat  6-46, 6-47
PGM_Trigger  6-48

pgmquery  7-36, 7-38, 7-39, 8-37, 8-38
pgmremove  7-39, 7-40, 8-39, 8-40
pgmreschedule  7-41, 7-43, 8-41, 8-42, 8-43
pgmschedule  7-47, 8-46, 8-47
pgmstat  8-48, 8-49
pgmtrigger  7-49, 8-51
pm command  5-38, 5-39
PM_Clrpgm  6-66, 6-67, 6-68
PM_Clrtable  6-69
PM_Monitor  6-70, 6-71
PM_Program  6-71, 6-72, 6-73
PM_Query_cpu  6-74, 6-75, 6-76
PM_Query_list  6-77
PM_Query_pgm  6-80, 6-81
PM_Querytimer  6-83
PM_Select  6-83
pmclrpgm  7-66, 7-67, 8-69, 8-70
pmclrtable  7-67, 7-68, 8-71, 8-72
pmmonitor  7-69, 7-70, 8-72, 8-73
pmprogram  7-70, 7-71, 8-74, 8-75
pmqrycpu  7-73, 7-74, 8-76, 8-77
pmqrylist  7-75, 7-76, 7-80, 8-78, 8-79
pmqrypgm  7-78, 7-79, 8-81, 8-82, 8-83, 8-84
pmqrytimer  7-81
pmquerytimer  8-84
pmselect  7-82, 8-85
Privileges  2-9, 4-9
Processor Control and Status Register  3-5

Q

Querying FBS-scheduled processes  5-34, 5-35, 5-36, 
6-19, 6-20, 6-21, 6-28, 6-32, 6-34, 6-51, 6-56, 
7-20, 7-21, 7-22, 7-23, 7-36, 7-38, 7-39, 7-49, 
7-50, 7-51, 7-52, 7-57, 7-59, 7-60, 8-20, 8-21, 
8-22, 8-37, 8-38, 8-54, 8-55, 8-56, 8-61, 8-62

Querying performance monitor values  6-75, 6-76, 6-77, 
6-78, 6-80, 6-81, 6-82, 7-73, 7-74, 7-75, 7-76, 
7-78, 7-79, 7-80, 8-76, 8-77, 8-78, 8-79, 8-81, 
8-82, 8-83

Querying the performance monitor timing mode  6-83, 
7-81, 8-84

Querying the state of an FBS-scheduled process  6-46, 
6-47, 8-48, 8-49

R

rc command  5-21
RCIM  3-3

Edge-Triggered Interrupts
Index-4



Index
Real-Time Clocks  3-15
rd  5-2
Real-time clock  3-1, 3-4, 3-7, 6-5, 7-4, 7-5, 7-6, 8-4, 8-5, 

8-6
Real-Time Clocks and Interrupts Module  3-3
Real-time services utilities

rtcp  5-1, 5-2, 5-3, 5-5, 5-6, 5-7, 5-9, 5-11, 5-12, 
5-13, 5-14, 5-16, 5-17, 5-18, 5-20, 5-21, 
5-22, 5-23, 5-24, 5-25, 5-27, 5-28, 5-29, 
5-30, 5-31, 5-33, 5-34, 5-35, 5-36, 5-37, 
5-38, 5-40, 5-41, 5-42, 5-43, 5-44, 5-45, 
5-51

reg  5-2
Register a Closely Coupled Timing Device  5-51
Register a Coupled FBS Timing Device  5-47
Register Coupled FBS Timing Device  7-31
Removing a scheduler  5-15, 6-22, 6-23, 6-24, 7-23, 

8-22, 8-23, 8-24
Rescheduling processes  5-27, 5-28, 5-29, 5-30, 6-38, 

6-39, 6-40, 7-41, 7-43, 7-60, 7-62, 8-41, 8-42, 
8-43, 8-63, 8-64, 8-65

resume command  5-24
Resume Scheduling on an FBS  8-24
Resume scheduling on an FBS  6-23, 7-24
Resuming frequency-based scheduling  5-24, 6-17, 6-18, 

7-19, 8-18
rmp command  5-25
rms command  5-15, 5-16
rsp command  5-27, 5-28, 5-29, 5-30
RT_Param  6-49
rtc(7)  3-3
rtcp

Commands  5-1, 5-2, 5-7, 5-9, 5-11, 5-12, 5-13, 
5-14, 5-16, 5-17, 5-18, 5-20, 5-21, 5-22, 
5-23, 5-24, 5-25, 5-27, 5-28, 5-29, 5-30, 
5-31, 5-33, 5-34, 5-35, 5-36, 5-37, 5-38, 
5-40, 5-41, 5-42, 5-43, 5-44, 5-45, 5-51

FBS command sequence  5-7
Help facilities  5-5, 5-6, 5-7
Modes of execution  5-2, 5-3
Performance monitor command sequence  5-9

rtparm  8-52

S

Saving a configuration  5-16
sc command  5-22
Sched_FBS_Query  6-49, 6-50, 6-51
sched_fbsqry  7-49, 7-50, 7-51, 7-52
Sched_PGM_Add  6-52, 6-54, 6-56
Sched_Pgm_Query  6-56, 6-57, 6-58
Sched_PGM_Reschedule  6-59, 6-61, 6-62, 6-63

sched_pgm_set_soft_overrun_limit  7-56, 7-57, 8-52
sched_pgm_soft_overrun_query  7-57, 8-53
sched_pgmadd  7-28, 7-52, 7-54
sched_pgmqry  7-57, 7-58, 7-59, 7-60
sched_pgmresched  7-60, 7-61, 7-62
schedfbsqry  8-54, 8-55, 8-56, 8-57
schedpgmadd  8-58, 8-59, 8-60
schedpgmqry  8-61, 8-62
schedpgmresched  8-63, 8-64, 8-65, 8-67
Schedule a LWP on an FBS  8-27
Schedule an Ada Task on an FBS  6-26
Scheduler key  6-7, 6-9, 6-15, 6-16, 7-6, 7-7, 7-13, 7-14, 

8-6, 8-8, 8-13, 8-14, 8-29
Scheduler operation  2-3, 2-4
Scheduling an LWP on an FBS  7-26
Scheduling policy  6-56, 7-28, 7-50, 7-51, 7-54, 7-57, 

7-60, 8-54, 8-55, 8-56, 8-58, 8-61, 8-62
Scheduling priority  6-19, 6-20, 6-21, 6-28, 6-32, 6-34, 

6-42, 6-51, 6-56, 7-20, 7-21, 7-22, 7-28, 7-36, 
7-39, 7-47, 7-49, 7-50, 7-51, 7-54, 7-57, 7-60, 
8-20, 8-21, 8-37, 8-38, 8-46, 8-54, 8-55, 8-56, 
8-58, 8-61, 8-62

Scheduling programs  5-31, 5-33, 5-34, 6-42, 6-44, 6-45, 
6-55, 6-61, 7-28, 7-47, 7-54, 8-46, 8-47, 8-58, 
8-59, 8-60

Selecting the performance monitor timing mode  5-40, 
6-83, 7-82, 8-85

Setting a process’s priority  7-54, 8-58, 8-59
Setting a process’s scheduling policy  6-54, 6-62, 7-54, 

8-58, 8-59
Setting a real-time clock  5-22, 6-28, 6-30, 7-29, 7-30, 

8-30
Slot number  6-45, 6-55, 6-61, 7-47, 7-54, 8-47, 8-60
sp command  5-31, 5-33, 5-34
Spare time  4-6
start command  5-24
Starting a real-time clock  5-21, 6-25, 7-26, 8-26
Starting base cycle  2-2, 6-19, 6-20, 6-21, 6-28, 6-32, 

6-34, 6-44, 6-51, 6-56, 7-20, 7-21, 7-22, 7-36, 
7-39, 7-49, 7-50, 7-51, 7-57, 7-60, 8-20, 8-21, 
8-37, 8-38, 8-47, 8-54, 8-55, 8-56, 8-60, 8-61, 
8-62

Starting frequency-based scheduling  5-24, 6-17, 6-18, 
7-19, 8-18

stc command  5-22
stop command  5-25
Stopping a real-time clock  5-22, 6-25, 7-26, 8-26
Stopping frequency-based scheduling  5-25, 6-17, 6-18, 

7-19, 8-18
Stopping performance monitoring

Process  5-38, 5-39, 6-71, 7-70, 8-74
Processor  5-38, 5-39, 6-70, 7-69, 8-72

svs command  5-16, 5-17
System calls
Index-5



PowerMAX OS Guide to Real-Time Services
fbswait  7-30
ioctl  3-10, 3-11, 6-25, 6-28, 6-30, 7-26, 7-30, 8-26, 

8-30
open  6-25, 6-28, 6-30, 7-26, 7-30, 8-26, 8-30

T

Timing Devices
Coupled FBS  2-6

Timing source  6-16, 7-14, 8-14, 8-29
Total iterations  4-2, 8-83
Total time  4-2, 4-7

U

unreg  5-2
Unregister a Coupled FBS Timing Device  7-33
Unregister a Coupled FBS timing device  5-48
Unregister Closely Coupled Timing Device  5-51
urd  5-2
User interface

C library  2-7, 3-4, 4-7, 4-8, 7-1
FORTRAN library  2-7, 3-4, 3-9, 4-7, 4-8, 8-1
NightSim  2-7
RT_Interface package  2-7, 3-4, 3-9, 4-8
rtcp  2-7, 4-7, 5-1

User-supplied device  3-1, 3-10, 3-11, 6-5, 7-4, 7-5, 7-6, 
8-4, 8-5, 8-6

Using multiprocessor systems  4-5, 4-6

V

vc  5-2
vc command  5-17
vcm command  5-40
View a Rdevfs File Configuration  5-49
Viewing performance monitor values  5-41, 5-42, 5-43, 

5-44
Viewing the performance monitor timing mode  5-40
vp command  5-34, 5-35, 5-36
vpm command  5-41, 5-42, 5-43, 5-44
vr  5-2
vs command  5-17, 5-18, 5-20

W

Waiting on an FBS  6-31, 7-30, 8-31
Waking a process in fbswait sleep state  6-48, 7-49, 8-51
Index-6







Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically 
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
o

w
erM

A
X

 O
S

Guide to Real-Time 
Services

0890479

Programmer




	Preface
	Contents
	List of Screens

	Introduction
	Focus of Guide
	Frequency-Based Scheduler
	Performance Monitor

	Overview of the FBS
	What Is the Frequency-Based Scheduler?
	How Is Scheduler Frequency Defined?
	How Are Processes Scheduled?
	Tolerating Frame Overruns

	Installation and Configuration Requirements
	Coupled FBS Timing Devices

	User Interface
	Rtcp
	NightSim
	Libraries
	Privileges

	Debugging FBS-Scheduled Processes
	Integrity of the Coupled FBS Support

	Timing Sources for an FBS
	Using a Real-Time Clock
	Understanding the Real-Time Clock Device
	Understanding the User Interface
	Watch-Dog Timer Function
	General Procedures for Using a Real-Time Clock

	Using an Edge-Triggered Interrupt
	Understanding the Edge-Triggered Interrupt
	Understanding the User Interface

	Using a User-Supplied Real-Time Device
	Specifying the Ioctl Call

	Using a Coupled FBS Timing Device
	Device Registration
	Understanding Coupled FBS Timing Devices
	The Remote Device File System
	Understanding the User Interface
	Scheduler Synchronization
	Using RCIM Edge-Triggered Interrupts and Real-Time Clocks
	As a Local Timing Device
	As a Coupled FBS Timing Device
	Configurations with Limited RCIM Hardware
	As a Distributed Interrupt Device Without Coupled FBS Support


	The FBS Daemon
	Coupled FBS Timing Device Error Recovery
	Failed Registrations
	Existing Device Registration Cleanup
	Unregistration of a Coupled FBS Timing Device


	Overview of the Performance Monitor
	What Is the Performance Monitor?
	What Values Are Monitored?
	Monitoring Idle and Spare Time
	How Is Idle Time Monitored?
	How Is Spare Time Monitored?

	Optimizing the Performance of a Simulation
	Monitoring Unscheduled Processes

	Installation and Configuration Requirements
	User Interface
	Rtcp
	NightSim
	Libraries
	Privileges


	Using Rtcp
	What Is the Real-Time Command Processor?
	What Are the Modes of Execution?
	Using Direct Mode
	Using Interactive Mode

	Getting Help
	Using Rtcp Commands
	Ats - Attach Timing Source to an FBS
	Chs - Change Permissions for an FBS
	Cs - Configure an FBS
	Dts - Detach Timing Source from an FBS
	Rms - Remove an FBS
	Svs - Save Scheduler Configuration
	Vc - View Minor Cycle/Major Frame Count
	Vs - View Scheduler Configuration
	Rc - Start Real-Time Clock
	Sc - Stop Real-Time Clock
	Stc - Set Real-Time Clock
	Gtc - Display Real-Time Clock Settings
	Start - Start Scheduling on an FBS
	Resume - Resume Scheduling on an FBS
	Stop - Stop Scheduling on an FBS
	Rmp - Remove a Process from an FBS
	Rsp - Reschedule a Process
	Sp - Schedule a Process on an FBS
	Vp - View Processes on an FBS
	Cpm - Clear Performance Monitor Values
	Pm - Start/Stop Performance Monitoring
	Vcm - View/Modify Performance Monitor Timing Mode
	Vpm - View Performance Monitor Values
	Ex - Exit Real-Time Command Processor
	He - Display Help Information
	Rd - Register a Coupled FBS Timing Device
	Urd - Unregister a Coupled FBS timing device
	Vr - View a Rdevfs File Configuration
	Reg - Register a Closely-Coupled Timing Device
	Unreg - Unregister Closely-Coupled Timing Device


	The Ada Interfaces to RT Services
	The RT_Interface Package
	The FBS Subprograms
	FBS_Access - Change Permissions for an FBS
	FBS_Attach - Attach Timing Source to an FBS
	FBS_Configure - Configure an FBS
	FBS_Cycle - Return Minor Cycle/Major Frame Count
	FBS_Detach - Detach Timing Source from an FBS
	FBS_Getrtc - Obtain Current Values for Real-Time Clock
	FBS_Id - Return the FBS Identifier for a Key
	FBS_Info - Return Information for an FBS
	FBS_Intrpt - Start/Stop/Resume Scheduling on an FBS
	FBS_Query - Query Processes on an FBS
	FBS_Remove - Remove an FBS
	FBS_Resume - Resume Scheduling on an FBS
	FBS_Runrtc - Start/Stop Real-Time Clock
	FBS_Sched_Self - Schedule an Ada Task on an FBS
	FBS_Setrtc - Set Real-Time Clock
	FBS_Wait - Wait on an FBS
	PGM_Query - Query a Process on an FBS
	PGM_Remove - Remove a Process from an FBS
	PGM_Reschedule - Reschedule a Process
	PGM_Schedule - Schedule a Process on an FBS
	PGM_Stat - Query State of FBS-Scheduled Process
	PGM_Trigger - Trigger Process Waiting on FBS
	RT_Param - Return Initiation Parameter
	Sched_FBS_Query
	Sched_PGM_Add
	Sched_PGM_Query
	Sched_PGM_Reschedule

	Name_To_Pid - Obtain Process Identifier
	The Performance Monitor Subprograms
	PM_Clrpgm - Clear Values for a Process
	PM_Clrtable - Clear Values for Processor(s)
	PM_Monitor - Start/Stop Performance Monitoring on Processor(s)
	PM_Program - Start/Stop Performance Monitoring on a Process
	PM_Query_cpu - Query Values for Selected Processor(s)
	PM_Query_list - Query Values for a List of Processes
	PM_Query_pgm - Query Values for a Selected Process
	PM_Querytimer - Query Performance Monitor Mode
	PM_Select - Select Performance Monitor Mode


	Compiling and Linking Procedures

	The C Library Interface
	The FBS Routines
	Fbsaccess - Change Permissions for an FBS
	Fbsattach - Attach Timing Source to an FBS
	Fbsconfigure - Configure an FBS
	Fbscycle - Return Minor Cycle/Major Frame Count
	Fbsdetach - Detach Timing Source from an FBS
	Fbsgetrtc - Obtain Current Values for Real-Time Clock
	Fbsid - Return the FBS Identifier for a Key
	Fbsinfo - Return Information for an FBS
	Fbsinfo_rdev - Return rdevfs timing device information
	Fbsinfo_cluster - Return cluster information for an FBS
	Fbsintrpt - Start/Stop/Resume Scheduling on an FBS
	Fbsquery - Query Processes on an FBS
	Fbsremove - Remove an FBS
	Fbsresume - Resume Scheduling on an FBS
	Fbsrunrtc - Start/Stop Real-Time Clock
	Fbsschedself - Schedule an LWP on an FBS
	Fbssetrtc - Set Real-Time Clock
	Fbswait - Wait on an FBS
	Fbs_register_rdev - Register Coupled FBS Timing Device
	Fbs_unregister_rdev - Unregister a Coupled FBS Timing Device
	Fbs_register_cluster_device - Register Cluster Timing Source
	Fbs_unregister_cluster_device - Unregister Cluster Timing Source
	Pgmquery - Query a Process on an FBS
	Pgmremove - Remove a Process from an FBS
	Pgmreschedule - Reschedule a Process
	Pgmschedule - Schedule a Process on an FBS
	Pgmtrigger - Trigger Process Waiting on FBS
	Sched_fbsqry - Query Processes on an FBS
	Sched_pgmadd - Schedule a Process on an FBS
	Sched_pgm_set_soft_overrun_limit
	Sched_pgm_soft_overrun_query
	Sched_pgmqry - Query a Process on an FBS
	Sched_pgmresched - Reschedule a Process

	The Performance Monitor Routines
	Pmclrpgm - Clear Values for a Process
	Pmclrtable - Clear Values for Processor(s)
	Pmmonitor - Start/Stop Performance Monitoring on Processor(s)
	Pmprogram - Start/Stop Performance Monitoring on a Process
	Pmqrycpu - Query Values for Selected Processor(s)
	Pmqrylist - Query Values for a List of Processes
	Pmqrypgm - Query Values for a Selected Process
	Pmqrytimer - Query Performance Monitor Mode
	Pmselect - Select Performance Monitor Mode

	Compiling and Linking Programs

	The FORTRAN Library Interface
	The FBS Subroutines
	Fbsaccess - Change Permissions for an FBS
	Fbsattach - Attach Timing Source to an FBS
	Fbsconfigure - Configure an FBS
	Fbscycle - Return Minor Cycle/Major Frame Count
	Fbsdetach - Detach Timing Source from an FBS
	Fbsgetrtc - Obtain Current Values for Real-Time Clock
	Fbsid - Return the FBS Identifier for a Key
	Fbsinfo - Return Information for an FBS
	Fbsinfo_rdev - Return Coupled FBS timing device information
	Fbsinfo_cluster - Return cluster information for an FBS
	Fbsintrpt - Start/Stop/Resume Scheduling on an FBS
	Fbsquery - Query Processes on an FBS
	Fbsremove - Remove an FBS
	Fbsresume - Resume Scheduling on an FBS
	Fbsrunrtc - Start/Stop Real-Time Clock
	Fbsschedself - Schedule an LWP on an FBS
	Fbssetrtc - Set Real-Time Clock
	Fbswait - Wait on an FBS
	Fbs_register_rdev - Register Coupled FBS Timing Device
	Fbs_unregister_rdev - Unregister a Coupled FBS timing device
	Fbs_register_cluster_device - Register cluster timing device
	Fbs_unregister_cluster_device - Unregister cluster timing device
	Pgmquery - Query a Process on an FBS
	Pgmquery - Query a Process on an FBS
	Pgmremove - Remove a Process from an FBS
	Pgmreschedule - Reschedule a Process
	Pgmschedule - Schedule a Process on an FBS
	Pgmstat - Query State of FBS-Scheduled Process
	Pgmtrigger - Trigger Process Waiting on FBS
	Rtparm - Return Initiation Parameter
	Sched_pgm_set_soft_overrun_limit
	Sched_pgm_soft_overrun_query
	Schedfbsqry - Query Processes on an FBS
	Schedpgmadd - Schedule a Process on an FBS
	Schedpgmqry - Query a Process on an FBS
	Schedpgmresched - Reschedule a Process

	The Performance Monitor Subroutines
	Pmclrpgm - Clear Values for a Process
	Pmclrtable - Clear Values for Processor(s)
	Pmmonitor - Start/Stop Performance Monitoring on Processor(s)
	Pmprogram - Start/Stop Performance Monitoring on a Process
	Pmqrycpu - Query Values for Selected Processor(s)
	Pmqrylist - Query Values for a List of Processes
	Pmqrypgm - Query Values for a Selected Process
	Pmquerytimer - Query Performance Monitor Mode
	Pmselect - Select Performance Monitor Mode

	Compiling and Linking Procedures

	Example Rtcp Script
	Rtcp Error Messages
	Example: C Interface to the FBS and PM
	Glossary
	Index



